101
|
Khan A, Ezati P, Rhim JW, Kim JT, Molaei R. pH-Sensitive Green Tea-Derived Carbon Quantum Dots for Real-Time Monitoring of Shrimp Freshness. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
102
|
Khan A, Ezati P, Rhim JW. Alizarin: Prospects and sustainability for food safety and quality monitoring applications. Colloids Surf B Biointerfaces 2023; 223:113169. [PMID: 36738702 DOI: 10.1016/j.colsurfb.2023.113169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Active and intelligent food packaging has emerged to ensure food safety, quality, or spoilage monitoring and extend the shelf life of food. The development of intelligent packaging has accelerated significantly in recent years with a focus on monitoring changes in the quality of packaged products in real-time throughout the food supply chain. As one of the popular natural colorants, alizarin has attracted much consideration due to its excellent functional properties and quality to color change under varying pH. Alizarin is an efficient and cost-effective biomaterial with numerous biological features such as antioxidant, antibacterial, non-cytotoxic, and antitumor. This review focuses on an in-depth summary and prospects for alizarin as a natural and safe colorant that has the potential to be incorporated into intelligent packaging to track the freshness of packaged foodstuffs. The use of alizarin as an intelligent packaging agent shows huge potential for the application of food packaging and brings it one step closer to real-time monitoring of food quality throughout the supply chain. Finally, various limitations and future requirements are discussed to underscore the importance of developing alizarin-based intelligent functional food packaging systems.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
103
|
Abedi-Firoozjah R, Salim SA, Hasanvand S, Assadpour E, Azizi-Lalabadi M, Prieto MA, Jafari SM. Application of smart packaging for seafood: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:1438-1461. [PMID: 36717376 DOI: 10.1111/1541-4337.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Nowadays, due to the changes in lifestyle and great interest of consumers in a healthy life, people have started increasing their seafood consumption. But due to their short shelf life, experts are looking for a new packaging called smart packaging (SMP) for seafood. There are different indicators/sensors in SMP; one of the effective indices is time-temperature, which can show consumers the best time of using seafood based on their shelf life and experienced temperature. Another one is radio-frequency identification (RFID) that is a transmission device that represents a separate form of the electronic information-based SMP systems. RFID does not belong to any of the categories of markers or sensors; it is an auto recognition system that applies cordless sensors to indicate segments and collect real-time information without manual interposition. This review covers the use of SMP in all marine foods, including fish, due to its high consumption and high content of polyunsaturated fatty acids, eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3), which are the considerable factors of n-3 polyunsaturated fatty acids for human.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shamimeh Azimi Salim
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Hasanvand
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
104
|
Developing strong and tough cellulose acetate/ZIF67 intelligent active films for shrimp freshness monitoring. Carbohydr Polym 2023; 302:120375. [PMID: 36604053 DOI: 10.1016/j.carbpol.2022.120375] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
There is a growing demand for the development of intelligent active packaging films to maintain and monitor the freshness of meat food. Herein, nano Co-based MOF (ZIF67) with ammonia-sensitive and antimicrobial functions was successfully synthesized and then integrated into cellulose acetate (CA) matrix to prepare intelligent active films. The impacts of ZIF67 incorporation on the structure, physical and functional characteristics of CA film were fully investigated. The results demonstrated that the ZIF67 nanofillers were evenly dispersed in CA matrix, resulting in remarkable improvement on tensile strength, toughness, thermal stability, UV barrier, hydrophobicity and water vapor barrier ability of CA film. Furthermore, the prepared CA/ZIF67 films exhibited superb antimicrobial and ammonia-sensitive functions. The CA/ZIF67 intelligent films turned their color from blue at beginning to brown during progressive spoilage of shrimp. These results revealed that the CA/ZIF67 films with excellent antimicrobial and ammonia-sensitive functions could be applied in intelligent active food packaging.
Collapse
|
105
|
Ezati P, Khan A, Rhim JW, Kim JT, Molaei R. pH-Responsive strips integrated with resazurin and carbon dots for monitoring shrimp freshness. Colloids Surf B Biointerfaces 2023; 221:113013. [PMID: 36401960 DOI: 10.1016/j.colsurfb.2022.113013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Carbon dots (CDs) were synthesized via a one-step hydrothermal approach using tangerine peel (Tan) and resazurin (Res) to fabricate biocompatible indicators for food freshness. The CDs' pH-responsive mechanism, morphology, zeta potential, XPS, and optical and fluorescence analysis were investigated. The as-prepared tangerine peel/resazurin carbon dots (Tan/Res CDs) exhibited pH-responsive emission that changed from yellow to orange as the pH value increased. The Tan/Res CDs showed the sensing ability of ammonia with a detection limit of 0.84 μM by proportionally losing fluorescence intensity as the concentration increased from 1 to 100 μM. The CDs were coated onto paper strips to impart biogenic amine (BAs) detection for pH-responsive intelligent monitoring of packaged foods. The Tan/Res CDs paper-based indicator exhibited an impressive color change from yellow to brown during the detection of ammonia vapor. The indicator also showed the ability to detect BAs through a color change, demonstrating the ability to monitor the freshness of shrimp in situ. Additionally, the efficacy of the Tan/Res CDs indicator is validated by total volatile basic nitrogen (TVB-N), providing customers and suppliers with a simple, inexpensive, and portable tool to monitor the freshness of seafood in real-time.
