101
|
Khan FA, Nsengimana B, Khan NH, Song Z, Ngowi EE, Wang Y, Zhang W, Ji S. Chimeric Peptides/Proteins Encoded by circRNA: An Update on Mechanisms and Functions in Human Cancers. Front Oncol 2022; 12:781270. [PMID: 35223470 PMCID: PMC8874284 DOI: 10.3389/fonc.2022.781270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
The discovery of circular RNAs and exploration of their biological functions are increasingly attracting attention in cell bio-sciences. Owing to their unique characteristics of being highly conserved, having a relatively longer half-life, and involvement in RNA maturation, transportation, epigenetic regulation, and transcription of genes, it has been accepted that circRNAs play critical roles in the variety of cellular processes. One of the critical importance of these circRNAs is the presence of small open reading frames that enable them to encode peptides/proteins. In particular, these encoded peptides/proteins mediate essential cellular activities such as proliferation, invasion, epithelial-mesenchymal transition, and apoptosis and develop an association with the development and progression of cancers by modulating diverse signaling pathways. In addition, these peptides have potential roles as biomarkers for the prognosis of cancer and are being used as drug targets against tumorigenesis. In the present review, we thoroughly discussed the biogenesis of circRNAs and their functional mechanisms along with a special emphasis on the reported chimeric peptides/proteins encoded by circRNAs. Additionally, this review provides a perspective regarding the opportunities and challenges to the potential use of circRNAs in cancer diagnosis and therapeutic targets in clinics.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Nazeer Hussain Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhenhua Song
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yunyun Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
102
|
Montico B, Giurato G, Pecoraro G, Salvati A, Covre A, Colizzi F, Steffan A, Weisz A, Maio M, Sigalotti L, Fratta E. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol Oncol 2022; 16:565-593. [PMID: 34080276 PMCID: PMC8807361 DOI: 10.1002/1878-0261.13034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma (CM) is a very aggressive disease, often characterized by unresponsiveness to conventional therapies and high mortality rates worldwide. The identification of the activating BRAFV600 mutations in approximately 50% of CM patients has recently fueled the development of novel small-molecule inhibitors that specifically target BRAFV600 -mutant CM. In addition, a major progress in CM treatment has been made by monoclonal antibodies that regulate the immune checkpoint inhibitors. However, although target-based therapies and immunotherapeutic strategies have yielded promising results, CM treatment remains a major challenge. In the last decade, accumulating evidence points to the aberrant expression of different types of noncoding RNAs (ncRNAs) in CM. While studies on microRNAs have grown exponentially leading to significant insights on CM biology, the role of circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) in this tumor is less understood, and much remains to be discovered. Here, we summarize and critically review the available evidence on the molecular functions of circRNAs and lncRNAs in BRAFV600 -mutant CM and CM immunogenicity, providing recent updates on their functional role in targeted therapy and immunotherapy resistance. In addition, we also include an evaluation of several algorithms and databases for prediction and validation of circRNA and lncRNA functional interactions.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Giovanni Pecoraro
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
| | - Alessia Covre
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
| | - Francesca Colizzi
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and GenomicsDepartment of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana'University of SalernoBaronissiItaly
- Genome Research Center for Health – CRGSUniversity of Salerno Campus of MedicineBaronissiItaly
| | - Michele Maio
- Center for Immuno‐OncologyUniversity Hospital of SienaItaly
- University of SienaItaly
- NIBIT Foundation OnlusSienaItaly
| | - Luca Sigalotti
- Oncogenetics and Functional Oncogenomics UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Elisabetta Fratta
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
103
|
Interplay between circular RNA, microRNA, and human diseases. Mol Genet Genomics 2022; 297:277-286. [PMID: 35084582 DOI: 10.1007/s00438-022-01856-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/04/2022] [Indexed: 12/09/2022]
Abstract
Circular RNAs (circRNAs) are endogenous RNA formed by the back splicing process. They are ubiquitous, stable, evolutionally conserved, and are tissue-specific. The biochemical and molecular features of circRNAs hold the potential to be used as biomarkers in various diseases to achieve pharmacological goals. CircRNAs have numerous latent modes of action, from acting as sponges for microRNAs and RNA binding proteins to serve as transcriptional regulators, epigenetic alterations, etc. Dysregulated functioning of several circular RNAs lead to the progression of a plethora of diseases. Due to their extremely stable nature and amazing tissue specificity, circRNAs have paved the way for advanced clinical studies as a novel method of early disease detection and treatment efficacy. Therefore, they have been recognized as a latent diagnostic biomarker for neurodegenerative diseases, diabetes, osteoarthritis, and cardiovascular diseases.
Collapse
|
104
|
Gao X, Ma XK, Li X, Li GW, Liu CX, Zhang J, Wang Y, Wei J, Chen J, Chen LL, Yang L. Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biol 2022; 23:16. [PMID: 35012611 PMCID: PMC8744252 DOI: 10.1186/s13059-021-02563-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Many circular RNAs (circRNAs) are produced from back-splicing of exons of precursor mRNAs and are generally co-expressed with cognate linear RNAs. Methods for circRNA-specific knockout are lacking, largely due to sequence overlaps between forms. Here, we use base editors (BEs) for circRNA depletion. By targeting splice sites involved in both back-splicing and canonical splicing, BEs can repress circular and linear RNAs. Targeting sites predominantly for circRNA biogenesis, BEs could efficiently repress the production of circular but not linear RNAs. As hundreds of exons are predominantly back-spliced to produce circRNAs, this provides an efficient method to deplete circRNAs for functional study.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Xu-Kai Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xiang Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 330106, China
| | - Guo-Wei Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jun Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ying Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jia Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 330106, China
| | - Li Yang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health , University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
105
|
Yu KHO, Shi CH, Wang B, Chow SHC, Chung GTY, Lung RWM, Tan KE, Lim YY, Tsang ACM, Lo KW, Yip KY. Quantifying full-length circular RNAs in cancer. Genome Res 2021; 31:2340-2353. [PMID: 34663689 PMCID: PMC8647826 DOI: 10.1101/gr.275348.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) are abundantly expressed in cancer. Their resistance to exonucleases enables them to have potentially stable interactions with different types of biomolecules. Alternative splicing can create different circRNA isoforms that have different sequences and unequal interaction potentials. The study of circRNA function thus requires knowledge of complete circRNA sequences. Here we describe psirc, a method that can identify full-length circRNA isoforms and quantify their expression levels from RNA sequencing data. We confirm the effectiveness and computational efficiency of psirc using both simulated and actual experimental data. Applying psirc on transcriptome profiles from nasopharyngeal carcinoma and normal nasopharynx samples, we discover and validate circRNA isoforms differentially expressed between the two groups. Compared with the assumed circular isoforms derived from linear transcript annotations, some of the alternatively spliced circular isoforms have 100 times higher expression and contain substantially fewer microRNA response elements, showing the importance of quantifying full-length circRNA isoforms.
Collapse
Affiliation(s)
- Ken Hung-On Yu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christina Huan Shi
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Bo Wang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Savio Ho-Chit Chow
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Tin-Yun Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Anna Chi-Man Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
106
|
Sayad A, Najafi S, Kashi AH, Hosseini SJ, Akrami SM, Taheri M, Ghafouri-Fard S. Circular RNAs in renal cell carcinoma: Functions in tumorigenesis and diagnostic and prognostic potentials. Pathol Res Pract 2021; 229:153720. [PMID: 34942510 DOI: 10.1016/j.prp.2021.153720] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with closed ends which makes them resistant to degrading enzyme RNAse R. These RNA molecules show cell, tissue or organ specific expression. Regulatory functions have been reported for a number of circRNAs. Particularly, they have been found to affect cell cycle and control cell proliferation. CircRNAs are involved in physiological processes like natural organ development. Their dysregulation in high-throughput technologies have been shown in a growing number of diseases especially many types of cancers such as renal cell carcinoma (RCC). Differentially expressed circRNAs in RCC tissues compared to normal tissues may affect carcinogenesis process. Overexpressed circRNAs promote tumorigenic functions of RCC cell lines while down-regulated transcripts repress them. Both dysregulated circRNAs are correlated with clinicopathological features, prognosis and survival in RCC patients which along with their acceptable diagnostic values suggest them as potential biomarkers in diagnosis or prediction of prognosis of RCC patients. In this review, we have assessed tumorigenic or tumor-suppressing effects of circRNAs and also their diagnostic and prognostic potentials in RCC.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohamamd Akrami
- Department of Medical Genetics, School of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
107
|
Ye Y, Feng W, Zhang J, Zhu K, Huang X, Pan L, Su J, Zheng Y, Li R, Deng S, Bai R, Zhuang L, Wei L, Deng J, Li M, Chen R, Lin D, Zuo Z, Zheng J. Genome-wide identification and characterization of circular RNA m 6A modification in pancreatic cancer. Genome Med 2021; 13:183. [PMID: 34798904 PMCID: PMC8605608 DOI: 10.1186/s13073-021-01002-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant modification of RNA in eukaryotic cells and play critical roles in cancer. While most related studies focus on m6A modifications in linear RNA, transcriptome-wide profiling and exploration of m6A modification in circular RNAs in cancer is still lacking. METHODS For the detection of m6A modification in circRNAs, we developed a new bioinformatics tools called Circm6A and applied it to the m6A-seq data of 77 tissue samples from 58 individuals with pancreatic ductal adenocarcinoma (PDAC). RESULTS Circm6A performs better than the existing circRNA identification tools, which achieved highest F1 score among these tools in the detection of circRNAs with m6A modifications. By using Circm6A, we identified a total of 8807 m6A-circRNAs from our m6A-seq data. The m6A-circRNAs tend to be hypermethylated in PDAC tumor tissues compared with normal tissues. The hypermethylated m6A-circRNAs were associated with a significant gain of circRNA-mRNA coexpression network, leading to the dysregulation of many important cancer-related pathways. Moreover, we found the cues that hypermethylated m6A-circRNAs may promote the circularization and translation of circRNAs. CONCLUSIONS These comprehensive findings further bridged the knowledge gaps between m6A modification and circRNAs fields by depicting the m6A-circRNAs genomic landscape of PDAC patients and revealed the emerging roles played by m6A-circRNAs in pancreatic cancer. Circm6A is available at https://github.com/canceromics/circm6a .
