101
|
Liu D, Zhang C, Zhang J, Xin X, Wu Q. Dynamics of the glucosinolate–myrosinase system in tuber mustard (Brassica juncea var. tumida) during pickling and its relationship with bacterial communities and fermentation characteristics. Food Res Int 2022; 161:111879. [DOI: 10.1016/j.foodres.2022.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
|
102
|
Omedi JO, Li N, Chen C, Cheng X, Huang J, Zhang B, Gao T, Liang L, Zhou Z, Huang W. Potential Health Benefits of Yeast-Leavened Bread Containing LAB Pediococcus pentosaceus Fermented Pitaya (Hylocereus undatus): Both In Vitro and In Vivo Aspects. Foods 2022; 11:foods11213416. [PMID: 36360031 PMCID: PMC9653669 DOI: 10.3390/foods11213416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to investigate the effect of the incorporation of 0–25% pitaya (Hylocereus undatus) fermented by Pediococcus pentosaceus on physicochemical and bioactive properties of yeast-leavened wheat-mung bean bread. The results revealed that β-glucosidase activity increased during dough proofing, which may contribute to changes in dietary fiber. Compared to wheat bread, experimental bread had an increased content of soluble dietary fiber (SDF), total phenolic, total flavonoid, and slowly digestible starch, especially in wheat-mung bean bread prepared with 15% pitaya fermentates (WMB-15F). The effect of bread consumption on systemic inflammation, glucose tolerance, and blood lipid profiles was also evaluated via a mice model. The results indicated that levels of pro-inflammatory cytokines declined and glucose tolerance improved, while LDL and HDL were positively modified compared to control. Furthermore, an increased abundance of Lactobacillus, Lachnospiraceae, and Bifidobacterium spp. was observed in WMB-15F mice. Acetic acid was the dominant short-chain fatty acids (SCFAs) in feces and serum in all groups. Total SCFAs in circulation were highest in WMB-15F mice compared to other groups. In summary, an increased abundance of beneficial gut microbiota and promoted SCFA production might be highly associated with increased SDF and the release of key phenolic compounds during dough proofing, which exerts health benefits aroused from the consumption of yeast-leavened bread.
Collapse
Affiliation(s)
- Jacob Ojobi Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Li
- Guangzhou Puratos Food Co. Ltd., Guangzhou 511400, China
| | - Cheng Chen
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Cheng
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tiecheng Gao
- Guangzhou Puratos Food Co. Ltd., Guangzhou 511400, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (Z.Z.); (W.H.)
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: (Z.Z.); (W.H.)
| |
Collapse
|
103
|
Kiersnowska K, Jakubczyk A. Bioactive Peptides Obtained from Legume Seeds as New Compounds in Metabolic Syndrome Prevention and Diet Therapy. Foods 2022; 11:3300. [PMCID: PMC9602117 DOI: 10.3390/foods11203300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, food is regarded not only as a source of nutrients, vitamins, and minerals but also as a source of bioactive compounds that can play a significant role in the prevention and diet therapy of many diseases. Metabolic syndrome (MS) is a complex disorder defined as a set of interrelated factors that increase the risk of cardiovascular disease, atherosclerosis, type 2 diabetes, or dyslipidemia. MS affects not only adults but also children. Peptides are one of the compounds that exhibit a variety of bioactive properties. They are derived from food proteins, which are usually obtained through enzymatic hydrolysis or digestion in the digestive system. Legume seeds are a good source of bioactive peptides. In addition to their high protein content, they contain high levels of dietary fiber, vitamins, and minerals. The aim of this review is to present new bioactive peptides derived from legume seeds and showing inhibitory properties against MS. These compounds may find application in MS diet therapy or functional food production.
Collapse
|
104
|
Singh DP, Bisen MS, Shukla R, Prabha R, Maurya S, Reddy YS, Singh PM, Rai N, Chaubey T, Chaturvedi KK, Srivastava S, Farooqi MS, Gupta VK, Sarma BK, Rai A, Behera TK. Metabolomics-Driven Mining of Metabolite Resources: Applications and Prospects for Improving Vegetable Crops. Int J Mol Sci 2022; 23:ijms232012062. [PMID: 36292920 PMCID: PMC9603451 DOI: 10.3390/ijms232012062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetable crops possess a prominent nutri-metabolite pool that not only contributes to the crop performance in the fields, but also offers nutritional security for humans. In the pursuit of identifying, quantifying and functionally characterizing the cellular metabolome pool, biomolecule separation technologies, data acquisition platforms, chemical libraries, bioinformatics tools, databases and visualization techniques have come to play significant role. High-throughput metabolomics unravels structurally diverse nutrition-rich metabolites and their entangled interactions in vegetable plants. It has helped to link identified phytometabolites with unique phenotypic traits, nutri-functional characters, defense mechanisms and crop productivity. In this study, we explore mining diverse metabolites, localizing cellular metabolic pathways, classifying functional biomolecules and establishing linkages between metabolic fluxes and genomic regulations, using comprehensive metabolomics deciphers of the plant’s performance in the environment. We discuss exemplary reports covering the implications of metabolomics, addressing metabolic changes in vegetable plants during crop domestication, stage-dependent growth, fruit development, nutri-metabolic capabilities, climatic impacts, plant-microbe-pest interactions and anthropogenic activities. Efforts leading to identify biomarker metabolites, candidate proteins and the genes responsible for plant health, defense mechanisms and nutri-rich crop produce are documented. With the insights on metabolite-QTL (mQTL) driven genetic architecture, molecular breeding in vegetable crops can be revolutionized for developing better nutritional capabilities, improved tolerance against diseases/pests and enhanced climate resilience in plants.