Collapse
Affiliation(s)
- Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jun Tae Kim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
106
|
Sodium alginate/chitosan-based intelligent bilayer film with antimicrobial activity for pork preservation and freshness monitoring. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
107
|
Zhao R, Chen J, Yu S, Niu R, Yang Z, Wang H, Cheng H, Ye X, Liu D, Wang W. Active chitosan/gum Arabic-based emulsion films reinforced with thyme oil encapsulating blood orange anthocyanins: Improving multi-functionality. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
108
|
Gelatin-based smart film incorporated with nano cerium oxide for rapid detection of shrimp freshness. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
109
|
XU H, SHI Y, GAO L, SHI N, YANG J, HAO R. Preparation and characterization of PH-responsive polyvinyl alcohol/chitosan/anthocyanin films. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.98022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Ying SHI
- North University of China, China
| | - Li GAO
- North University of China, China
| | - Nan SHI
- North University of China, China
| | | | - Rui HAO
- North University of China, China
| |
Collapse
|
110
|
Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
111
|
Bilayer pH-sensitive colorimetric indicator films based on zein/gellan gum containing black rice (Oryza sativa L.) extracts for monitoring of largemouth bass (Micropterus salmoides) fillets freshness. Int J Biol Macromol 2022; 223:1268-1277. [PMID: 36347380 DOI: 10.1016/j.ijbiomac.2022.10.273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Anthocyanins as natural pH-sensitive material can be used to determine the freshness of largemouth bass (Micropterus salmoides) fillets. However, it is easily degraded. Using zein as the protective layer to improve the light blocking ability of the film, gellan gum (GG) and black rice extracts (BRE) as the sensing layer, a bilayer colorimetric indicator film for monitoring fish spoilage was developed. The functionality and stability of bilayer film and GG single film were compared. As compared to GG single film, Zein/GG bilayer film had stronger intermolecular interactions, higher mechanical properties, and higher optical barrier properties. Notably, Zein/GG-8 % BRE bilayer film exhibited higher stability than GG-8 % BRE film when the films were exposed to room temperature for 30 days. Zein/GG-8 % BRE bilayer film were further used to monitor freshness of largemouth bass fillets during storage. Zein/GG-8 % BRE bilayer film demonstrated a noticeable color change from red to brown when largemouth bass fillets spoiled. Moreover, the ∆E of films showed a good correlation with TVB-N of largemouth bass fillets (R2 = 0.985). Our research results show that the Zein/GG-BRE bilayer indicator film has great potential application prospects in monitoring fish freshness.
Collapse
|
112
|
Wu Y, Li C. A smart film incorporating anthocyanins and tea polyphenols into sodium carboxymethyl cellulose/polyvinyl alcohol for application in mirror carp. Int J Biol Macromol 2022; 223:404-417. [PMID: 36347377 DOI: 10.1016/j.ijbiomac.2022.10.282] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Multifunctional food packaging films were developed based on polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), tea polyphenol (TP) and black carrot anthocyanin (CA). Results of Zeta potential, scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction showed that CA enhanced the stability of the particle dispersion system through hydrogen bonding and electrostatic interactions, promoted the compatibility between TP and PVA-CMC (PC) substrates, and enhanced the binding between the components of the films. Because of the interaction of TP and CA, PC-TP-CA films had better water resistance and water vapor barrier properties, thermal stability, antioxidant and antimicrobial properties. PC-CA and PC-TP-CA films exhibited excellent UV-blocking properties. They also showed distinct color responsiveness in the pH range of 2-13, significant sensitivity to ammonia vapor in a short period of time and excellent color stability over 20 days of storage under different conditions. When the film was applied to fish, it was found that PC-TP-CA film could extend the shelf life of fish by 1-2 days and successfully monitor the freshness of the fish in real-time. Considering all the physical and functional properties, the non-toxic and biodegradable PC-TP-CA film has excellent potential as a new multifunctional food packaging material in the future.
