101
|
Olivares-Ramírez MA, López-Zamora L, Peña-Juárez MG, Gutiérrez-Castañeda EJ, Gonzalez-Calderon JA. Application of the response surface methodology for the evaluation of Staphylococcus aureus inhibition with Ag/TiO2 nanoparticles. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
102
|
Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv Colloid Interface Sci 2021; 293:102440. [PMID: 34022748 DOI: 10.1016/j.cis.2021.102440] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/08/2023]
Abstract
Employing new strategies to develop novel composite systems has become a popular area of interest among researchers. Raising people's awareness and their attention to the health and safety issues are key parameters to achieve this purpose. One of the recommended strategies is the utilization of nanoparticles within the matrix of composite materials to improve their physical, mechanical, structural and antimicrobial characteristics. Silver nanoparticles (Ag NPs) have attracted much attention for nanocomposite applications mainly due to their antimicrobial characteristics. Herein, the current review will focus on the different methods for preparing antimicrobial nanocomposites loaded with Ag NPs, the release of Ag NPs from these nanostructures in different media, analyzing techniques for the evaluation of Ag release from nanocomposites, potential applications, and safety issues of nanocomposites containing Ag NPs. The applications of Ag NPs-loaded nanocomposites have been extensively established in food, biomedical, textile, environmental and pharmacological areas mainly due to their antibacterial attributes. Several precautions should be addressed before implementation of Ag NPs in nanocomposites due to the health and safety issues.
Collapse
|
103
|
Sathirapongsasuti N, Panaksri A, Boonyagul S, Chutipongtanate S, Tanadchangsaeng N. Electrospun Fibers of Polybutylene Succinate/Graphene Oxide Composite for Syringe-Push Protein Absorption Membrane. Polymers (Basel) 2021; 13:polym13132042. [PMID: 34206523 PMCID: PMC8271884 DOI: 10.3390/polym13132042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
The adsorption of proteins on membranes has been used for simple, low-cost, and minimal sample handling of large volume, low protein abundance liquid samples. Syringe-push membrane absorption (SPMA) is an innovative way to process bio-fluid samples by combining a medical syringe and protein-absorbable membrane, which makes SPMA a simple, rapid protein and proteomic analysis method. However, the membrane used for SPMA is only limited to commercially available protein-absorbable membrane options. To raise the method’s efficiency, higher protein binding capacity with a lower back pressure membrane is needed. In this research, we fabricated electrospun polybutylene succinate (PBS) membrane and compared it to electrospun polyvinylidene fluoride (PVDF). Rolling electrospinning (RE) and non-rolling electrospinning (NRE) were employed to synthesize polymer fibers, resulting in the different characteristics of mechanical and morphological properties. Adding graphene oxide (GO) composite does not affect their mechanical properties; however, electrospun PBS membrane can be applied as a filter membrane and has a higher pore area than electrospun PVDF membrane. Albumin solution filtration was performed using all the electrospun filter membranes by the SPMA technique to measure the protein capture efficiency and staining of the protein on the membranes, and these membranes were compared to the commercial filter membranes—PVDF, nitrocellulose, and Whatman no. 1. A combination of rolling electrospinning with graphene oxide composite and PBS resulted in two times more captured protein when compared to commercial membrane filtration and more than sixfold protein binding than non-composite polymer. The protein staining results further confirmed the enhancement of the protein binding property, showing more intense stained color in compositing polymer with GO.
Collapse
Affiliation(s)
- Nuankanya Sathirapongsasuti
- Section of Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand;
- Research Network of NANOTEC—MU Ramathibodi on Nanomedicine, Bangkok 10400, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, 52/347 Phahonyothin Road, Lak-Hok 12000, Pathumthani, Thailand; (A.P.); (S.B.)
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, 52/347 Phahonyothin Road, Lak-Hok 12000, Pathumthani, Thailand; (A.P.); (S.B.)
| | - Somchai Chutipongtanate
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Rd., Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand;
| | - Nuttapol Tanadchangsaeng
- College of Biomedical Engineering, Rangsit University, 52/347 Phahonyothin Road, Lak-Hok 12000, Pathumthani, Thailand; (A.P.); (S.B.)
- Correspondence: ; Tel.: +66-(0)2-997-2200 (ext. 1428); Fax: +66-(0)2-997-2200 (ext. 1408)
| |
Collapse
|
104
|
Li Q, Ren T, Perkins P, Hu X, Wang X. Applications of halloysite nanotubes in food packaging for improving film performance and food preservation. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
105
|
Zhang Z, Terrasson V, Guénin E. Lignin Nanoparticles and Their Nanocomposites. NANOMATERIALS 2021; 11:nano11051336. [PMID: 34069477 PMCID: PMC8159083 DOI: 10.3390/nano11051336] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 01/14/2023]
Abstract
Lignin nanomaterials have emerged as a promising alternative to fossil-based chemicals and products for some potential added-value applications, which benefits from their structural diversity and biodegradability. This review elucidates a perspective in recent research on nanolignins and their nanocomposites. It summarizes the different nanolignin preparation methods, emphasizing anti-solvent precipitation, self-assembly and interfacial crosslinking. Also described are the preparation of various nanocomposites by the chemical modification of nanolignin and compounds with inorganic materials or polymers. Additionally, advances in numerous potential high-value applications, such as use in food packaging, biomedical, chemical engineering and biorefineries, are described.
