101
|
Patel RB, Baniel CC, Sriramaneni RN, Bradley K, Markovina S, Morris ZS. Combining brachytherapy and immunotherapy to achieve in situ tumor vaccination: A review of cooperative mechanisms and clinical opportunities. Brachytherapy 2018; 17:995-1003. [PMID: 30078541 PMCID: PMC8292980 DOI: 10.1016/j.brachy.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
As immunotherapies continue to emerge as a standard component of treatment for a variety of cancers, the imperative for testing these in combination with other standard cancer therapies grows. Radiation therapy may be a particularly well-suited partner for many immunotherapies. By modulating immune tolerance and functional immunogenicity at a targeted tumor site, radiation therapy may serve as a method of in situ tumor vaccination. In situ tumor vaccination is a therapeutic strategy that seeks to convert a patient's own tumor into a nidus for enhanced presentation of tumor-specific antigens in a way that will stimulate and diversify an antitumor T cell response. The mechanisms whereby radiation may impact immunotherapy are diverse and include its capacity to simultaneously elicit local inflammation, temporary local depletion of suppressive lymphocyte lineages, enhanced tumor cell susceptibility to immune response, and immunogenic tumor cell death. Emerging data suggest that each of these mechanisms may display a distinct dose-response profile, making it challenging to maximize each of these effects using external beam radiation. Conversely, the highly heterogenous and conformal dose distribution achieved with brachytherapy may be optimal for enhancing the immunogenic capacity of radiation at a tumor site while minimizing off-target antagonistic effects on peripheral immune cells. Here, we review the immunogenic effects of radiation, summarize the clinical rationale and data supporting the use of radiation together with immunotherapies, and discuss the rationale and urgent need for further preclinical and clinical investigation specifically of brachytherapy in combination with immunotherapies. Harnessing these immunomodulatory effects of brachytherapy may offer solutions to overcome obstacles to the efficacy of immunotherapies in immunologically "cold" tumors while potentiating greater response in the context of immunologically "hot" tumors.
Collapse
Affiliation(s)
- Ravi B Patel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Claire C Baniel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Raghava N Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristin Bradley
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Stephanie Markovina
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
102
|
Trommer-Nestler M, Marnitz S, Kocher M, Rueß D, Schlaak M, Theurich S, von Bergwelt-Baildon M, Morgenthaler J, Jablonska K, Celik E, Ruge MI, Baues C. Robotic Stereotactic Radiosurgery in Melanoma Patients with Brain Metastases under Simultaneous Anti-PD-1 Treatment. Int J Mol Sci 2018; 19:ijms19092653. [PMID: 30205431 PMCID: PMC6164579 DOI: 10.3390/ijms19092653] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
Combination concepts of radiotherapy and immune checkpoint inhibition are currently of high interest. We examined imaging findings, acute toxicity, and local control in patients with melanoma brain metastases receiving programmed death 1 (PD-1) inhibitors and/or robotic stereotactic radiosurgery (SRS). Twenty-six patients treated with SRS alone (n = 13; 20 lesions) or in combination with anti-PD-1 therapy (n = 13; 28 lesions) were analyzed. Lesion size was evaluated three and six months after SRS using a volumetric assessment based on cranial magnetic resonance imaging (cMRI) and acute toxicity after 12 weeks according to the Common Terminology Criteria for Adverse Events (CTCAE). Local control after six months was comparable (86%, SRS + anti-PD-1, and 80%, SRS). All toxicities reported were less than or equal to grade 2. One metastasis (5%) in the SRS group and six (21%) in the SRS + anti-PD-1 group increased after three months, whereas four (14%) of the six regressed during further follow-ups. This was rated as pseudoprogression (PsP). Three patients (23%) in the SRS + anti-PD-1 group showed characteristics of PsP. Treatment with SRS and anti-PD-1 antibodies can be combined safely in melanoma patients with cerebral metastases. Early volumetric progression of lesions under simultaneous treatment may be related to PsP; thus, the evaluation of combined radioimmunotherapy remains challenging and requires experienced teams.
Collapse
Affiliation(s)
- Maike Trommer-Nestler
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, 50937 Cologne, Germany.
| | - Simone Marnitz
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, 50937 Cologne, Germany.
| | - Martin Kocher
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, University Hospital of Cologne, 50937 Cologne, Germany.
- Institute for Neuroscience and Medicine, Research Center Juelich, Wilhelm-Johnen-Str., 52425 Juelich, Germany.
| | - Daniel Rueß
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Max Schlaak
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, 50937 Cologne, Germany.
- Department of Dermatology and Allergology, Ludwig-Maximilians University (LMU), Frauenlobstr. 9-11, 80377 Munich, Germany.
| | - Sebastian Theurich
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, 50937 Cologne, Germany.
- Department III of Internal Medicine, Hematology and Oncology, University Hospital Munich, Ludwig-Maximilians University (LMU), 81377 Munich, Germany.
| | - Michael von Bergwelt-Baildon
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, 50937 Cologne, Germany.
- Department III of Internal Medicine, Hematology and Oncology, University Hospital Munich, Ludwig-Maximilians University (LMU), 81377 Munich, Germany.
| | - Janis Morgenthaler
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
| | - Karolina Jablonska
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
| | - Maximilian I Ruge
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Christian Baues
- Department of Radiation Oncology and Cyberknife Center, University Hospital of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
- Center for Integrated Oncology (CIO Köln Bonn), University of Cologne, 50937 Cologne, Germany.
- Radio Immune-Oncology Consortium (RIO), University Hospital of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
103
|
Ciammella P, Luminari S, Arcaini L, Filippi AR. Renewed interest for low‐dose radiation therapy in follicular lymphomas: From biology to clinical applications. Hematol Oncol 2018; 36:723-732. [DOI: 10.1002/hon.2538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Stefano Luminari
- HaematologySanta Maria Nuova Hospital, IRCCS Reggio Emilia Italy
| | - Luca Arcaini
- Hematology UnitFondazione IRCCS Policlinico S. Matteo and University of Pavia Pavia Italy
| | | |
Collapse
|
104
|
Chen JLY, Chang CC, Huang YS, Kuo HY, Chen TY, Wang CW, Kuo SH, Lin YL. Persistently elevated soluble MHC class I polypeptide-related sequence A and transforming growth factor-β1 levels are poor prognostic factors in head and neck squamous cell carcinoma after definitive chemoradiotherapy. PLoS One 2018; 13:e0202224. [PMID: 30096190 PMCID: PMC6086445 DOI: 10.1371/journal.pone.0202224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
We evaluated the prognostic significance of immunologic inhibitory biomarkers in head and neck squamous cell carcinoma (HNSCC) patients undergoing definitive chemoradiotherapy (CRT). Thirty patients were prospectively enrolled. Plasma levels of soluble MHC class I polypeptide-related sequence A (sMICA) and transforming growth factor-β1 (TGF-β1) were measured before and 2 weeks after CRT. The median follow-up was 32.9 months (range: 12.4-40.6 months). The pre-treatment sMICA (p < 0.001) and TGF-β1 (p < 0.001) levels were significantly increased in HNSCC patients, compared to healthy controls. In HNSCC patients, the median pre-CRT and post-CRT sMICA levels were 43.1 pg/mL and 65.3 pg/mL, respectively, while the median pre-CRT and post-CRT TGF-β1 levels were 57.7 ng/mL and 36.0 ng/mL, respectively. After CRT, 19 patients (63.3%) exhibited persistently elevated sMICA, six patients (20.0%) exhibited persistently elevated TGF-β1, and five patients (16.7%) exhibited persistently elevated sMICA and TGF-β1. Patients with persistently elevated sMICA and TGF-β1 after CRT experienced an earlier tumor progression (p = 0.030), and poor overall survival (p = 0.010). Our results suggest that HNSCC patients who exhibit persistently elevated sMICA and TGF-β1 levels after CRT are at higher risk of tumor progression or death.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan
| | - Chien-Chung Chang
- Institute of Molecular and Cellular Biology, National Tsing-Hua University, Hsin-Chu, Taiwan
| | - Yu-Sen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hung-Yang Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Yu Chen
- Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Wei Wang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
105
|
Chen HY, Xu L, Li LF, Liu XX, Gao JX, Bai YR. Inhibiting the CD8 + T cell infiltration in the tumor microenvironment after radiotherapy is an important mechanism of radioresistance. Sci Rep 2018; 8:11934. [PMID: 30093664 PMCID: PMC6085329 DOI: 10.1038/s41598-018-30417-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Endogenous immune response participates in tumor control, and radiotherapy has immune modulatory capacity, but the role of immune modulation in the tumor microenvironment invoked by radiotherapy in radiosensitivity is poorly defined. In the present study, a radio-resistant melanoma cell line was obtained after repeated irradiation to the parental tumor in C57BL/6 mice. Radiotherapy resulted in aggregation of CD8+ and CD3+ T cells, and decrease of myeloid-derived suppressor cells and dendritic cells in the parental tumor, but not in the resistant tumors. CD4+ T cells and B cells did not change significantly. The CD8+ T cell infiltration after radiotherapy is important for tumor response, because in the nude mice and CD8+ T cell-depleted C57BL/6 mice, the parental and resistant tumor has similar radiosensitivity. Patients with good radiation response had more CD8+ T cells aggregation after radiotherapy. Radiotherapy resulted in robust transcription of T cell chemoattractant in the parental cells, and the expression of CCL5 was much higher. These results reveal a novel mechanism of radioresistance, tumor cells inhibit the infiltration of CD8+ T cell after radiotherapy and become radioresistant. Increasing CD8+ T cell infiltration after RT may be an effective way to improve tumor radiosensitivity.
Collapse
Affiliation(s)
- Hai-Yan Chen
- Department of radiation oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Shi, China.,State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Shi, China
| | - Lei Xu
- Department of radiation oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Shi, China
| | - Lin-Feng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Shi, China
| | - Xiao-Xing Liu
- Department of radiation oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Shi, China
| | - Jian-Xin Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Shi, China.
| | - Yong-Rui Bai
- Department of radiation oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Shi, China.
| |
Collapse
|
106
|
The role of radiation therapy in the treatment of metastatic cancer. Clin Exp Metastasis 2018; 35:535-546. [PMID: 30062507 DOI: 10.1007/s10585-018-9926-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
Radiation therapy continues to play an important role in the management of cancer. In this review, we discuss the use of radiation therapy to target and control micrometastatic disease (adjuvant use of radiation), or using stereotactic radiation therapy to address small volumes of gross disease, such as oligometastases, and finally the use of radiation therapy in the era of immunotherapy. Radiation therapy is commonly used to treat nodal basins suspected of harboring microscopic disease. More recently, computer and technical innovations have allowed radiation oncologists to treat small volumes of gross disease within the brain and also in the body with great success, adding to the cancer armamentarium. This modality of cancer treatment that began shortly after the discovery of X-rays by William Roentgen continues to evolve and finds new clinical applications which minimize toxicity while increasing effectiveness. The newly discovered interactions of high dose/fraction radiation (stereotactic radiosurgery) with immune check point inhibitors in melanoma is the latest example of how synergism can be achieved between two different modalities thus increasing the therapeutic ratio to control metastatic cancer.
