101
|
Ponikowska B, Suchocki T, Paleczny B, Olesinska M, Powierza S, Borodulin-Nadzieja L, Reczuch K, von Haehling S, Doehner W, Anker SD, Cleland JGF, Jankowska EA. Iron status and survival in diabetic patients with coronary artery disease. Diabetes Care 2013; 36:4147-56. [PMID: 24130349 PMCID: PMC3836160 DOI: 10.2337/dc13-0528] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the impact of iron status on survival in patients with type 2 diabetes and coronary artery disease (CAD). RESEARCH DESIGN AND METHODS Serum ferritin, transferrin saturation (Tsat), and soluble transferrin receptor (sTfR) were measured in 287 patients with type 2 diabetes and stable CAD (65 ± 9 years of age, 78% men). RESULTS During a mean follow-up of 45 ± 19 months, there were 59 (21%) deaths and 60 (21%) cardiovascular hospitalizations. Both serum ferritin and sTfR strongly predicted 5-year all-cause mortality rates, independently of other variables (including hemoglobin, measures of renal function, inflammation, and neurohormonal activation). There was an exponential relationship between sTfR and mortality (adjusted hazard ratio [HR] per 1 log mg/L: 4.24 [95% CI 1.43-12.58], P = 0.01), whereas the relationship between ferritin and mortality was U-shaped (for the lowest and the highest quintiles vs. the middle quintile [reference group], respectively: adjusted HR 7.18 [95% CI 2.03-25.46], P = 0.002, and adjusted HR 5.12 [1.48-17.73], P = 0.01). Similar patterns were observed for the composite outcome of all-cause mortality or cardiovascular hospitalization, and in these multivariable models, low Tsat was related to unfavorable outcome. CONCLUSIONS Both low and high serum ferritin (possibly reflecting depleted and excessive iron stores, respectively) along with high serum sTfR (reflecting reduced metabolically available iron) identify patients with type 2 diabetes and CAD who have a poor prognosis.
Collapse
|
102
|
Abstract
Iron is essential for all known life due to its redox properties; however, these same properties can also lead to its toxicity in overload through the production of reactive oxygen species. Robust systemic and cellular control are required to maintain safe levels of iron, and the liver seems to be where this regulation is mainly located. Iron misregulation is implicated in many diseases, and as our understanding of iron metabolism improves, the list of iron-related disorders grows. Recent developments have resulted in greater knowledge of the fate of iron in the body and have led to a detailed map of its metabolism; however, a quantitative understanding at the systems level of how its components interact to produce tight regulation remains elusive. A mechanistic computational model of human liver iron metabolism, which includes the core regulatory components, is presented here. It was constructed based on known mechanisms of regulation and on their kinetic properties, obtained from several publications. The model was then quantitatively validated by comparing its results with previously published physiological data, and it is able to reproduce multiple experimental findings. A time course simulation following an oral dose of iron was compared to a clinical time course study and the simulation was found to recreate the dynamics and time scale of the systems response to iron challenge. A disease state simulation of haemochromatosis was created by altering a single reaction parameter that mimics a human haemochromatosis gene (HFE) mutation. The simulation provides a quantitative understanding of the liver iron overload that arises in this disease. This model supports and supplements understanding of the role of the liver as an iron sensor and provides a framework for further modelling, including simulations to identify valuable drug targets and design of experiments to improve further our knowledge of this system. Iron is an essential nutrient required for healthy life but, in excess, is the cause of debilitating and even fatal conditions. The most common genetic disorder in humans caused by a mutation, haemochromatosis, results in an iron overload in the liver. Indeed, the liver plays a central role in the regulation of iron. Recently, an increasing amount of detail has been discovered about molecules related to iron metabolism, but an understanding of how they work together and regulate iron levels (in healthy people) or fail to do it (in disease) is still missing. We present a mathematical model of the regulation of liver iron metabolism that provides explanations of its dynamics and allows further hypotheses to be formulated and later tested in experiments. Importantly, the model reproduces accurately the healthy liver iron homeostasis and simulates haemochromatosis, showing how the causative mutation leads to iron overload. We investigate how best to control iron regulation and identified reactions that can be targets of new medicines to treat iron overload. The model provides a virtual laboratory for investigating iron metabolism and improves understanding of the method by which the liver senses and controls iron levels.