Collapse
|
106
|
Moradi M, Kousheh SA, Razavi R, Rasouli Y, Ghorbani M, Divsalar E, Tajik H, Guimarães JT, Ibrahim SA. Review of microbiological methods for testing protein and carbohydrate-based antimicrobial food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
107
|
Employing Nanosilver, Nanocopper, and Nanoclays in Food Packaging Production: A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11050509] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade, there has been an increasing demand for “ready-to-cook” and “ready-to-eat” foods, encouraging food producers, food suppliers, and food scientists to package foods with minimal processing and loss of nutrients during food processing. Following the increasing trend in the customer’s demands for minimally processed foodstuffs, this underscores the importance of promising interests toward industrial applications of novel and practical approaches in food. Along with substantial progress in the emergence of “nanoscience”, which has turned into the call of the century, the efficacy of conventional packaging has faded away. Accordingly, there is a wide range of new types of packaging, including electronic packaging machines, flexible packaging, sterile packaging, metal containers, aluminum foil, and flexographic printing. Hence, it has been demonstrated that these novel approaches can economically improve food safety and quality, decrease the microbial load of foodborne pathogens, and reduce food spoilage. This review study provides a comprehensive overview of the most common chemical or natural nanocomposites used in food packaging that can extend food shelf life, safety and quality. Finally, we discuss applying materials in the production of active and intelligent food packaging nanocomposite, synthesis of nanomaterial, and their effects on human health.
Collapse
|
108
|
Ali S, Chen X, Ajmal Shah M, Ali M, Zareef M, Arslan M, Ahmad S, Jiao T, Li H, Chen Q. The avenue of fruit wastes to worth for synthesis of silver and gold nanoparticles and their antimicrobial application against foodborne pathogens: A review. Food Chem 2021; 359:129912. [PMID: 33934027 DOI: 10.1016/j.foodchem.2021.129912] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/07/2021] [Accepted: 04/18/2021] [Indexed: 01/29/2023]
Abstract
The emerging fruit wastes valorization tactic is a strategy for minimizing the dependence on toxic solvents and chemicals commonly used in the preparation of nanoparticles (NPs). Furthermore, the NPs have exhibited promising antimicrobial applications against foodborne pathogens. Hence, a timely review of this topic is in demand to provide a clear insight into the subject. In this article, the synthesis of silver and gold NPs from fruit wastes and their antimicrobial application against foodborne pathogens are reviewed. The extraction method, mechanism of NPs formation and influences of various experimental parameters on the shape and size of the NPs are described. In the second part of the article, antimicrobial activities against foodborne pathogens regarding the nature, optimum composition, surface structure, synergism and morphology of the NPs are reviewed. Furthermore, challenges and future trends related to the synthesis and antimicrobial application of fruit wastes-mediated NPs are discussed.
Collapse
Affiliation(s)
- Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa-18800, Pakistan
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Dir (Upper), Khyber Pakhtunkhwa, Pakistan
| | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
109
|
Improving the Barrier Properties of Food Packaging by Al2O3@TiO2 & Al2O3@SiO2 Nanoparticles. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02635-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
110
|
Environmental Sustainability Analysis of Case Studies of Agriculture Residue Exploitation. SUSTAINABILITY 2021. [DOI: 10.3390/su13073990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The agriculture sector produces significant amounts of organic residues and the choice of the management strategy of these flows affects the environmental sustainability of the sector. The scientific literature is rich with innovative processes for the production of bio-based products (BBP) from agriculture residues, aimed at the implementation of circular economy principles. Based on literature data, the present paper performed a life cycle assessment and assessed the environmental sustainability of five processes for the exploitation of rice and wheat straw, tomato pomace, and orange peel. The analysis identified as significant issues the high energy demand and the use of high impact organic solvent. The comparison of BBP with conventional products showed higher environmental loads for the innovative processes that used organic residues (except for rice straw case). The obtained results do not want to discourage the circular strategy in the agriculture sector, but rather to draw the attention of all stakeholders to the environmental sustainability aspects, focusing on the necessity to decrease the electricity demand and identify ecological agents to use in BBP manufacturing, in agreement with the most recent European policies.
Collapse
|
111
|
The effects of nanosilver and nanoclay nanocomposites on shrimp (Penaeus semisulcatus) samples inoculated to food pathogens. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00905-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
112
|
Olewnik-Kruszkowska E, Gierszewska M, Richert A, Grabska-Zielińska S, Rudawska A, Bouaziz M. Antibacterial Films Based on Polylactide with the Addition of Quercetin and Poly(Ethylene Glycol). MATERIALS 2021; 14:ma14071643. [PMID: 33801625 PMCID: PMC8036468 DOI: 10.3390/ma14071643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
A series of new films with antibacterial properties has been obtained by means of solvent casting method. Biodegradable materials including polylactide (PLA), quercetin (Q) acting as an antibacterial compound and polyethylene glycol (PEG) acting as a plasticizer have been used in the process. The effect of quercetin as well as the amount of PEG on the structural, thermal, mechanical and antibacterial properties of the obtained materials has been determined. It was found that an addition of quercetin significantly influences thermal stability. It should be stressed that samples containing the studied flavonoid are characterized by a higher Young modulus and elongation at break than materials consisting only of PLA and PEG. Moreover, the introduction of 1% of quercetin grants antibacterial properties to the new materials. Recorded results showed that the amount of plasticizer did not influence the antibacterial properties; it does, however, cause changes in physicochemical properties of the obtained materials. These results prove that quercetin could be used as an antibacterial compound and simultaneously improve mechanical and thermal properties of polylactide-based films.
Collapse
Affiliation(s)
- Ewa Olewnik-Kruszkowska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
- Correspondence: ; Tel.: +48-56-611-2210
| | - Magdalena Gierszewska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| | - Agnieszka Richert
- Faculty of Biological and Veterinary Sciences, Chair of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland;
| | - Sylwia Grabska-Zielińska
- Faculty of Chemistry, Chair of Physical Chemistry and Physicochemistry of Polymers, Nicolaus Copernicus University in Toruń, Gagarin 7 Street, 87-100 Toruń, Poland; (M.G.); (S.G.-Z.)
| | - Anna Rudawska
- Faculty of Mechanical Engineering, Department of Production Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Mohamed Bouaziz
- Electrochemistry and Environmental Laboratory, National Engineering School of Sfax, University of Sfax, BP1173, Sfax 3038, Tunisia;
| |
Collapse
|
113
|
Lobo FCM, Franco AR, Fernandes EM, Reis RL. An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules 2021; 26:1749. [PMID: 33804712 PMCID: PMC8004007 DOI: 10.3390/molecules26061749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogenic microbes are a major source of health and environmental problems, mostly due to their easy proliferation on most surfaces. Currently, new classes of antimicrobial agents are under development to prevent microbial adhesion and biofilm formation. However, they are mostly from synthetic origin and present several disadvantages. The use of natural biopolymers such as cellulose, hemicellulose, and lignin, derived from lignocellulosic materials as antimicrobial agents has a promising potential. Lignocellulosic materials are one of the most abundant natural materials from renewable sources, and they present attractive characteristics, such as low density and biodegradability, are low-cost, high availability, and environmentally friendly. This review aims to provide new insights into the current usage and potential of lignocellulosic materials (biopolymer and fibers) as antimicrobial materials, highlighting their future application as a novel drug-free antimicrobial polymer.