Collapse
|
107
|
Buttigliero C, Allis S, Tucci M, Zichi C, Leone G, Di Stefano RF, Ruo Redda MG, Ricardi U, Scagliotti GV, Di Maio M, Filippi AR. Role of radiotherapy in improving activity of immune-modulating drugs in advanced renal cancer: Biological rationale and clinical evidences. Cancer Treat Rev 2018; 69:215-223. [PMID: 30096699 DOI: 10.1016/j.ctrv.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
In the last few years, immune checkpoint inhibitors have been extensively investigated in renal cell carcinoma and led to remarkable results. Radiation therapy may increase the activity of immune modulating agents through different mechanisms, priming the immune system, recruiting immune cells to the tumor environment, and altering the immunosuppressive effects of the tumor microenvironment. Preclinical studies reported increased loco-regional control when radiation is combined with immune-checkpoint blockade. Moreover, increased systemic disease control has been demonstrated when local radiation is combined with both anti-CTLA-4 and anti-PD-1/PD-L1 inhibitors. Actually, several trials are ongoing testing the activity of radiation therapy in combination with different immune-modulating agents for the treatment of metastatic renal cell carcinoma. The aim of this paper is to focus on the biological rationale of adding radiation therapy to immune-modulating agents in renal cell carcinoma and to review the currently available clinical evidence about the combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Consuelo Buttigliero
- Division of Medical Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Simona Allis
- Radiation Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Marcello Tucci
- Division of Medical Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy.
| | - Clizia Zichi
- Division of Medical Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Gianmarco Leone
- Division of Medical Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Rosario Francesco Di Stefano
- Division of Medical Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Maria Grazia Ruo Redda
- Radiation Oncology, Ordine Mauriziano Hospital, Department of Oncology, University of Turin, Via Magellano 1, 10028 Turin, Italy
| | - Umberto Ricardi
- Radiation Oncology, Città della Salute e della Scienza di Torino, Department of Oncology, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Giorgio Vittorio Scagliotti
- Division of Medical Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Massimo Di Maio
- Division of Medical Oncology, Ordine Mauriziano Hospital, Department of Oncology, University of Turin, Via Magellano 1, 10028 Turin, Italy
| | - Andrea Riccardo Filippi
- Radiation Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
108
|
Pierpont TM, Limper CB, Richards KL. Past, Present, and Future of Rituximab-The World's First Oncology Monoclonal Antibody Therapy. Front Oncol 2018; 8:163. [PMID: 29915719 PMCID: PMC5994406 DOI: 10.3389/fonc.2018.00163] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Rituximab is a chimeric mouse/human monoclonal antibody (mAb) therapy with binding specificity to CD20. It was the first therapeutic antibody approved for oncology patients and was the top-selling oncology drug for nearly a decade with sales reaching $8.58 billion in 2016. Since its initial approval in 1997, it has improved outcomes in all B-cell malignancies, including diffuse large B-cell lymphoma, follicular lymphoma, and chronic lymphocytic leukemia. Despite widespread use, most mechanistic data have been gathered from in vitro studies while the roles of the various response mechanisms in humans are still largely undetermined. Polymorphisms in Fc gamma receptor and complement protein genes have been implicated as potential predictors of differential response to rituximab, but have not yet shown sufficient influence to impact clinical decisions. Unlike most targeted therapies developed today, no known biomarkers to indicate target engagement/tumor response have been identified, aside from reduced tumor burden. The lack of companion biomarkers beyond CD20 itself has made it difficult to predict which patients will respond to any given anti-CD20 antibody. In the past decade, two new anti-CD20 antibodies have been approved: ofatumumab, which binds a distinct epitope of CD20, and obinutuzumab, a mAb derived from rituximab with modifications to the Fc portion and to its glycosylation. Both are fully humanized and have biological activity that is distinct from that of rituximab. In addition to these new anti-CD20 antibodies, another imminent change in targeted lymphoma treatment is the multitude of biosimilars that are becoming available as rituximab's patent expires. While the widespread use of rituximab itself will likely continue, its biosimilars will increase global access to the therapy. This review discusses current research into mechanisms and potential biomarkers of rituximab response, as well as its biosimilars and the newer CD20 binding mAb therapies. Increased ability to assess the effectiveness of rituximab in an individual patient, along with the availability of alternative anti-CD20 antibodies will likely lead to dramatic changes in how we use CD20 antibodies going forward.
Collapse
Affiliation(s)
- Timothy M. Pierpont
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Candice B. Limper
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Kristy L. Richards
- Richards Laboratory, Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
109
|
Formenti SC, Lee P, Adams S, Goldberg JD, Li X, Xie MW, Ratikan JA, Felix C, Hwang L, Faull KF, Sayre JW, Hurvitz S, Glaspy JA, Comin-Anduix B, Demaria S, Schaue D, McBride WH. Focal Irradiation and Systemic TGFβ Blockade in Metastatic Breast Cancer. Clin Cancer Res 2018; 24:2493-2504. [PMID: 29476019 PMCID: PMC5999326 DOI: 10.1158/1078-0432.ccr-17-3322] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/03/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022]
Abstract
Purpose: This study examined the feasibility, efficacy (abscopal effect), and immune effects of TGFβ blockade during radiotherapy in metastatic breast cancer patients.Experimental Design: Prospective randomized trial comparing two doses of TGFβ blocking antibody fresolimumab. Metastatic breast cancer patients with at least three distinct metastatic sites whose tumor had progressed after at least one line of therapy were randomized to receive 1 or 10 mg/kg of fresolimumab, every 3 weeks for five cycles, with focal radiotherapy to a metastatic site at week 1 (three doses of 7.5 Gy), that could be repeated to a second lesion at week 7. Research bloods were drawn at baseline, week 2, 5, and 15 to isolate PBMCs, plasma, and serum.Results: Twenty-three patients were randomized, median age 57 (range 35-77). Seven grade 3/4 adverse events occurred in 5 of 11 patients in the 1 mg/kg arm and in 2 of 12 patients in the 10 mg/kg arm, respectively. Response was limited to three stable disease. At a median follow up of 12 months, 20 of 23 patients are deceased. Patients receiving the 10 mg/kg had a significantly higher median overall survival than those receiving 1 mg/kg fresolimumab dose [hazard ratio: 2.73 with 95% confidence interval (CI), 1.02-7.30; P = 0.039]. The higher dose correlated with improved peripheral blood mononuclear cell counts and a striking boost in the CD8 central memory pool.Conclusions: TGFβ blockade during radiotherapy was feasible and well tolerated. Patients receiving the higher fresolimumab dose had a favorable systemic immune response and experienced longer median overall survival than the lower dose group. Clin Cancer Res; 24(11); 2493-504. ©2018 AACR.
Collapse
Affiliation(s)
- Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY.
| | - Percy Lee
- Department of Radiation Oncology, University of California, Los Angeles, California
- Jonsson Compressive Cancer Center, University of California, Los Angeles, California
| | - Sylvia Adams
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Judith D Goldberg
- Department of Population Health, New York University School of Medicine, New York, NY
- Department of Environmental Medicine, New York University School of Medicine, New York, NY
| | - Xiaochun Li
- Department of Population Health, New York University School of Medicine, New York, NY
- Department of Environmental Medicine, New York University School of Medicine, New York, NY
| | - Mike W Xie
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Josephine A Ratikan
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Carol Felix
- Department of Radiation Oncology, University of California, Los Angeles, California
| | - Lin Hwang
- Jonsson Compressive Cancer Center, University of California, Los Angeles, California
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory at University of California, Los Angeles, California
| | - James W Sayre
- Public Health Biostatistics at University of California, Los Angeles, California
| | - Sara Hurvitz
- Jonsson Compressive Cancer Center, University of California, Los Angeles, California
- Medicine, Hematology & Oncology at University of California, Los Angeles, California
| | - John A Glaspy
- Jonsson Compressive Cancer Center, University of California, Los Angeles, California
- Medicine, Hematology & Oncology at University of California, Los Angeles, California
| | - Begoña Comin-Anduix
- Jonsson Compressive Cancer Center, University of California, Los Angeles, California
- Medicine, Hematology & Oncology at University of California, Los Angeles, California
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California, Los Angeles, California
- Jonsson Compressive Cancer Center, University of California, Los Angeles, California
| | - William H McBride
- Department of Radiation Oncology, University of California, Los Angeles, California.
- Jonsson Compressive Cancer Center, University of California, Los Angeles, California
| |
Collapse
|
110
|
Morris ZS, Guy EI, Werner LR, Carlson PM, Heinze CM, Kler JS, Busche SM, Jaquish AA, Sriramaneni RN, Carmichael LL, Loibner H, Gillies SD, Korman AJ, Erbe AK, Hank JA, Rakhmilevich AL, Harari PM, Sondel PM. Tumor-Specific Inhibition of In Situ Vaccination by Distant Untreated Tumor Sites. Cancer Immunol Res 2018; 6:825-834. [PMID: 29748391 DOI: 10.1158/2326-6066.cir-17-0353] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/21/2018] [Accepted: 05/03/2018] [Indexed: 01/04/2023]
Abstract
In situ vaccination is an emerging cancer treatment strategy that uses local therapies to stimulate a systemic antitumor immune response. We previously reported an in situ vaccination effect when combining radiation (RT) with intratumor (IT) injection of tumor-specific immunocytokine (IC), a fusion of tumor-specific antibody and IL2 cytokine. In mice bearing two tumors, we initially hypothesized that delivering RT plus IT-IC to the "primary" tumor would induce a systemic antitumor response causing regression of the "secondary" tumor. To test this, mice bearing one or two syngeneic murine tumors of B78 melanoma and/or Panc02 pancreatic cancer were treated with combined external beam RT and IT-IC to the designated "primary" tumor only. Primary and secondary tumor response as well as animal survival were monitored. Immunohistochemistry and quantitative real-time PCR were used to quantify tumor infiltration with regulatory T cells (Treg). Transgenic "DEREG" mice or IgG2a anti-CTLA-4 were used to transiently deplete tumor Tregs. Contrary to our initial hypothesis, we observed that the presence of an untreated secondary tumor antagonized the therapeutic effect of RT + IT-IC delivered to the primary tumor. We observed reciprocal tumor specificity for this effect, which was circumvented if all tumors received RT or by transient depletion of Tregs. Primary tumor treatment with RT + IT-IC together with systemic administration of Treg-depleting anti-CTLA-4 resulted in a renewed in situ vaccination effect. Our findings show that untreated tumors can exert a tumor-specific, Treg-dependent, suppressive effect on the efficacy of in situ vaccination and demonstrate clinically viable approaches to overcome this effect. Untreated tumor sites antagonize the systemic and local antitumor immune response to an in situ vaccination regimen. This effect is radiation sensitive and may be mediated by tumor-specific regulatory T cells harbored in the untreated tumor sites. Cancer Immunol Res; 6(7); 825-34. ©2018 AACR.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | - Emily I Guy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lauryn R Werner
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter M Carlson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Clinton M Heinze
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jasdeep S Kler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sara M Busche
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Abigail A Jaquish
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Raghava N Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Lakeesha L Carmichael
- Department of Biostatistics and Bioinformatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Departments of Pediatrics and Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
111
|
Abstract
Immunotherapy has become standard of care in advanced non-small cell lung cancer (NSCLC) in a number of settings. Radiotherapy remains an important and potentially curative treatment for localized and locally advanced NSCLC not amenable to surgery. While the principal cytotoxic effect of ionizing radiation is via DNA damage, the effect on tumour microenvironment, promoting dendritic cell presentation of tumour-derived antigens to T cells stimulating the host adaptive immune system to mount an immune response against tumours cells, has become of particular interest when combining immunomodulating agents with radiation. The 'abscopal effect' of radiation where non-irradiated metastatic lesions may respond to radiation may be immune-mediated, via radiation primed anti-tumour T cells. Immune priming by radiation offers the potential for increasing the efficacy of immunotherapy and this is subject to on-going clinical trials underpinned by immunological bioassays. Increasing understanding of the interaction between tumour, radiation and immune cells at a molecular level provides a further opportunity for intervention to enhance the potential synergy between radiation and immunotherapy. Applying the potential efficacy of combination therapy to clinical practice requires caution particularly to ensure the safety of the two treatment modalities in early phase clinical trials, many of which are currently underway. We review the biological basis for combining radiation and immunotherapy and examine the existing pre-clinical and clinical evidence and the challenges posed by the new combination of treatments.