Collapse
|
103
|
Dao MC, Meydani SN. Iron biology, immunology, aging, and obesity: four fields connected by the small peptide hormone hepcidin. Adv Nutr 2013; 4:602-17. [PMID: 24228190 PMCID: PMC3823507 DOI: 10.3945/an.113.004424] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Iron status and immune response become impaired in situations that involve chronic inflammation, such as obesity or aging. Little is known, however, about the additional burden that obesity may place on the iron status and immune response in the elderly. This question is relevant given the rising numbers of elderly obese (BMI >30 kg/m(2)) individuals and the high prevalence of iron deficiency worldwide. Iron is necessary for proper function of both the innate and adaptive immune system. Hepcidin, a peptide hormone that regulates cellular iron export, is essential for the maintenance of iron homeostasis. Therefore, since immune cells require iron for proper function hepcidin may also play an important role in immune response. In this review, we summarize the evidence for hepcidin as a link between the fields of gerontology, obesity, iron biology, and immunology. We also identify several gaps in knowledge and unanswered questions pertaining to iron homeostasis and immunity in obese populations. Finally, we review studies that have shown the impact of weight loss, focusing on calorie restriction, iron homeostasis, and immunity. These studies are important both in elucidating mechanistic links between obesity and health impairments and identifying possible approaches to target immune impairment and iron deficiency as comorbidities of obesity.
Collapse
Affiliation(s)
- Maria Carlota Dao
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Nutrition Immunology Laboratory, Boston, MA
| | - Simin Nikbin Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Nutrition Immunology Laboratory, Boston, MA
| |
Collapse
|
104
|
Richardson CL, Delehanty LL, Bullock GC, Rival CM, Tung KS, Kimpel DL, Gardenghi S, Rivella S, Goldfarb AN. Isocitrate ameliorates anemia by suppressing the erythroid iron restriction response. J Clin Invest 2013; 123:3614-23. [PMID: 23863711 DOI: 10.1172/jci68487] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/09/2013] [Indexed: 12/22/2022] Open
Abstract
The unique sensitivity of early red cell progenitors to iron deprivation, known as the erythroid iron restriction response, serves as a basis for human anemias globally. This response impairs erythropoietin-driven erythropoiesis and underlies erythropoietic repression in iron deficiency anemia. Mechanistically, the erythroid iron restriction response results from inactivation of aconitase enzymes and can be suppressed by providing the aconitase product isocitrate. Recent studies have implicated the erythroid iron restriction response in anemia of chronic disease and inflammation (ACDI), offering new therapeutic avenues for a major clinical problem; however, inflammatory signals may also directly repress erythropoiesis in ACDI. Here, we show that suppression of the erythroid iron restriction response by isocitrate administration corrected anemia and erythropoietic defects in rats with ACDI. In vitro studies demonstrated that erythroid repression by inflammatory signaling is potently modulated by the erythroid iron restriction response in a kinase-dependent pathway involving induction of the erythroid-inhibitory transcription factor PU.1. These results reveal the integration of iron and inflammatory inputs in a therapeutically tractable erythropoietic regulatory circuit.