Collapse
Affiliation(s)
- Flávia C. M. Lobo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Albina R. Franco
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal; (F.C.M.L.); (A.R.F.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
114
|
Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević NŽ, Gadjanski I, Vidić J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr Rev Food Sci Food Saf 2021; 20:2428-2454. [DOI: 10.1111/1541-4337.12727] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Nejra Omerović
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | - Mila Djisalov
- BioSense Institute University of Novi Sad Novi Sad Serbia
| | | | | | - Jovana Vunduk
- Ekofungi Ltd. Belgrade Serbia
- Faculty of Agriculture, Institute of Food Technology and Biochemistry University of Belgrade Belgrade Serbia
| | | | | | | | - Jasmina Vidić
- Micalis Institute, INRAE, AgroParisTech Université Paris‐Saclay Jouy en Josas France
| |
Collapse
|
115
|
Structure-Property Relationships in Bionanocomposites for Pipe Extrusion Applications. Polymers (Basel) 2021; 13:polym13050782. [PMID: 33806333 PMCID: PMC7961334 DOI: 10.3390/polym13050782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
In this work, bionanocomposites based on different biodegradable polymers and two types of nanofillers, namely a nanosized calcium carbonate and an organomodified nanoclay, were produced through melt extrusion, with the aim to evaluate the possible applications of these materials as a potential alternative to traditional fossil fuel-derived polyolefins, for the production of irrigation pipes. The rheological behavior of the formulated systems was thoroughly evaluated by exploiting different flow regimes, and the obtained results indicated a remarkable effect of the introduced nanofillers on the low-frequency rheological response, especially in nanoclay-based bionanocomposites. Conversely, the shear viscosity at a high shear rate was almost unaffected by the presence of both types of nanofillers, as well as the rheological response under nonisothermal elongational flow. In addition, the analysis of the mechanical properties of the formulated materials indicated that the embedded nanofillers increased the elastic modulus when compared to the unfilled counterparts, notwithstanding a slight decrease of the material ductility. Finally, the processing behavior of unfilled biopolymers and bionanocomposites was evaluated, allowing for selecting the most suitable material and thus fulfilling the processability requirements for pipe extrusion applications.
Collapse
|
116
|
Trajkovska Petkoska A, Daniloski D, D'Cunha NM, Naumovski N, Broach AT. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int 2021; 140:109981. [PMID: 33648216 DOI: 10.1016/j.foodres.2020.109981] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Novel food packaging techniques are an important area of research to promote food quality and safety. There is a trend towards environmentally sustainable and edible forms of packaging. Edible packaging typically uses sustainable, biodegradable material that is applied as a consumable wrapping or coating around the food, which generates no waste. Numerous studies have recently investigated the importance of edible materials as an added value to packaged foods. Nanotechnology has emerged as a promising method to provide use of bioactives, antimicrobials, vitamins, antioxidants and nutrients to potentially increase the functionality of edible packaging. It can act as edible dispensers of food ingredients as encapsulants, nanofibers, nanoparticles and nanoemulsions. In this way, edible packaging serves as an active form of packaging. It plays an important role in packaged foods by desirably interacting with the food and providing technological functions such as releasing scavenging compounds (antimicrobials and antioxidants), and removing harmful gasses such as oxygen and water vapour which all can decrease products quality and shelf life. Active packaging can also contribute to maintaining the nutritive profile of packaged foods. In this review, authors present the latest information on new technological advances in edible food packaging, their novel applications and provide examples of recent studies where edible packaging possesses also an active role.
Collapse
Affiliation(s)
- Anka Trajkovska Petkoska
- Faculty of Technology and Technical Sciences, St. Clement of Ohrid University of Bitola, Dimitar Vlahov, 1400 Veles, Republic of North Macedonia.
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia; Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
| | - Nathan M D'Cunha
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Nenad Naumovski
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Anita T Broach
- CSI: Create.Solve.Innovate. LLC, 2020 Kraft Dr., Suite 3007, Blacksburg, VA 24060, USA.
| |
Collapse
|
117
|
Protein-Based Films and Coatings for Food Industry Applications. Polymers (Basel) 2021; 13:polym13050769. [PMID: 33801341 PMCID: PMC7958328 DOI: 10.3390/polym13050769] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.
Collapse
|
118
|
Vasile C, Baican M. Progresses in Food Packaging, Food Quality, and Safety-Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021; 26:1263. [PMID: 33652755 PMCID: PMC7956554 DOI: 10.3390/molecules26051263] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time-temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.