Collapse
Affiliation(s)
- Yanglin Wu
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
113
|
Zhao R, Guo H, Yan T, Li J, Xu W, Deng Y, Zhou J, Ye X, Liu D, Wang W. Fabrication of multifunctional materials based on chitosan/gelatin incorporating curcumin-clove oil emulsion for meat freshness monitoring and shelf-life extension. Int J Biol Macromol 2022; 223:837-850. [PMID: 36343838 DOI: 10.1016/j.ijbiomac.2022.10.271] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A new multifunctional film with active and intelligent effects was developed by incorporating curcumin-clove oil emulsion into natural materials. The basic properties, functional characteristics, and pH/NH3-sensitivity of films were investigated, and then these films were applied to extend shelf-life and monitor freshness of meat. Curcumin solution and emulsion illustrated significant color variations at different pH values. The incorporation of emulsion improved the UV-vis barrier and water resistance properties of films, which blocked most of UV-light and its water contact angle reached 100.03°. Meanwhile, the films had stronger mechanical strength and higher thermal stability, with elongation at break reaching 79.18 % and the maximum degradation temperature rising to 316 °C. Moreover, emulsion made films have a slow-release effect on clove oil, which not only enhanced the antioxidant property but also significantly improved their antibacterial activity. Additionally, the multifunctional films presented a significant color response to acidic/alkaline environments over a short time interval and could be easily identified by naked eyes. Finally, the films effectively extended the shelf-life of fresh meat by 3 days at 4 °C and visually monitored freshness through color changes in real-time. This knowledge provides insights and ideas for the development of novel food packaging with both active and intelligent functions.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haocheng Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
114
|
Latest Trends in Sustainable Polymeric Food Packaging Films. Foods 2022; 12:foods12010168. [PMID: 36613384 PMCID: PMC9818434 DOI: 10.3390/foods12010168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Food packaging is the best way to protect food while it moves along the entire supply chain to the consumer. However, conventional food packaging poses some problems related to food wastage and excessive plastic production. Considering this, the aim of this work was to examine recent findings related to bio-based alternative food packaging films by means of conventional methodologies and additive manufacturing technologies, such as 3D printing (3D-P), with potential to replace conventional petroleum-based food packaging. Based on the findings, progress in the development of bio-based packaging films, biopolymer-based feedstocks for 3D-P, and innovative food packaging materials produced by this technology was identified. However, the lack of studies suggests that 3D-P has not been well-explored in this field. Nonetheless, it is probable that in the future this technology will be more widely employed in the food packaging field, which could lead to a reduction in plastic production as well as safer food consumption.
Collapse
|
115
|
Osmólska E, Stoma M, Starek-Wójcicka A. Application of Biosensors, Sensors, and Tags in Intelligent Packaging Used for Food Products-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249956. [PMID: 36560325 PMCID: PMC9783027 DOI: 10.3390/s22249956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
The current development of science and the contemporary market, combined with high demands from consumers, force manufacturers and scientists to implement new solutions in various industries, including the packaging industry. The emergence of new solutions in the field of intelligent packaging has provided an opportunity to extend the quality of food products and ensures that food will not cause any harm to the consumer's health. Due to physical, chemical, or biological factors, the state of food may be subject to degradation. The degradation may occur because the packaging, i.e., the protective element of food products, may be damaged during storage, transport, or other logistic and sales activities. This is especially important since most food products are highly perishable, and the maintenance of the quality of a food product is the most critical issue in the entire supply chain. Given the importance of the topic, the main purpose of this article was to provide a general overview of the application of biosensors, sensors, and tags in intelligent packaging used for food products. A short history and the genesis of intelligent packaging are presented, and the individual possibilities of application of sensors, biosensors, gas sensors, and RFID tags, as well as nanotechnology, in the area of the packaging of food products are characterized.