Collapse
Affiliation(s)
- Neeraj Bhalla
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, Merseyside, UK
| | - Rachel Brooker
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, Merseyside, UK
| | - Michael Brada
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral, Merseyside, UK.,Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
112
|
Jatoi I, Benson JR, Kunkler I. Hypothesis: can the abscopal effect explain the impact of adjuvant radiotherapy on breast cancer mortality? NPJ Breast Cancer 2018; 4:8. [PMID: 29644338 PMCID: PMC5882959 DOI: 10.1038/s41523-018-0061-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is an integral component of loco-regional therapy for breast cancer. Randomized controlled trials indicate that increasing the extent of extirpative surgery primarily reduces the risk of local recurrences, while the addition of radiotherapy to surgery can also reduce the risk of distant recurrences, thereby lowering breast cancer-specific mortality. This may suggest an “abscopal” effect beyond the immediate zone of loco-regional irradiation that favorably perturbs the natural history of distant micrometastases. Immunological phenomena such as “immunogenic cell death” provide a plausible mechanistic link between the local and systemic effects of radiation. Radiotherapy treatment can stimulate both pro-immunogenic and immunosuppressive pathways with a potential net beneficial effect on anti-tumor immune activity. Upregulation of programmed cell death ligand (PD-L1) by radiotherapy is an immunosuppressive pathway that could be approached with anti-PD-L1 therapy with potential further improvement in survival. The world overview of randomized trials indicates that the breast cancer mortality reduction from adjuvant radiotherapy is delayed relative to that of adjuvant systemic treatments, and similar delays in the separation of survival curves are evident in the majority of randomized immunotherapy trials demonstrating treatment efficacy. In this article, we hypothesize that an abscopal effect may explain the benefit of radiotherapy in reducing breast cancer mortality, and that It might be possible to harness and augment this effect with systemic agents to reduce the risk of late recurrences.
Collapse
Affiliation(s)
- Ismail Jatoi
- 1Department of Surgery, University of Texas Health Science Center, San Antonio, Texas USA
| | - John R Benson
- 2Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge and Faculty of Medical Sciences, Anglia Ruskin University, Cambridge, UK
| | - Ian Kunkler
- 3Institute of Genetic and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
113
|
Barzilai O, Fisher CG, Bilsky MH. State of the Art Treatment of Spinal Metastatic Disease. Neurosurgery 2018; 82:757-769. [DOI: 10.1093/neuros/nyx567] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022] Open
Abstract
Abstract
Treatment paradigms for patients with spine metastases have evolved significantly over the past decade. Incorporating stereotactic radiosurgery into these paradigms has been particularly transformative, offering precise delivery of tumoricidal radiation doses with sparing of adjacent tissues. Evidence supports the safety and efficacy of radiosurgery as it currently offers durable local tumor control with low complication rates even for tumors previously considered radioresistant to conventional radiation. The role for surgical intervention remains consistent, but a trend has been observed toward less aggressive, often minimally invasive, techniques. Using modern technologies and improved instrumentation, surgical outcomes continue to improve with reduced morbidity. Additionally, targeted agents such as biologics and checkpoint inhibitors have revolutionized cancer care, improving both local control and patient survivals. These advances have brought forth a need for new prognostication tools and a more critical review of long-term outcomes. The complex nature of current treatment schemes necessitates a multidisciplinary approach including surgeons, medical oncologists, radiation oncologists, interventionalists, and pain specialists. This review recapitulates the current state-of-the-art, evidence-based data on the treatment of spinal metastases, integrating these data into a decision framework, NOMS, which integrates the 4 sentinel decision points in metastatic spine tumors: Neurologic, Oncologic, Mechanical stability, and Systemic disease and medical co-morbidities.
Collapse
Affiliation(s)
- Ori Barzilai
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Charles G Fisher
- Division of Spine, Department of Orthopedics, University of British Columbia, and the Combined Neurosurgical and Orthopedic Spine Program at Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Mark H Bilsky
- Department of Neurosurgery, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| |
Collapse
|
114
|
Ngoi NYL, Heong V, Lee XW, Huang YQ, Thian YL, Choo BA, Lim D, Lim YW, Lim SE, Ilancheran A, Soong R, Tan DSP. Tumor molecular profiling of responders and non-responders following pembrolizumab monotherapy in chemotherapy resistant advanced cervical cancer. Gynecol Oncol Rep 2018; 24:1-5. [PMID: 29892689 PMCID: PMC5993533 DOI: 10.1016/j.gore.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/18/2022] Open
Abstract
Optimal treatment for advanced cervical cancer after first line chemotherapy remains undefined. Immune checkpoint inhibition with pembrolizumab, a programmed cell death protein 1(PD-1) inhibitor, is under investigation. We analyzed the micro-environmental and molecular genetic profile of tumors from 4 patients with metastatic cervical cancer treated with off-label second-line pembrolizumab in an effort to identify predictive biomarkers. All patients received 2 mg/kg of pembrolizumab, 3-weekly until disease progression. Immunohistochemistry(IHC) for PD-1, PD-L1, CD3 and CD8, as well as next generation sequencing (NGS) for 50 cancer-related genes were performed on tumor samples. All patients tolerated treatment well with no discontinuation of treatment due to toxicity. One patient experienced dramatic and prolonged partial response, and remains stable on pembrolizumab with a progression free survival (PFS) of 21 months at the time of reporting of this series. Three patients experienced disease progression as best response. In the exceptional responder, there was no tumoral expression of PD-L1, however, combined positive score (CPS) for PD-L1 was 1 and we identified somatic mutations in ERBB4(R612W), PIK3CA(E542K) and RB1(E365K). In 2 patients, despite progressive disease defined by RECIST v1.1, symptom stabilization on pembrolizumab was observed. The tumors of both patients had PD-1 expression in ≥1% of stromal lymphocytes. All patients with response or clinical benefit had CPS for PD-L1 ≥ 1. NGS revealed PIK3CA mutations in 3 tumors. Pembrolizumab is a promising therapeutic option in advanced cervical cancer. Further evaluation of biomarkers may guide optimal patient selection.
Collapse
Affiliation(s)
- N Y L Ngoi
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - V Heong
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore.,Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore
| | - X W Lee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - Y Q Huang
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - Y L Thian
- Department of Diagnostic Radiology, National University Hospital, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - B A Choo
- Department of Radiation Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - D Lim
- Department of Pathology, National University Hospital, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - Y W Lim
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - S E Lim
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - A Ilancheran
- Division of Gynecology-Oncology, Department of Obstetrics and Gynecology, National University Hospital, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - R Soong
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore.,Department of Pathology, National University Hospital, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore
| | - D S P Tan
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, 5 Lower Kent Ridge Rd, Singapore 119074, Republic of Singapore.,Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Republic of Singapore
| |
Collapse
|
115
|
Balducci M, De Bari B, Manfrida S, D'Agostino GR, Valentini V. Treatment of Merkel Cell Carcinoma with Radiotherapy and Imiquimod (Aldara): A Case Report. TUMORI JOURNAL 2018; 96:508-11. [DOI: 10.1177/030089161009600324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and background Merkel cell carcinoma (MCC) is a rare skin tumor occurring mostly in older people. Postoperative radiotherapy is strongly recommended to improve local control. A case of a MCC treated by radiotherapy associated with imiquimod (Aldara) is presented. A possible physiopathological rationale for this concomitant treatment is also given. Materials and methods We treated a diabetic 82-year-old man presenting with a MCC of the right zygomatic area. Despite surgery, postoperative ultrasonography showed a firm, painless residual mass of about 11 × 10 cm, fixed to the deep tissues. Parotid and zygomatic areas were treated along with the ipsilateral laterocervical lymph nodes. The total dose to the planning target volume was 50.4 Gy (1.8 Gy/day). Imiquimod was applied once a day to the zygomatic area with macroscopic infiltration and to the surrounding erythema. Results During the combination treatment, the patient showed acute G3 skin toxicity (RTOG) and a scab that resolved after a 3-week interruption of the radiotherapy and imiquimod treatment. When the scab was removed, the underlying skin appeared completely re-epithelialized. Imiquimod was suspended and treatment was continued only with irradiation. During this second phase of the treatment, the patient developed G2 dermatitis and G2 stomatitis. Clinical and instrumental re-evaluation showed a complete response 7 months after the end of radiotherapy, with very good local tropism. Conclusion This case report suggests the possible effective use of immunomodulators, in this case imiquimod, combined with radiation therapy for cutaneous malignancies such as MCC. Skin tolerance should be an important issue to consider.