Collapse
Affiliation(s)
- Ying Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weiyi Feng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kaiyu Zhu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanfen Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lusheng Wei
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junge Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
108
|
Wang CC, Han CD, Zhao Q, Chen X. Circular RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2021; 22:bbab286. [PMID: 34329377 PMCID: PMC8575014 DOI: 10.1093/bib/bbab286] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules with a variety of biological functions. Studies have shown that circRNAs are involved in a variety of biological processes and play an important role in the development of various complex diseases, so the identification of circRNA-disease associations would contribute to the diagnosis and treatment of diseases. In this review, we summarize the discovery, classifications and functions of circRNAs and introduce four important diseases associated with circRNAs. Then, we list some significant and publicly accessible databases containing comprehensive annotation resources of circRNAs and experimentally validated circRNA-disease associations. Next, we introduce some state-of-the-art computational models for predicting novel circRNA-disease associations and divide them into two categories, namely network algorithm-based and machine learning-based models. Subsequently, several evaluation methods of prediction performance of these computational models are summarized. Finally, we analyze the advantages and disadvantages of different types of computational models and provide some suggestions to promote the development of circRNA-disease association identification from the perspective of the construction of new computational models and the accumulation of circRNA-related data.
Collapse
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chen-Di Han
- School of Information and Control Engineering, China University of Mining and Technology
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning
| | - Xing Chen
- China University of Mining and Technology
| |
Collapse
|
109
|
The role of circular RNAs in neuropathic pain. Neurosci Biobehav Rev 2021; 132:968-975. [PMID: 34740757 DOI: 10.1016/j.neubiorev.2021.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/19/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Neuropathic pain (NP) results from a lesion or disease of the nervous system and accompanied by chronic pain, leading a serious public health issue and economic burden. In terms of the NP mechanisms remaining poorly understood, circular RNAs (circRNAs), owing to their high stability and evolutionary conservation, are expected to be used as potential therapeutic targets or diagnostic biomarkers. In this review, we concisely discuss the characteristics and biological functions of circRNAs. As emerging evidence we reviewed, deregulation of circRNAs (e.g., circ-Filip1l, circHIPK3, ciRS-7, circRNA.2837, circ-Ankib1 and circAnks1a) were involved in NP development. It suggested that specific circRNAs modulated through sponging their target miRNAs and thus regulated the homologous downstream mRNAs and proteins in neuropathic pain. These findings provide a theoretical basis for circRNAs use as biomarkers and therapeutic targets in neuropathic pain.
Collapse
|
110
|
Micheel J, Safrastyan A, Wollny D. Advances in Non-Coding RNA Sequencing. Noncoding RNA 2021; 7:70. [PMID: 34842804 PMCID: PMC8628893 DOI: 10.3390/ncrna7040070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a set of abundant and functionally diverse RNA molecules. Since the discovery of the first ncRNA in the 1960s, ncRNAs have been shown to be involved in nearly all steps of the central dogma of molecular biology. In recent years, the pace of discovery of novel ncRNAs and their cellular roles has been greatly accelerated by high-throughput sequencing. Advances in sequencing technology, library preparation protocols as well as computational biology helped to greatly expand our knowledge of which ncRNAs exist throughout the kingdoms of life. Moreover, RNA sequencing revealed crucial roles of many ncRNAs in human health and disease. In this review, we discuss the most recent methodological advancements in the rapidly evolving field of high-throughput sequencing and how it has greatly expanded our understanding of ncRNA biology across a large number of different organisms.
Collapse
Affiliation(s)
| | | | - Damian Wollny
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany; (J.M.); (A.S.)
| |
Collapse
|
111
|
Xiao Q, Dai J, Luo J. A survey of circular RNAs in complex diseases: databases, tools and computational methods. Brief Bioinform 2021; 23:6407737. [PMID: 34676391 DOI: 10.1093/bib/bbab444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are a category of novelty discovered competing endogenous non-coding RNAs that have been proved to implicate many human complex diseases. A large number of circRNAs have been confirmed to be involved in cancer progression and are expected to become promising biomarkers for tumor diagnosis and targeted therapy. Deciphering the underlying relationships between circRNAs and diseases may provide new insights for us to understand the pathogenesis of complex diseases and further characterize the biological functions of circRNAs. As traditional experimental methods are usually time-consuming and laborious, computational models have made significant progress in systematically exploring potential circRNA-disease associations, which not only creates new opportunities for investigating pathogenic mechanisms at the level of circRNAs, but also helps to significantly improve the efficiency of clinical trials. In this review, we first summarize the functions and characteristics of circRNAs and introduce some representative circRNAs related to tumorigenesis. Then, we mainly investigate the available databases and tools dedicated to circRNA and disease studies. Next, we present a comprehensive review of computational methods for predicting circRNA-disease associations and classify them into five categories, including network propagating-based, path-based, matrix factorization-based, deep learning-based and other machine learning methods. Finally, we further discuss the challenges and future researches in this field.
Collapse
Affiliation(s)
- Qiu Xiao
- Hunan Normal University and Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Jianhua Dai
- Hunan Normal University and Hunan Xiangjiang Artificial Intelligence Academy, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
112
|
Liu Z, Tao C, Li S, Du M, Bai Y, Hu X, Li Y, Chen J, Yang E. circFL-seq reveals full-length circular RNAs with rolling circular reverse transcription and nanopore sequencing. eLife 2021; 10:e69457. [PMID: 34647522 PMCID: PMC8550772 DOI: 10.7554/elife.69457] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) act through multiple mechanisms via their sequence features to fine-tune gene expression networks. Due to overlapping sequences with linear cognates, identifying internal sequences of circRNAs remains a challenge, which hinders a comprehensive understanding of circRNA functions and mechanisms. Here, based on rolling circular reverse transcription and nanopore sequencing, we developed circFL-seq, a full-length circRNA sequencing method, to profile circRNA at the isoform level. With a customized computational pipeline to directly identify full-length sequences from rolling circular reads, we reconstructed 77,606 high-quality circRNAs from seven human cell lines and two human tissues. circFL-seq benefits from rolling circles and long-read sequencing, and the results showed more than tenfold enrichment of circRNA reads and advantages for both detection and quantification at the isoform level compared to those for short-read RNA sequencing. The concordance of the RT-qPCR and circFL-seq results for the identification of differential alternative splicing suggested wide application prospects for functional studies of internal variants in circRNAs. Moreover, the detection of fusion circRNAs at the omics scale may further expand the application of circFL-seq. Taken together, the accurate identification and quantification of full-length circRNAs make circFL-seq a potential tool for large-scale screening of functional circRNAs.
Collapse
Affiliation(s)
- Zelin Liu
- Institute of Systems Biomedicine, Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China , NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Changyu Tao
- Department of Human Anatomy, Histology & Embryology, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science Peking University Health Science CenterBeijingChina
| | - Yongtai Bai
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Xueyan Hu
- Institute of Systems Biomedicine, Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China , NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
| | - Yu Li
- Chinese Institute for Brain ResearchBeijingChina
| | - Jian Chen
- Chinese Institute for Brain ResearchBeijingChina
| | - Ence Yang
- Institute of Systems Biomedicine, Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China , NHC Key Laboratory of Medical Immunology (Peking University)BeijingChina
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Science Peking University Health Science CenterBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
113
|
Circular RNAs in Hedgehog Signaling Activation and Hedgehog-Mediated Medulloblastoma Tumors. Cancers (Basel) 2021; 13:cancers13205138. [PMID: 34680287 PMCID: PMC8533754 DOI: 10.3390/cancers13205138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Here the expression profile of circular RNAs in Hedgehog signaling-dependent cell lines and medulloblastoma cells was interrogated. Using stringent criteria, a reduced expression of seven circular RNAs in Hedgehog-dependent medulloblastoma versus cerebellum was clearly established. Depletion and/or overexpression of these deregulated RNA circles in two medulloblastoma cell lines revealed minimal effects in cellular proliferation based on two independent assays. These findings highlight the complexity of gene expression outcomes and the possibility that gene products may not necessarily have an obvious phenotypic impact on the cellular context where they are present. It is not inconceivable that a substantial number of differentially expressed circular RNAs may represent “passenger molecules” with little impact on a cell, reflecting the stochasticity of the gene expression and splicing processes. Abstract Within the past decade, circular RNAs have largely emerged as novel regulators of human biology, including brain function and cancer development. On the other hand, the Hedgehog pathway has established roles in regulating biological processes, including tumorigenesis. Here, the circular RNA transcriptome, in the context of Hedgehog signaling activation of medulloblastoma Daoy and human embryonic palatal mesenchyme HEPM cells, was determined. In total, 29 out of the 30 selected circular RNAs were validated by Sanger sequencing, with some regulated to a limited extent by Hedgehog signaling. Interestingly, back-spliced junctions, the marker of exonic RNA circles, were also identified at a low frequency within poly (A) mRNAs, reflecting exon repetition events. Thirteen circular RNAs had reduced expression in human medulloblastoma tumors in comparison to normal cerebellum. For seven out of these thirteen RNA circles, the linear mRNAs originating from the same genes did not exhibit a reduced expression. Depletion and/or overexpression of these seven circular RNAs minimally affected medulloblastoma cell proliferation. These findings highlight that differential expression of a gene product may not necessarily elicit an obvious phenotypic impact. Consequently, further analysis is required to determine the possible subtle contributions to the development of this cerebellar tumor.