Collapse
Affiliation(s)
- Chanté L Richardson
- Department of Pathology, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Hematological disorders following gastric bypass surgery: emerging concepts of the interplay between nutritional deficiency and inflammation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:205467. [PMID: 23984326 PMCID: PMC3741944 DOI: 10.1155/2013/205467] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/17/2023]
Abstract
Obesity and the associated metabolic syndrome are among the most common and detrimental metabolic diseases of the modern era, affecting over 50% of the adult population in the United States. Surgeries designed to promote weight loss, known as bariatric surgery, typically involve a gastric bypass procedure and have shown high success rates for treating morbid obesity. However, following gastric bypass surgery, many patients develop chronic anemia, most commonly due to iron deficiency. Deficiencies of vitamins B1, B12, folate, A, K, D, and E and copper have also been reported after surgery. Copper deficiency can cause hematological abnormalities with or without neurological complications. Despite oral supplementation and normal serum concentrations of iron, copper, folate, and vitamin B12, some patients present with persistent anemia after surgery. The evaluation of hematologic disorders after gastric bypass surgery must take into account issues unique to the postsurgery setting that influence the development of anemia and other cytopenias. In this paper, the clinical characteristics and differential diagnosis of the hematological disorders associated with gastric bypass surgery are reviewed, and the underlying molecular mechanisms are discussed.
Collapse
|
106
|
Adiponectin in inflammatory and immune-mediated diseases. Cytokine 2013; 64:1-10. [PMID: 23850004 DOI: 10.1016/j.cyto.2013.06.317] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 01/03/2023]
Abstract
Circulating levels of adiponectin (APN) are reduced in obesity and associated comorbidities, with inflammation playing an important role in downregulating APN production. In contrast to obesity and metabolic disease, elevated systemic and local levels of APN are present in patients with inflammatory and immune-mediated diseases, including autoimmune and pulmonary conditions, heart and kidney failure, viral hepatitis, organ transplantation and perhaps critical illness. A positive association between inflammation and APN is usually reported in inflammatory/immune pathologies, in contrast with the negative correlation typical of metabolic disease. This review discusses the role of APN in modulation of inflammation and immunity and the potential mechanisms leading to increased levels of APN in inflammatory/immune diseases, including modification of adipose tissue physiology; relative contribution of different tissues and adipose depots; hormonal, pharmacological, nutritional and life style factors; the potential contribution of the microbiota as well as the role of altered APN clearance and release from T-cadherin-associated tissue reservoirs. Potential reasons for some of the apparently contradictory findings on the role of APN as a modulator of immunity and inflammation are also discussed, including a comparison of types of recombinant APN used for in vitro studies and strain-dependent differences in the phenotype of APN KO mice.
Collapse
|
107
|
Bouglé D, Brouard J. Iron in child obesity. Relationships with inflammation and metabolic risk factors. Nutrients 2013; 5:2222-30. [PMID: 23783556 PMCID: PMC3725502 DOI: 10.3390/nu5062222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/27/2013] [Accepted: 06/02/2013] [Indexed: 12/15/2022] Open
Abstract
Iron (Fe) sequestration is described in overweight and in its associated metabolic complications, i.e., metabolic syndrome (MetS) and non-alcoholic liver fatty disease (NAFLD); however, the interactions between Fe, obesity and inflammation make it difficult to recognize the specific role of each of them in the risk of obesity-induced metabolic diseases. Even the usual surrogate marker of Fe stores, ferritin, is influenced by inflammation; therefore, in obese subjects inflammation parameters must be measured together with those of Fe metabolism. This cross-sectional study in obese youth (502 patients; 57% girls): 11.4 ± 3.0 years old (x ± SD); BMI z score 5.5 ± 2.3), multivariate regression analysis showed associations between Fe storage assessed by serum ferritin with risk factors for MetS and NAFLD, assessed by transaminase levels, which were independent of overweight and the acute phase protein fibrinogen. Further studies incorporating the measurement of complementary parameters of Fe metabolism could improve the comprehension of mechanisms involved.