Collapse
Affiliation(s)
- Cornelia Vasile
- “P. Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 70487 Iasi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, 16 University Street, 700115 Iaşi, Romania;
| |
Collapse
|
119
|
Quality Control of Nano-food Packing Material for Grapes (Vitis vinifera) Based on ZnO and Polylactic Acid (PLA) biofilm. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05361-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
120
|
Alinaqi Z, Khezri A, Rezaeinia H. Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles. Int J Biol Macromol 2021; 173:193-202. [PMID: 33482206 DOI: 10.1016/j.ijbiomac.2021.01.118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Electrosprayed zein nanoparticles containing 10% (w/w) of clove essential oil (CEO) were prepared and then with different levels (5, 10, and 15% w/w) in the starch matrix were used. The incorporation of zein nanoparticles in the structure of starch-based bio-nanocomposites films was confirmed by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Increasing the level of application of zein bio-nanofillers in the starch film matrix increased thickness and contact angle. However, the use of electrosprayed zein nanoparticles loaded by CEO (EZN-CEO) up to 10% significantly (p < 0.05) reduced the water vapor permeability (WVP), but using 15% of the nanoparticles increased the WVP of the films significantly (p < 0.05). Increasing the EZN-CEO up to 10% significantly (p < 0.05) increased the tensile strength and Young's modulus and reduced the elongation at break of the films. Sustained release of CEO from the bio-nanocomposites showed that the most release of the CEO occurs in 10% ethanol medium. The Fickian diffusion was the predominant mechanism in the release of the CEO, and the Peleg model was selected as the best one to explain the release behavior. The structures designed in this study can be used as an edible coating and bio-preservative in perishable food products.
Collapse
Affiliation(s)
- Zhila Alinaqi
- Department of Food Science and Technology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Akram Khezri
- Department of Food Science and Technology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Rezaeinia
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), km 12 Mashhad-Quchan Highway, P.O. Box: 91895-157-356, Mashhad, Iran.
| |
Collapse
|
121
|
Marangoni Júnior L, Vieira RP, Jamróz E, Anjos CAR. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr Polym 2021; 252:117221. [DOI: 10.1016/j.carbpol.2020.117221] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
|
122
|
Photografting of conducting polymer onto polymeric substrate as non-migratory antioxidant packaging. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
123
|
Calderaro MP, Pinheiro IF, Holanda Saboya Souza D, Clepf Pagotto C, Morales AR. PBAT
/hybrid nanofillers composites—Part 2: Morphological, thermal and rheological properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.50414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Diego Holanda Saboya Souza
- Institute of Macromolecules Professor Eloísa Mano (IMA) Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Ana Rita Morales
- School of Chemical Engineering (FEQ) University of Campinas (UNICAMP) Campinas Brazil
| |
Collapse
|
124
|
McClements DJ, Barrangou R, Hill C, Kokini JL, Lila MA, Meyer AS, Yu L. Building a Resilient, Sustainable, and Healthier Food Supply Through Innovation and Technology. Annu Rev Food Sci Technol 2020; 12:1-28. [PMID: 33348992 DOI: 10.1146/annurev-food-092220-030824] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The modern food supply faces many challenges. The global population continues to grow and people are becoming wealthier, so the food production system must respond by creating enough high-quality food to feed everyone with minimal damage to our environment. The number of people suffering or dying from diet-related chronic diseases, such as obesity, diabetes, heart disease, stroke, and cancer, continues to rise, which is partly linked to overconsumption of highly processed foods, especially high-calorie or rapidly digestible foods. After falling for many years, the number of people suffering from starvation or malnutrition is rising, and thishas been exacerbated by the global COVID-19 pandemic. The highly integrated food supply chains that spread around the world are susceptible to disruptions due to policy changes, economic stresses, and natural disasters, as highlighted by the recent pandemic. In this perspective article, written by members of the Editorial Committee of the Annual Review of Food Science and Technology, we highlight some of the major challenges confronting the modern food supply chain as well as how innovations in policy and technology can be used to address them. Pertinent technological innovations include robotics, machine learning, artificial intelligence, advanced diagnostics, nanotechnology, biotechnology, gene editing, vertical farming, and soft matter physics. Many of these technologies are already being employed across the food chain by farmers, distributors, manufacturers, and consumers to improve the quality, nutrition, safety, and sustainability of the food supply. These innovations are required to stimulate the development and implementation of new technologies to ensure a more equitable, resilient, and efficient food production system. Where appropriate, these technologies should be carefully tested before widespread implementation so that proper risk-benefit analyses can be carried out. They can then be employed without causing unforeseen adverse consequences. Finally, it is important to actively engage all stakeholders involved in the food supply chain throughout the development and testing of these new technologies to support their adoption if proven safe and effective.
Collapse
Affiliation(s)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork T12YT20, Ireland
| | - Jozef L Kokini
- Department of Food Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mary Ann Lila
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina 28081, USA
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Division, Department of Biotechnology and Biomedicine, Technical University of Denmark, DTU, DK-2800, Kgs. Lyngby, Denmark
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
125
|
Leite LSF, Bilatto S, Paschoalin RT, Soares AC, Moreira FKV, Oliveira ON, Mattoso LHC, Bras J. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging. Int J Biol Macromol 2020; 165:2974-2983. [PMID: 33122067 DOI: 10.1016/j.ijbiomac.2020.10.189] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
We report on gelatin films incorporating rosin-grafted cellulose nanocrystals (r-CNCs), which fulfill the most relevant requirements for antimicrobial packaging applications. Transparent gelatin/r-CNCs bionanocomposite films (0.5-6 wt% r-CNCs) were obtained by solution casting and displayed high UV-barrier properties, which were superior to the most used plastic packaging films. The gelatin/r-CNCs films exhibited a moderate water vapor permeability (0.09 g mm/m2 h kPa), and high tensile strength (40 MPa) and Young's modulus (1.9 GPa). The r-CNCs were more efficient in improving the optical, water vapor barrier and tensile properties of gelatin films than conventional CNCs. Grafting of rosin on CNCs resulted in an antimicrobial nanocellulose that inhibited the growth of Staphylococcus aureus and Escherichia coli. The antibacterial properties of r-CNCs were sustained in the gelatin films, as demonstrated by agar diffusion tests and proof-of-principle experiments involving cheese storage. Overall, the incorporation of r-CNCs as active fillers in gelatin films is a suitable approach for producing novel eco-friendly, antimicrobial packaging materials.