Collapse
|
114
|
Rahimi K, Færch Nielsen A, Venø MT, Kjems J. Nanopore long-read sequencing of circRNAs. Methods 2021; 196:23-29. [PMID: 34571139 DOI: 10.1016/j.ymeth.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNA (circRNA) is a group of highly stable RNA molecules with suggested roles in development and disease. They derive from linear pre-mRNAs when a 5'-splice site splices back to an upstream 3'-splice site in a process termed back-splicing. Most circRNAs are multi-exonic and may contain several thousand nucleotides. The extensive sequence overlap between the linear and circular forms of an RNA means that circRNA identification depends on the detection of back-splice-junction sequence reads that are unique to the circRNA. However, the short-read length obtained using standard next-generation sequencing techniques means that the internal sequence, exon composition and alternative splicing of circRNAs are unknown in many cases. Recently, several labs, including ours, have reported protocols for sequencing of circRNAs using long-read nanopore sequencing and thereby expanded our understanding of circRNA size distribution and internal splicing patterns. Here, we review these protocols and discuss the different approaches taken to study the full length composition of circRNAs.
Collapse
Affiliation(s)
- Karim Rahimi
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark.
| | - Anne Færch Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark; Center for Cellular signal Patterns (CellPAT), Aarhus University, DK-8000 Aarhus, Denmark
| | | | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark; Center for Cellular signal Patterns (CellPAT), Aarhus University, DK-8000 Aarhus, Denmark.
| |
Collapse
|
115
|
Zhang W, Liu Y, Min Z, Liang G, Mo J, Ju Z, Zeng B, Guan W, Zhang Y, Chen J, Zhang Q, Li H, Zeng C, Wei Y, Chan GCF. circMine: a comprehensive database to integrate, analyze and visualize human disease-related circRNA transcriptome. Nucleic Acids Res 2021; 50:D83-D92. [PMID: 34530446 PMCID: PMC8728235 DOI: 10.1093/nar/gkab809] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Many circRNA transcriptome data were deposited in public resources, but these data show great heterogeneity. Researchers without bioinformatics skills have difficulty in investigating these invaluable data or their own data. Here, we specifically designed circMine (http://hpcc.siat.ac.cn/circmine and http://www.biomedical-web.com/circmine/) that provides 1 821 448 entries formed by 136 871 circRNAs, 87 diseases and 120 circRNA transcriptome datasets of 1107 samples across 31 human body sites. circMine further provides 13 online analytical functions to comprehensively investigate these datasets to evaluate the clinical and biological significance of circRNA. To improve the data applicability, each dataset was standardized and annotated with relevant clinical information. All of the 13 analytic functions allow users to group samples based on their clinical data and assign different parameters for different analyses, and enable them to perform these analyses using their own circRNA transcriptomes. Moreover, three additional tools were developed in circMine to systematically discover the circRNA-miRNA interaction and circRNA translatability. For example, we systematically discovered five potential translatable circRNAs associated with prostate cancer progression using circMine. In summary, circMine provides user-friendly web interfaces to browse, search, analyze and download data freely, and submit new data for further integration, and it can be an important resource to discover significant circRNA in different diseases.
Collapse
Affiliation(s)
- Wenliang Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518053, China
| | - Yang Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Department of Gastroenterology and Hepatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China.,Experimental Training Management Center, Jilin Business and Technology, Jilin Province 130507, China
| | - Zhuochao Min
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guodong Liang
- Department of Colorectal and Stomach Cancer Surgery, Jilin Cancer Hospital, Changchun, Jilin 130000, China
| | - Jing Mo
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518053, China
| | - Zhen Ju
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Binghui Zeng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.,Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518053, China
| | - Wen Guan
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518053, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianliang Chen
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Qianshen Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Hanguang Li
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Chunxia Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yanjie Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China.,Department of Pediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong 999077, China
| |
Collapse
|
116
|
The Emerging Functions of Circular RNAs in Bladder Cancer. Cancers (Basel) 2021; 13:cancers13184618. [PMID: 34572845 PMCID: PMC8464819 DOI: 10.3390/cancers13184618] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The role of circular RNAs has made breakthroughs in understanding the mechanisms of tumor development. Bladder cancer has an increasing incidence, high recurrence rate, high metastatic potential, poor prognosis, and susceptibility to chemotherapy resistance. Thus, it is essential to identify molecules related to the tumorigenesis of bladder cancer. In this review, we summarize current knowledge about the expression of circular RNAs in bladder cancer and their implications in vesical carcinogenesis. We further discuss the limitations of existing studies and provide an outlook for future studies in the hopes of better revealing the association between circular RNAs and bladder cancer. Abstract Bladder cancer (BC) is among the top ten most common cancer types worldwide and is a serious threat to human health. Circular RNAs (circRNAs) are a new class of non-coding RNAs generated by covalently closed loops through back-splicing. As an emerging research hotspot, circRNAs have attracted considerable attention due to their high conservation, stability, abundance, and specificity of tissue development. Accumulating evidence has revealed different form of circRNAs are closely related to the malignant phenotype, prognosis and chemotherapy resistance of BC, suggesting that different circRNAs may be promising biomarkers and have therapeutic significance in BC. The intention of this review is to summarize the mechanisms of circRNA-mediated BC progression and their diagnostic and prognostic value as biomarkers, as well as to further explore their roles in chemotherapy resistance.
Collapse
|
117
|
Liu Z, Li M. Circular RNAs and their role in renal cell carcinoma: a current perspective. Cancer Cell Int 2021; 21:469. [PMID: 34488780 PMCID: PMC8422676 DOI: 10.1186/s12935-021-02181-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a new class of long non-coding RNAs, that results from a special type of alternative splicing referred to as back-splicing. They are widely distributed in eukaryotic cells and demonstrate tissue-specific expression patterns in humans. CircRNAs actively participate in various important biological activities like gene transcription, pre-mRNA splicing, translation, sponging miRNA and proteins, etc. With such diverse biological functions, circRNAs not only play a crucial role in normal human physiology, as well as in multiple diseases, including cancer. In this review, we summarized our current understanding of circRNAs and their role in renal cell carcinoma (RCC), the most common cancer of kidneys. Studies have shown that the expression level of several circRNAs are considerably varied in RCC samples and RCC cell lines suggesting the potential role of these circRNAs in RCC progression. Several circRNAs promote RCC development and progression mostly via the miRNA/target gene axis making them ideal candidates for novel anti-cancer therapy. Apart from these, there are a few circRNAs that are significantly downregulated in RCC and overexpression of these circRNAs leads to suppression of RCC growth. Differential expression patterns and novel functions of circRNAs in RCC suggest that circRNAs can be utilized as potential biomarkers and therapeutic targets for RCC therapy. However, our current understanding of the role of circRNA in RCC is still in its infancy and much comprehensive research is needed to achieve clinical translation of circRNAs as biomarkers and therapeutic targets in developing effective treatment options for RCC.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
118
|
Sharma AR, Bhattacharya M, Bhakta S, Saha A, Lee SS, Chakraborty C. Recent research progress on circular RNAs: Biogenesis, properties, functions, and therapeutic potential. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:355-371. [PMID: 34484862 PMCID: PMC8399087 DOI: 10.1016/j.omtn.2021.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), an emerging family member of RNAs, have gained importance in research due to their new functional roles in cellular physiology and disease progression. circRNAs are usually available in a wide range of cells and have shown tissue-specific expression as well as developmental specific expression. circRNAs are characterized by structural stability, conservation, and high abundance in the cell. In this review, we discuss the different models of biogenesis. The properties of circRNAs such as localization, structure and conserved pattern, stability, and expression specificity are also been illustrated. Furthermore, we discuss the biological functions of circRNAs such as microRNA (miRNA) sponging, cell cycle regulation, cell-to-cell communication, transcription regulation, translational regulation, disease diagnosis, and therapeutic potential. Finally, we discuss the recent research progress and future perspective of circRNAs. This review provides an understanding of potential diagnostic markers and the therapeutic potential of circRNAs, which are emerging daily.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Jagannathpur, Kolkata, West Bengal 700126, India
| |
Collapse
|
119
|
|
120
|
Wu M, Peng D, Zhong X. Exploration of Circular RNA Interactomes by RNA Pull-Down Method. Methods Mol Biol 2021; 2372:203-208. [PMID: 34417754 DOI: 10.1007/978-1-0716-1697-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Circular RNAs (circRNAs) are endogenous RNA molecules produced by back-splicing during the maturation process of mRNA precursors. Recent research revealed circRNAs as important regulators in a variety of physiological and pathological processes. However, the biological functions of circRNAs remains largely unknown. The RNA pull-down method can specifically and efficiently enrich circRNAs and their interacting partners. In order to further characterize the functions and working mechanism of circRNAs, here we provide a detailed RNA pull-down protocol for capturing and identifying the interactomes of circRNAs.