Collapse
Affiliation(s)
- Emilia Osmólska
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Monika Stoma
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
116
|
Marangon CA, Otoni CG, Bertuso PC, Rodrigues MA, Bertolo MR, Martins VC, Nitschke M, Plepis AMG, Mattoso LH. Triple-action packaging: Food protection and monitoring enabled by agri-food side streams. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
117
|
Development and characterization of locust bean gum-Viola anthocyanin-graphene oxide ternary nanocomposite as an efficient pH indicator for food packaging application. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
118
|
Wang D, Wang X, Sun Z, Liu F, Wang D. A fast-response visual indicator film based on polyvinyl alcohol/methylcellulose/black wolfberry anthocyanin for monitoring chicken and shrimp freshness. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
119
|
Wang XY, Wang J, Zhao C, Ma L, Rousseau D, Tang CH. Facile fabrication of chitosan colloidal films with pH-tunable surface hydrophobicity and mechanical properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
120
|
Kanha N, Osiriphun S, Rakariyatham K, Klangpetch W, Laokuldilok T. On-package indicator films based on natural pigments and polysaccharides for monitoring food quality: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6804-6823. [PMID: 35716018 DOI: 10.1002/jsfa.12076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Deterioration of food quality and freshness is mainly due to microbial growth and enzyme activity. Chilled fresh food, especially meat and seafood, as well as pasteurized products, rapidly lose quality and freshness during packing, distribution and storage. Real-time food quality monitoring using on-package indicator films can help consumers make informed purchasing decisions. Interest in the use of intelligent packaging systems for monitoring safety and food quality has increased in recent years. Polysaccharide-based films can be developed into on-package indicator films due to their excellent film-forming properties and biodegradability. Another important component is the use of colorants with visible color changes at various pH levels. Currently, natural pigments are receiving increased attention because of their safety and environmental friendliness. This review highlights the recent findings regarding the role of natural pigments, the effects of incorporating natural pigments and polysaccharides on properties of indicator film, current application and limitations of on-package indicator films based on polysaccharides in some foods, problems and improvement of physical properties and color conversion of indicator film containing natural pigments, and development of polysaccharide-based pH-responsive films. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nattapong Kanha
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sukhuntha Osiriphun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Kanyasiri Rakariyatham
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Wannaporn Klangpetch
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Innovative Food and Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of High Value Products from Thai Rice and Plants for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
121
|
Obaidi AA, Karaca IM, Ayhan Z, Haskaraca G, Gultekin E. Fabrication and validation of CO2-sensitive indicator to monitor the freshness of poultry meat. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
122
|
Wang Y, Wang J, Lai J, Zhang X, Wang Y, Zhu Y. Preparation and characterization of chitosan/whey isolate protein active film containing TiO2 and white pepper essential oil. Front Nutr 2022; 9:1047988. [DOI: 10.3389/fnut.2022.1047988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Active packaging films are designed to improve quality and extend the food shelf life by incorporating functional active ingredients into biopolymer films. This study developed a bioactive film based on chitosan (CS) and whey isolated protein (WPI) incorporated with 0.01 wt% TiO2 and 0.1 wt% white pepper essential oil (WPEO). The physicochemical properties of the prepared film were also evaluated comprehensively. The results showed that water solubility and water vapor permeability of the film incorporated with TiO2 and WPEO were 25.09% and 0.0933 g mm m–2 h–1 KPa–1, respectively, which were significantly higher than those of other films (P < 0.05). In addition, the UV barrier properties of films incorporating TiO2 and WPEO have improved. The films were characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The FTIR results showed interactions between TiO2 and WPEO with CS/WPI compound, and the SEM results indicated a good incorporation of TiO2 into the composite films. The antioxidative and antibacterial properties of films were significantly enhanced by incorporating WPEO. According to results, the developed biocomposite film can be considered as a packaging material.
Collapse
|
123
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
124
|
Khan S, Wang H, Shu Y, Zhang Z, Liang T. Characterization of a novel bioactive film based on Artemisia sphaerocephala Krasch. Gum (ASKG) complexed with β-cyclodextrin/curcumin (β-CD/CUR) inclusion complex and its application in meat preservation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
125
|
Development of an Indicator Film Based on Cassava Starch-Chitosan Incorporated with Red Dragon Fruit Peel Anthocyanin Extract. Polymers (Basel) 2022; 14:polym14194142. [PMID: 36236090 PMCID: PMC9573306 DOI: 10.3390/polym14194142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The increase in new technology and consumer demand for healthy and safe food has led to the development of smart packaging to help consumers understand food conditions in real time. The incorporation of red dragon fruit peel anthocyanin into cassava starch and chitosan films was used in this study as a color indicator to monitor food conditions. This indicator film was generated using the solvent-casting method. The mechanical, morphological, and physicochemical characterizations of the film were studied, and food freshness monitoring was carried out. The results showed that adding red dragon fruit peel anthocyanin increased up to 94.44% of the antioxidant activity. It also improved its flexibility, indicated by the lowest tensile strength (3.89 ± 0.15 MPa) and Young's modulus (0.14 ± 0.01 MPa) and the highest elongation at break (27.62 ± 0.57%). The indicator film was sensitive to pH, which was indicated by its color change from red to yellow as pH increased. The color of the film also changed when it was used to test the freshness of packaged shrimp at both room and chiller temperatures. According to the results, the indicator film based on cassava starch-chitosan incorporated with red dragon fruit peel anthocyanin showed its potential as a smart packaging material.