Collapse
Affiliation(s)
- Liliane S F Leite
- Federal University of São Carlos, Graduate Program in Materials Science and Engineering (PPGCEM), 13565-905 São Carlos, Brazil; National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil; University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France.
| | - Stanley Bilatto
- National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Rafaella T Paschoalin
- University of São Paulo, São Carlos Institute of Physics, 13560-970 São Carlos, Brazil.
| | - Andrey C Soares
- National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Francys K V Moreira
- Department of Materials Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, São Carlos, SP 13565-905, Brazil.
| | - Osvaldo N Oliveira
- University of São Paulo, São Carlos Institute of Physics, 13560-970 São Carlos, Brazil.
| | - Luiz H C Mattoso
- Federal University of São Carlos, Graduate Program in Materials Science and Engineering (PPGCEM), 13565-905 São Carlos, Brazil; National Nanotechnology Laboratory for Agribusiness, Embrapa Instrumentação, XV de Novembro street, 1452, 13560-979 São Carlos, Brazil.
| | - Julien Bras
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38400 Grenoble, France; Nestle Research Center, 1000 Lausanne, Switzerland.
| |
Collapse
|
126
|
Alamry KA, Almehmadi SJ, Elfaky M, Al-Shareef HF, J. A. S, Hussein MA. Enhanced antimicrobial activity of new arylidene-based polyketone nanocomposite materials. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1784213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Khalid A. Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar J. Almehmadi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M.A. Elfaky
- Faculty of Pharmacy, Natural Products and Alternative Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H. F. Al-Shareef
- Departement of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samah J. A.
- Department of Biochemistry, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Lab., Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
127
|
Cheikh D, Martín-Sampedro R, Majdoub H, Darder M. Alginate bionanocomposite films containing sepiolite modified with polyphenols from myrtle berries extract. Int J Biol Macromol 2020; 165:2079-2088. [DOI: 10.1016/j.ijbiomac.2020.10.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 01/26/2023]
|
128
|
Silveira VAI, Marim BM, Hipólito A, Gonçalves MC, Mali S, Kobayashi RKT, Celligoi MAPC. Characterization and antimicrobial properties of bioactive packaging films based on polylactic acid-sophorolipid for the control of foodborne pathogens. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
129
|
Basumatary IB, Mukherjee A, Katiyar V, Kumar S. Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr 2020; 62:1912-1935. [DOI: 10.1080/10408398.2020.1848789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| |
Collapse
|
130
|
Abstract
Pathogenic microorganisms can spread throughout the world population, as the current COVID-19 pandemic has dramatically demonstrated. In this scenario, a protection against pathogens and other microorganisms can come from the use of photoactive materials as antimicrobial agents able to hinder, or at least limit, their spreading by means of photocatalytically assisted processes activated by light—possibly sunlight—promoting the formation of reactive oxygen species (ROS) that can kill microorganisms in different matrices such as water or different surfaces without affecting human health. In this review, we focus the attention on TiO2 nanoparticle-based antimicrobial materials, intending to provide an overview of the most promising synthetic techniques, toward possible large-scale production, critically review the capability of such materials to promote pathogen (i.e., bacteria, virus, and fungi) inactivation, and, finally, take a look at selected technological applications.
Collapse
|
131
|
Teixeira PF, Covas JA, Suarez MJ, Angulo I, Hilliou L. Film Blowing of PHB-Based Systems for Home Compostable Food Packaging. INT POLYM PROC 2020. [DOI: 10.3139/217.3985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- P. F. Teixeira
- Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
| | - J. A. Covas
- Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
| | - M. J. Suarez
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - I. Angulo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - L. Hilliou
- Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
| |
Collapse
|
132
|
Bahrami R, Zibaei R, Hashami Z, Hasanvand S, Garavand F, Rouhi M, Jafari SM, Mohammadi R. Modification and improvement of biodegradable packaging films by cold plasma; a critical review. Crit Rev Food Sci Nutr 2020; 62:1936-1950. [PMID: 33207940 DOI: 10.1080/10408398.2020.1848790] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cold plasma is one of the techniques used in recent years to improve the functionality and interfacial attributes of biopolymers. Employing cold plasma for the treatment and modification of biopolymers possesses several advantages including its biocompatibility, elimination of toxic solvents usage, treatment consistency, and appropriateness for heat-sensitive ingredients. Most studies have presented the efficacious use of cold plasma treatment in improving structural, mechanical and thermal properties of film composites. In addition, cold plasma improves the film surface characteristics, particularly in protein-based films, through bringing up the polar functional groups onto the bio-composite surface, consequently increasing roughness, improving printability, increasing adhesion, and reducing contact angle; while it is not effective in the improvement of water vapor permeability of edible films. Cold plasma-treated edible packaging films experienced significant improvement where exposed to microbial contaminations, mainly due to the non-thermal nature of cold plasma technology leading to the protection of antimicrobial potency of bioactive compounds and antimicrobial constitutes. Therefore, it can be concluded that cold plasma treatment is an innovative strategy to strengthen the edible film characteristics as a promising alternative to the currently used chemical and physical modification approaches.
Collapse
Affiliation(s)
- Roya Bahrami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Zibaei
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Hasanvand
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Garavand
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
133
|
Rozilah A, Jaafar CNA, Sapuan SM, Zainol I, Ilyas RA. The Effects of Silver Nanoparticles Compositions on the Mechanical, Physiochemical, Antibacterial, and Morphology Properties of Sugar Palm Starch Biocomposites for Antibacterial Coating. Polymers (Basel) 2020; 12:E2605. [PMID: 33171913 PMCID: PMC7694511 DOI: 10.3390/polym12112605] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Antibacterial sugar palm starch biopolymer composite films were developed and derived from renewable sources and inorganic silver nanoparticles (AgNPs) as main ingredients for antibacterial coatings. The composite films were produced by solution casting method and the mechanical and physicochemical properties were determined by tensile test, Fourier Transform Infrared (FTIR) analysis, thermal gravimetric analysis (TGA), antibacterial screening test and field emission scanning electron microscopy (FESEM) images. It was found that mechanical and antibacterial properties of biocomposite films were improved after the addition of AgNPs compared with the film without active metals. The weakness of neat biocomposite films was improved by incorporating inorganic AgNPs as a nanofiller in the films' matrix to avoid bacterial growth. The results showed that the tensile strength ranged between 8 kPa and 408 kPa and the elasticity modulus was between 5.72 kPa and 9.86 kPa. The addition of AgNPs in FTIR analysis decreased the transmittance value, caused small changes in the chemical structure, caused small differences in the intensity peaks, and produced longer wavelengths. These active films increased the degradation weight and decomposition temperature due to the more heat-stable AgNPs. Meanwhile, the average inhibited areas measured were between 7.66 and 7.83 mm (Escherichia coli), 7.5 and 8.0 mm (Salmonella cholerasuis), and 0.1 and 0.5 mm for Staphylococcus aureus. From the microscopic analysis, it was observed that the average size of all microbes for 1 wt% and 4 wt% AgNPs ranged from 0.57 to 2.90 mm. Overall, 3 wt% AgNP nanofiller was found to be the best composition that fulfilled all the mechanical properties and had better antimicrobial properties. Thus, the development of an organic-inorganic hybrid of antibacterial biopolymer composite films is suitable for antibacterial coatings.