Collapse
Affiliation(s)
- Mario Balducci
- Radiotherapy Department, Catholic University of Rome, Rome, Italy
| | - Berardino De Bari
- Département de Radiothérapie-Oncologie, Centre Hospitalier Lyon Sud, Pierre Benite, France and EA3738
| | | | | | | |
Collapse
|
116
|
Ye JC, Formenti SC. Integration of radiation and immunotherapy in breast cancer - Treatment implications. Breast 2018; 38:66-74. [PMID: 29253718 DOI: 10.1016/j.breast.2017.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023] Open
Abstract
Radiation therapy (RT) has been successfully used in the treatment of breast cancer (BC) for over a century. While historically thought to be immunosuppressive, new data have shown that RT can work together with the immune system to eliminate cancer. It can cause immunogenic cell death and facilitate tumor neoantigen presentation and cross-priming of tumor-specific T-lymphocytes, turning irradiated tumor into an in-situ vaccine. Unfortunately, due to various immune escape mechanism put in place by the tumor, RT alone rarely results in a systemic response of metastatic disease sites (known as the abscopal effect). Immunotherapy, a series of agents designed to stimulate the immune system in order to generate tumor-specific immune response, is showing promise in treatment of various cancers, including BC, and can be an ideal complement to RT in stimulating a systemic immune response to reject the tumor cells. This review discusses the mechanisms in which RT can trigger an immune response for tumor rejection, and provide emerging preclinical and clinical data of combination immunoradiotherapy, and its potential in treating BC.
Collapse
Affiliation(s)
- Jason C Ye
- USC Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
117
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
118
|
Vatner RE, Janssen EM. STING, DCs and the link between innate and adaptive tumor immunity. Mol Immunol 2017; 110:13-23. [PMID: 29273394 PMCID: PMC6768428 DOI: 10.1016/j.molimm.2017.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Cancer and the immune system are intimately related. Much of the bulk of tumors is comprised of stromal leukocytes with immune functions, which serve to both promote and inhibit tumor growth, invasion and metastasis. The T lymphocytes of the adaptive immune system are essential for tumor immunity, and these T cells are generated by cross-priming against tumor associated antigens. Dendritic cells (DCs) are essential in this process, serving as the cellular link between innate and adaptive immunity. As a prerequisite for priming of adaptive immune responses, DCs must take up tumor antigens, process them and present them in the context of the major histocompatibility complex (MHC). DCs also serve as sensors of innate activation signals from cancer that are necessary for their activation and effective priming of cancer specific T cells. Here we discuss the role of DCs in the sensing of cancer and in priming the adaptive response against tumors. Furthermore, we present the essential role of the Stimulator of Interferon Genes (STING) signaling pathway in producing type I interferons (IFNs) that are essential in this process.
Collapse
Affiliation(s)
- Ralph E Vatner
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States; Department of Radiation Oncology, University of Cincinnati College of Medicine, 234 Goodman Street, ML 0757, Cincinnati, OH 45267, United States.
| | - Edith M Janssen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7038, Cincinnati, OH 45229, United States
| |
Collapse
|
119
|
Trivillin VA, Pozzi ECC, Colombo LL, Thorp SI, Garabalino MA, Monti Hughes A, González SJ, Farías RO, Curotto P, Santa Cruz GA, Carando DG, Schwint AE. Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:365-375. [PMID: 28791476 DOI: 10.1007/s00411-017-0704-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 106 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 106 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm3. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm3. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Emiliano C C Pozzi
- Department of Research and Production Reactors, Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Lucas L Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Oncología Ángel H. Roffo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia I Thorp
- Department of Instrumentation and Control, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Marcela A Garabalino
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martin, Provincia Buenos Aires, Argentina
| | - Andrea Monti Hughes
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara J González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Instrumentation and Control, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Rubén O Farías
- Department of Instrumentation and Control, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Paula Curotto
- Department of Research and Production Reactors, Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Gustavo A Santa Cruz
- Department of Boron Neutron Capture Therapy, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Daniel G Carando
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Faculty of Exact and Natural Sciences, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Amanda E Schwint
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martin, Provincia Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
120
|
McCarthy MW, Walsh TJ. Checkpoint inhibitors and the risk of infection. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1380517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Matthew William McCarthy
- Hospital Medicine, Joan and Sanford I Weill Medical College of Cornell University, New York, NY, USA
| | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
121
|
Huang X, Karabudak A, Comber JD, Philip M, Morcol T, Philip R. A novel immunization approach for dengue infection based on conserved T cell epitopes formulated in calcium phosphate nanoparticles. Hum Vaccin Immunother 2017; 13:2612-2625. [PMID: 28933657 DOI: 10.1080/21645515.2017.1369639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dengue virus (DV) is the etiologic agent of dengue fever, the most significant mosquito-borne viral disease in humans. Most DV vaccine approaches are focused on generating antibody mediated responses; one such DV vaccine is approved for use in humans but its efficacy is limited. While it is clear that T cell responses play important role in DV infection and subsequent disease manifestations, fewer studies are aimed at developing vaccines that induce robust T cells responses. Potent T cell based vaccines require 2 critical components: the identification of specific T cell stimulating MHC associated peptides, and an optimized vaccine delivery vehicle capable of simultaneously delivering the antigens and any required adjuvants. We have previously identified and characterized DV specific HLA-A2 and -A24 binding DV serotypes conserved epitopes, and the feasibility of an epitope based vaccine for DV infection. In this study, we build on those previous studies and describe an investigational DV vaccine using T cell epitopes incorporated into a calcium phosphate nanoparticle (CaPNP) delivery system. This study presents a comprehensive analysis of functional immunogenicity of DV CaPNP/multipeptide formulations in vitro and in vivo and demonstrates the CaPNP/multipeptide vaccine is capable of inducing T cell responses against all 4 serotypes of DV. This synthetic vaccine is also cost effective, straightforward to manufacture, and stable at room temperature in a lyophilized form. This formulation may serve as an effective candidate DV vaccine that protects against all 4 serotypes as either a prophylactic or therapeutic vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Tulin Morcol
- b Captivate Pharmaceuticals , Doylestown , PA , USA
| | | |
Collapse
|
122
|
Werner LR, Kler JS, Gressett MM, Riegert M, Werner LK, Heinze CM, Kern JG, Abbariki M, Erbe AK, Patel RB, Sriramaneni RN, Harari PM, Morris ZS. Transcriptional-mediated effects of radiation on the expression of immune susceptibility markers in melanoma. Radiother Oncol 2017; 124:418-426. [PMID: 28893414 DOI: 10.1016/j.radonc.2017.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/12/2017] [Accepted: 08/20/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE We recently reported a time-sensitive, cooperative, anti-tumor effect elicited by radiation (RT) and intra-tumoral-immunocytokine injection in vivo. We hypothesized that RT triggers transcriptional-mediated changes in tumor expression of immune susceptibility markers at delayed time points, which may explain these previously observed time-dependent effects. MATERIALS AND METHODS We examined the time course of changes in expression of immune susceptibility markers following in vitro or in vivo RT in B78 murine melanoma and A375 human melanoma using flow cytometry, immunoblotting, and qPCR. RESULTS Flow cytometry and immunoblot revealed time-dependent increases in expression of death receptors and T cell co-stimulatory/co-inhibitory ligands following RT in murine and human melanoma. Using high-throughput qPCR, we observed comparable time courses of RT-induced transcriptional upregulation for multiple immune susceptibility markers. We confirmed analogous changes in B78 tumors irradiated in vivo. We observed upregulated expression of DNA damage response markers days prior to changes in immune markers, whereas phosphorylation of the STAT1 transcription factor occurred concurrently with changes following RT. CONCLUSION This study highlights time-dependent, transcription-mediated changes in tumor immune susceptibility marker expression following RT. These findings may help in the design of strategies to optimize sequencing of RT and immunotherapy in translational and clinical studies.
Collapse
Affiliation(s)
- Lauryn R Werner
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Jasdeep S Kler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Monica M Gressett
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Maureen Riegert
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Lindsey K Werner
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Clinton M Heinze
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Joseph G Kern
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Mahyar Abbariki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Ravi B Patel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Raghava N Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, United States.
| |
Collapse
|
123
|
Rodriguez-Ruiz ME, Rodriguez I, Barbes B, Mayorga L, Sanchez-Paulete AR, Ponz-Sarvise M, Pérez-Gracia JL, Melero I. Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy 2017; 16:1246-1251. [PMID: 28838649 DOI: 10.1016/j.brachy.2017.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE/OBJECTIVES Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory monoclonal antibodies (mAb) to act both on irradiated tumor lesions and on tumors at distant, nonirradiated sites. We have recently reported that external beam radiotherapy achieves abscopal effects when combined with antagonist anti-PD1 mAbs and agonist anti-CD137 (4-1BB) mAbs. The goal of this work is to study the abscopal effects of radiotherapy instigated by brachytherapy techniques. METHODS AND MATERIALS Mice bearing a subcutaneous colorectal carcinoma, MC38 (colorectal cancer), in both flanks were randomly assigned to receive brachytherapy or not (8 Gy × three fractions) to only one of the two grafted tumors, in combination with intraperitoneal immunostimulatory monoclonal antibodies (anti-PD1, anti-CD137, and/or their respective isotype controls). To study the abscopal effects of brachytherapy, we established an experimental set up that permits irradiation of mouse tumors sparing a distant site resembling metastasis. Such second nonirradiated tumor was used as indicator of abscopal effect. Tumor size was monitored every 2 days. RESULTS Abscopal effects on distant nonirradiated subcutaneous tumor lesions of transplanted MC38-derived tumors only took place when brachytherapy was combined with immunostimulatory anti-PD1 and/or anti-CD137 mAbs. CONCLUSIONS Our results demonstrate that immunotherapy-potentiated abscopal effects can be attained by brachytherapy. Accordingly, immunotherapy plus brachytherapy combinations are suitable for clinical translation.
Collapse
Affiliation(s)
- María E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| | - Inmaculada Rodriguez
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Benigno Barbes
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Lina Mayorga
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Alfonso Rodriguez Sanchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Mariano Ponz-Sarvise
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - José Luis Pérez-Gracia
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
124
|
Herskind C, Wenz F, Giordano FA. Immunotherapy Combined with Large Fractions of Radiotherapy: Stereotactic Radiosurgery for Brain Metastases-Implications for Intraoperative Radiotherapy after Resection. Front Oncol 2017; 7:147. [PMID: 28791250 PMCID: PMC5522878 DOI: 10.3389/fonc.2017.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Brain metastases (BM) affect approximately a third of all cancer patients with systemic disease. Treatment options include surgery, whole-brain radiotherapy, or stereotactic radiosurgery (SRS) while chemotherapy has only limited activity. In cases where patients undergo resection before irradiation, intraoperative radiotherapy (IORT) to the tumor bed may be an alternative modality, which would eliminate the repopulation of residual tumor cells between surgery and postoperative radiotherapy. Accumulating evidence has shown that high single doses of ionizing radiation can be highly efficient in eliciting a broad spectrum of local, regional, and systemic tumor-directed immune reactions. Furthermore, immune checkpoint blockade (ICB) has proven effective in treating antigenic BM and, thus, combining IORT with ICB might be a promising approach. However, it is not known if a low number of residual tumor cells in the tumor bed after resection is sufficient to act as an immunizing event opening the gate for ICB therapies in the brain. Because immunological data on tumor bed irradiation after resection are lacking, a rationale for combining IORT with ICB must be based on mechanistic insight from experimental models and clinical studies on unresected tumors. The purpose of the present review is to examine the mechanisms by which large radiation doses as applied in SRS and IORT enhance antitumor immune activity. Clinical studies on IORT for brain tumors, and on combined treatment of SRS and ICB for unresected BM, are used to assess the safety, efficacy, and immunogenicity of IORT plus ICB and to suggest an optimal treatment sequence.
