101
|
Galeote V, Bigey F, Beyne E, Novo M, Legras JL, Casaregola S, Dequin S. Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation. PLoS One 2011; 6:e17872. [PMID: 21423766 PMCID: PMC3053389 DOI: 10.1371/journal.pone.0017872] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/11/2011] [Indexed: 11/18/2022] Open
Abstract
We recently described the presence of large chromosomal segments resulting from independent horizontal gene transfer (HGT) events in the genome of Saccharomyces cerevisiae strains, mostly of wine origin. We report here evidence for the amplification of one of these segments, a 17 kb DNA segment from Zygosaccharomyces bailii, in the genome of S. cerevisiae strains. The copy number, organization and location of this region differ considerably between strains, indicating that the insertions are independent and that they are post-HGT events. We identified eight different forms in 28 S. cerevisiae strains, mostly of wine origin, with up to four different copies in a single strain. The organization of these forms and the identification of an autonomously replicating sequence functional in S. cerevisiae, strongly suggest that an extrachromosomal circular DNA (eccDNA) molecule serves as an intermediate in the amplification of the Z. bailii region in yeast genomes. We found little or no sequence similarity at the breakpoint regions, suggesting that the insertions may be mediated by nonhomologous recombination. The diversity between these regions in S. cerevisiae represents roughly one third the divergence among the genomes of wine strains, which confirms the recent origin of this event, posterior to the start of wine strain expansion. This is the first report of a circle-based mechanism for the expansion of a DNA segment, mediated by nonhomologous recombination, in natural yeast populations.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Chromosome Breakpoints
- Chromosomes, Fungal/genetics
- DNA, Circular/genetics
- DNA, Fungal/genetics
- Diploidy
- Electrophoresis, Gel, Pulsed-Field
- Evolution, Molecular
- Extrachromosomal Inheritance/genetics
- Gene Amplification/genetics
- Gene Dosage/genetics
- Genetic Variation
- Genome, Fungal/genetics
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Saccharomyces cerevisiae/genetics
- Wine/microbiology
- Zygosaccharomyces/genetics
Collapse
Affiliation(s)
| | - Frédéric Bigey
- INRA, UMR1083 Sciences Pour l'Œnologie, Montpellier, France
| | | | - Maite Novo
- INRA, UMR1083 Sciences Pour l'Œnologie, Montpellier, France
| | | | - Serge Casaregola
- CIRM-Levures, INRA, UMR1319 Micalis, AgroParisTech, Thiverval-Grignon, France
| | - Sylvie Dequin
- INRA, UMR1083 Sciences Pour l'Œnologie, Montpellier, France
- * E-mail:
| |
Collapse
|
102
|
Szabová J, Růžička P, Verner Z, Hampl V, Lukeš J. Experimental Examination of EFL and MATX Eukaryotic Horizontal Gene Transfers: Coexistence of Mutually Exclusive Transcripts Predates Functional Rescue. Mol Biol Evol 2011; 28:2371-8. [DOI: 10.1093/molbev/msr060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
103
|
Abstract
Trans-splicing is the joining together of portions of two separate pre-mRNA molecules. The two distinct categories of spliceosomal trans-splicing are genic trans-splicing, which joins exons of different pre-mRNA transcripts, and spliced leader (SL) trans-splicing, which involves an exon donated from a specialized SL RNA. Both depend primarily on the same signals and components as cis-splicing. Genic trans-splicing events producing protein-coding mRNAs have been described in a variety of organisms, including Caenorhabditis elegans and Drosophila. In mammalian cells, genic trans-splicing can be associated with cancers and translocations. SL trans-splicing has mainly been studied in nematodes and trypanosomes, but there are now numerous and diverse phyla (including primitive chordates) where this type of trans-splicing has been detected. Such diversity raises questions as to the evolutionary origin of the process. Another intriguing question concerns the function of trans-splicing, as operon resolution can only account for a small proportion of the total amount of SL trans-splicing.
Collapse
Affiliation(s)
- Erika L Lasda
- University of Colorado Denver, Department of Biochemistry and Molecular Genetics; University of Colorado Boulder, Department of Molecular, Cellular, and Developmental Biology
| | | |
Collapse
|
104
|
Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D. The making of a photosynthetic animal. J Exp Biol 2011; 214:303-11. [PMID: 21177950 PMCID: PMC3008634 DOI: 10.1242/jeb.046540] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2010] [Indexed: 11/20/2022]
Abstract
Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO(2) fixation (photosynthesis). 'Solar-powered' sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a 'plant' when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ~10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating 'green animal' provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism.