Collapse
Affiliation(s)
- Dhananjaya Pratap Singh
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
- Correspondence:
| | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Renu Shukla
- Indian Council of Agricultural Research (ICAR), Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi 110001, India
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Yesaru S. Reddy
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Prabhakar Mohan Singh
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Tribhuwan Chaubey
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Krishna Kumar Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Mohammad Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Tusar Kanti Behera
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| |
Collapse
|
105
|
Tian Y, Li G, Zhang S, Zeng T, Chen L, Tao Z, Lu L. Dietary supplementation with fermented plant product modulates production performance, egg quality, intestinal mucosal barrier, and cecal microbiota in laying hens. Front Microbiol 2022; 13:955115. [PMID: 36246237 PMCID: PMC9561940 DOI: 10.3389/fmicb.2022.955115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Fermented plant product (FPP) is a kind of functional complex containing probiotics and a variety of bioactive substances, which has multiple physiological functions. However, there is no systematic appraisal of FPP as a feed additive for laying hens. This study was conducted to evaluate the utilization of FPP in laying hens. A total of 120 healthy 34-week-old Xianju layers with similar body weight and egg production were randomly allocated into two dietary treatments with four replicates per treatment and 15 birds per replicate for 8 weeks. The dietary treatments included the basal diet without FPP (CON group) and CON diet supplemented with 500 mg/kg of FPP (FPP group). Compared with the CON group, the egg production and egg mass were significantly increased in the FPP group from 38 to 42 and 34 to 42 weeks of age (P < 0.05). Birds fed with the diet containing 500 mg/kg FPP had higher albumen height (P < 0.01) and Haugh unit (P < 0.05) than those of the controls. FPP supplementation significantly increased the villus height (VH) and crypt depth (CD) in the jejunum of laying hens (P < 0.01), as well as the ratio of VH to CD (P < 0.05). The mRNA expression of tight junctions showed that dietary supplementation with FPP significantly increased the expression levels of Occludin (P < 0.01) and ZO-1 (P < 0.05) in jejunum of hens compared to the control group. In addition, dietary supplementation with FPP influenced cecal microbiota of laying hens, which was characterized by the changes in the microbial community composition, including the increased abundances of Firmicutes, Faecalibacterium, Oscillospira, Clostridium, Ruminococcus, and Coprococcus, along with the decreased abundance of Bacteroidetes, Proteobacteria, Phascolarctobacterium, Odoribacter, Desulfovibrio, and Mucispirillum. Spearman's correlation analysis revealed that bacteria such as Faecalibacterium, Ruminococcus, Coprococcus, and Blautia were significantly and positively correlated with the intestinal barrier markers (P < 0.05), with extremely significant correlations between Ruminococcus and ZO-1, and Coprococcus and Occludin (P < 0.01), whereas Desulfovibrio had a negative correlation with the expression of Occludin (P < 0.05). As it can be concluded, FPP supplementation increased the egg production, egg mass, albumen height, and Haugh unit of laying hens, and improved intestinal health by ameliorating intestinal barrier function, which may be partially attributed to the regulation of cecal microbiota. Our findings suggest that FPP has the potential to be used as a feed additive to promote the performance of layers.
Collapse
Affiliation(s)
- Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Shuo Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Zhengrong Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
- *Correspondence: Lizhi Lu
| |
Collapse
|
106
|
Microbial and Parasitic Contamination of Vegetables in Developing Countries and Their Food Safety Guidelines. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4141914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The safety of humans is of paramount importance in the vegetable production chain. Evidence of microbial and parasitic contamination of these products poses a great threat to consumers. This is an emerging issue the world is battling, and it is still in the process of unravelling. However, one of the contributing factors responsible for the rapid spread of these pathogens to millions of people among other factors is the distribution of food in our food systems. The purpose of this study was to draw the attention of producers, retailers, consumers, and various stakeholders to the occurrence and potential hazard of these organisms, their contamination origin, and food safety protocols. Among the food system, vegetables play a major role, and their consumption has increased as they form a larger portion of daily diets. This urge for healthy diets coupled with changing dietary habits and human population explosion has therefore accelerated their production. This has resulted in parasitic and microbial contamination gaining grounds in salad vegetables, and as such, a wide range of microbes such as Escherichia coli O157: H7, Listeria monocytogenes, Salmonella spp., Shigella, and Staphylococcus, and parasites such as Giardia lamblia, Entamoeba coli, Entamoeba histolytica, Cystoisospora belli, Toxoplasma gondii, Trichuris trichiura, and Ascaris lumbricoides have been isolated from them. Therefore, major routes for salad vegetable contamination and prevention methods have been pointed out in this review article. The topic of protective countermeasures will also be covered here in this review. Notwithstanding, several control measures have been reported to be effective and efficient in removing or eliminating pathogens, including treatment of irrigation water and fertilizers, use of disinfectants like vinegar and saltwater, irradiation, ozone, and bacteriophages. Though consumption of vegetables and salads is encouraged due to their nutritional advantage, appropriate systems should be put in place to ensure their safety.
Collapse
|
107
|
Jimenez ME, O’Donovan CM, de Ullivarri MF, Cotter PD. Microorganisms present in artisanal fermented food from South America. Front Microbiol 2022; 13:941866. [PMID: 36160237 PMCID: PMC9499260 DOI: 10.3389/fmicb.2022.941866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Artisanal fermented products (foods and beverages) are produced in an artisanal way in many countries around the world. The main purpose of fermentation is to preserve the food, improve its safety, increase the nutritional and health-promoting value and add specific flavours. In South America, there is a great variety of fermented food produced in an artisanal way. Different raw materials are used such as potatoes, sweet potato, cassava, maize, rice, milk (cow, ewe, goat) and meat (beef, goat, lamb, llama and guanaco). Some of these fermented foods are typical of the region and are part of the culture of native communities, e.g. tocosh, masa agria, puba flour, charqui, chicha, champu and cauim among others (indigenous foods). However, other fermented foods produced in South America introduced by mainly European immigration, such as cheeses and dry sausages, and they are also produced in many different parts of the world. In this work, the microbial composition of the different artisanal fermented products produced in South America is reviewed, taking into consideration the associated raw materials, fermentation conditions and methodologies used for their production.
Collapse
Affiliation(s)
- Maria Eugenia Jimenez
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Bioscience, Teagasc Food Research Center, Fermoy, Ireland
| | - Ciara M. O’Donovan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Bioscience, Teagasc Food Research Center, Fermoy, Ireland
| | | | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Bioscience, Teagasc Food Research Center, Fermoy, Ireland
- *Correspondence: Paul D. Cotter,
| |
Collapse
|
108
|
Fermentation of the Cucurbita ficifolia Fruit Juice: Its Antioxidant Activity and Effects on the Glycemia. BEVERAGES 2022. [DOI: 10.3390/beverages8030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cucurbita ficifolia is an edible plant whose fruits have hypoglycemic, anti-inflammatory, and antioxidant activities. Fermentation might improve these properties. This research aims to perform and characterize its fermentation in native and induced conditions with Lactobacillus plantarum (Lp) and evaluate its antioxidant activity and effect on glycemia. Fresh juice from mature fruits was characterized. One portion of this juice was spontaneously left to ferment (native fermentation), and the other was inoculated with Lp (controlled fermentation). Fermentation was monitored each 8 h by 56 h to measure microbial growth, pH, acidity, sugars, soluble protein, polyphenols and flavonoids, antioxidant activity, and effects on glycemia. In native fermentation, the growth of total microorganisms increased up to 32 h, decreasing at the end of the process. In Lp fermentation, total microorganisms increased until 16 h to stay constant at the end, with a predominance of Lp. The pH and the sugars decreased in the two fermentations, while polyphenol and flavonoid increased. In spontaneous fermentation, these changes were lesser. Both fermentations, like fresh juice, preserve functional properties (antioxidant, alpha-glucosidase inhibition, and hypoglycemia). The fermentation of this juice with Lp may develop functional beverages, which is significant due to its consumption as an edible fruit with medicinal properties.