Collapse
Affiliation(s)
- A. Rozilah
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (A.R.); (S.M.S.); (R.A.I.)
| | - C. N. Aiza Jaafar
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - S. M. Sapuan
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (A.R.); (S.M.S.); (R.A.I.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - I. Zainol
- Faculty of Science and Mathematics, Sultan Azlan Shah Campus, Universiti Pendidikan Sultan Idris, Proton City, Tanjung Malim 35900, Malaysia;
| | - R. A. Ilyas
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP) Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (A.R.); (S.M.S.); (R.A.I.)
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
134
|
Garavand F, Cacciotti I, Vahedikia N, Rehman A, Tarhan Ö, Akbari-Alavijeh S, Shaddel R, Rashidinejad A, Nejatian M, Jafarzadeh S, Azizi-Lalabadi M, Khoshnoudi-Nia S, Jafari SM. A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Crit Rev Food Sci Nutr 2020; 62:1383-1416. [DOI: 10.1080/10408398.2020.1843133] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Cork, Ireland
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome “Niccolò Cusano”, Roma, Italy
| | - Nooshin Vahedikia
- Department of Food Technology, Institute of Chemical Technologies, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Özgür Tarhan
- Department of Food Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rezvan Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Rashidinejad
- Riddet Institute Centre of Research Excellence, Massey University, Palmerston North, New Zealand
| | - Mohammad Nejatian
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Jafarzadeh
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Maryam Azizi-Lalabadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Khoshnoudi-Nia
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
135
|
Nogueira GF, de Oliveira RA, Velasco JI, Fakhouri FM. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers (Basel) 2020; 12:E2518. [PMID: 33126759 PMCID: PMC7692086 DOI: 10.3390/polym12112518] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Plastic, usually derived from non-renewable sources, is among the most used materials in food packaging. Despite its barrier properties, plastic packaging has a recycling rate below the ideal and its accumulation in the environment leads to environmental issues. One of the solutions approached to minimize this impact is the development of food packaging materials made from polymers from renewable sources that, in addition to being biodegradable, can also be edible. Different biopolymers from agricultural renewable sources such as gelatin, whey protein, starch, chitosan, alginate and pectin, among other, have been analyzed for the development of biodegradable films. Moreover, these films can serve as vehicles for transporting bioactive compounds, extending their applicability as bioactive, edible, compostable and biodegradable films. Biopolymer films incorporated with plant-derived bioactive compounds have become an interesting area of research. The interaction between environment-friendly biopolymers and bioactive compounds improves functionality. In addition to interfering with thermal, mechanical and barrier properties of films, depending on the properties of the bioactive compounds, new characteristics are attributed to films, such as antimicrobial and antioxidant properties, color and innovative flavors. This review compiles information on agro-based biopolymers and plant-derived bioactive compounds used in the production of bioactive films. Particular emphasis has been given to the methods used for incorporating bioactive compounds from plant-derived into films and their influence on the functional properties of biopolymer films. Some limitations to be overcome for future advances are also briefly summarized. This review will benefit future prospects for exploring innovative methods of incorporating plant-derived bioactive compounds into films made from agricultural polymers.
Collapse
Affiliation(s)
| | | | - José Ignacio Velasco
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Carrer Colom 114, E-08222 Terrassa, Spain;
| | - Farayde Matta Fakhouri
- Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Carrer Colom 114, E-08222 Terrassa, Spain;
- Faculty of Engineering, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil
| |
Collapse
|
136
|
Cao C, Wang Y, Zheng S, Zhang J, Li W, Li B, Guo R, Yu J. Poly (butylene adipate-co-terephthalate)/titanium dioxide/silver composite biofilms for food packaging application. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
137
|
Marangoni Júnior L, Vieira RP, Anjos CAR. Kefiran-based films: Fundamental concepts, formulation strategies and properties. Carbohydr Polym 2020; 246:116609. [DOI: 10.1016/j.carbpol.2020.116609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
|
138
|
Verma J, Khanna AS, Sahney R, Bhattacharya A. Super protective anti-bacterial coating development with silica-titania nano core-shells. NANOSCALE ADVANCES 2020; 2:4093-4105. [PMID: 36132759 PMCID: PMC9419817 DOI: 10.1039/d0na00387e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 06/16/2023]
Abstract
In the present study, we have developed an anti-bacterial as well as mechanically-strengthened super protective coating material, which can be used as a marine antifouling paint. In this research, silica, titania and silica-titania core-shell nanoparticles were individually prepared via sol-gel and peptization processes. The idea behind the synthesis of core-shell nanoparticles was to utilize the mechanical strength of silica and the antimicrobial property of TiO2 together. These nanoparticles were characterized via dynamic light scattering, UV-Visible spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Coating formulations were developed with two types of model binders, i.e., solvent-based polyurethane and water-based poly-acrylic, containing all nanoparticles individually at various concentrations for a better comparative study. These coating formulations were applied onto mild steel for anti-bacterial testing that was performed against Escherichia coli and Bacillus. The nanoparticle concentration was varied from 1% (wt) to 6% (wt). The best anti-bacterial result was obtained with 4% (wt) of silica-titania core-shell nanoparticles prepared via the peptization process among all the nanoparticles. The scratch testing was performed successfully using an Erichsen scratch tester; the formulated PU coating passed up-to 20 N load with good adhesion, impact resistance, flexibility and has shown satisfactory anti-corrosion performance.