Collapse
Affiliation(s)
- Carsten Herskind
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany.,Cellular and Molecular Radiation Oncology Laboratory, Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank A Giordano
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany.,Translational Radiation Oncology, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
125
|
O’Cathail SM, Pokrovska TD, Maughan TS, Fisher KD, Seymour LW, Hawkins MA. Combining Oncolytic Adenovirus with Radiation-A Paradigm for the Future of Radiosensitization. Front Oncol 2017; 7:153. [PMID: 28791251 PMCID: PMC5523729 DOI: 10.3389/fonc.2017.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/28/2017] [Indexed: 01/03/2023] Open
Abstract
Oncolytic viruses and radiotherapy represent two diverse areas of cancer therapy, utilizing quite different treatment modalities and with non-overlapping cytotoxicity profiles. It is, therefore, an intriguing possibility to consider that oncolytic ("cancer-killing") viruses may act as cancer-selective radiosensitizers, enhancing the therapeutic consequences of radiation treatment on tumors while exerting minimal effects on normal tissue. There is a solid mechanistic basis for this potential synergy, with many viruses having developed strategies to inhibit cellular DNA repair pathways in order to protect themselves, during genome replication, from unwanted interference by cell processes that are normally triggered by DNA damage. Exploiting these abilities to inhibit cellular DNA repair following damage by therapeutic irradiation may well augment the anticancer potency of the approach. In this review, we focus on oncolytic adenovirus, the most widely developed and best understood oncolytic virus, and explore its various mechanisms for modulating cellular DNA repair pathways. The most obvious effects of the various adenovirus serotypes are to interfere with activity of the MRE11-Rad50-Nbs1 complex, temporally one of the first sensors of double-stranded DNA damage, and inhibition of DNA ligase IV, a central repair enzyme for healing double-stranded breaks by non-homologous end joining (NHEJ). There have been several preclinical and clinical studies of this approach and we assess the current state of progress. In addition, oncolytic viruses provide the option to promote a localized proinflammatory response, both by mediating immunogenic death of cancer cells by oncosis and also by encoding and expressing proinflammatory biologics within the tumor microenvironment. Both of these approaches provide exciting potential to augment the known immunological consequences of radiotherapy, aiming to develop systems capable of creating a systemic anticancer immune response following localized tumor treatment.
Collapse
Affiliation(s)
- Sean M. O’Cathail
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Timothy S. Maughan
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Kerry D. Fisher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Maria A. Hawkins
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
126
|
McBride WH, Ganapathy E, Lee MH, Nesseler JP, Nguyen C, Schaue D. A perspective on the impact of radiation therapy on the immune rheostat. Br J Radiol 2017; 90:20170272. [PMID: 28707537 PMCID: PMC5853348 DOI: 10.1259/bjr.20170272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The advent and success of immune checkpoint inhibitors (ICIs) in cancer treatment has broadened the spectrum of tumours that might be considered "immunogenic" and susceptible to immunotherapeutic (IT) intervention. Not all cancer types are sensitive, and not all patients with any given type respond. Combination treatment of ICIs with an established cytotoxic modality such as radiation therapy (RT) is a logical step towards improvement. For one, RT alone has been shown to be genuinely immunomodulatory and secondly pre-clinical data generally support combined ICI-RT approaches. This new integrated therapy for cancer treatment holds much promise, although there is still a lot to be learned about how best to schedule the treatments, manage the toxicities and determine what biomarkers might predict response, as well as many other issues. This review examines how RT alters the immune rheostat and how it might best be positioned to fully exploit IT.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Mi-Heon Lee
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jean P Nesseler
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christine Nguyen
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
127
|
Shen MJ, Xu LJ, Yang L, Tsai Y, Keng PC, Chen Y, Lee SO, Chen Y. Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. Oncotarget 2017; 8:80506-80520. [PMID: 29113321 PMCID: PMC5655216 DOI: 10.18632/oncotarget.19193] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
We investigated whether radiation influences the susceptibility of non-small cell lung cancer (NSCLC) cells to NK cell mediated cytotoxicity. We found radiation treatment increased expression of programmed cell death ligand 1 (PD-L1), but decreased NK group 2, member D (NKG2D) ligand expressions in A549 and H157 NSCLC cells. Both types of changes would have protected tumor cells from the cytotoxic action of NK cells. Consistently, we detected similar alteration in these molecules in radioresistant A549R26-1 and H157R24-1 subline cells. Higher PD-L1 level was also observed in tumors of A549R26-1 cell-derived xenografts than tumors of parental A549 (A549P) cell-derived xenografts. Accordingly, we found radioresistant cells were more resistant to the cytotoxic action of NK cells than parental cells, and such resistance was decreased when neutralizing antibody (Ab) of PD-L1 was added to the radioresistant cell/NK cell co-cultures. In mechanism studies, we found that IL-6-MEK/Erk signaling contributed most significantly to the up-regulation of PD-L1/down-regulation of NKG2D ligands in radioresistant cells. The addition of the MEK/Erk inhibitor increased the susceptibility of A549R26-1 and H157R24-1 cells to NK-cell cytotoxicity while no significant effect was observed in parental cells. Moreover, we detected enhanced NK-cell cytotoxicity to radioresistant cells when PD-L1 Ab and MEK/Erk inhibitor were added together to co-cultures of tumor/NK cells compared to when PD-L1 Ab was used alone. We suggest that combined use of PD-L1 Ab and MEK/Erk inhibitor may offer better therapeutic benefits than PD-L1 Ab alone to treat NSCLC patients who are receiving radiotherapy or who are at the radioresistant stage.
Collapse
Affiliation(s)
- Ming Jing Shen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Li Jun Xu
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Li Yang
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ying Tsai
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Peter C Keng
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yongbing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Soo Ok Lee
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
128
|
Shiao JC, Bowers N, Nasti TH, Khosa F, Khan MK. 4-1BB (CD137) and radiation therapy: A case report and literature review. Adv Radiat Oncol 2017; 2:398-402. [PMID: 29114608 PMCID: PMC5605279 DOI: 10.1016/j.adro.2017.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/12/2017] [Accepted: 03/24/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jay C Shiao
- University of Texas Health Science Center San Antonio Radiation Oncology, San Antonio, Texas
| | - Nathan Bowers
- East Tennessee State University College of Medicine Radiation Oncology, Johnson City, Tennessee
| | - Tahseen H Nasti
- Emory University Immunology and Microbiology Department, Atlanta, Georgia
| | - Faisal Khosa
- University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
129
|
Barzilai O, Laufer I, Yamada Y, Higginson DS, Schmitt AM, Lis E, Bilsky MH. Integrating Evidence-Based Medicine for Treatment of Spinal Metastases Into a Decision Framework: Neurologic, Oncologic, Mechanicals Stability, and Systemic Disease. J Clin Oncol 2017. [PMID: 28640703 DOI: 10.1200/jco.2017.72.7362] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Patients with cancer are frequently affected by spinal metastases. Treatment is palliative, with the principle goals of pain relief, preservation of neurologic function, and improvement in quality of life. In the past decade, we have witnessed a dramatic change in the treatment paradigms due to the development of improved surgical strategies and systemic and radiation therapy. The most important change to these paradigms has been the integration of spinal stereotactic radiosurgery (SSRS), allowing delivery of tumoricidal radiation doses with sparing of nearby organs at risk. High-dose SSRS provides durable tumor control when used either as definitive therapy or as a postoperative adjuvant therapy. Integration of SSRS has fundamentally changed the indications for and type of surgery performed for metastatic spine tumors. Although the role for surgical intervention is well established, a clear trend toward less-aggressive, often minimally invasive techniques has been observed. Targeted therapies are also rapidly changing the way cancer is being treated and have demonstrated improved survival for a number of malignancies. As these treatment decisions become more complex, a multidisciplinary approach including medical oncologists, radiation oncologists, surgeons, interventionalists, and pain specialists is required. In this article, the current evidence affecting the treatment of spinal metastases is integrated into a decision framework that considers four principal assessments of a patient's spine disease: NOMS (neurologic, oncologic, mechanical instability, and systemic disease).
Collapse
Affiliation(s)
- Ori Barzilai
- Ori Barzilai, Ilya Laufer, Yoshiya Yamada, Daniel S. Higginson, Adam M. Schmitt, Eric Lis, and Mark H. Bilsky, Memorial Sloan Kettering Cancer Center; Ilya Laufer and Mark H. Bilsky, Weill Cornell Medical College, New York, NY
| | - Ilya Laufer
- Ori Barzilai, Ilya Laufer, Yoshiya Yamada, Daniel S. Higginson, Adam M. Schmitt, Eric Lis, and Mark H. Bilsky, Memorial Sloan Kettering Cancer Center; Ilya Laufer and Mark H. Bilsky, Weill Cornell Medical College, New York, NY
| | - Yoshiya Yamada
- Ori Barzilai, Ilya Laufer, Yoshiya Yamada, Daniel S. Higginson, Adam M. Schmitt, Eric Lis, and Mark H. Bilsky, Memorial Sloan Kettering Cancer Center; Ilya Laufer and Mark H. Bilsky, Weill Cornell Medical College, New York, NY
| | - Daniel S Higginson
- Ori Barzilai, Ilya Laufer, Yoshiya Yamada, Daniel S. Higginson, Adam M. Schmitt, Eric Lis, and Mark H. Bilsky, Memorial Sloan Kettering Cancer Center; Ilya Laufer and Mark H. Bilsky, Weill Cornell Medical College, New York, NY
| | - Adam M Schmitt
- Ori Barzilai, Ilya Laufer, Yoshiya Yamada, Daniel S. Higginson, Adam M. Schmitt, Eric Lis, and Mark H. Bilsky, Memorial Sloan Kettering Cancer Center; Ilya Laufer and Mark H. Bilsky, Weill Cornell Medical College, New York, NY
| | - Eric Lis
- Ori Barzilai, Ilya Laufer, Yoshiya Yamada, Daniel S. Higginson, Adam M. Schmitt, Eric Lis, and Mark H. Bilsky, Memorial Sloan Kettering Cancer Center; Ilya Laufer and Mark H. Bilsky, Weill Cornell Medical College, New York, NY
| | - Mark H Bilsky
- Ori Barzilai, Ilya Laufer, Yoshiya Yamada, Daniel S. Higginson, Adam M. Schmitt, Eric Lis, and Mark H. Bilsky, Memorial Sloan Kettering Cancer Center; Ilya Laufer and Mark H. Bilsky, Weill Cornell Medical College, New York, NY
| |
Collapse
|
130
|
|
131
|
Irradiation enhances dendritic cell potential antitumor activity by inducing tumor cell expressing TNF-α. Med Oncol 2017; 34:44. [PMID: 28194716 DOI: 10.1007/s12032-016-0864-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
Dendritic cells (DCs)-based tumor vaccines have shown to be the promising methods for inducing therapeutic antitumor response. However, DCs alone rarely carry curative antitumor activity, and the immunosuppressive microenvironment may contribute to this defect of DC vaccinal function. Irradiation in combination with DCs has been shown to promote immune-mediated tumor destruction in preclinical studies. However, little is known about how irradiation alters the tumor microenvironment, and what host pathways modulate the activity of administrated DCs. In this study, BALB/c mice and the 4T1 breast cancer cell line were used in a tumor-bearing model. The tumor-bearing mice were irradiated locally up to 10 Gy for 3 consecutive days or a single dose of 30 Gy using a cesium source. Studies of dynamic change of the tumor microenvironment in irradiated versus untreated tumors revealed that there was no obvious change on IL-10, IL-6 and TGF-β expression or production, whereas increased TNF-α level within the first 2 weeks of irradiation. The increased TNF-α level is exactly right timing window for DCs injection, corresponding to the significant elevation of intratumoral CD8+ T infiltration and the regression of tumor size. With attention to scheduling, combination X-ray with DCs i.t. injection may offer a practical strategy to improve treatment outcomes.