Collapse
|
109
|
Gonçalves Santana M, Freitas-Silva O, Mariutti LRB, Teodoro AJ. A review of in vitro methods to evaluate the bioaccessibility of phenolic compounds in tropical fruits. Crit Rev Food Sci Nutr 2022; 64:1780-1790. [PMID: 36062814 DOI: 10.1080/10408398.2022.2119203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
International guidelines strongly advise about the frequent and varied intake of plant in diet. In this scenario, the consumption of fruits is closely related to health benefits due to the abundant presence of bioactive substances. Accordingly, the production of tropical fruits has stood out worldwide, reaching records since the past decade. However, to ensure that phenolic substances are indeed used by the body, they need to be accessible for absorption. For this purpose, several methods are used to assess the phenomenon of bioaccessibility. We provide information on i) in vitro methods for the evaluation of the bioaccessibility of phenolic compounds in tropical fruits, including their derivatives and by-products; ii) a study performed using a semi-dynamic in vitro digestion model; iii) simulated digestion with a dialysis membrane step, polyphenol transport/uptake using cell culture, and in vitro colonic fermentation process. Although standardized static and semi-dynamic in vitro digestion methods already exist, few studies use these protocols to assess the bioaccessibility of polyphenols in tropical fruits. To guarantee that in vitro digestion assays reproduce consistent results compared to in vivo reference methods, it is essential to universalize standardized methods that allow the comparison between results, enabling the validation of in vitro digestion methods.
Collapse
Affiliation(s)
| | - Otniel Freitas-Silva
- Embrapa Food Agroindustry, Brazilian Agricultural Research Corporation, Rio de Janeiro, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson Junger Teodoro
- Department of Nutrition and Dietetic, Faculty of Nutrition, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
110
|
Salas-Millán JÁ, Aznar A, Conesa E, Conesa-Bueno A, Aguayo E. Functional food obtained from fermentation of broccoli by-products (stalk): Metagenomics profile and glucosinolate and phenolic compounds characterization by LC-ESI-QqQ-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
111
|
Changes in the content of glucosinolates, polyphenols and carotenoids during lactic-acid fermentation of cruciferous vegetables: a mini review. Food Chem X 2022; 16:100457. [PMID: 36339323 PMCID: PMC9626883 DOI: 10.1016/j.fochx.2022.100457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022] Open
Abstract
Cruciferous vegetables as fermented products has been used since ancient times. During fermentation of cruciferous vegetables complete fermentation of glucosinolates occur. Fermentation decrease the content of complex polyphenols, while increase the content of polyphenols in free form. Carotenoid content decrease during fermentation of cruciferous vegetables.
Cruciferous vegetables are considered functional foods because of their content of health-related compounds. They are grown and consumed in various cultures around the world. Fermentation as a preservation method for cruciferous vegetables has been used since ancient times. This process results in fermented products that have a unique flavour and odour, high bioactivity, and a distinctly different phytochemical profile than raw vegetables. In this mini review, we summarize data on changes in phytochemical content during lactic-acid fermentation of various cruciferous vegetables. The main focus was on the changes in the group of glucosinolates, polyphenols and carotenoids.
Collapse
|
112
|
Yue X, Chen Z, Zhang J, Huang C, Zhao S, Li X, Qu Y, Zhang C. Extraction, purification, structural features and biological activities of longan fruit pulp (Longyan) polysaccharides: A review. Front Nutr 2022; 9:914679. [PMID: 35958258 PMCID: PMC9358249 DOI: 10.3389/fnut.2022.914679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Dimocarpus longan Lour. (also called as longan) is a subtropical and tropical evergreen tree belonging to the Sapindaceae family and is widely distributed in China, Southeast Asia and South Asia. The pulp of longan fruit is a time-honored traditional medicinal and edible raw material in China and some Asian countries. With the advancement of food therapy in modern medicine, longan fruit pulp as an edible medicinal material is expected to usher in its rapid development as a functional nutrient. As one of the main constituents of longan fruit pulp, longan fruit pulp polysaccharides (LPs) play an indispensable role in longan fruit pulp-based functional utilization. This review aims to outline the extraction and purification methods, structural characteristics and biological activities (such as immunoregulatory, anti-tumor, prebiotic, anti-oxidant, anti-inflammatory and inhibition of AChE activity) of LPs. Besides, the structure-activity relationship, application prospect and patent application of LPs were analyzed and summarized. Through the systematic summary, this review attempts to provide a theoretical basis for further research of LPs, and promote the industrial development of this class of polysaccharides.
Collapse
Affiliation(s)
- Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
113
|
Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Res Int 2022; 161:111809. [DOI: 10.1016/j.foodres.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
114
|
Suárez SE, Sun H, Mu T, Añón MC. Bacterial characterization of fermented sweet potato leaves by high‐throughput sequencing and their impact on the nutritional and bioactive composition. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Santiago Emmanuel Suárez
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) La Plata Argentina
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing China
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas). CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) La Plata Argentina
| |
Collapse
|
115
|
Liu H, Xu X, Cui H, Xu J, Yuan Z, Liu J, Li C, Li J, Zhu D. Plant-Based Fermented Beverages and Key Emerging Processing Technologies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Huaitian Cui
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd, Dezhou, China
| | - Chunyang Li
- Processing, Jiangsu Academy of Agricultural SciencesInstitute of Agro-Products, Nanjing, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
116
|
Han AL, Jeong SJ, Ryu MS, Yang HJ, Jeong DY, Park DS, Lee HK. Anti-Obesity Effects of Traditional and Commercial Kochujang in Overweight and Obese Adults: A Randomized Controlled Trial. Nutrients 2022; 14:2783. [PMID: 35889740 PMCID: PMC9315660 DOI: 10.3390/nu14142783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
Kochujang shows anti-obesity effects in cell and animal models. Kochujang is traditionally prepared via slow fermentation or commercially using Aspergillus oryzae. We analyze the anti-obesity effects of two types of Kochujang in overweight and obese adults. The analyses included the following groups: traditional Kochujang containing either a high-dose (HTK; n = 19), or a low-dose of beneficial microbes (LTK; n = 18), and commercial Kochujang (CK; n = 17). Waist circumference decreased significantly in the HTK and CK groups. Total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride levels decreased in the HTK and LTK groups. Visceral fat is significantly reduced in the HTK group. The population of beneficial microorganisms in stool samples increased in all groups. Consumption of Kochujang reduces visceral fat content and improves the lipid profile, which can be enhanced by enrichment with beneficial microbes. These results suggest that Kochujang has the potential for application in obesity prevention.