Collapse
|
126
|
Gao L, Liu P, Liu L, Li S, Zhao Y, Xie J, Xu H. κ-carrageenan-based pH-sensing films incorporated with anthocyanins or/and betacyanins extracted from purple sweet potatoes and peels of dragon fruits. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
127
|
Forghani S, Zeynali F, Almasi H, Hamishehkar H. Characterization of electrospun nanofibers and solvent-casted films based on Centaurea arvensis anthocyanin-loaded PVA/κ-carrageenan and comparing their performance as colorimetric pH indicator. Food Chem 2022; 388:133057. [PMID: 35483293 DOI: 10.1016/j.foodchem.2022.133057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
In this research, PVA/Ҡ-carrageenan-based colorimetric indicators incorporated with Centaurea arvensis anthocyanin (CAE) were fabricated by two electrospinning and solvent casting methods and their performance as pH indicators were assessed. Chemical immobilization of CAE on PVA and PVA/Ҡ-carrageenan matrixes was approved by FT-IR analysis. According to SEM images, Ҡ-carrageenanaddition improved the homogeneity of films and decreased the diameter of nanofibers. The crystalline structure and thermal properties of polymeric matrixes were affected by anthocyanin incorporation. CAE had an adverse effect on mechanical properties of films and nanofibers. The preparation method and type of solid matrix affected the responsiveness and the tonality of responded color. Electrospun nanofibers showed high responsiveness (10 s) than colorimetric films (15-40 min) to pH changes. The indicators displayed color variations from heather violet to green over the 2-12 pH range. The designed indicators have potential to be applied as visual pH label in food intelligent packaging.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Fariba Zeynali
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
128
|
Shi C, Han J, Sun X, Guo Y, Yang X, Jia Z. An intelligent colorimetric film based on complex anthocyanins and bacterial cellulose nanofibers for tilapia freshness detection in an actual cold chain. Int J Biol Macromol 2022; 221:183-192. [PMID: 36067846 DOI: 10.1016/j.ijbiomac.2022.08.205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022]
Abstract
An intelligent colorimetric film was developed for the quality detection of tilapia fillets using bacterial cellulose (BC) as a substrate in combination with pelargonidin (Pg), cyanidin (Cy), and delphinium (Dp). The color of the BC-Pg-Cy-Dp film and Pg-Cy-Dp solution changed from rosy to blue-violet at pH 3-10. The mechanical and antioxidant properties of the film were improved after the addition of Pg-Cy-Dp. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) showed that a new hydrogen bond might be formed between the cellulose chain and the anthocyanin molecule, which increased the density of the film. The BC-Pg-Cy-Dp film displayed a large color difference from rosy to blue-violet when applied to tilapia fillet storage. The changes of K values indicated a good linear relationship with the change in ∆E at 4 °C and 25 °C. In the actual cold chain, the color of the film changed from rosy to purple, which could be identified by the naked eye and indicated that the fish were in the first fresh stage. Thus, the BC-Pg-Cy-Dp film can be used as an intelligent packaging film during storage to monitor the freshness of fish by the naked eye.
Collapse
Affiliation(s)
- Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agri-cultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Jie Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, China; Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xinting Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong Province, China; Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agri-cultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Zhixin Jia
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agri-cultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
129
|
Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
130
|
Development and characterization of potato starch/lactucin/nano-TiO2 food packaging for sustained prevention of mealworms. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
131
|
Ai Y, Wang G, Fang F, Zhang F, Liao H. Development of real-time intelligent films from red pitaya peel and its application in monitoring the freshness of pork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5512-5522. [PMID: 35365861 DOI: 10.1002/jsfa.11906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/26/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Red pitaya peel (RPP) is a good source of polysaccharides, which can be used in the production of biodegradable material. Betacyanins in it possess antioxidant and pH-sensitive properties. However, RPP is commonly discarded during fruit processing. This study aimed to develop real-time intelligent film using RPP to evaluate pork freshness. RESULTS Real-time intelligent films were developed with film-forming substrates (FFS) composed of 60-100% (w/w) RPP and 0-4% (v/w) glycerol in pH 4.3 ~ 8.0. Rheology tests revealed that the FFS exhibited shear-thinning behavior. Fourier-transform infrared (FTIR) analysis showed that molecules in the RPP interacted with glycerol and formed hydrogen bonds. It showed that the film developed with FFS of 80% RPP and 2% (v/w) glycerol had strong molecular interaction, dense structure, and optimal tensile strength and elongation at break. Film with pH adjusted to 7.0 had greater sensitivity to ammonia than film that was prepared at an original pH of 4.3, so this film was used to monitor freshness of pork. A visible change in the color of the film was observed during the spoiling process of pork, which correlated with the accumulated total volatile base nitrogen. CONCLUSION Based on its sensitivity to ammonia, the film made of 80% (w/w) RPP and 2% (v/w) glycerol at pH 7.0 was recommended for use in monitoring the freshness of protein-rich food. Our findings are of great significance for ensuring meat quality and safety and for reducing food waste. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yana Ai