Collapse
Affiliation(s)
- Jaya Verma
- Amity Institute of Nanotechnology, Amity University Noida Uttar Pradesh-201303 India
| | - A S Khanna
- Surface Engineering & Coating Consultant Mumbai-400078 India
| | - Rachana Sahney
- Amity Institute of Biotechnology, Amity University Noida Uttar Pradesh-201303 India
| | - Arpita Bhattacharya
- Amity Institute of Nanotechnology, Amity University Noida Uttar Pradesh-201303 India
| |
Collapse
|
139
|
Conte A, Lecce L, Iannetti M, Nobile MAD. Study on the Influence of Bio-Based Packaging System on Sodium Benzoate Release Kinetics. Foods 2020; 9:E1010. [PMID: 32727066 PMCID: PMC7466247 DOI: 10.3390/foods9081010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
The influence of film structure on the release kinetics of sodium benzoate (SB) from polymeric films is addressed in this study. In particular, four film structures were investigated, two monolayer and two multilayer systems. In particular, in one case, the active substance was uniformly distributed into a chitosan-based matrix, and in the other one, it was previously incorporated into alginate beads before dispersion in the chitosan film, thus realizing two types of monolayer films; on the other hand, the same chitosan film with SB encapsulated in alginate beads was used as the inner layer of a multilayer system constituted by two side films of alginate. The two alginate-based layers were made with two different thicknesses, thus producing a total of two multilayer systems. The release of SB from the above-mentioned films in water was studied by means of a UV/VIS spectrophotometer at 227 nm. A first-order kinetics-type equation was used to quantitatively describe the release data. Results suggest that the film structure strongly affected the release kinetics. In fact, monolayer films showed single-stage release kinetics, whereas the two investigated multilayer systems showed two-stage release kinetics. Further, the presence of alginate beads strongly affected the SB release, thus suggesting the potential of encapsulation to control the release mechanism of active compounds.
Collapse
Affiliation(s)
| | | | | | - Matteo Alessandro Del Nobile
- Department of Agricultural Sciences, Food and Environment, University of Foggia, via Napoli, 25-71121 Foggia, Italy; (A.C.); (L.L.); (M.I.)
| |
Collapse
|
140
|
Jafarzadeh S, Jafari SM. Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Crit Rev Food Sci Nutr 2020; 61:2640-2658. [DOI: 10.1080/10408398.2020.1783200] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shima Jafarzadeh
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, University Sains Malaysia, Minden, Penang, Malaysia
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
141
|
Almasi H, Jahanbakhsh Oskouie M, Saleh A. A review on techniques utilized for design of controlled release food active packaging. Crit Rev Food Sci Nutr 2020; 61:2601-2621. [PMID: 32588646 DOI: 10.1080/10408398.2020.1783199] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Active packaging (AP) is a new class of innovative food packaging, containing bioactive compounds, is able to maintain the quality of food and extend its shelf life by releasing active agent during storage. The main challenge in designing the AP system is slowing the release rate of active compounds for its prolonged activity. Controlled-release active packaging (CRP) is an innovative technology that provides control in the release of active compounds during storage. Various approaches have been proposed to design CRP. The purpose of this review was to gather and present the strategies utilized for release controlling of active compounds from food AP systems. The chemical modification of polymers, the preparation of multilayer films and the use of cross-linking agents are some methods tried in the last decades. Other approaches use molecular complexes and irradiation treatments. Micro- or nano-encapsulation of active compounds and using nano-structured materials in the AP film matrix are the newest techniques used for the preparation of CRP systems. The action mechanism for each technique was described and an effort was made to highlight representative published papers about each release controlling approach. This review will benefit future prospects of exploring other innovative release controlling methods in food CRP.
Collapse
Affiliation(s)
- Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Ayda Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
142
|
Janani N, Zare EN, Salimi F, Makvandi P. Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydr Polym 2020; 247:116678. [PMID: 32829806 DOI: 10.1016/j.carbpol.2020.116678] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/04/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022]
Abstract
Food packaging has a pivotal share to improve protection, safety and shelf-life time of foods and bioproducts. Herein, we prepared bioactive nanocomposite films that composed of tragacanth (TG), polyvinyl alcohol, ZnO nanoparticles (NPs) and ascorbic acid (AA) using glycerol as a plasticizer and citric acid as a cross-linker for food packaging. The SEM images showed a homogenous distribution of ZnO NPs with low aggregation in nanocomposite films. The water solubility of nanocomposite films reduced from 15.65 % to 10.81 with increasing of TG and ZnO NPs contents. The incorporation of AA and ZnO NPs into nanocomposite films improved antioxidant activity from 50 % to 66 % in 95 % ethanolic solution. Also, the nanocomposite films showed good antibacterial activity against Gram-negative and -positive bacteria. Soil degradation rate of nanocomposite films increased from 80 % to 91.46 as the wt% of TG increased. Therefore, prepared nanocomposite films could be employed as a promising candidate for food packaging applications.