Collapse
Affiliation(s)
- Mengshi Wu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Dan Peng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Zhong
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
121
|
Rahimi K, Venø MT, Dupont DM, Kjems J. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons. Nat Commun 2021; 12:4825. [PMID: 34376658 PMCID: PMC8355340 DOI: 10.1038/s41467-021-24975-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNA (circRNA) is a class of covalently joined non-coding RNAs with functional roles in a wide variety of cellular processes. Their composition shows extensive overlap with exons found in linear mRNAs making it difficult to delineate their composition using short-read RNA sequencing, particularly for long and multi-exonic circRNAs. Here, we use long-read nanopore sequencing of nicked circRNAs (circNick-LRS) and characterize a total of 18,266 and 39,623 circRNAs in human and mouse brain, respectively. We further develop an approach for targeted long-read sequencing of a panel of circRNAs (circPanel-LRS), eliminating the need for prior circRNA enrichment and find >30 circRNA isoforms on average per targeted locus. Our data show that circRNAs exhibit a large number of splicing events such as novel exons, intron retention and microexons that preferentially occur in circRNAs. We propose that altered exon usage in circRNAs may reflect resistance to nonsense-mediated decay in the absence of translation.
Collapse
Affiliation(s)
- Karim Rahimi
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | - Morten T Venø
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
122
|
Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in oral squamous cell carcinoma. Oral Oncol 2021; 121:105437. [PMID: 34265729 DOI: 10.1016/j.oraloncology.2021.105437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE CircRNAs are critical gene modulators in tumor initiation and progression. However, the expression pattern and molecular pathogenesis of circRNAs in oral squamous cell carcinoma (OSCC) are still poorly characterized. METHODS RNA sequencing with CIRCexplorer2 pipeline was performed to identify circRNAs in 46 tumor-normal paired tissues from OSCC patients. Another set of 48 head and neck squamous cell carcinoma samples from the MiOncoCirc database were utilized as an independent validation. RESULTS Of the 1276 identified high-confidence circRNAs, 154 were differentially expressed between tumor and normal tissues (log2|Fold Change|≥1 and false discovery rate < 0.05). CircRNAs expression was globally down-regulated in tumors compared to normal tissues (P = 9.44 × 10-14). Correlation analysis demonstrated that the global expression of circRNAs was positively related to tumor infiltrating lymphocyte (P = 1.10 × 10-4) and stromal signature (P = 2.70 × 10-3) whereas negatively associated with cell proliferation markers (P = 4.32 × 10-2). CircRNAs-miRNAs-mRNAs regulatory network revealed 6574 interactions, and the target genes were enriched in extracellular matrix and immune-related pathways. Survival analysis were performed on target genes in immune-related pathways, and 20 genes were significantly associated with the prognostic status of OSCC in The Cancer Genome Atlas cohort. The risk model constructed with above 20 genes was associated with the prognosis status of OSCC (HR = 3.28, P = 5.06 × 10-11), and the result was validated in an independent study (GSE41613) (HR = 2.06, P = 1.73 × 10-2). CONCLUSION CircRNAs showed a global down-regulation pattern in OSCC tissues, and genes regulated by circRNAs primarily involved in immune and extracellular matrix pathways, which could also affect the OSCC prognosis, indicating that they may serve as potential prognostic biomarkers.
Collapse
|
123
|
Decoding the complexity of circular RNAs in cardiovascular disease. Pharmacol Res 2021; 171:105766. [PMID: 34271160 DOI: 10.1016/j.phrs.2021.105766] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Circular RNAs (circRNAs) are a new class of covalently circularized noncoding RNAs widely expressed in the human heart. Emerging evidence suggests they have a regulatory role in a variety of cardiovascular diseases (CVDs). This review's current focus includes our understanding of circRNA classification, biogenesis, function, stability, degradation mechanisms, and their roles in various cardiovascular disease conditions. Our knowledge of circRNA, the relatively recent member of the noncoding RNA family, is still in its infancy; however, recent literature proposes circRNAs may be promising targets for the understanding and treatment of CVD.
Collapse
|
124
|
Zhang P, Chen M. Circular RNA Databases. Methods Mol Biol 2021; 2362:109-118. [PMID: 34195960 DOI: 10.1007/978-1-0716-1645-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Circular RNAs (circRNAs) are a class of endogenous ncRNAs with covalently closed-loop structures, lacking of 5' caps and 3' tails. These novel ncRNAs are ubiquitously expressing in eukaryotes, exhibiting expression patterns of specific cell types, tissues, or developmental stages. CircRNAs have been reported to play important roles in various biological processes, such as regulating gene expression at transcriptional or post-transcriptional levels, modulating alternative splicing, and interacting with miRNAs or proteins. With the increasing amount of circRNA data, several databases have been established to organize and manage this information, such as circBase, CIRCpedia, CircAtlas, circRNADb, PlantCircNet, and CircFunBase. These diverse databases will help to explore circRNA characterization, and further investigate circRNA functions. In this chapter, we give a brief overview of the existing circRNA databases and focus on plant circRNA databases, introducing their key features.
Collapse
Affiliation(s)
- Peijing Zhang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China. .,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
125
|
Yesharim L, Mojbafan M, Abiri M. Hints From the Cellular Functions to the Practical Outlook of Circular RNAs. Front Genet 2021; 12:679446. [PMID: 34220952 PMCID: PMC8247595 DOI: 10.3389/fgene.2021.679446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022] Open
Abstract
Although it has been about 30 years since the discovery of circular RNAs (circRNAs) in mammalian cells, these subtypes of RNAs' capabilities have come into focus in recent years. The unique structure and various functional roles of circRNAs in many cellular processes have aroused researchers' interest and raised many questions about whether circRNAs can facilitate the diagnosis and treatment of diseases. To answer these questions, we will illustrate the main known functions and regulatory roles of circRNAs in the cell after presenting a brief history of the discovery of circRNAs and the main proposed theories of the biogenesis of circRNAs. Afterward, the practical application of circRNAs as biomarkers of different pathophysiological conditions will be discussed, mentioning some examples and challenges in this area. We also consider one of the main questions that human beings have always been faced, "the origin of life," and its possible connection to circRNAs. Finally, focusing on the various capabilities of circRNAs, we discuss their potential therapeutic applications considering the immunity response toward exogenous circRNAs. However, there are still disputes about the exact immune system reaction, which we will discuss in detail.
Collapse
Affiliation(s)
- Liora Yesharim
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mojbafan
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Ali-Asghar Children’s Hospital, Tehran, Iran
| | - Maryam Abiri
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
126
|
Pedraz-Valdunciel C, Rosell R. Defining the landscape of circRNAs in non-small cell lung cancer and their potential as liquid biopsy biomarkers: a complete review including current methods. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:179-201. [PMID: 39697533 PMCID: PMC11648509 DOI: 10.20517/evcna.2020.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2024]
Abstract
Despite the significant decrease in population-level mortality of lung cancer patients as reflected in the Surveillance Epidemiology and End Results program national database, lung cancer, with non-small cell lung cancer (NSCLC) in the lead, continues to be the most commonly diagnosed cancer and foremost cause of cancer-related death worldwide, primarily due to late-stage diagnosis and ineffective treatment regimens. Although innovative single therapies and their combinations are constantly being tested in clinical trials, the five-year survival rate of late-stage lung cancer remains only 5% (Cancer Research, UK). Henceforth, investigation in the early diagnosis of lung cancer and prediction of treatment response is critical for improving the overall survival of these patients. Circular RNAs (circRNAs) are a re-discovered type of RNAs featuring stable structure and high tissue-specific expression. Evidence has revealed that aberrant circRNA expression plays an important role in carcinogenesis and tumor progression. Further investigation is warranted to assess the value of EV- and platelet-derived circRNAs as liquid biopsy-based readouts for lung cancer detection. This review discusses the origin and biology of circRNAs, and analyzes their present landscape in NSCLC, focusing on liquid biopsies to illustrate the different methodological trends currently available in research. The possible limitations that could be holding back the clinical implementation of circRNAs are also analyzed.