Collapse
Affiliation(s)
- A Lum Han
- Department of Family Medicine, Wonkwang University Hospital, Iksan 54538, Korea;
| | - Su-Ji Jeong
- Microbial Institute for Fermentation Industry, Sunchang 56048, Korea; (S.-J.J.); (M.-S.R.); (H.-J.Y.); (D.-Y.J.)
| | - Myeong-Seon Ryu
- Microbial Institute for Fermentation Industry, Sunchang 56048, Korea; (S.-J.J.); (M.-S.R.); (H.-J.Y.); (D.-Y.J.)
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang 56048, Korea; (S.-J.J.); (M.-S.R.); (H.-J.Y.); (D.-Y.J.)
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang 56048, Korea; (S.-J.J.); (M.-S.R.); (H.-J.Y.); (D.-Y.J.)
| | - Do-Sim Park
- Department of Laboratory Medicine, Wonkwang University Hospital, Iksan 54538, Korea;
| | - Hee Kyung Lee
- Department of Family Medicine, Wonkwang University Hospital, Iksan 54538, Korea;
| |
Collapse
|
117
|
Shang Z, Li M, Zhang W, Cai S, Hu X, Yi J. Analysis of phenolic compounds in pickled chayote and their effects on antioxidant activities and cell protection. Food Res Int 2022; 157:111325. [DOI: 10.1016/j.foodres.2022.111325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/04/2022]
|
118
|
Guerra LS, Cevallos-Cevallos JM, Weckx S, Ruales J. Traditional Fermented Foods from Ecuador: A Review with a Focus on Microbial Diversity. Foods 2022; 11:foods11131854. [PMID: 35804670 PMCID: PMC9265738 DOI: 10.3390/foods11131854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
The development of early civilizations was greatly associated with populations’ ability to exploit natural resources. The development of methods for food preservation was one of the pillars for the economy of early societies. In Ecuador, food fermentation significantly contributed to social advances and fermented foods were considered exclusive to the elite or for religious ceremonies. With the advancement of the scientific research on bioprocesses, together with the implementation of novel sequencing tools for the accurate identification of microorganisms, potential health benefits and the formation of flavor and aroma compounds in fermented foods are progressively being described. This review focuses on describing traditional fermented foods from Ecuador, including cacao and coffee as well as less popular fermented foods. It is important to provide new knowledge associated with nutritional and health benefits of the traditional fermented foods.
Collapse
Affiliation(s)
- Luis Santiago Guerra
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
| | - Juan Manuel Cevallos-Cevallos
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Campus Gustavo Galindo, Escuela Superior Politécnica del Litoral (ESPOL), Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090112, Ecuador;
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, P.O. Box 17-01-2759, Quito 170517, Ecuador;
- Correspondence:
| |
Collapse
|
119
|
Liu A, Xu R, Zhang S, Wang Y, Hu B, Ao X, Li Q, Li J, Hu K, Yang Y, Liu S. Antifungal Mechanisms and Application of Lactic Acid Bacteria in Bakery Products: A Review. Front Microbiol 2022; 13:924398. [PMID: 35783382 PMCID: PMC9244174 DOI: 10.3389/fmicb.2022.924398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bakery products are nutritious, but they are susceptible to fungal contamination, which leads to a decline in quality and safety. Chemical preservatives are often used to extend the shelf-life of bakery products, but long-term consumption of these preservatives may increase the risk of chronic diseases. Consumers increasingly demand food with fewer chemical preservatives. The application of lactic acid bacteria (LAB) as a novel biological preservative not only prolongs the shelf-life of bakery products but also improves the baking properties of bakery products. This review summarizes different types and action mechanisms of antifungal compounds produced by LAB, factors affecting the production of antifungal compounds, and the effects of antifungal LAB on bakery products, providing a reference for future applications of antifungal LAB in bakery products.
Collapse
|
120
|
Effect of sequential or ternary starters-assisted fermentation on the phenolic and glucosinolate profiles of sauerkraut in comparison with spontaneous fermentation. Food Res Int 2022; 156:111116. [DOI: 10.1016/j.foodres.2022.111116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022]
|
121
|
Palaniappan N, Balasubramanian B, Arunkumar M, Pushparaj K, Rengasamy KR, Maluventhen V, Pitchai M, Alanazi J, Liu WC, Maruthupandian A. Anticancer, antioxidant, and antimicrobial properties of solvent extract of Lobophora variegata through in vitro and in silico studies with major phytoconstituents. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
122
|
Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. BEVERAGES 2022. [DOI: 10.3390/beverages8020033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent social, economic, and technological evolutions have impacted consumption habits. The new consumer is more rational, more connected and demanding with products, more concerned with the management of the family budget, with the health, origin, and sustainability of food. The food industry over the last few years has shown remarkable technological and scientific evolution, with an impact on the development and innovation of new products using non-thermal processing. Non-thermal processing technologies involve methods by which fruit juices receive microbiological inactivation and enzymatic denaturation with or without the direct application of low heat, thereby lessening the adverse effects on the nutritional, bioactive, and flavor compounds of the treated fruit juices, extending their shelf-life. The recognition of the nutritional and protective values of fruit juices and fermented fruit beverages is evident and is attributed to the presence of different bioactive compounds, protecting against chronic and metabolic diseases. Fermentation maintains the fruit's safety, nutrition, and shelf life and the development of new products. This review aims to summarize the chemical and sensory characteristics of fruit juices and fermented fruit drinks, the fermentation process, its benefits, and its effects.