Collapse
|
132
|
Chajon E, Castelli J, Marsiglia H, De Crevoisier R. The synergistic effect of radiotherapy and immunotherapy: A promising but not simple partnership. Crit Rev Oncol Hematol 2017; 111:124-132. [PMID: 28259287 DOI: 10.1016/j.critrevonc.2017.01.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
Radiotherapy (RT) is one of the main components in the treatment of cancer. The better understanding of the immune mechanisms associated with tumor establishment and how RT affects inflammation and immunity has led to the development of novel treatment strategies. Several preclinical studies support the use of RT in combination with immunotherapy obtaining better local and systemic tumor control. Current ongoing studies will provide information about the optimal RT approach, but the development of reliable predictors of the response from the preclinical and the early phases of clinical studies is necessary to avoid discarding treatment strategies with significant clinical benefit. This review summarize the current concepts of the synergism between RT and immunotherapy, the molecular effects of RT in the tumor microenvironment, their impact on immune activation and its potential clinical applications in trials exploring this important therapeutic opportunity. Finally, the potential predictors of clinical response are discussed.
Collapse
Affiliation(s)
- Enrique Chajon
- Department of Radiation Oncology, Centre Eugene Marquis, Rennes, F-35000, France.
| | - Joël Castelli
- Department of Radiation Oncology, Centre Eugene Marquis, Rennes, F-35000, France; Université de Rennes 1, LTSI, INSERM, Rennes U1099, France
| | - Hugo Marsiglia
- Department of Radiation Oncology, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago de Chile, 7500921, Chile
| | - Renaud De Crevoisier
- Department of Radiation Oncology, Centre Eugene Marquis, Rennes, F-35000, France; Université de Rennes 1, LTSI, INSERM, Rennes U1099, France
| |
Collapse
|
133
|
Weichselbaum RR, Liang H, Deng L, Fu YX. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 2017; 14:365-379. [DOI: 10.1038/nrclinonc.2016.211] [Citation(s) in RCA: 564] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
134
|
Beirão BCB, Raposo T, Jain S, Hupp T, Argyle DJ. Challenges and opportunities for monoclonal antibody therapy in veterinary oncology. Vet J 2016; 218:40-50. [PMID: 27938708 DOI: 10.1016/j.tvjl.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/15/2016] [Accepted: 11/13/2016] [Indexed: 12/22/2022]
Abstract
Monoclonal antibodies (mAbs) have come to dominate the biologics market in human cancer therapy. Nevertheless, in veterinary medicine, very few clinical trials have been initiated using this form of therapy. Some of the advantages of mAb therapeutics over conventional drugs are high specificity, precise mode of action and long half-life, which favour infrequent dosing of the antibody. Further advancement in the field of biomedical sciences has led to the production of different forms of antibodies, such as single chain antibody fragment, Fab, bi-specific antibodies and drug conjugates for use in diagnostic and therapeutic purposes. This review describes the potential for mAbs in veterinary oncology in supporting both diagnosis and therapy of cancer. The technical and financial hurdles to facilitate clinical acceptance of mAbs are explored and insights into novel technologies and targets that could support more rapid clinical development are offered.
Collapse
Affiliation(s)
- Breno C B Beirão
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, EH25 9RG, United Kingdom
| | - Teresa Raposo
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, EH25 9RG, United Kingdom; Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, 5001-801, Portugal
| | - Saurabh Jain
- Edinburgh Cancer Research Centre, University of Edinburgh, EH4 2XR, United Kingdom
| | - Ted Hupp
- Edinburgh Cancer Research Centre, University of Edinburgh, EH4 2XR, United Kingdom
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, EH25 9RG, United Kingdom.
| |
Collapse
|
135
|
Palma DA, Louie AV, Rodrigues GB. New Strategies in Stereotactic Radiotherapy for Oligometastases. Clin Cancer Res 2016; 21:5198-204. [PMID: 26626571 DOI: 10.1158/1078-0432.ccr-15-0822] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with metastatic solid tumors are usually treated with palliative intent. Systemic therapy and palliative radiation are often used, with the goals of prolonging survival or maintaining quality of life, but not of cure. In contrast to this paradigm, the theory of oligometastasis suggests that some patients who have a small number of metastases may be amenable to cure if all lesions can be eradicated. Aggressive treatment of patients with oligometastases, using either surgery or radiotherapy, has become more common in the past decade, yet in most situations, no randomized evidence is available to support such an approach. Stereotactic ablative radiotherapy (SABR) is a novel treatment for oligometastases, delivering large doses of radiotherapy in only a few treatments, with excellent rates of local control, and appears to be an excellent noninvasive alternative to surgical resection of metastases. This article reviews recent biologic and clinical data that support the existence of the oligometastatic state and discusses gaps in this evidence base. The emerging role for SABR in the management of this challenging patient population is discussed with a focus on ongoing clinical trials in an attempt to improve overall survival, delay progression, or induce immunologic anticancer effects through the abscopal effect.
Collapse
Affiliation(s)
- David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada.
| | - Alexander V Louie
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - George B Rodrigues
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
136
|
Popp I, Grosu AL, Niedermann G, Duda DG. Immune modulation by hypofractionated stereotactic radiation therapy: Therapeutic implications. Radiother Oncol 2016; 120:185-94. [PMID: 27495145 DOI: 10.1016/j.radonc.2016.07.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/17/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
Stereotactic body radiation therapy (SBRT) has become an attractive treatment modality and a safe, non-invasive alternative to surgery to control primary or secondary malignant tumors. While emphasis has been on the local tumor control as a treatment objective for SBRT, the rare but intriguing observations of abscopal (or out-of-field) effects have pointed to the exciting possibility of activating anti-tumor immunity by using high-dose radiation. This review summarizes the available evidence supporting immune modulation by SBRT alone, as well as its potential combination with immunotherapy. Promising preclinical research has revealed an array of immune changes following SBRT, which could affect the balance between anti-tumor immunity and tumor-promoting immunosuppression. However, shifting this balance in the clinical setting to obtain survival benefits has rarely been achieved so far, emphasizing the need for a better understanding of the interactions between high-dose radiotherapy and immunity or immunotherapy. Nevertheless, the combination of SBRT with immunotherapy, particularly with immune checkpoint blockers, has the clear potential to substantially increase the rate of abscopal effects. This warrants further research in this area, both in mechanistic preclinical studies and in clinical trials incorporating correlative studies.
Collapse
Affiliation(s)
- Ilinca Popp
- Department of Radiation Oncology, University Medical Center Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Anca Ligia Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, University Medical Center Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Dan G Duda
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
137
|
Formenti SC, Demaria S, Barcellos-Hoff MH, McBride WH. Subverting misconceptions about radiation therapy. Nat Immunol 2016; 17:345. [PMID: 27002831 DOI: 10.1038/ni.3363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - William H McBride
- Division of Molecular and Cellular Oncology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
138
|
Formenti SC. The Pace of Progress in Radiation and Immunotherapy. Int J Radiat Oncol Biol Phys 2016; 95:1257-8. [DOI: 10.1016/j.ijrobp.2016.02.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 11/29/2022]
|
139
|
Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, Liu A, Sankey EW, Tam A, Xu H, Mathios D, Jackson CM, Harris-Bookman S, Garzon-Muvdi T, Sheu M, Martin AM, Tyler BM, Tran PT, Ye X, Olivi A, Taube JM, Burger PC, Drake CG, Brem H, Pardoll DM, Lim M. Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas. Clin Cancer Res 2016; 23:124-136. [PMID: 27358487 DOI: 10.1158/1078-0432.ccr-15-1535] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 05/01/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Checkpoint molecules like programmed death-1 (PD-1) and T-cell immunoglobulin mucin-3 (TIM-3) are negative immune regulators that may be upregulated in the setting of glioblastoma multiforme. Combined PD-1 blockade and stereotactic radiosurgery (SRS) have been shown to improve antitumor immunity and produce long-term survivors in a murine glioma model. However, tumor-infiltrating lymphocytes (TIL) can express multiple checkpoints, and expression of ≥2 checkpoints corresponds to a more exhausted T-cell phenotype. We investigate TIM-3 expression in a glioma model and the antitumor efficacy of TIM-3 blockade alone and in combination with anti-PD-1 and SRS. EXPERIMENTAL DESIGN C57BL/6 mice were implanted with murine glioma cell line GL261-luc2 and randomized into 8 treatment arms: (i) control, (ii) SRS, (iii) anti-PD-1 antibody, (iv) anti-TIM-3 antibody, (v) anti-PD-1 + SRS, (vi) anti-TIM-3 + SRS, (vii) anti-PD-1 + anti-TIM-3, and (viii) anti-PD-1 + anti-TIM-3 + SRS. Survival and immune activation were assessed. RESULTS Dual therapy with anti-TIM-3 antibody + SRS or anti-TIM-3 + anti-PD-1 improved survival compared with anti-TIM-3 antibody alone. Triple therapy resulted in 100% overall survival (P < 0.05), a significant improvement compared with other arms. Long-term survivors demonstrated increased immune cell infiltration and activity and immune memory. Finally, positive staining for TIM-3 was detected in 7 of 8 human GBM samples. CONCLUSIONS This is the first preclinical investigation on the effects of dual PD-1 and TIM-3 blockade with radiation. We also demonstrate the presence of TIM-3 in human glioblastoma multiforme and provide preclinical evidence for a novel treatment combination that can potentially result in long-term glioma survival and constitutes a novel immunotherapeutic strategy for the treatment of glioblastoma multiforme. Clin Cancer Res; 23(1); 124-36. ©2016 AACR.