Collapse
Affiliation(s)
- Carlos Pedraz-Valdunciel
- Cancer Biology and Precision Medicine Department, Germans Trias i Pujol Research Institute and Hospital, Badalona 08916, Spain
- Biochemistry, Molecular Biology and Biomedicine Department, Universitat Autónoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Department, Germans Trias i Pujol Research Institute and Hospital, Badalona 08916, Spain
- Universitat Autónoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
127
|
Hu DG, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. Circular RNAs of UDP-Glycosyltransferase ( UGT) Genes Expand the Complexity and Diversity of the UGT Transcriptome. Mol Pharmacol 2021; 99:488-503. [PMID: 33824186 DOI: 10.1124/molpharm.120.000225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
The human UDP-glycosyltransferase (UGT) gene superfamily generates 22 canonical transcripts coding for functional enzymes and also produces nearly 150 variant UGT transcripts through alternative splicing and intergenic splicing. In the present study, our analysis of circRNA databases identified backsplicing events that predicted 85 circRNAs from UGT genes, with 33, 11, and 19 circRNAs from UGT1A, UGT2B4, UGT8, respectively. Most of these UGT circRNAs were reported by one database and had low abundance in cell- or tissue-specific contexts. Using reverse-transcriptase polymerase chain reaction with divergent primers and cDNA samples from human tissues and cell lines, we found 13 circRNAs from four UGT genes: UGT1A (three), UGT2B7 (one), UGT2B10 (one), and UGT8 (eight). Notably, all eight UGT8 circRNAs contain open reading frames that include the canonical start AUG codon and encode variant proteins that all have the common 274-amino acidN-terminal region of wild-type UGT8 protein. We further showed that one UGT8 circRNA (circ_UGT8-1) was broadly expressed in human tissues and cell lines, resistant to RNase R digestion, and predominately present in the cytoplasm. We cloned five UGT8 circRNAs into the Zinc finger with KRAB and SCAN domains 1 vector and transfected them into HEK293T cells. All these vectors produced both circRNAsand linear transcripts with varying circular/linear ratios (0.17-1.14).Western blotting and mass spectrometry assays revealed that only linear transcripts and not circRNAs were translated. In conclusion, our findings of nearly 100 circRNAs greatly expand the complexity and diversity of the UGT transcriptome; however, UGT circRNAs are expressed at a very low level in specific cellular contexts, and their biologic functions remain to be determined. SIGNIFICANCE STATEMENT: The human UGT gene transcriptome comprises 22 canonical transcripts coding for functional enzymes and approximately 150 alternatively spliced and chimeric variant transcripts. The present study identified nearly 100 circRNAs from UGT genes, thus greatly expanding the complexity and diversity of the UGT transcriptome. UGT circRNAs were expressed broadly in human tissues and cell lines; however, most showed very low abundance in tissue- and cell-specific contexts, and therefore their biological functions remain to be investigated.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
128
|
Zhou J, Yuan M, Zhao Y, Quan Q, Yu D, Yang H, Tang X, Xin X, Cai G, Qian Q, Qi Y, Zhang Y. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1240-1252. [PMID: 33440058 PMCID: PMC8196656 DOI: 10.1111/pbi.13544] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 05/05/2023]
Abstract
CRISPR-Cas9 is an emerging genome editing tool for reverse genetics in plants. However, its application for functional study of non-coding RNAs in plants is still at its infancy. Despite being a major class of non-coding RNAs, the biological roles of circle RNAs (circRNAs) remain largely unknown in plants. Previous plant circRNA studies have focused on identification and annotation of putative circRNAs, with their functions largely uninvestigated by genetic approaches. Here, we applied a multiplexed CRISPR-Cas9 strategy to efficiently acquire individual null mutants for four circRNAs in rice. We showed each of these rice circRNA loci (Os02circ25329, Os06circ02797, Os03circ00204 and Os05circ02465) can be deleted at 10% or higher efficiency in both protoplasts and stable transgenic T0 lines. Such high efficiency deletion enabled the generation of circRNA null allele plants without the CRISPR-Cas9 transgene in the T1 generation. Characterization of the mutants reveals these circRNAs' participation in salt stress response during seed germination and in particular the Os05circ02465 null mutant showed high salt tolerance. Notably, the seedlings of the Os06circ02797 mutant showed rapid growth phenotype after seed germination with the seedlings containing higher chlorophyll A/B content. Further molecular and computational analyses suggested a circRNA-miRNA-mRNA regulatory network where Os06circ02797 functions to bind and sequester OsMIR408, an important and conserved microRNA in plants. This study not only presents genetic evidence for the first time in plants that certain circRNAs may serve as sponges to negatively regulate miRNAs, a phenomenon previously demonstrated in mammalian cells, but also provides important insights for improving agronomic traits through gene editing of circRNA loci in crops.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Mingzhu Yuan
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yuxin Zhao
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Quan Quan
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dong Yu
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Sichuan Grass Industry Technology Research and Promotion CenterChengduChina
| | - Han Yang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xu Tang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuhui Xin
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Guangze Cai
- School of Agricultural scienceXichang UniversityXichangChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMDUSA
| | - Yong Zhang
- Department of BiotechnologySchool of Life Sciences and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
129
|
Walsh K, Gokool A, Alinejad-Rokny H, Voineagu I. NeuroCirc: An Integrative Resource of Circular RNA Expression In the Human Brain. Bioinformatics 2021; 37:3664-3666. [PMID: 34028497 DOI: 10.1093/bioinformatics/btab230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/31/2021] [Accepted: 05/23/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION CircRNAs are covalently closed RNA molecules that are particularly abundant in the brain. While circRNA expression data from the human brain is rapidly accumulating, integration of large-scale datasets remains challenging and time-consuming, and consequently an integrative view of circRNA expression in the human brain is currently lacking. RESULTS NeuroCirc is a web-based resource that allows interactive exploration of multiple types of circRNA data from the human brain, including large-scale expression datasets, circQTL data and circRNA expression across neuronal differentiation and cellular maturation time-courses. NeuroCirc also allows users to upload their own circRNA expression data and explore it in the integrative platform, thereby supporting circRNA prioritization for experimental validation and functional studies. NeuroCirc is freely available at: https://voineagulab.github.io/NeuroCirc/. The source code and user documentation are available at: https://github.com/Voineagulab/NeuroCirc. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kieran Walsh
- Department of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Akira Gokool
- Department of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hamid Alinejad-Rokny
- Department of Biomedical Engineering, Systems Biology and Health Data Analytics Lab, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Irina Voineagu
- Department of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
130
|
Khan S, Jha A, Panda AC, Dixit A. Cancer-Associated circRNA-miRNA-mRNA Regulatory Networks: A Meta-Analysis. Front Mol Biosci 2021; 8:671309. [PMID: 34055888 PMCID: PMC8149909 DOI: 10.3389/fmolb.2021.671309] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023] Open
Abstract
Recent advances in sequencing technologies and the discovery of non-coding RNAs (ncRNAs) have provided new insights in the molecular pathogenesis of cancers. Several studies have implicated the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and recently discovered circular RNAs (circRNAs) in tumorigenesis and metastasis. Unlike linear RNAs, circRNAs are highly stable and closed-loop RNA molecules. It has been established that circRNAs regulate gene expression by controlling the functions of miRNAs and RNA-binding protein (RBP) or by translating into proteins. The circRNA-miRNA-mRNA regulatory axis is associated with human diseases, such as cancers, Alzheimer's disease, and diabetes. In this study, we explored the interaction among circRNAs, miRNAs, and their target genes in various cancers using state-of-the-art bioinformatics tools. We identified differentially expressed circRNAs, miRNAs, and mRNAs on multiple cancers from publicly available data. Furthermore, we identified many crucial drivers and tumor suppressor genes in the circRNA-miRNA-mRNA regulatory axis in various cancers. Together, this study data provide a deeper understanding of the circRNA-miRNA-mRNA regulatory mechanisms in cancers.
Collapse
Affiliation(s)
- Shaheerah Khan
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Atimukta Jha
- Institute of Life Sciences, Bhubaneswar, India
- Manipal Academy of Higher Education, Manipal, India
| | | | | |
Collapse
|
131
|
Hu D, Zhang P, Chen M. Database Resources for Functional Circular RNAs. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2284:457-466. [PMID: 33835457 DOI: 10.1007/978-1-0716-1307-8_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Circular RNA (or circRNA) is a type of single-stranded covalently closed circular RNA molecule and play important roles in diverse biological pathways. A comprehensive functionally annotated circRNA database will help to understand the circRNAs and their functions. CircFunBase is such a web-accessible database that aims to provide a high-quality functional circRNA resource including experimentally validated and computationally predicted functions. CircFunBase provides visualized circRNA-miRNA interaction networks. In addition, a genome browser is provided to visualize the genome context of circRNA. In this chapter, we illustrate examples of searching for circRNA and getting detailed information of circRNA. Moreover, other circRNA related databases are outlined.
Collapse
Affiliation(s)
- Dahui Hu
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peijing Zhang
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
132
|
Ranjan G, Sehgal P, Sharma D, Scaria V, Sivasubbu S. Functional long non-coding and circular RNAs in zebrafish. Brief Funct Genomics 2021:elab014. [PMID: 33755040 DOI: 10.1093/bfgp/elab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
The utility of model organisms to understand the function of a novel transcript/genes has allowed us to delineate their molecular mechanisms in maintaining cellular homeostasis. Organisms such as zebrafish have contributed a lot in the field of developmental and disease biology. Attributable to advancement and deep transcriptomics, many new transcript isoforms and non-coding RNAs such as long noncoding RNA (lncRNA) and circular RNAs (circRNAs) have been identified and cataloged in multiple databases and many more are yet to be identified. Various methods and tools have been utilized to identify lncRNAs/circRNAs in zebrafish using deep sequencing of transcriptomes as templates. Functional analysis of a few candidates such as tie1-AS, ECAL1 and CDR1as in zebrafish provides a prospective outline to approach other known or novel lncRNA/circRNA. New genetic alteration tools like TALENS and CRISPRs have helped in probing for the molecular function of lncRNA/circRNA in zebrafish. Further latest improvements in experimental and computational techniques offer the identification of lncRNA/circRNA counterparts in humans and zebrafish thereby allowing easy modeling and analysis of function at cellular level.
Collapse
|
133
|
Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, Wong G. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 2021; 22:1706-1728. [PMID: 32103237 PMCID: PMC7986655 DOI: 10.1093/bib/bbaa001] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecule identified more than 40 years ago which are produced by a covalent linkage via back-splicing of linear RNA. Recent advances in sequencing technologies and bioinformatics tools have led directly to an ever-expanding field of types and biological functions of circRNAs. In parallel with technological developments, practical applications of circRNAs have arisen including their utilization as biomarkers of human disease. Currently, circRNA-associated bioinformatics tools can support projects including circRNA annotation, circRNA identification and network analysis of competing endogenous RNA (ceRNA). In this review, we collected about 100 circRNA-associated bioinformatics tools and summarized their current attributes and capabilities. We also performed network analysis and text mining on circRNA tool publications in order to reveal trends in their ongoing development.