Collapse
Affiliation(s)
- Mary E Rumpho
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME 04469, USA.
| | | | | | | |
Collapse
|
105
|
Green BR. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. PHOTOSYNTHESIS RESEARCH 2011; 107:103-15. [PMID: 20676772 DOI: 10.1007/s11120-010-9584-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/07/2010] [Indexed: 05/24/2023]
Abstract
The chromalveolate hypothesis proposed by Cavalier-Smith (J Euk Microbiol 46:347-366, 1999) suggested that all the algae with chlorophyll c (heterokonts, haptophytes, cryptophytes, and dinoflagellates), as well as the ciliates, apicomplexans, oomycetes, and other non-photosynthetic relatives, shared a common ancestor that acquired a chloroplast by secondary endosymbiosis of a red alga. Much of the evidence from plastid and nuclear genomes supports a red algal origin for plastids of the photosynthetic lineages, but the number of secondary endosymbioses and the number of plastid losses have not been resolved. The issue is complicated by the fact that nuclear genomes are mosaics of genes acquired over a very long time period, not only by vertical descent but also by endosymbiotic and horizontal gene transfer. Phylogenomic analysis of the available whole-genome data has suggested major alterations to our view of eukaryotic evolution, and given rise to alternative models. The next few years may see even more changes once a more representative collection of sequenced genomes becomes available.
Collapse
Affiliation(s)
- Beverley R Green
- Botany Department, University of British Columbia, Vancouver, B.C, V6T 1Z4, Canada.
| |
Collapse
|
106
|
Slot JC, Rokas A. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol 2010; 21:134-9. [PMID: 21194949 DOI: 10.1016/j.cub.2010.12.020] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/23/2010] [Accepted: 12/09/2010] [Indexed: 02/05/2023]
Abstract
Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK:
Collapse
Affiliation(s)
- Jason C Slot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
107
|
Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist 2010; 161:642-71. [PMID: 21036663 PMCID: PMC3021972 DOI: 10.1016/j.protis.2010.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | |
Collapse
|
108
|
Elias M. Patterns and processes in the evolution of the eukaryotic endomembrane system. Mol Membr Biol 2010; 27:469-89. [DOI: 10.3109/09687688.2010.521201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
109
|
Sterling EJ, Gómez A, Porzecanski AL. A systemic view of biodiversity and its conservation: Processes, interrelationships, and human culture. Bioessays 2010; 32:1090-8. [DOI: 10.1002/bies.201000049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
110
|
Knoop V, Rüdinger M. DYW-type PPR proteins in a heterolobosean protist: Plant RNA editing factors involved in an ancient horizontal gene transfer? FEBS Lett 2010; 584:4287-91. [DOI: 10.1016/j.febslet.2010.09.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
|
111
|
Hay BA, Chen CH, Ward CM, Huang H, Su JT, Guo M. Engineering the genomes of wild insect populations: challenges, and opportunities provided by synthetic Medea selfish genetic elements. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1402-13. [PMID: 20570677 PMCID: PMC3601555 DOI: 10.1016/j.jinsphys.2010.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 05/10/2023]
Abstract
Advances in insect transgenesis and our knowledge of insect physiology and genomics are making it possible to create transgenic populations of beneficial or pest insects that express novel traits. There are contexts in which we may want the transgenes responsible for these traits to spread so that all individuals within a wild population carry them, a process known as population replacement. Transgenes of interest are unlikely to confer an overall fitness benefit on those who carry them. Therefore, an essential component of any population replacement strategy is the presence of a drive mechanism that will ensure the spread of linked transgenes. We discuss contexts in which population replacement might be desirable and the requirements a drive system must satisfy to be both effective and safe. We then describe the creation of synthetic Medea elements, the first selfish genetic elements synthesized de novo, with the capability of driving population replacement, in this case in Drosophila. The strategy used to create Drosophila Medea is applicable to a number of other insect species and the Medea system satisfies key requirements for scientific and social acceptance. Finally, we highlight several challenges to implementing population replacement in the wild.
Collapse
Affiliation(s)
- Bruce A Hay
- Division of Biology, MC156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States.
| | | | | | | | | | | |
Collapse
|
112
|
Shcherbakov VP. Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction. Biol Direct 2010; 5:14. [PMID: 20307287 PMCID: PMC2847548 DOI: 10.1186/1745-6150-5-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/22/2010] [Indexed: 11/22/2022] Open
Abstract
Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria) reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic") lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary consequence of the sexuality is evident from the fact that the genotypes of the individuals with an enhanced competitiveness are not transmitted to the next generation. Instead, after mating with "ordinary" individuals, these genotypes scatter and rearrange in new gene combinations, thus preventing the winner from exploiting the success.
Collapse
Affiliation(s)
- Victor P Shcherbakov
- Institute of Problems of Chemical Physics RAS, Chernogolovka, Moscow Region, Russia.
| |
Collapse
|