Collapse
Affiliation(s)
- Jennifer E Kim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Mira A Patel
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | | | - Eileen S Kim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Debebe Theodros
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Esteban Velarde
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Eric W Sankey
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Ada Tam
- Flow Cytometry Core, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Haiying Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | | | | | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Mary Sheu
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland
| | - Allison M Martin
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Betty M Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Phuoc T Tran
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Janis M Taube
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Peter C Burger
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Charles G Drake
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
140
|
Filippi AR, Fava P, Badellino S, Astrua C, Ricardi U, Quaglino P. Radiotherapy and immune checkpoints inhibitors for advanced melanoma. Radiother Oncol 2016; 120:1-12. [PMID: 27345592 DOI: 10.1016/j.radonc.2016.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/26/2016] [Accepted: 06/08/2016] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The therapeutic landscape of metastatic melanoma drastically changed after the introduction of targeted therapies and immunotherapy, in particular immune checkpoints inhibitors (ICI). In recent years, positive effects on the immune system associated to radiotherapy (RT) were discovered, and radiation has been tested in combination with ICI in both pre-clinical and clinical studies (many of them still ongoing). We here summarize the rationale and the preliminary clinical results of this approach. MATERIALS AND METHODS In the first part of this review article, redacted with narrative non-systematic methodology, we describe the clinical results of immune checkpoints blockade in melanoma as well as the biological basis for the combination of ICI with RT; in the second part, we systematically review scientific publications reporting on the clinical results of the combination of ICI and RT for advanced melanoma. RESULTS The biological and mechanistic rationale behind the combination of ICI and radiation is well supported by several preclinical findings. Retrospective observational series and few prospective trials support the potential synergistic effect between radiation and ICI for metastatic melanoma. CONCLUSION RT may potentiate anti-melanoma activity of ICI by enhancing response on both target and non-target lesions. Several prospective trials are ongoing with the aim of further exploring this combination in the clinical setting, hopefully confirming initial observations and opening a new therapeutic window for advanced melanoma patients.
Collapse
Affiliation(s)
| | - Paolo Fava
- Department of Medical Sciences, Dermatology/Oncology, University of Torino, Italy
| | - Serena Badellino
- Department of Oncology, Radiation Oncology, University of Torino, Italy
| | - Chiara Astrua
- Department of Medical Sciences, Dermatology/Oncology, University of Torino, Italy
| | - Umberto Ricardi
- Department of Oncology, Radiation Oncology, University of Torino, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Dermatology/Oncology, University of Torino, Italy
| |
Collapse
|
141
|
Aly Z, Peereboom DM. Combination of Radiotherapy and Targeted Agents in Brain Metastasis: An Update. Curr Treat Options Neurol 2016; 18:32. [PMID: 27225542 DOI: 10.1007/s11940-016-0416-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OPINION STATEMENT The combination of radiation therapy and targeted agents (molecular inhibitors or immunotherapy) represents an opportunity to improve the outcomes of patients with brain metastases. The combination of whole-brain radiation therapy (WBRT) with targeted agents takes advantage of radiosensitization, while the combination with stereotactic radiosurgery (SRS) may allow one to substitute an effective systemic agent for adjuvant WBRT, the historical standard of care. This strategy may in turn allow the promotion of secondary prevention paradigms with possibly less cognitive toxicity. At present, the combination of targeted therapy with SRS rather than with WBRT is the more viable option although both avenues will likely have a role in the future management of brain metastases. Patients should be encouraged to enter clinical trials since the off-study use of these combinations will delay the advancement of the field. Caution is advised in the combination of radiation and targeted agents as unexpected toxicities can occur. Clinicians should avail themselves of clinical trials in order to offer patients these promising options and to move the field forward. In the absence of a clinical trial, we recommend the combination of SRS with targeted agents and deferred WBRT. Small, asymptomatic brain metastases may be best managed with single-modality targeted agents with deferred radiation therapy, preferably on a clinical trial. Advances in targeted therapies combined with radiation therapy will most likely improve local control and hopefully the quality of life and survival of patients with brain metastasis.
Collapse
Affiliation(s)
- Zarmeneh Aly
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Ave. R35, Cleveland, OH, 44195, USA
| | - David M Peereboom
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Ave. R35, Cleveland, OH, 44195, USA.
| |
Collapse
|
142
|
Patel MA, Kim JE, Theodros D, Tam A, Velarde E, Kochel CM, Francica B, Nirschl TR, Ghasemzadeh A, Mathios D, Harris-Bookman S, Jackson CC, Jackson C, Ye X, Tran PT, Tyler B, Coric V, Selby M, Brem H, Drake CG, Pardoll DM, Lim M. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer 2016; 4:28. [PMID: 27190629 PMCID: PMC4869343 DOI: 10.1186/s40425-016-0132-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022] Open
Abstract
Background Glioblastoma (GBM) is a poorly immunogenic neoplasm treated with focused radiation. Immunotherapy has demonstrated synergistic survival effects with stereotactic radiosurgery (SRS) in murine GBM. GITR is a co-stimulatory molecule expressed constitutively on regulatory T-cells and by effector T-cells upon activation. We tested the hypothesis that anti-GITR monoclonal antibody (mAb) and SRS together would confer an immune-mediated survival benefit in glioma using the orthotopic GL261 glioma model. Methods Mice received SRS and anti-GITR 10 days after implantation. The anti-GITR mAbs tested were formatted as mouse IgG1 D265A (anti-GITR (1)) and IgG2a (anti-GITR (2a)) isotypes. Mice were randomized to four treatment groups: (1) control; (2) SRS; (3) anti-GITR; (4) anti-GITR/SRS. SRS was delivered to the tumor in one fraction, and mice were treated with mAb thrice. Mice were euthanized on day 21 to analyze the immunologic profile of tumor, spleen, and tumor draining lymph nodes. Results Anti-GITR (1)/SRS significantly improved survival over either treatment alone (p < .0001) with a cure rate of 24 % versus 0 % in a T-lymphocyte-dependent manner. There was elevated intratumoral CD4+ effector cell infiltration relative to Treg infiltration in mice treated with anti-GITR (1)/SRS, as well as significantly elevated IFNγ and IL-2 production by CD4+ T-cells and elevated IFNγ and TNFα production by CD8+ T-cells. There was increased mRNA expression of M1 markers and decreased expression of M2 markers in tumor infiltrating mononuclear cells. The anti-GITR (2a)/SRS combination did not improve survival, induce tumor regression, or result in Treg depletion. Conclusions These findings provide preclinical evidence for the use of anti-GITR (1) non-depleting antibodies in combination with SRS in GBM. Electronic supplementary material The online version of this article (doi:10.1186/s40425-016-0132-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mira A Patel
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jennifer E Kim
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Debebe Theodros
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ada Tam
- Department of Oncology, Baltimore, USA
| | | | | | | | | | | | - Dimitrios Mathios
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Sarah Harris-Bookman
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Christopher C Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Christina Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Xiaobu Ye
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | - Phuoc T Tran
- Department of Oncology, Baltimore, USA.,Department Radiation Oncology, Baltimore, USA.,and the Brady Urological Institute, Baltimore, USA
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | | | - Mark Selby
- Bristol-Myers Squibb Company, San Francisco, CA USA
| | - Henry Brem
- The Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| | | | | | - Michael Lim
- The Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. Phipps Building Rm 123, Baltimore, 21287 MD USA
| |
Collapse
|
143
|
Morris ZS, Guy EI, Francis DM, Gressett MM, Werner LR, Carmichael LL, Yang RK, Armstrong EA, Huang S, Navid F, Gillies SD, Korman A, Hank JA, Rakhmilevich AL, Harari PM, Sondel PM. In Situ Tumor Vaccination by Combining Local Radiation and Tumor-Specific Antibody or Immunocytokine Treatments. Cancer Res 2016; 76:3929-41. [PMID: 27197149 DOI: 10.1158/0008-5472.can-15-2644] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/04/2016] [Indexed: 01/06/2023]
Abstract
Interest in combining radiotherapy and immune checkpoint therapy is growing rapidly. In this study, we explored a novel combination of this type to augment antitumor immune responses in preclinical murine models of melanoma, neuroblastoma, and head and neck squamous cell carcinoma. Cooperative effects were observed with local radiotherapy and intratumoral injection of tumor-specific antibodies, arising in part from enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). We could improve this response by combining radiation with intratumoral injection of an IL2-linked tumor-specific antibody (termed here an immunocytokine), resulting in complete regression of established tumors in most animals associated with a tumor-specific memory T-cell response. Given the T-cell response elicited by combined local radiation and intratumoral immunocytokine, we tested the potential benefit of adding this treatment to immune checkpoint blockade. In mice bearing large primary tumors or disseminated metastases, the triple-combination of intratumoral immunocytokine, radiation, and systemic anti-CTLA-4 improved primary tumor response and animal survival compared with combinations of any two of these three interventions. Taken together, our results show how combining radiation and intratumoral immunocytokine in murine tumor models can eradicate large tumors and metastases, eliciting an in situ vaccination effect that can be leveraged further by T-cell checkpoint blockade, with immediate implications for clinical evaluation. Cancer Res; 76(13); 3929-41. ©2016 AACR.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin.
| | - Emily I Guy
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - David M Francis
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Monica M Gressett
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Lauryn R Werner
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Lakeesha L Carmichael
- Department of Biostatistics and Bioinformatics, University of Wisconsin, Madison, Wisconsin
| | - Richard K Yang
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Eric A Armstrong
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Shyhmin Huang
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Fariba Navid
- Department of Oncology, St. Jude Children's Hospital, Memphis, Tennessee
| | | | | | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | | | - Paul M Harari
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin. Department of Pediatrics, University of Wisconsin, Madison, Wisconsin. Department of Genetics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
144
|
Ménager J, Gorin JB, Fichou N, Gouard S, Morgenstern A, Bruchertseifer F, Davodeau F, Kraeber-Bodéré F, Chérel M, Gaschet J, Guilloux Y. [Alpha-Radioimmunotherapy: principle and relevance in anti-tumor immunity]. Med Sci (Paris) 2016; 32:362-9. [PMID: 27137693 DOI: 10.1051/medsci/20163204014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alpha-radioimmunotherapy (α-RIT) is a targeted anti-tumor therapy using usually a monoclonal antibody specific for a tumor antigen that is coupled to an α-particle emitter. α-emitters represent an ideal tool to eradicate disseminated tumors or metastases. Recent data demonstrate that ionizing radiation in addition to its direct cytotoxic ability can also induce an efficient anti-tumor immunity. This suggests that biologic effects on irradiated tissues could be used to potentiate immunotherapy efficacy and opens the way for development of new therapies combining α-RIT and different types of immunotherapy.