Collapse
Affiliation(s)
- Liang Chen
- Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University
| | | | - Huiyan Sun
- School of Artificial Intelligence, Jilin University
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science and Bond Life Science Center, University of Missouri
| | - Yanchun Liang
- College of Computer Science and Technology, Jilin University
| | - Yan Wang
- College of Computer Science and Technology, Jilin University
| | - Garry Wong
- Faculty of Health Sciences, University of Macau
| |
Collapse
|
134
|
Carter JM, Ang DA, Sim N, Budiman A, Li Y. Approaches to Identify and Characterise the Post-Transcriptional Roles of lncRNAs in Cancer. Noncoding RNA 2021; 7:19. [PMID: 33803328 PMCID: PMC8005986 DOI: 10.3390/ncrna7010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
It is becoming increasingly evident that the non-coding genome and transcriptome exert great influence over their coding counterparts through complex molecular interactions. Among non-coding RNAs (ncRNA), long non-coding RNAs (lncRNAs) in particular present increased potential to participate in dysregulation of post-transcriptional processes through both RNA and protein interactions. Since such processes can play key roles in contributing to cancer progression, it is desirable to continue expanding the search for lncRNAs impacting cancer through post-transcriptional mechanisms. The sheer diversity of mechanisms requires diverse resources and methods that have been developed and refined over the past decade. We provide an overview of computational resources as well as proven low-to-high throughput techniques to enable identification and characterisation of lncRNAs in their complex interactive contexts. As more cancer research strategies evolve to explore the non-coding genome and transcriptome, we anticipate this will provide a valuable primer and perspective of how these technologies have matured and will continue to evolve to assist researchers in elucidating post-transcriptional roles of lncRNAs in cancer.
Collapse
Affiliation(s)
- Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Daniel Aron Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Andrea Budiman
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
135
|
Li H, Xie M, Wang Y, Yang L, Xie Z, Wang H. riboCIRC: a comprehensive database of translatable circRNAs. Genome Biol 2021; 22:79. [PMID: 33685493 PMCID: PMC7938571 DOI: 10.1186/s13059-021-02300-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
riboCIRC is a translatome data-oriented circRNA database specifically designed for hosting, exploring, analyzing, and visualizing translatable circRNAs from multi-species. The database provides a comprehensive repository of computationally predicted ribosome-associated circRNAs; a manually curated collection of experimentally verified translated circRNAs; an evaluation of cross-species conservation of translatable circRNAs; a systematic de novo annotation of putative circRNA-encoded peptides, including sequence, structure, and function; and a genome browser to visualize the context-specific occupant footprints of circRNAs. It represents a valuable resource for the circRNA research community and is publicly available at http://www.ribocirc.com .
Collapse
Affiliation(s)
- Huihui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingzhe Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ludong Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
136
|
Ma XK, Xue W, Chen LL, Yang L. CIRCexplorer pipelines for circRNA annotation and quantification from non-polyadenylated RNA-seq datasets. Methods 2021; 196:3-10. [PMID: 33588028 DOI: 10.1016/j.ymeth.2021.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/01/2023] Open
Abstract
Covalently closed circular RNAs (circRNAs) produced by back-splicing of exon(s) are co-expressed with their cognate linear RNAs from the same gene loci. Most circRNAs are fully overlapped with their cognate linear RNAs in sequences except the back-spliced junction (BSJ) site, thus challenging the computational detection, experimental validation and hence functional evaluation of circRNAs. Nevertheless, specific bioinformatic pipelines were developed to identify fragments mapped to circRNA-featured BSJ sites, and circRNAs were pervasively identified from non-polyadenylated RNA-seq datasets in different cell lines/tissues and across species. Precise identification and quantification of circRNAs provide a basis to further understand their functions. Here, we describe detailed computational steps to annotate and quantify circRNAs using a series of CIRCexplorer pipelines.
Collapse
Affiliation(s)
- Xu-Kai Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Xue
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Li Yang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
137
|
Luo X, Li H, Liang J, Zhao Q, Xie Y, Ren J, Zuo Z. RMVar: an updated database of functional variants involved in RNA modifications. Nucleic Acids Res 2021; 49:D1405-D1412. [PMID: 33021671 PMCID: PMC7779057 DOI: 10.1093/nar/gkaa811] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Distinguishing the few disease-related variants from a massive number of passenger variants is a major challenge. Variants affecting RNA modifications that play critical roles in many aspects of RNA metabolism have recently been linked to many human diseases, such as cancers. Evaluating the effect of genetic variants on RNA modifications will provide a new perspective for understanding the pathogenic mechanism of human diseases. Previously, we developed a database called 'm6AVar' to host variants associated with m6A, one of the most prevalent RNA modifications in eukaryotes. To host all RNA modification (RM)-associated variants, here we present an updated version of m6AVar renamed RMVar (http://rmvar.renlab.org). In this update, RMVar contains 1 678 126 RM-associated variants for 9 kinds of RNA modifications, namely m6A, m6Am, m1A, pseudouridine, m5C, m5U, 2'-O-Me, A-to-I and m7G, at three confidence levels. Moreover, RBP binding regions, miRNA targets, splicing events and circRNAs were integrated to assist investigations of the effects of RM-associated variants on posttranscriptional regulation. In addition, disease-related information was integrated from ClinVar and other genome-wide association studies (GWAS) to investigate the relationship between RM-associated variants and diseases. We expect that RMVar may boost further functional studies on genetic variants affecting RNA modifications.
Collapse
Affiliation(s)
- Xiaotong Luo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Huiqin Li
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiaqi Liang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yubin Xie
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
138
|
Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J 2021; 19:910-928. [PMID: 33598105 PMCID: PMC7851342 DOI: 10.1016/j.csbj.2021.01.018] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a very interesting class of conserved single-stranded RNA molecules derived from exonic or intronic sequences by precursor mRNA back-splicing. Unlike canonical linear RNAs, circRNAs form covalently closed, continuous stable loops without a 5'end cap and 3'end poly(A) tail, and therefore are resistant to exonuclease digestion. The majority of circRNAs are highly abundant, and conserved across different species with a tissue or developmental-stage-specific expression. circRNAs have been shown to play important roles as microRNA sponges, regulators of gene splicing and transcription, RNA-binding protein sponges and protein/peptide translators. Emerging evidence reveals that circRNAs function in various human diseases, particularly cancers, and may function as better predictive biomarkers and therapeutic targets for cancer treatment. In consideration of their potential clinical relevance, circRNAs have become a new research hotspot in the field of tumor pathology. In the present study, the current understanding of the biogenesis, characteristics, databases, research methods, biological functions subcellular distribution, epigenetic regulation, extracellular transport and degradation of circRNAs was discussed. In particular, the multiple databases and methods involved in circRNA research were first summarized, and the recent advances in determining the potential roles of circRNAs in tumor growth, migration and invasion, which render circRNAs better predictive biomarkers, were described. Furthermore, future perspectives for the clinical application of circRNAs in the management of patients with cancer were proposed, which could provide new insights into circRNAs in the future.
Collapse
Key Words
- AML, acute myloid leukemia
- BSJ, back-splice junction
- Biomarker
- CLL, chronic lymphocytic leukemia
- CML, chronic myeloid leukemia
- CRC, colorectal cancer
- Cancer
- Circular RNAs
- EIciRNAs, exon–intron RNAs
- EMT, epithelial-mesenchymal transition
- Functions
- GC, gastric cancer
- HCC, hepatocellular carcinoma
- ISH, in situ hybridization
- LUAD, lung adenocarcinoma
- MER, miRNA response elements
- MM, multiple myeloma
- NSCLC, non-small cell lung cancer
- PCR, polymerase chain reaction
- PDAC, pancreatic ductal adenocarcinoma
- RBP, RNA-binding protein
- RNA, ribonucleic acid
- RNase, ribonuclease
- RT-PCR, reverse transcription-PCR
- TNM, tumor node metastases
- UTR, untranslated regions
- ccRCC, clear cell renal cell carcinoma
- ceRNAs, endogenous RNAs
- ciRNAs, circular intronic RNAs
- ciRS-7, circular RNA sponge for miR-7
- circRNAs, circular RNAs
- ecircRNAs, exonic circular RNAs
- lncRNAs, long ncRNA
- miRNAs, microRNAs
- ncRNAs, noncoding RNAs
- qPCR, quantitative PCR
- rRNA, ribosomal RNA
- siRNAs, small interfering RNAs
- snRNA, small nuclear RNA
- tricRNAs, tRNA intronic circRNAs
Collapse
Affiliation(s)
- Xiaozhu Tang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyan Ren
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
139
|
Jakobsen T, Dahl M, Dimopoulos K, Grønbæk K, Kjems J, Kristensen LS. Genome-Wide Circular RNA Expression Patterns Reflect Resistance to Immunomodulatory Drugs in Multiple Myeloma Cells. Cancers (Basel) 2021; 13:cancers13030365. [PMID: 33498476 PMCID: PMC7930955 DOI: 10.3390/cancers13030365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) constitutes the second most common hematological malignancy and is caused by aberrant plasma cell proliferation in the bone marrow. While recent improvements in the treatment of MM has been observed using immunomodulatory drugs (IMiDs), patients often relapse due to acquired drug resistance and no cure for the disease is currently available. In this report, we profile circular RNA (circRNA) expression patterns in cultured MM cells being sensitive to IMiDs and their resistant counterparts. CircRNAs constitute a large class of non-coding RNA molecules with emerging roles in cancer development and progression, but have not previously been explored in this context. We found that global circRNA expression patterns reflect IMiD sensitivity, but the most downregulated circRNA in IMiD resistant MM cells did not seem to be a direct driver of IMiD resistance. Future studies should investigate other circRNA candidates identified here in the context of IMiD resistance. Abstract Immunomodulatory drugs (IMiDs), such as lenalidomide and pomalidomide, may induce significant remissions in multiple myeloma (MM) patients, but relapses are frequently observed and the underlying molecular mechanisms for this are not completely understood. Circular RNAs (circRNAs) constitute an emerging class of non-coding RNAs with important roles in cancer. Here, we profiled genome-wide expression patterns of circRNAs in IMiD-sensitive MM cells and their resistant counterparts as well as in IMiD-resistant cells treated with specific epigenetic drugs alone or in combination. We found that genome-wide circRNA expression patterns reflect IMiD sensitivity and ciRS-7 (also known as CDR1as) was the most downregulated circRNA upon acquired resistance. The depletion of ciRS-7 correlated with increased methylation levels of the promoter CpG island of its host gene, LINC00632. Expression of LINC00632 and ciRS-7 was partly restored by treatment with a combination of an EZH2 inhibitor (EPZ-6438) and a DNA methyl transferase inhibitor (5-azacytidine), which also restores the IMiD sensitivity of the cells. However, knockdown of ciRS-7 did not affect IMiD sensitivity and we found that ciRS-7 also becomes epigenetically silenced after prolonged cell culture without drug-exposure. In conclusion, we found that genome-wide circRNA expression patterns reflect IMiD sensitivity in an in vitro model of acquired resistance.