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Guoxiong Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fang Fang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Hongmei Liao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
132
|
Abdullah, Cai J, Hafeez MA, Wang Q, Farooq S, Huang Q, Tian W, Xiao J. Biopolymer-based functional films for packaging applications: A review. Front Nutr 2022; 9:1000116. [PMID: 36071940 PMCID: PMC9441959 DOI: 10.3389/fnut.2022.1000116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Food packaging is a coordinated system comprising food processing, protection from contamination and adulteration, transportation and storage, and distribution and consumption at optimal cost with a minimum environmental impact to the packed food commodity. Active packaging involves deliberate addition of the functional ingredients either in the film or the package headspace to preserve the food quality, improve safety and nutrition aspects, and enhance the shelf-life. In this review, recent advances in the fabrication of biopolymer-based films, their classification (biodegradable-, active-, and intelligent packaging films), advanced fabrication strategies (composite-, multilayer-, and emulsified films), and special functions induced by the biopolymers to the film matrix (mechanical-, water resistance and gas barrier-, and optical properties, and bioactive compounds reservoir) were briefly discussed. A summary of conclusions and future perspectives of biopolymer-based packaging films as advanced biomaterial in preserving the food quality, improving safety and nutrition aspects, and enhancing shelf-life of the products was proposed.
Collapse
Affiliation(s)
- Abdullah
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Jiyang Cai
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Muhammad Adnan Hafeez
- Department of Allied Health Sciences, Faculty of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
133
|
Amaregouda Y, Kamanna K, Gasti T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int J Biol Macromol 2022; 218:799-815. [PMID: 35905759 DOI: 10.1016/j.ijbiomac.2022.07.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/13/2023]
Abstract
The present work describes the natural anthocyanin from Jacaranda cuspidifolia (JC) flower immobilized within a biopolymer matrix composed of chitosan (CS) and polyvinyl alcohol (PVA) gave novel intelligent/active packaging films (CPC). We introduced microwave irradiation to prepare polymeric composite films noticed faster mixing of the polymers and extract take place than the conventional method. The prepared composite films are characterized by various analytical and spectroscopic techniques. The smooth SEM images demonstrated CS/PVA matrix miscibility and compatibility with anthocyanin for the film formation. The addition of anthocyanin to the CS/PVA films significantly reduced UV-Vis light transmission, while causing a slight decrease in the films transparency. An increased anthocyanin concentration on polymer films showed improved oxygen permeability (77.09 %), moisture retention capacity (11.64 %), and water vapor transmission rate (43.10 %) substantially. Additionally, the prepared CPC smart films exhibited strong antioxidant (97.92 %) as well as antibacterial activities against common foodborne pathogens such as S. aureus, and E. coli. Furthermore, the prepared smart films demonstrated pink color in acidic, while grey to yellowish in basic solvent. Further, the color response of the freshness label was consistent with the spoilage Total Volatile Basic-Nitrogen (TVB-N) content determined in the fish samples with varied time period. The CPC smart films also showed promising application in terms of monitoring freshness of the fish fillets at room temperature. The obtained results suggested that, the prepared CPC smart films have potential to be used as quality indicator in the marine food packaging system.
Collapse
Affiliation(s)
- Yamanappagouda Amaregouda
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - Kantharaju Kamanna
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India.
| | - Tilak Gasti
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
134
|
Hassanpour A, Moradi M, Tajik H, Molaei R. Development of two types of intelligent indicators based on cellulose, black carrot, and grape anthocyanins for monitoring food freshness/spoilage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
135
|
Wegrzynowska-Drzymalska K, Mylkie K, Nowak P, Mlynarczyk DT, Chelminiak-Dudkiewicz D, Kaczmarek H, Goslinski T, Ziegler-Borowska M. Dialdehyde Starch Nanocrystals as a Novel Cross-Linker for Biomaterials Able to Interact with Human Serum Proteins. Int J Mol Sci 2022; 23:ijms23147652. [PMID: 35886996 PMCID: PMC9320567 DOI: 10.3390/ijms23147652] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.