Collapse
|
123
|
Pieracci Y, Pistelli L, Cecchi M, Pistelli L, De Leo M. Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality. Foods 2022; 11:foods11111550. [PMID: 35681300 PMCID: PMC9180594 DOI: 10.3390/foods11111550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
The increasing attention on the impact of food on human and environmental health has led to a greater awareness about nutrition, food processing, and food waste. In this perspective, the present work deals with the investigation of the chemical non-volatile and volatile profiles of two Citrus-based products, produced through a conscious process, using Citrus peels as natural gelling agents. Moreover, the total polyphenol content (TPC) and the antioxidant properties were evaluated, as well as their sensorial properties. Chemical and antioxidant results were compared with those of Citrus fresh fruits (C. reticulata, C. sinensis, and C. limon). Concerning the non-volatile fingerprint, the two samples showed a very similar composition, characterized by flavanones (naringenin, hesperetin, and eriodyctiol O-glycosides), flavones (diosmetin and apigenin C-glucosides), and limonoids (limonin, nomilinic acid, and its glucoside). The amount of both flavonoids and limonoids was higher in the Lemon product than in the Mixed Citrus one, as well as the TPC and the antioxidant activity. The aroma composition of the two samples was characterized by monoterpene hydrocarbons as the main chemical class, mainly represented by limonene. The sensorial analysis, finally, evidenced a good quality of both the products. These results showed that the most representative components of Citrus fruits persist even after the transformation process, and the aroma and sensorial properties endow an added value to Citrus preparations.
Collapse
Affiliation(s)
- Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy; (Y.P.); (L.P.)
| | - Laura Pistelli
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | | | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy; (Y.P.); (L.P.)
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy; (Y.P.); (L.P.)
- Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
124
|
Functional Foods, Nutraceuticals and Probiotics: A Focus on Human Health. Microorganisms 2022; 10:microorganisms10051065. [PMID: 35630507 PMCID: PMC9143759 DOI: 10.3390/microorganisms10051065] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Functional foods are classified as traditional or staple foods that provide an essential nutritional level and share potentially positive effects on host health, including the reduction of disease by optimizing the immune system’s ability to prevent and control infections by pathogens, as well as pathologies that cause functional alterations in the host. This chapter reviews the most recent research and advances in this area and discusses some perspectives on what the future holds in this area.
Collapse
|
125
|
Liu H, Xu M, Liu H, Zhao X. Iminodisuccinic acid enhances antioxidant and mineral element accumulation in young leaves of Ziziphus jujuba. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Jujube leaf tea, which is made from the young leaves of Ziziphus jujuba, is a novel functional herb tea or infusion that inhibits the central nervous system. In the current study, the effects of iminodisuccinic acid (IDS), as a metal complexing agent, on mineral element content, oxidative damage, antioxidant enzyme activities, and antioxidant accumulation in the young and mature leaves of Z. jujuba were investigated. Results demonstrated that foliar fertilization with ionic (FeCl2 and ZnCl2) and chelated (Fe-IDS and Zn-IDS) fertilizers could drastically enhance iron and zinc contents, coupled with increased vitamin C level, glutathione accumulation, total phenolic content, and total antioxidant capacity (evaluated based on the Fe3+ reducing power of leaf extracts), compared with the control, particularly in young leaves. However, chelated fertilizers considerably reduced the chlorophyll level, H2O2 content, and lipid peroxidation rate than ionic fertilizers, particularly in young leaves. Compared with the control, chelated fertilizers induced greater superoxide dismutase and catalase activities, particularly in young leaves. Moreover, decreased enzyme activities were observed in the ionic fertilizer-treated leaves compared with the control-treated leaves. Thus, using a chelating agent could improve the accumulation of mineral elements and antioxidants in young leaves by reducing metal-mediated reactive oxygen species toxicity.
Collapse
Affiliation(s)
- Hongxia Liu
- Life Science College, Luoyang Normal University , Luoyang , 471934, Henan , China
| | - Mingyue Xu
- Life Science College, Luoyang Normal University , Luoyang , 471934, Henan , China
| | - Hui Liu
- Life Science College, Luoyang Normal University , Luoyang , 471934, Henan , China
| | - Xusheng Zhao
- Life Science College, Luoyang Normal University , Luoyang , 471934, Henan , China
- Jujube Research Center, Luoyang Normal University , Luoyang , 471934, Henan , China
| |
Collapse
|
126
|
Sosa F, Marguet E, Vallejo M. Cambios en la concentración de ácido fítico, fósforo libre y hierro soluble durante la fermentación de repollo blanco y repollo chino. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se estudió la evolución de la concentración de ácido fítico, fósforo libre y hierro soluble durante la fermentación de repollo blanco y repollo chino. En ambos casos, la máxima población de bacterias ácido lácticas se logró a los cinco días del proceso y luego disminuyó continuamente hasta el final. El pH inicial del repollo blanco y repollo chino fue de 6,1 y durante los primeros cinco días disminuyó a 3,7 y 4,3 respectivamente, luego permanecieron estables hasta los 30 días. En el repollo blanco, la concentración de ácido fítico disminuyó y el fósforo libre se incrementó durante los primeros cinco días, después no se detectaron cambios significativos. En el repollo chino, la degradación del ácido fítico se observó durante los primeros 15 días, mientras que el fósforo libre aumentó hasta el final del proceso. Ambos vegetales mostraron una concentración inicial de hierro comparable, luego, se observó un incremento hasta el final del proceso, siendo este fenómeno más notable en el repollo chino. Los resultados obtenidos sugieren que la degradación del ácido fítico producida durante la fermentación por la actividad de fitasas vegetales y bacterianas, no sólo origina la liberación de fósforo libre, sino que mejora la bioaccesibilidad del hierro.