Collapse
Affiliation(s)
- Theresa Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000 Aarhus, Denmark;
| | - Mette Dahl
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; (M.D.); (K.D.); (K.G.)
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Konstantinos Dimopoulos
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; (M.D.); (K.D.); (K.G.)
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; (M.D.); (K.D.); (K.G.)
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, C.F. Møllers Allé 3, DK-8000 Aarhus, Denmark;
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus, Denmark
| | - Lasse Sommer Kristensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000 Aarhus, Denmark;
- Correspondence:
| |
Collapse
|
140
|
Vromman M, Vandesompele J, Volders PJ. Closing the circle: current state and perspectives of circular RNA databases. Brief Bioinform 2021; 22:288-297. [PMID: 31998941 PMCID: PMC7820840 DOI: 10.1093/bib/bbz175] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules that have been linked to various diseases, including cancer. However, a precise function and working mechanism are lacking for the larger majority. Following many different experimental and computational approaches to identify circRNAs, multiple circRNA databases were developed as well. Unfortunately, there are several major issues with the current circRNA databases, which substantially hamper progression in the field. First, as the overlap in content is limited, a true reference set of circRNAs is lacking. This results from the low abundance and highly specific expression of circRNAs, and varying sequencing methods, data-analysis pipelines, and circRNA detection tools. A second major issue is the use of ambiguous nomenclature. Thus, redundant or even conflicting names for circRNAs across different databases contribute to the reproducibility crisis. Third, circRNA databases, in essence, rely on the position of the circRNA back-splice junction, whereas alternative splicing could result in circRNAs with different length and sequence. To uniquely identify a circRNA molecule, the full circular sequence is required. Fourth, circRNA databases annotate circRNAs' microRNA binding and protein-coding potential, but these annotations are generally based on presumed circRNA sequences. Finally, several databases are not regularly updated, contain incomplete data or suffer from connectivity issues. In this review, we present a comprehensive overview of the current circRNA databases and their content, features, and usability. In addition to discussing the current issues regarding circRNA databases, we come with important suggestions to streamline further research in this growing field.
Collapse
Affiliation(s)
- Marieke Vromman
- department of Biomolecular Medicine at Ghent University and a member of the Cancer Research Institute Ghent
| | - Jo Vandesompele
- department of Biomolecular Medicine at Ghent University and a group leader at the Cancer Research Institute Ghent
| | - Pieter-Jan Volders
- department of Biomolecular Medicine at Ghent University and at the Flemish Institute for Biotechnology, and a member of the Cancer Research Institute Ghent
| |
Collapse
|
141
|
Novel circRNA discovery in sheep shows evidence of high backsplice junction conservation. Sci Rep 2021; 11:427. [PMID: 33432020 PMCID: PMC7801505 DOI: 10.1038/s41598-020-79781-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed circular non-coding RNAs. Due to their structure, circRNAs are more stable and have longer half-lives than linear RNAs making them good candidates for disease biomarkers. Despite the scientific relevance of these molecules, the study of circRNAs in non-model organisms is still in its infancy. Here, we analyse total RNA-seq data to identify circRNAs in sheep from peripheral blood mononuclear cells (PBMCs) and parietal lobe cortex. Out of 2510 and 3403 circRNAs detected in parietal lobe cortex and in PBMCs, a total of 1379 novel circRNAs were discovered. Remarkably, around 63% of all detected circRNAs were found to be completely homologous to a circRNA annotated in human. Functional enrichment analysis was conducted for both tissues based on GO terms and KEGG pathways. The enriched terms suggest an important role of circRNAs from encephalon in synaptic functions and the involvement of circRNAs from PBMCs in basic immune system functions. In addition to this, we investigated the role of circRNAs in repetitive vaccination experiments via differential expression analysis and did not detect any significant relationship. At last, our results support both the miRNA sponge and the miRNA shuttle functions of CDR1-AS in sheep brain. To our knowledge, this is the first study on circRNA annotation in sheep PBMCs or parietal lobe cortex samples.
Collapse
|
142
|
Huang W, Ling Y, Zhang S, Xia Q, Cao R, Fan X, Fang Z, Wang Z, Zhang G. TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res 2021; 49:D236-D242. [PMID: 33074314 PMCID: PMC7778967 DOI: 10.1093/nar/gkaa823] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
TransCirc (https://www.biosino.org/transcirc/) is a specialized database that provide comprehensive evidences supporting the translation potential of circular RNAs (circRNAs). This database was generated by integrating various direct and indirect evidences to predict coding potential of each human circRNA and the putative translation products. Seven types of evidences for circRNA translation were included: (i) ribosome/polysome binding evidences supporting the occupancy of ribosomes onto circRNAs; (ii) experimentally mapped translation initiation sites on circRNAs; (iii) internal ribosome entry site on circRNAs; (iv) published N-6-methyladenosine modification data in circRNA that promote translation initiation; (v) lengths of the circRNA specific open reading frames; (vi) sequence composition scores from a machine learning prediction of all potential open reading frames; (vii) mass spectrometry data that directly support the circRNA encoded peptides across back-splice junctions. TransCirc provides a user-friendly searching/browsing interface and independent lines of evidences to predicte how likely a circRNA can be translated. In addition, several flexible tools have been developed to aid retrieval and analysis of the data. TransCirc can serve as an important resource for investigating the translation capacity of circRNAs and the potential circRNA-encoded peptides, and can be expanded to include new evidences or additional species in the future.
Collapse
Affiliation(s)
- Wendi Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunchao Ling
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sirui Zhang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiguang Xia
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruifang Cao
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaojuan Fan
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoyuan Fang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoqing Zhang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
143
|
Liang Z, Guo W, Fang S, Zhang Y, Lu L, Xu W, Qian H. CircRNAs: Emerging Bladder Cancer Biomarkers and Targets. Front Oncol 2021; 10:606485. [PMID: 33489913 PMCID: PMC7821354 DOI: 10.3389/fonc.2020.606485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are newly discovered intriguing RNAs due to the covalently closed loop structure, high stability, tissue specificity, and functional diversity. In recent years, a large number of circRNAs have been identified through high-throughput sequencing technology and bioinformatics methods, the abnormal expression of circRNAs are closely related to many diseases including bladder cancer (BC). CircRNAs have been proven to have several functions, such as acting as a regulator of parental gene transcription, miRNA sponge and interacting with proteins to regulate its expression. In addition, some circRNAs have been identified to encode proteins. CircRNAs have the characteristics of high abundance, high stability, wide distribution in body fluids, tissue specificity, and developmental stage specificity, which determine that circRNAs has great potential to be utilized as biomarkers for BC. Herein, we briefly summarize the biogenesis, functions and roles, and the current research progress of circRNAs in BC with a focus on the potential application for BC diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenhao Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shikun Fang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yue Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Lu
- Women and Children Health Hospital of Zhenjiang, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
144
|
Ali SA, Pastrello C, Kaur N, Peffers MJ, Ormseth MJ, Jurisica I. A Network Biology Approach to Understanding the Tissue-Specific Roles of Non-Coding RNAs in Arthritis. Front Endocrinol (Lausanne) 2021; 12:744747. [PMID: 34803912 PMCID: PMC8595833 DOI: 10.3389/fendo.2021.744747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
Discovery of non-coding RNAs continues to provide new insights into some of the key molecular drivers of musculoskeletal diseases. Among these, microRNAs have received widespread attention for their roles in osteoarthritis and rheumatoid arthritis. With evidence to suggest that long non-coding RNAs and circular RNAs function as competing endogenous RNAs to sponge microRNAs, the net effect on gene expression in specific disease contexts can be elusive. Studies to date have focused on elucidating individual long non-coding-microRNA-gene target axes and circular RNA-microRNA-gene target axes, with a paucity of data integrating experimentally validated effects of non-coding RNAs. To address this gap, we curated recent studies reporting non-coding RNA axes in chondrocytes from human osteoarthritis and in fibroblast-like synoviocytes from human rheumatoid arthritis. Using an integrative computational biology approach, we then combined the findings into cell- and disease-specific networks for in-depth interpretation. We highlight some challenges to data integration, including non-existent naming conventions and out-of-date databases for non-coding RNAs, and some successes exemplified by the International Molecular Exchange Consortium for protein interactions. In this perspective article, we suggest that data integration is a useful in silico approach for creating non-coding RNA networks in arthritis and prioritizing interactions for further in vitro and in vivo experimentation in translational research.