Collapse
Affiliation(s)
- Negar Janani
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| | | | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan 36716-41167, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| |
Collapse
|
143
|
Roy S, Rhim JW. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr 2020; 61:2297-2325. [PMID: 32543217 DOI: 10.1080/10408398.2020.1776211] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, interest in smart packaging, which can show the color change of the packaging film according to the state of the food and evaluate the quality or freshness of the packaged food in real-time, is increasing. As a color indicator, a natural colorant, anthocyanin, drew a lot of attention due to their various colors as well as useful functions properties such as antioxidant activity and anti-carcinogenic and anti-inflammatory effects, prevention of cardiovascular disease, obesity, and diabetes. In particular, the pH-responsive color-changing function of anthocyanins is useful for making color indicator smart packaging films. This review addressed the latest information on the use of natural pigment anthocyanins for intelligent and active food packaging applications. Recent studies on eco-friendly biodegradable polymer-based color indicator films incorporated with anthocyanins have been addressed. Also, studies on the use of smart packaging films to monitor the freshness of foods such as milk, meat, and fish were reviewed. This review highlights the potential and challenges for the use of anthocyanins as pH-responsive color-changing films for intelligent food packaging applications, which may be beneficial for further development of smart color indicator films for practical use.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
144
|
Beikzadeh S, Khezerlou A, Jafari SM, Pilevar Z, Mortazavian AM. Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Adv Colloid Interface Sci 2020; 280:102164. [PMID: 32335381 DOI: 10.1016/j.cis.2020.102164] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/06/2023]
Abstract
In recent years, environmental problems, consumer health concerns, and economic limitations associated with synthetic plastics have led to the application of renewable, biodegradable, and edible resources for developing food packaging. Edible packaging can be important in maintaining the food quality and preventing the microbial and chemical spoilage of foods. Several seeds can produce 'seed-based mucilage' with different techno-functional properties for application in various food products. In the field of packaging, these mucilages can be extruded into coatings and films and improve the barrier properties against the transfer of oxygen and moisture. Likewise, bioactive ingredients can also be incorporated into these mucilages which will extend the shelf life of food products. This study gives an overview of various seed mucilages, their production and characteristics of the films/coatings prepared with them for successful applications in different food products.
Collapse
Affiliation(s)
- Samira Beikzadeh
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/ National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineerin3g, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Zahra Pilevar
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/ National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Mortazavian
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/ National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
145
|
Jafarzadeh S, Jafari SM, Salehabadi A, Nafchi AM, Uthaya Kumar US, Khalil HA. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
146
|
Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
147
|
Coltelli MB, Aliotta L, Vannozzi A, Morganti P, Panariello L, Danti S, Neri S, Fernandez-Avila C, Fusco A, Donnarumma G, Lazzeri A. Properties and Skin Compatibility of Films Based on Poly(Lactic Acid) (PLA) Bionanocomposites Incorporating Chitin Nanofibrils (CN). J Funct Biomater 2020; 11:E21. [PMID: 32244595 PMCID: PMC7353621 DOI: 10.3390/jfb11020021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobiocomposites suitable for preparing skin compatible films by flat die extrusion were prepared by using plasticized poly(lactic acid) (PLA), poly(butylene succinate-co-adipate) (PBSA), and Chitin nanofibrils as functional filler. Chitin nanofibrils (CNs) were dispersed in the blends thanks to the preparation of pre-nanocomposites containing poly(ethylene glycol). Thanks to the use of a melt strength enhancer (Plastistrength) and calcium carbonate, the processability and thermal properties of bionanocomposites films containing CNs could be tuned in a wide range. Moreover, the resultant films were flexible and highly resistant. The addition of CNs in the presence of starch proved not advantageous because of an extensive chain scission resulting in low values of melt viscosity. The films containing CNs or CNs and calcium carbonate resulted biocompatible and enabled the production of cells defensins, acting as indirect anti-microbial. Nevertheless, tests made with Staphylococcus aureus and Enterobacter spp. (Gram positive and negative respectively) by the qualitative agar diffusion test did not show any direct anti-microbial activity of the films. The results are explained considering the morphology of the film and the different mechanisms of direct and indirect anti-microbial action generated by the nanobiocomposite based films.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Alessandro Vannozzi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
| | - Simona Neri
- IRIS Technology Solutions S.L, 08860 Castelldefels, Barcelona, Spain; (S.N.); (C.F.-A.)
| | | | - Alessandra Fusco
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Donnarumma
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (A.V.); (L.P.); (S.D.); (A.F.); (G.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| |
Collapse
|
148
|
Scaffaro R, Maio A, Gulino EF, Morreale M, La Mantia FP. The Effects of Nanoclay on the Mechanical Properties, Carvacrol Release and Degradation of a PLA/PBAT Blend. MATERIALS 2020; 13:ma13040983. [PMID: 32098312 PMCID: PMC7078646 DOI: 10.3390/ma13040983] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
The formulation of polymeric films endowed with the abilities of controlled release of antimicrobials and biodegradability is the latest trend of food packaging. Biodegradable polymer (Bio-Flex®)-based nanocomposites containing carvacrol as an antimicrobial agent, and a nanoclay as a filler, were processed into blown films. The presence of such hybrid loading, while not affecting the overall filmability of the neat matrix, led to enhanced mechanical properties, with relative increments up to +70% and +200% in terms of elastic modulus and elongation at break. FTIR/ATR analysis and release tests pointed out that the presence of nanoclay allowed higher carvacrol loading efficiency, reasonably hindering its volatilization during processing. Furthermore, it also mitigated the burst delivery, thereby enabling a more controlled release of the antimicrobial agent. The results of mass loss tests indicated that all the formulations showed a rather fast degradation with mass losses ranging from 37.5% to 57.5% after 876 h. The presence of clay and carvacrol accelerated the mass loss rate of Bio-Flex®, especially when added simultaneously, thus indicating an increased biodegradability. Such ternary systems could be, therefore, particularly suitable as green materials for food packaging applications, and for antimicrobial wrapping applications.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy; (E.F.G.); (F.P.L.M.)
- Correspondence: (R.S.); (A.M.); (M.M.)
| | - Andrea Maio
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy; (E.F.G.); (F.P.L.M.)
- Correspondence: (R.S.); (A.M.); (M.M.)
| | - Emmanuel Fortunato Gulino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy; (E.F.G.); (F.P.L.M.)
| | - Marco Morreale
- Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy
- Correspondence: (R.S.); (A.M.); (M.M.)
| | - Francesco Paolo La Mantia
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy; (E.F.G.); (F.P.L.M.)
| |
Collapse
|