Collapse
Affiliation(s)
- Katarzyna Wegrzynowska-Drzymalska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Pawel Nowak
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Halina Kaczmarek
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
- Correspondence:
| |
Collapse
|
136
|
Liu D, Zhang C, Pu Y, Chen S, Liu L, Cui Z, Zhong Y. Recent Advances in pH-Responsive Freshness Indicators Using Natural Food Colorants to Monitor Food Freshness. Foods 2022; 11:foods11131884. [PMID: 35804701 PMCID: PMC9265506 DOI: 10.3390/foods11131884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, due to the enhancement in consumer awareness of food safety, considerable attention has been paid to intelligent packaging that displays the quality status of food through color changes. Natural food colorants show useful functionalities (antibacterial and antioxidant activities) and obvious color changes due to their structural changes in different acid and alkali environments, which could be applied to detect these acid and alkali environments, especially in the preparation of intelligent packaging. This review introduces the latest research on the progress of pH-responsive freshness indicators based on natural food colorants and biodegradable polymers for monitoring packaged food quality. Additionally, the current methods of detecting food freshness, the preparation methods for pH-responsive freshness indicators, and their applications for detecting the freshness of perishable food are highlighted. Subsequently, this review addresses the challenges and prospects of pH-responsive freshness indicators in food packaging, to assist in promoting their commercial application.
Collapse
|
137
|
Wu Y, Ma Y, Gao Y, Liu Y, Gao C. Poly (lactic acid)-based pH responsive membrane combined with chitosan and alizarin for food packaging. Int J Biol Macromol 2022; 214:348-359. [PMID: 35716790 DOI: 10.1016/j.ijbiomac.2022.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
A poly (lactic acid) (PLA) -based functional partition composite membrane (PLA/CA) containing chitosan (CS) and alizarin (AL) was designed by solution casting method. The PLA/CA membrane contains the antibacterial zone of the edge part (PLA/CS) and the pH response detection zone of the central part (PLA/AL). At the same time, the environmentally friendly plasticizer tributyl citrate (TBC) was added to make the prepared PLA/CA composite membrane have good flexibility and high transparency. The results of FE-SEM and FTIR showed that CS and AL were uniformly dispersed in PLA matrix and had good compatibility with PLA. The antioxidant activities of PLA/CS and PLA/AL composite films were 43.3 % and 72.8 %, respectively. At the same time, the inhibitory rates of PLA/CS membrane against Escherichia coli and Staphylococcus aureus were as high as 87.91 % and 75.17 %, respectively. PLA/AL films exhibit excellent UV barrier properties. When the environmental pH (ammonia and acetic acid vapor) changed repeatedly, the PLA/AL membrane showed reversible color change of yellow under acidic condition and purple under alkaline condition. During the packaging and storage of chicken breast meat, the freshness of chicken breast meat can be detected by the color change of functional PLA/CA composite membrane.
Collapse
Affiliation(s)
- Yumin Wu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Ma
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yiliang Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuetao Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
138
|
Shavisi N, Shahbazi Y. Chitosan-gum Arabic nanofiber mats encapsulated with pH-sensitive Rosa damascena anthocyanins for freshness monitoring of chicken fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
139
|
Huang J, Hu Z, Li G, Hu L, Chen J, Hu Y. Make your packaging colorful and multifunctional: The molecular interaction and properties characterization of natural colorant-based films and their applications in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
140
|
Gomes V, Pires AS, Mateus N, de Freitas V, Cruz L. Pyranoflavylium-cellulose acetate films and the glycerol effect towards the development of pH-freshness smart label for food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
141
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
142
|
Thi Nguyen T, Pham BTT, Nhien Le H, Bach LG, Thuc CH. Comparative characterization and release study of edible films of chitosan and natural extracts. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
143
|
Boosting physical-mechanical properties of adipic acid/chitosan films by DMTMM cross-linking. Int J Biol Macromol 2022; 209:2009-2019. [PMID: 35513101 DOI: 10.1016/j.ijbiomac.2022.04.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
Abstract
In this paper we present a novel strategy to easily prepare biodegradable chitosan derived films as new packaging systems. Combination of chitosan, adipic acid and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) allowed to obtain high-performing cross-linked films. Biobased glycerol was employed as plasticizer. An in-depth study was performed on ten different samples in order to evaluate the role of DMTMM as cross-linking agent. Experimental data showed that 15 wt% of DMTMM enhanced moisture content and moisture uptake (10.42% and 11.11%), water vapor permeability (0.13 10-7 g m-1 h-1 Pa-1) and good UV barrier properties. Additionally, 30 wt% of DMTMM significantly increased the tensile strength of films up to 83 MPa and elongation at break values reached 39.7%. Thermogravimetric, IR, XRD and SEM analysis confirmed that physical-mechanical properties of the obtained films were considerably improved, due to cross-linking by DMTMM, demonstrating promising properties for packaging applications.