Collapse
Affiliation(s)
- Shabana Amanda Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- *Correspondence: Shabana Amanda Ali, ; Igor Jurisica,
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Navdeep Kaur
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, United States
| | - Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michelle J. Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, United States
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Shabana Amanda Ali, ; Igor Jurisica,
| |
Collapse
|
145
|
Kui L, Tang M. Overview of Computational Methods and Resources for Circular RNAs. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
146
|
Rong Z, Xu J, Shi S, Tan Z, Meng Q, Hua J, Liu J, Zhang B, Wang W, Yu X, Liang C. Circular RNA in pancreatic cancer: a novel avenue for the roles of diagnosis and treatment. Theranostics 2021; 11:2755-2769. [PMID: 33456571 PMCID: PMC7806488 DOI: 10.7150/thno.56174] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC), an important cause of cancer-related deaths worldwide, is one of the most malignant cancers characterized by a dismal prognosis. Circular RNAs (circRNAs), a class of endogenous ncRNAs with unique covalently closed loops, have attracted great attention in regard to various diseases, especially cancers. Compelling studies have suggested that circRNAs are aberrantly expressed in different cancer tissues and cell types, including PC. More specifically, circRNAs can modify the proliferation, progression, tumorigenesis and chemosensitivity of PC, and some circRNAs could serve as biomarkers for diagnosis and prognosis. Herein, we summarize what is currently known to be related to the biogenesis, functions and potential roles of human circRNAs in PC and their application prospects for PC clinical treatments.
Collapse
Affiliation(s)
- Zeyin Rong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
| |
Collapse
|
147
|
Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM, Lei YN, Liu CX, Guo SK, Shan L, Wu M, Tao X, Zhang JL, Gao X, Zhang J, Wei J, Li J, Yang L, Chen LL. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods 2020; 18:51-59. [PMID: 33288960 DOI: 10.1038/s41592-020-01011-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) produced from back-spliced exons are widely expressed, but individual circRNA functions remain poorly understood owing to the lack of adequate methods for distinguishing circRNAs from cognate messenger RNAs with overlapping exons. Here, we report that CRISPR-RfxCas13d can effectively discriminate circRNAs from mRNAs by using guide RNAs targeting sequences spanning back-splicing junction (BSJ) sites featured in RNA circles. Using a lentiviral library that targets sequences across BSJ sites of highly expressed human circRNAs, we show that a group of circRNAs are important for cell growth mostly in a cell-type-specific manner and that a common oncogenic circRNA, circFAM120A, promotes cell proliferation by preventing the mRNA for family with sequence similarity 120A (FAM120A) from binding the translation inhibitor IGF2BP2. Further application of RfxCas13d-BSJ-gRNA screening has uncovered circMan1a2, which has regulatory potential in mouse embryo preimplantation development. Together, these results establish CRISPR-RfxCas13d as a useful tool for the discovery and functional study of circRNAs at both individual and large-scale levels.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Xue
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shi-Meng Cao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Ni Lei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Si-Kun Guo
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Shan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Man Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Tao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Lin Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiang Gao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Li Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
148
|
Bejugam PR, Das A, Panda AC. Seeing Is Believing: Visualizing Circular RNAs. Noncoding RNA 2020; 6:E45. [PMID: 33187156 PMCID: PMC7712394 DOI: 10.3390/ncrna6040045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Advancement in the RNA sequencing techniques has discovered hundreds of thousands of circular RNAs (circRNAs) in humans. However, the physiological function of most of the identified circRNAs remains unexplored. Recent studies have established that spliceosomal machinery and RNA-binding proteins modulate circRNA biogenesis. Furthermore, circRNAs have been implicated in regulating crucial cellular processes by interacting with various proteins and microRNAs. However, there are several challenges in understanding the mechanism of circRNA biogenesis, transport, and their interaction with cellular factors to regulate cellular events because of their low abundance and sequence similarity with linear RNA. Addressing these challenges requires systematic studies that directly visualize the circRNAs in cells at single-molecule resolution along with the molecular regulators. In this review, we present the design, benefits, and weaknesses of RNA imaging techniques such as single-molecule RNA fluorescence in situ hybridization and BaseScope in fixed cells and fluorescent RNA aptamers in live-cell imaging of circRNAs. Furthermore, we propose the potential use of molecular beacons, multiply labeled tetravalent RNA imaging probes, and Cas-derived systems to visualize circRNAs.
Collapse
Affiliation(s)
- Pruthvi Raj Bejugam
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India; (P.R.B.); (A.D.)
| | - Aniruddha Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India; (P.R.B.); (A.D.)
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Amaresh Chandra Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India; (P.R.B.); (A.D.)
| |
Collapse
|
149
|
Dong K, He X, Su H, Fulton DJR, Zhou J. Genomic analysis of circular RNAs in heart. BMC Med Genomics 2020; 13:167. [PMID: 33160353 PMCID: PMC7648966 DOI: 10.1186/s12920-020-00817-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heart failure is a leading cause of human morbidity and mortality. Circular RNAs (circRNAs) are a newly discovered class of RNA that have been found to have important physiological and pathological roles. In the current study, we de novo analyzed existing whole transcriptome data from 5 normal and 5 dilated cardiomyopathy (DCM) human heart samples and compared the results with circRNAs that have been previously reported in human, mouse and rat hearts. RESULTS Our analysis identifies a list of cardiac circRNAs that are reliably detected in multiple studies. We have also defined the top 30 most abundant circRNAs in healthy human hearts which include some with previously unrecognized cardiac roles such as circHIPK3_11 and circTULP4_1. We further found that many circRNAs are dysregulated in DCM, particularly transcripts originating from DCM-related gene loci, such as TTN and RYR2. In addition, we predict the potential of cardiac circRNAs to sponge miRNAs that have reported roles in heart disease. We found that circALMS1_6 has the highest potential to bind miR-133, a microRNA that can regulate cardiac remodeling. Interestingly, we detected a novel class of circRNAs, referred to as read-though (rt)-circRNAs which are produced from exons of two different neighboring genes. Specifically, rt-circRNAs from SCAF8 and TIAM2 were observed to be dysregulated in DCM and these rt-circRNAs have the potential to sponge multiple heart disease-related miRNAs. CONCLUSIONS In summary, this study provides a valuable resource for exploring the function of circRNAs in human heart disease and establishes a functional paradigm for identifying novel circRNAs in other tissues.
Collapse
Affiliation(s)
- Kunzhe Dong
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Xiangqin He
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Huabo Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - David J R Fulton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
150
|
Limb C, Liu DSK, Veno MT, Rees E, Krell J, Bagwan IN, Giovannetti E, Pandha H, Strobel O, Rockall TA, Frampton AE. The Role of Circular RNAs in Pancreatic Ductal Adenocarcinoma and Biliary-Tract Cancers. Cancers (Basel) 2020; 12:3250. [PMID: 33158116 PMCID: PMC7694172 DOI: 10.3390/cancers12113250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/17/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) and biliary-tract cancers (BTC) often present at a late stage, and consequently patients have poor survival-outcomes. Circular RNAs (circRNAs) are non-coding RNA molecules whose role in tumourigenesis has recently been realised. They are stable, conserved and abundant, with tissue-specific expression profiles. Therefore, significant interest has arisen in their use as potential biomarkers for PDAC and BTC. High-throughput methods and more advanced bioinformatic techniques have enabled better profiling and progressed our understanding of how circRNAs may function in the competing endogenous RNA (ceRNA) network to influence the transcriptome in these cancers. Therefore, the aim of this systematic review was to describe the roles of circRNAs in PDAC and BTC, their potential as biomarkers, and their function in the wider ceRNA network in regulating microRNAs and the transcriptome. Medline, Embase, Scopus and PubMed were systematically reviewed to identify all the studies addressing circRNAs in PDAC and BTC. A total of 32 articles were included: 22 considering PDAC, 7 for Cholangiocarcinoma (CCA) and 3 for Gallbladder Cancer (GBC). There were no studies investigating Ampullary Cancer. Dysregulated circRNA expression was associated with features of malignancy in vitro, in vivo, and ex vivo. Overall, there have been very few PDAC and BTC tissues profiled for circRNA signatures. Therefore, whilst the current studies have demonstrated some of their functions in these cancers, further work is required to elucidate their potential role as cancer biomarkers in tissue, biofluids and biopsies.
Collapse
Affiliation(s)
- Christopher Limb
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK; (C.L.); (T.A.R.)
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital campus, Du Cane Road, London W12 0NN, UK; (D.S.K.L.); (E.R.); (J.K.)
| | | | - Eleanor Rees
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital campus, Du Cane Road, London W12 0NN, UK; (D.S.K.L.); (E.R.); (J.K.)
| | - Jonathan Krell
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital campus, Du Cane Road, London W12 0NN, UK; (D.S.K.L.); (E.R.); (J.K.)
| | - Izhar N. Bagwan
- Department of Histopathology, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK;
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC VUmc, 1007 MB Amsterdam, The Netherlands;
- Fondazione Pisana Per La Scienza, 56017 San Giuliano Terme PI, Italy
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford, Surrey GU2 7WG, UK;
| | - Oliver Strobel
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany;
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK; (C.L.); (T.A.R.)
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK; (C.L.); (T.A.R.)
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital campus, Du Cane Road, London W12 0NN, UK; (D.S.K.L.); (E.R.); (J.K.)
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford, Surrey GU2 7WG, UK;
- HPB Surgical Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK
| |
Collapse
|