Palabras claves. biodisponibilidad de nutrientes, fermentación espontánea, Brassica
Collapse
Affiliation(s)
- Franco Sosa
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. 2 Laboratorio de Biotecnología Microbiana. Facultad de Ciencias Naturales y Ciencias de la Salud (Sede Trelew). Universidad Nacional de la Patagonia. Argentina
| | - Emilio Marguet
- Laboratorio de Biotecnología Microbiana. Facultad de Ciencias Naturales y Ciencias de la Salud (Sede Trelew). Universidad Nacional de la Patagonia. Argentina
| | - Marisol Vallejo
- Laboratorio de Biotecnología Microbiana. Facultad de Ciencias Naturales y Ciencias de la Salud (Sede Trelew). Universidad Nacional de la Patagonia. Argentina
| |
Collapse
|
127
|
Kumar Patle T, Shrivas K, Patle A, Patel S, Harmukh N, Kumar A. Simultaneous determination of B1, B3, B6 and C vitamins in green leafy vegetables using reverse phase-high performance liquid chromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
128
|
Chen X, Yuan M, Wang Y, Zhou Y, Sun X. Influence of fermentation with different lactic acid bacteria and
in vitro
digestion on the change of phenolic compounds in fermented kiwifruit pulps. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Chen
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550025 China
| | - Minlan Yuan
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550025 China
| | - Yuting Wang
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550025 China
| | - Yan Zhou
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550025 China
| | - Xiaohong Sun
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550025 China
| |
Collapse
|
129
|
Wang X, Wang Y, Han M, Liang J, Zhang M, Bai X, Yue T, Gao Z. Evaluating the changes in phytochemical composition, hypoglycemic effect, and influence on mice intestinal microbiota of fermented apple juice. Food Res Int 2022; 155:110998. [DOI: 10.1016/j.foodres.2022.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023]
|
130
|
Pérez-Alva A, MacIntosh A, Baigts-Allende D, García-Torres R, Ramírez-Rodrigues M. Fermentation of algae to enhance their bioactive activity: A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
131
|
Meng FB, Zhou L, Li JJ, Li YC, Wang M, Zou LH, Liu DY, Chen WJ. The combined effect of protein hydrolysis and Lactobacillus plantarum fermentation on antioxidant activity and metabolomic profiles of quinoa beverage. Food Res Int 2022; 157:111416. [DOI: 10.1016/j.foodres.2022.111416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
|
132
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
133
|
Ameur H, Cantatore V, Filannino P, Cavoski I, Nikoloudaki O, Gobbetti M, Di Cagno R. Date Seeds Flour Used as Value-Added Ingredient for Wheat Sourdough Bread: An Example of Sustainable Bio-Recycling. Front Microbiol 2022; 13:873432. [PMID: 35516437 PMCID: PMC9062590 DOI: 10.3389/fmicb.2022.873432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Our study proposed date seeds flour (DSF) as an innovative ingredient for sourdough bread production through sustainable bio-recycling. We isolated autochthonous lactic acid bacteria and yeasts from DSF and DSF-derived doughs to build up a reservoir of strains from which to select starters ensuring rapid adaptation and high ecological fitness. The screening based on pro-technological criteria led to the formulation of a mixed starter consisting of Leuconostoc mesenteroides, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae strains, which allowed obtaining a mature type I sourdough after consecutive refreshments, in which an aliquot of the durum wheat flour (DWF) was replaced by DSF. The resulting DSF sourdough and bread underwent an integrated characterization. Sourdough biotechnology was confirmed as a suitable procedure to improve some functional and sensory properties of DWF/DSF mixture formulation. The radical scavenging activity increased due to the consistent release of free phenolics. Perceived bitterness and astringency were considerably diminished, likely because of tannin degradation.
Collapse
Affiliation(s)
- Hana Ameur
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Vincenzo Cantatore
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Pasquale Filannino,
| | - Ivana Cavoski
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, Valenzano, Bari, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
- Raffaella Di Cagno,
| |
Collapse
|
134
|
Fermentation of Vaccinium floribundum Berries with Lactiplantibacillus plantarum Reduces Oxidative Stress in Endothelial Cells and Modulates Macrophages Function. Nutrients 2022; 14:nu14081560. [PMID: 35458122 PMCID: PMC9027973 DOI: 10.3390/nu14081560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that high consumption of natural antioxidants promotes health by reducing oxidative stress and, thus, the risk of developing cardiovascular diseases. Similarly, fermentation of natural compounds with lactic acid bacteria (LAB), such as Lactiplantibacillus plantarum, enhances their beneficial properties as regulators of the immune, digestive, and cardiovascular system. We investigated the effects of fermentation with Lactiplantibacillus plantarum on the antioxidant and immunomodulatory effects of Pushgay berries (Vaccinium floribundum, Ericaceae family) in human umbilical vein endothelial cells (HUVECs) and macrophage cell line RAW264.7. Polyphenol content was assayed by Folin–Ciocalteu and HPLC-MS/MS analysis. The effects of berries solutions on cell viability or proliferation were assessed by WST8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt and Lactate dehydrogenase (LDH) release, Trypan blue exclusion test, and Alamar blue assay. Antioxidant activity was evaluated by a cell-based chemiluminescent probe for the detection of intracellular H2O2 production in HUVECs. Heme oxygenase-1 (HO-1) expression levels were investigated by RT-qPCR. Glutathione reductase (GR), glutathione peroxidase (Gpx), superoxide dismutase (SOD), and catalase (CAT) activities, as markers of intracellular antioxidant defense, were evaluated by spectrophotometric analysis. The immunomodulatory activity was examined in RAW 264.7 by quantification of inducible nitric oxide synthase (iNOS) and Tumor Necrosis Factor—alpha (TNFα) by RT-qPCR. Data showed that fermentation of Pushgay berries (i) enhances the content of quercetin aglycone, and (ii) increases their intracellular antioxidant activity, as indicated by the reduction in H2O2-induced cell death and the decrease in H2O2-induced HO-1 gene expression in HUVECs treated for 24 h with fermented berries solution (10 µg/mL). Moreover, treatment with Pushgay berries for 72 h (10 µg/mL) promotes cells growth in RAW 264.7, and only fermented Pushgay berries increase the expression of iNOS in the same cell line. Taken together, our results show that LAB fermentation of Pushgay berries enhances their antioxidant and immunomodulatory properties.