Collapse
|
144
|
Koshy RR, Reghunadhan A, Mary SK, Pothen LA, Thomas S. MgONP/Chitin nanowhisker‐based hybrid filler bound soy protein thin films for bioactive packaging applications. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rekha Rose Koshy
- Postgraduate and Research Department of Chemistry Bishop Moore College (Affiliated to University of Kerala) Mavelikara Alappuzha Kerala India
- CMS College (Affiliated to Mahatma Gandhi University) Kottayam Kerala 686001 India
| | - Arunima Reghunadhan
- Department of Chemistry TKM College of Engineering Karicode Kollam Kerala 691005 India
- School of Energy Materials Mahatma Gandhi University P.D.Hills Kottayam Kerala 686560 India
| | - Siji K. Mary
- Postgraduate and Research Department of Chemistry Bishop Moore College (Affiliated to University of Kerala) Mavelikara Alappuzha Kerala India
- CMS College (Affiliated to Mahatma Gandhi University) Kottayam Kerala 686001 India
| | - Laly A. Pothen
- CMS College (Affiliated to Mahatma Gandhi University) Kottayam Kerala 686001 India
| | - Sabu Thomas
- School of Energy Materials Mahatma Gandhi University P.D.Hills Kottayam Kerala 686560 India
| |
Collapse
|
145
|
Antimicrobial food packaging integrating polysaccharide-based substrates with green antimicrobial agents: A sustainable path. Food Res Int 2022; 155:111096. [DOI: 10.1016/j.foodres.2022.111096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
146
|
Cheng M, Yan X, Cui Y, Han M, Wang X, Wang J, Zhang R. An eco-friendly film of pH-responsive indicators for smart packaging. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
147
|
Zazouli S, Chigr M, Atmani H, Jouaiti A. Synthesis, spectroscopic characterization of new series of alizarin derivatives and their anti-microbial activities: DFT and molecular docking approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
148
|
Lu Y, Huang Y, Zhang T, Zhou X, Li H, Qin Z. Fabrication of
anti‐UV
absorbing and antibacterial soybean protein isolate composite film modified with thyme and mangosteen peel extracts. J Appl Polym Sci 2022. [DOI: 10.1002/app.52459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunlong Lu
- School of Resources, Environment, and Materials Guangxi University Nanning China
- MOE Key Laboratory of New Processing Technology for Non‐ferrous Metals and Materials Nanning Guangxi China
| | - Youjia Huang
- School of Resources, Environment, and Materials Guangxi University Nanning China
| | - Tianjing Zhang
- School of Resources, Environment, and Materials Guangxi University Nanning China
| | - Xin Zhou
- School of Resources, Environment, and Materials Guangxi University Nanning China
| | - Han Li
- School of Resources, Environment, and Materials Guangxi University Nanning China
| | - Zhiyong Qin
- School of Resources, Environment, and Materials Guangxi University Nanning China
- MOE Key Laboratory of New Processing Technology for Non‐ferrous Metals and Materials Nanning Guangxi China
| |
Collapse
|
149
|
Hu D, Liu X, Qin Y, Yan J, Li J, Yang Q. A novel edible packaging film based on chitosan incorporated with persimmon peel extract for the postharvest preservation of banana. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
This study aimed to develop a novel edible packaging film for the postharvest preservation of banana based on chitosan (CS) and persimmon peel extract (PPE). Scanning electron microscopy (SEM) analysis showed PPE was evenly distributed in the CS matrix and Fourier transform infrared (FT-IR) spectroscopy analysis showed CS and PPE interacted to form hydrogen bonds, demonstrating good compatibility. Simultaneously, the addition of PPE also significantly improved CS film's physical properties and antioxidant activity. Among them, the CS film containing 10% PPE (CS-PPE 10) showed the optimal mechanical properties, water vapor barrier properties and oxygen barrier properties. The CS film containing 15% PPE (CS-PPE 15) exhibited the best thermal stability, UV-Vis barrier properties and antioxidant activity. In the experiment of banana preservation, CS-PPE 10 film obtained optimal performance on decreasing senescence spots, weight loss, fruit softening, cell wall degradation, inhibiting the activities of polyphenol oxidase and cell wall degrading enzymes and maintaining the content of total soluble sugar and ascorbic acid during the storage period. Consequently, CS-PPE 10 film was expected to be a novel edible packaging material to maintain banana quality and prolong shelf life.
Collapse
|
150
|
Sobhan A, Muthukumarappan K, Wei L. A biopolymer-based pH indicator film for visually monitoring beef and fish spoilage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|