Collapse
Affiliation(s)
- Jérémie Ménager
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Jean-Baptiste Gorin
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Nolwenn Fichou
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Sébastien Gouard
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Alfred Morgenstern
- European Commission, Joint research centre, Institute for transuranium elements, Karlsruhe, Allemagne
| | - Frank Bruchertseifer
- European Commission, Joint research centre, Institute for transuranium elements, Karlsruhe, Allemagne
| | - François Davodeau
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France - Institut de Cancérologie de l'Ouest, Saint-Herblain, France - CHU Nantes, département de médecine nucléaire, Nantes, France
| | - Michel Chérel
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France - Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Joëlle Gaschet
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| | - Yannick Guilloux
- Centre de Recherche en Cancérologie Nantes/Angers (CRCNA) - UMR 892 Inserm, 8, quai Moncousu, BP 70721, 44007 Nantes Cedex 1, France - 6299 CNRS, Nantes, France - Université de Nantes, Nantes, France
| |
Collapse
|
145
|
Alomari AK, Cohen J, Vortmeyer AO, Chiang A, Gettinger S, Goldberg S, Kluger HM, Chiang VL. Possible Interaction of Anti-PD-1 Therapy with the Effects of Radiosurgery on Brain Metastases. Cancer Immunol Res 2016; 4:481-7. [PMID: 26994250 DOI: 10.1158/2326-6066.cir-15-0238] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/16/2016] [Indexed: 11/16/2022]
Abstract
Delayed radiation-induced vasculitic leukoencephalopathy related to stereotactic radiosurgery (SRS) of brain metastases has been reported to manifest clinically 9 to 18 months after treatment. Immune-modulating therapies have been introduced to treatment regimens for malignancies with metastatic predilection to the brain. The interaction of these systemic therapies with other modalities of treatment for brain metastases, namely, SRS, has not been fully characterized. We report two patients with metastatic malignancies to the brain who received SRS followed by immunotherapy with monoclonal antibodies (mAb) to programmed death 1 (PD-1). Both patients appeared to have early clinical and radiologic progression of their treated lesions, which was highly suspicious for tumor progression. Both patients underwent surgical resection of their lesions and the material was submitted for histopathologic examination. Pathologic examination in both cases showed predominantly radiation-induced changes characterized by reactive astrocytosis and vascular wall infiltration by T lymphocytes. The accelerated response to SRS in these two patients was temporally related to the initiation of immunotherapy. We propose a possible biologic interaction between SRS and the PD-1 mAbs. Additionally, awareness of this potential occurrence is critical for accurate interpretation and proper management of clinical and radiologic findings in these patients. Cancer Immunol Res; 4(6); 481-7. ©2016 AACR.
Collapse
Affiliation(s)
- Ahmed K Alomari
- Department of Pathology, Yale University, School of Medicine, New Haven, Connecticut.
| | - Justine Cohen
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Alexander O Vortmeyer
- Department of Pathology, Yale University, School of Medicine, New Haven, Connecticut
| | - Anne Chiang
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Scott Gettinger
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Sarah Goldberg
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University, School of Medicine, New Haven, Connecticut
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University, School of Medicine, New Haven, Connecticut
| |
Collapse
|
146
|
Bernstein MB, Krishnan S, Hodge JW, Chang JY. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol 2016; 13:516-24. [PMID: 26951040 DOI: 10.1038/nrclinonc.2016.30] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conventional radiotherapy, in addition to its well-established tumoricidal effects, can also activate the host immune system. Radiation therapy modulates tumour phenotypes, enhances antigen presentation and tumour immunogenicity, increases production of cytokines and alters the tumour microenvironment, enabling destruction of the tumour by the immune system. Investigating the combination of radiotherapy with immunotherapeutic agents, which also promote the host antitumour immune response is, therefore, a logical progression. As the spectrum of clinical use of stereotactic radiotherapy continues to broaden, the question arose as to whether the ablative radiation doses used can also stimulate immune responses and, if so, whether we can amplify these effects by combining immunotherapy and stereotactic ablative radiotherapy (SABR). In this Perspectives article, we explore the preclinical and clinical evidence supporting activation of the immune system following SABR. We then examine studies that provide data on the effectiveness of combining these two techniques - immunotherapy and SABR - in an approach that we have termed 'ISABR'. Lastly, we provide general guiding principles for the development of future clinical trials to investigate the efficacy of ISABR in the hope of generating further interest in these exciting developments.
Collapse
Affiliation(s)
- Michael B Bernstein
- Division of Radiation Oncology, MD Anderson Cancer Center, Unit 97, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Sunil Krishnan
- Division of Radiation Oncology, MD Anderson Cancer Center, Unit 97, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Building 10, Room 8B13, Bethesda, Maryland 20892-1750, USA
| | - Joe Y Chang
- Division of Radiation Oncology, MD Anderson Cancer Center, Unit 97, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| |
Collapse
|
147
|
Safi S, Beckhove P, Warth A, Benner A, Roeder F, Rieken S, Debus J, Dienemann H, Hoffmann H, Huber PE. A randomized phase II study of radiation induced immune boost in operable non-small cell lung cancer (RadImmune trial). BMC Cancer 2015; 15:988. [PMID: 26686362 PMCID: PMC4684916 DOI: 10.1186/s12885-015-2006-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/15/2015] [Indexed: 12/25/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer deaths worldwide. Surgery, radiotherapy at conventional and high dose and chemotherapy are the mainstay for lung cancer treatment. Insufficient migration and activation of tumour specific effector T cells seem to be important reasons for inadequate host anti-tumour immune response. Ionizing radiation can induce a variety of immune responses. The goal of this randomized trial is to assess if a preoperative single fraction low dose radiation is able to improve anti-tumour immune response in operable early stage lung cancer. Methods/Design This trial has been designed as an investigator-initiated, prospective, randomized, 2-armed phase II trial. Patients who are candidates for elective resection of early stage non-small cell lung cancer will be randomized into 2 arms. A total of 36 patients will be enrolled. The patients receive either 2 Gy or no radiation prescribed to their primary tumour. Radiation will be delivered by external beam radiotherapy using 3D radiotherapy or intensity-modulated radiation technique (IMRT) 7 days prior to surgical resection. The primary objective is to compare CD8+ T cell counts detected by immunohistochemistry in resected tumours following preoperative radiotherapy versus no radiotherapy. Secondary objectives include the association between CD8+ T cell counts and progression free survival, the correlation of CD8+ T cell counts quantified by immunohistochemistry and flow cytometry, local tumour control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality. Further, frequencies of tumour reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. Discussion This unique intervention combining preoperative low dose radiation and surgical removal of early stage non-small cell lung cancer is designed to address the problem of inadequate host anti-tumour immune response. If successful, this study may affect the role of radiotherapy in lung cancer treatment. Trial registration NCT02319408; Registration: December 29, 2014.
Collapse
Affiliation(s)
- Seyer Safi
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.
| | - Philipp Beckhove
- Translational Immunology Unit, German Cancer Research Center, Heidelberg, Germany.
| | - Arne Warth
- Division of Thoracic Pathology, Institute of Pathology, Heidelberg, Germany.
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany.
| | - Falk Roeder
- Departments of Molecular and Radiation Oncology, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany. .,Present address: Department Radiation Oncology, University Hospital Munich (LMU), Munich, Germany.
| | - Stefan Rieken
- Departments of Molecular and Radiation Oncology, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany.
| | - Juergen Debus
- Departments of Molecular and Radiation Oncology, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany.
| | - Hendrik Dienemann
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.
| | - Hans Hoffmann
- Department of Thoracic Surgery, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany.
| | - Peter E Huber
- Departments of Molecular and Radiation Oncology, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
148
|
Vanpouille-Box C, Pilones KA, Wennerberg E, Formenti SC, Demaria S. In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 2015; 33:7415-7422. [PMID: 26148880 PMCID: PMC4684480 DOI: 10.1016/j.vaccine.2015.05.105] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022]
Abstract
Targeting immune checkpoint receptors has emerged as an effective strategy to induce immune-mediated cancer regression in the subset of patients who have significant pre-existing anti-tumor immunity. For the remainder, effective anti tumor responses may require vaccination. Radiotherapy, traditionally used to achieve local tumor control, has acquired a new role, that of a partner for immunotherapy. Ionizing radiation has pro-inflammatory effects that facilitate tumor rejection. Radiation alters the tumor to enhance the concentration of effector T cells via induction of chemokines, cytokines and adhesion molecules. In parallel, radiation can induce an immunogenic death of cancer cells, promoting cross-presentation of tumor-derived antigens by dendritic cells to T cells. Newly generated anti-tumor immune responses have been demonstrated post-radiation in both murine models and occasional patients, supporting the hypothesis that the irradiated tumor can become an in situ vaccine. It is in this role, that radiation can be applied to induce anti-tumor T cells in lymphocyte-poor tumors, and possibly benefit patients who would otherwise fail to respond to immune checkpoint inhibitors. This review summarizes preclinical and clinical data demonstrating that radiation acts in concert with antibodies targeting the immune checkpoint cytotoxic T-lymphocyte antigen-4 (CTLA-4), to induce therapeutically effective anti-tumor T cell responses in tumors otherwise non responsive to anti-CTLA-4 therapy.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Pathology, New York University School of Medicine, and NYU Cancer Institute, New York, NY 10016, USA
| | - Karsten A Pilones
- Department of Pathology, New York University School of Medicine, and NYU Cancer Institute, New York, NY 10016, USA
| | - Erik Wennerberg
- Department of Pathology, New York University School of Medicine, and NYU Cancer Institute, New York, NY 10016, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, New York University School of Medicine, and NYU Cancer Institute, New York, NY 10016, USA
| | - Sandra Demaria
- Department of Pathology, New York University School of Medicine, and NYU Cancer Institute, New York, NY 10016, USA; Department of Radiation Oncology, New York University School of Medicine, and NYU Cancer Institute, New York, NY 10016, USA.
| |
Collapse
|
149
|
Huang Y, Chen W, Teh BS, Butler EB. Combining radiotherapy and immunotherapy for prostate cancer: two decades of research from preclinical to clinical trials. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-015-0240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
150
|
Caruso JP, Cohen-Inbar O, Bilsky MH, Gerszten PC, Sheehan JP. Stereotactic radiosurgery and immunotherapy for metastatic spinal melanoma. Neurosurg Focus 2015; 38:E6. [PMID: 25727228 DOI: 10.3171/2014.11.focus14716] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The management of metastatic spinal melanoma involves maximizing local control, preventing recurrence, and minimizing treatment-associated toxicity and spinal cord damage. Additionally, therapeutic measures should promote mechanical stability, facilitate rehabilitation, and promote quality of life. These objectives prove difficult to achieve given melanoma's elusive nature, radioresistant and chemoresistant histology, vascular character, and tendency for rapid and early metastasis. Different therapeutic modalities exist for metastatic spinal melanoma treatment, including resection (definitive, debulking, or stabilization procedures), stereotactic radiosurgery, and immunotherapeutic techniques, but no single treatment modality has proven fully effective. The authors present a conceptual overview and critique of these techniques, assessing their effectiveness, separately and combined, in the treatment of metastatic spinal melanoma. They provide an up-to-date guide for multidisciplinary treatment strategies. Protocols that incorporate specific, goal-defined surgery, immunotherapy, and stereotactic radiosurgery would be beneficial in efforts to maximize local control and minimize toxicity.
Collapse
|