Collapse
|
135
|
Wang Z, Li C, He X, Xu K, Xue Z, Wang T, Xu Z, Liu X. Platycodon grandiflorum root fermentation broth reduces inflammation in a mouse IBD model through the AMPK/NF-κB/NLRP3 pathway. Food Funct 2022; 13:3946-3956. [PMID: 35293398 DOI: 10.1039/d1fo03969e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effect of Platycodon grandiflorum (PG) on colitis and its underlying mechanism were rarely studied. In this study, Lactobacillus rhamnosus 217-1 was used to ferment PG roots, and the concentrations of platycodin-D, flavonoids, and polyphenols and the DPPH free radical scavenging rate were significantly increased. Treatment with a PG root fermentation broth (PGRFB) could reduce dextran sulfate sodium (DSS) induced ulcerative colitis (UC) in mice. Meanwhile, the PGRFB significantly reduced the content of inflammatory factors in mouse serum and the expression of inflammatory factor mRNA in the intestinal tract, regulated the polarization of M1/M2 macrophages, and increased the expression of tight junction protein mRNA in intestinal epithelial cells. In summary, it was proved that the PGRFB could inhibit the nuclear factor kappa B (NF-κB) signaling pathway and the expression of Nod-like receptor protein 3 (NLRP3) inflammasomes by activating AMP-activated protein kinase (AMPK) and lowering the release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Chunhai Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xi He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Kang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Zhipeng Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| |
Collapse
|
136
|
Alagöz Kabakcı S, Türkyılmaz M, Özkan M. Effects of fermentation time and pH on quality of black carrot juice fermented by kefir culture during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2563-2574. [PMID: 34687233 DOI: 10.1002/jsfa.11598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The effects of fermentation time (17-48 h) and pH (3.37-4.50) on qualities of fermented beverages (FBs) produced from black carrot juice (BCJ) were monitored during storage at 4 °C for 20 weeks. RESULTS Fermentation and adjusting the pH level provided significant increases (up to 22%) in anthocyanin content and the absorbance value at λmax (Amax ). Moreover, the stability of anthocyanins, color density, and Amax in FBs was somewhat higher than those in BCJ. Lactic acid showed a co-pigmentation effect on cyanidin-3-galactoside-xyloside-glucoside-sinapic acid and cyanidin-3-galactoside-xyloside-glucoside-ferulic acid. Sucrose was degraded much faster at pH 4.50 (17 h) and 4.35 (48 h) than at lower pH levels. During storage, pH 4.35 caused a balanced distribution between counts of lactic acid bacteria (LAB) and yeasts, and antioxidant activity of all FBs increased. Fermented beverages at 4.35 and 3.90 were found to be more palatable by panelists. CONCLUSION We recommend FB production at pH 4.35 after 48 h fermentation due to the balanced distribution of probiotics, high color enhancement, and consumer preference. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sümeyye Alagöz Kabakcı
- Ministry of Agriculture and Forestry, National Food Reference Laboratory, Ankara, Turkey
| | | | - Mehmet Özkan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
137
|
Antioxidant, flavor profile and quality of wheat dough bread incorporated with kiwifruit fermented by β-glucosidase producing lactic acid bacteria strains. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
138
|
Sainz R, Pozo MD, Vázquez L, Vilas-Varela M, Castro-Esteban J, Blanco E, Petit-Domínguez MD, Quintana C, Casero E. Lactate biosensing based on covalent immobilization of lactate oxidase onto chevron-like graphene nanoribbons via diazotization-coupling reaction. Anal Chim Acta 2022; 1208:339851. [DOI: 10.1016/j.aca.2022.339851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
|
139
|
Wang Y, Li H, Ren Y, Wang Y, Yaopeng R, Xiaowei W, Tianli Y, Zhouli W, Zhenpeng G. Preparation, model construction and efficacy lipid-lowering evaluation of kiwifruit juice fermented by probiotics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
140
|
A Review on Factors Influencing the Fermentation Process of Teff (Eragrostis teff) and Other Cereal-Based Ethiopian Injera. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4419955. [PMID: 35368804 PMCID: PMC8970856 DOI: 10.1155/2022/4419955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Fermented foods and beverages are the product of the enzymaticcally transformed food components which are acived by different microorganisms. Fermented foods have grown in popularity in recent years because of their alleged health benefits. Biogenic amines, bioactive peptides, antinutrient reduction, and polyphenol conversion to physiologically active chemicals are all possible health benefits of fermentation process products. In Ethiopian-fermented foods, which are mostly processed using spontaneous fermentation process. Injera is one of the fermented food products consumed in all corners of the country which sourdough fermentation could be achieved using different LAB and yeast strains. Moreover, the kind and concentration of the substrate and the type of microbial flora, as well as temperature, air supply, and pH, all influence the fermentation process of injera. This review article gives an overview of factors influencing the fermentation process of teff ('Eragrostis tef.') and other cereal-based Ethiopian injera.
Collapse
|
141
|
Ozkan K, Karadag A, Sagdic O. The effects of drying and fermentation on the bioaccessibility of phenolics and antioxidant capacity of Thymus vulgaris leaves. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2021.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Fresh thyme leaves (Thymus vulgaris L.) were dried at 45 °C for 5 h and naturally fermented at 20 °C in a brine solution containing salt and vinegar for 18 days. The ethanolic extracts of fresh (FT), dried (DT), and fermented-pickled (PT) thyme leaves were assessed in terms of total phenolic content (TPC), total flavonoid content (TFC), antioxidant capacity values and subjected to in vitro gastrointestinal digestion. TPC, TFC, and antioxidant capacity values of fermented thyme leaves were found significantly higher than of dried and fresh samples. The bioaccessibility index (BI) value for TPC and TFC was highest for PT and lowest for DT, indicating that both processes had different effects on the structure of phenolic compounds present in the thyme leaves. Similarly both Recovery and BI values of DPPH antioxidant capacity were highest for PT, but lowest for fresh samples. When CUPRAC assay was applied, the recovery % for FT and PT was similar, and the BI was higher for FT. Results showed that compared to the results of fresh thyme leaves, drying and pickling had a considerable effect on the initial phenolic compounds extracted and their fate during in vitro digestion.
Collapse
Affiliation(s)
- K. Ozkan
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| | - A. Karadag
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| | - O. Sagdic
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, 34210, Istanbul, Turkey
| |
Collapse
|
142
|
Abstract
The interest in fermented food products has been increasing in recent years. Details about their microbial composition and the effects of their consumption on the human gut microbiome are of particular interest. However, evidence regarding their potential to increase gut microbial diversity, a measure likely associated with health, is lacking. To address this, we analyzed the microbial composition of commercially available fermented vegetables using 16S rRNA sequencing. We also conducted a pilot study to assess the feasibility of studying the effects of regular consumption of fermented vegetables on the gut microbiome. Six healthy male volunteers participated in a randomized crossover trial, with two two-week intervention phases. Volunteers consumed 150 g/d of either sauerkraut or a variety of six different commercially available fermented vegetables. This study is registered at the German Clinical Trials Register (DRKS-ID: DRKS00014840). Lactobacillales was the dominant family in all fermented vegetables studied. However, the alpha diversity, richness and evenness of the microbiota differed substantially among the different products. The number of species per product varied between 20 and 95. After consumption of both sauerkraut and the selection of fermented vegetables, we observed a slight increase in alpha diversity. Specifically, the amount of the genus Prevotella decreased while the amount of Bacteroides increased after both interventions. However, these initial observations need to be confirmed in larger studies. This pilot study demonstrates the feasibility of this type of research.
Collapse
|
143
|
Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022; 11:foods11050733. [PMID: 35267366 PMCID: PMC8909232 DOI: 10.3390/foods11050733] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Consumption of lactic acid fermented fruits and vegetables has been correlated with a series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid microbiota, while others to its metabolic potential and the production of bioactive compounds. The factors that affect the latter have been in the epicenter of intensive research over the last decade. The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and vegetables has attracted specific attention. On the other hand, the production of biogenic amines has also been intensively studied due to the adverse health effects caused by their consumption. The data that are currently available indicate that the production of these compounds is a strain-dependent characteristic that may also be affected by the raw materials used as well as the fermentation conditions. The aim of the present review paper is to collect all data referring to the production of the aforementioned compounds and to present and discuss them in a concise and comprehensive way.
Collapse
|
144
|
Evaluation of Shandong pancake with sourdough fermentation on the alleviation of type 2 diabetes symptoms in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
145
|
Polia F, Pastor-Belda M, Martínez-Blázquez A, Horcajada MN, Tomás-Barberán FA, García-Villalba R. Technological and Biotechnological Processes To Enhance the Bioavailability of Dietary (Poly)phenols in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2092-2107. [PMID: 35156799 PMCID: PMC8880379 DOI: 10.1021/acs.jafc.1c07198] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/10/2023]
Abstract
The health effects of (poly)phenols (PPs) depend upon their bioavailability that, in general, is very low and shows a high interindividual variability. The low bioavailability of PPs is mainly attributed to their low absorption in the upper gastrointestinal tract as a result of their low water solubility, their presence in foods as polymers or in glycosylated forms, and their tight bond to food matrices. Although many studies have investigated how technological and biotechnological processes affect the phenolic composition of fruits and vegetables, limited information exists regarding their effects on PP bioavailability in humans. In the present review, the effect of food processing (mechanical, thermal, and non-thermal treatments), oral-delivery nanoformulations, enzymatic hydrolysis, fermentation, co-administration with probiotics, and generation of postbiotics in PP bioavailability have been overviewed, focusing in the evidence provided in humans.
Collapse
Affiliation(s)
- Franck Polia
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | - Marta Pastor-Belda
- Department
of Analytical Chemistry, Faculty of Chemistry, Regional Campus of
International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Alberto Martínez-Blázquez
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | | | - Francisco A. Tomás-Barberán
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| | - Rocío García-Villalba
- Laboratory
of Food & Health, Research Group on Quality, Safety and Bioactivity
of Plant Foods, Centro de Edafología
y Biología Aplicada del Segura−Consejo Superior de Investigaciones
Científicas (CEBAS−CSIC), Campus de Espinardo 25, 30100 Murcia, Spain
| |
Collapse
|
146
|
Microbial Quality and Safety of Raw Vegetables of Fiche Town, Oromia, Ethiopia. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:2556858. [PMID: 35222651 PMCID: PMC8872687 DOI: 10.1155/2022/2556858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
Vegetables contain vital ingredients such as minerals, phytochemicals, vitamins, and fibers, which play significant roles in human health. Consumption of fresh vegetables causes human infections and outbreaks while serving as a reservoir of several pathogens. The study evaluated the microbiological quality of raw vegetables consumed in and around Fiche town, Central Ethiopia. For the experimental study, a total of 100 samples of 5 different raw vegetables from two local markets were selected based on their commonalities for overall microbial quality in terms of aerobic mesophilic count, total coliform count, Enterobacteriaceae count, Staphylococci count, and yeast and mold levels. The highest count was aerobic mesophilic bacteria (5.7 log CFU/g) followed by Enterobacteriaceae (4.7 log CFU/g), while yeasts and molds count the least. The maximal count for aerobic mesophilic bacteria was enumerated in cabbage (6.4 log CFU/g) while the minimum was in green pepper samples (4.7 log CFU/g). Among 100 vegetable samples analyzed, 11% were contaminated by S. aureus which is highly prevalent in cabbage (20%), followed by lettuce (15%). In the present study, 15.0% of vegetable samples were positive for Salmonella and detected in all vegetable types.
Collapse
|
147
|
Lactic acid fermentation as a useful strategy to recover antimicrobial and antioxidant compounds from food and by-products. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
148
|
Dietary pattern of patients with type 2 diabetes mellitus including date consumption. J Public Health (Oxf) 2022. [DOI: 10.1007/s10389-020-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Abstract
Aim
Assess the relationship between date palm fruit consumption and diabetic control among Saudi patients with type 2 diabetes mellitus.
Subjects and methods
Saudi patients with type 2 diabetes (n = 404, aged 55.3 ± 9.7 years) were included in this study. Height, weight and blood pressure were initially measured. Blood glucose levels (fasting and random), glycated hemoglobin HbA1c, total cholesterol, high-density lipoprotein, low-density lipoprotein and triglycerides were retrieved from the patient’s medical records. The amount and frequency of habitual consumption of date fruits were obtained from patients using a validated dietary questionnaire.
Results
The results revealed that high consumption of date fruits was statistically significantly correlated with lower HbA1c and fasting blood glucose (p < 0.01).
Conclusion
This cross-sectional study found an association between high date fruit consumption by patients with type 2 diabetes mellitus and lower HbA1c and fasting blood glucose levels. Further studies are required to verify this interesting finding
Collapse
|
149
|
Cai C, Zhang M, Chen H, Chen W, Chen W, Zhong Q. Enhancement of norisoprenoid and acetoin production for improving the aroma of fermented mango juice by Bacillus subtilis-HNU-B3. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
150
|
Tang Z, Zhao Z, Wu X, Lin W, Qin Y, Chen H, Wan Y, Zhou C, Bu T, Chen H, Xiao Y. A Review on Fruit and Vegetable Fermented Beverage-Benefits of Microbes and Beneficial Effects. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zhiqiao Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu, Sichuan, China
| | - Wenjie Lin
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yihan Qin
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yujun Wan
- Sichuan Food and Fermentation Industry Research and Design Institute, Chengdu,Sichuan, China
| | - Caixia Zhou
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya’an, Sichuan, China
| |
Collapse
|