Collapse
|
108
|
Cornock R, Gambling L, Langley-Evans SC, McArdle HJ, McMullen S. The effect of feeding a low iron diet prior to and during gestation on fetal and maternal iron homeostasis in two strains of rat. Reprod Biol Endocrinol 2013; 11:32. [PMID: 23635304 PMCID: PMC3654972 DOI: 10.1186/1477-7827-11-32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/09/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Iron deficiency anaemia during pregnancy is a global problem, with short and long term consequences for maternal and child health. Animal models have demonstrated that the developing fetus is vulnerable to maternal iron restriction, impacting on postnatal metabolic and blood pressure regulation. Whilst long-term outcomes are similar across different models, the commonality in mechanistic events across models is unknown. This study examined the impact of iron deficiency on maternal and fetal iron homeostasis in two strains of rat. METHODS Wistar (n=20) and Rowett Hooded Lister (RHL, n=19) rats were fed a control or low iron diet for 4 weeks prior to and during pregnancy. Tissues were collected at day 21 of gestation for analysis of iron content and mRNA/protein expression of regulatory proteins and transporters. RESULTS A reduction in maternal liver iron content in response to the low iron diet was associated with upregulation of transferrin receptor expression and a reduction in hepcidin expression in the liver of both strains, which would be expected to promote increased iron absorption across the gut and increased turnover of iron in the liver. Placental expression of transferrin and DMT1+IRE were also upregulated, indicating adaptive responses to ensure availability of iron to the fetus. There were considerable differences in hepatic maternal and fetal iron content between strains. The higher quantity of iron present in livers from Wistar rats was not explained by differences in expression of intestinal iron transporters, and may instead reflect greater materno-fetal transfer in RHL rats as indicated by increased expression of placental iron transporters in this strain. CONCLUSIONS Our findings demonstrate substantial differences in iron homeostasis between two strains of rat during pregnancy, with variable impact of iron deficiency on the fetus. Whilst common developmental processes and pathways have been observed across different models of nutrient restriction during pregnancy, this study demonstrates differences in maternal adaptation which may impact on the trajectory of the programmed response.
Collapse
Affiliation(s)
- Ruth Cornock
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lorraine Gambling
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB, UK
| | - Simon C Langley-Evans
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Harry J McArdle
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB, UK
| | - Sarah McMullen
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
109
|
Jamieson JA, Kuhnlein HV, Weiler HA, Egeland GM. Higher n3-fatty acid status is associated with lower risk of iron depletion among food insecure Canadian Inuit women. BMC Public Health 2013; 13:289. [PMID: 23547888 PMCID: PMC3623721 DOI: 10.1186/1471-2458-13-289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 03/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High rates of iron deficiency and anemia are common among Inuit and Arctic women despite a traditional diet based on animal source foods. However, representative data on iron status and relevant determinants for this population are lacking. The objectives were to determine the prevalence of anemia and depletion of iron stores, then to identify correlates of iron status in non-pregnant Canadian Inuit women. METHODS In a cross-sectional survey of 1550 women in the International Polar Year Inuit Health Survey, 2007-2008, hemoglobin, serum ferritin, soluble transferrin receptor (on a subset), C-reactive protein (CRP), RBC fatty acid composition, and H pylori serology were analyzed on fasting venous blood. Sociodemographic, food security status, anthropometric, dietary, and health data were collected. Correlates of iron status were assessed with multivariate linear and logistic models. RESULTS Anemia was observed in 21.7% and iron deficient erythropoiesis in 3.3% of women. For women with CRP ≤ 10 mg/L (n = 1260) 29.4% had depleted iron stores. Inadequate iron intakes were observed in 16% of premenopausal and <1% of postmenopausal women. Among food insecure women, higher long-chain (n-3) polyunsaturated fatty acid (LC-PUFA) status, which reflects a more traditional food pattern, was associated with reduced risk of iron depletion. CONCLUSIONS Iron depletion and anemia are a concern for Inuit women despite adequate total dietary iron intake primarily from heme sources. The high prevalence of H. pylori exposure, together with dietary iron adequacy, suggests an inflammation-driven iron deficiency and mild anemia. The anti-inflammatory properties of LC-PUFA may be important for iron status in this population.
Collapse
Affiliation(s)
- Jennifer A Jamieson
- Centre for Indigenous Peoples’ Nutrition and Environment (CINE), McGill University, Montreal, Canada
- School of Dietetics and Human Nutrition, McGill University, Montreal, Canada
| | - Harriet V Kuhnlein
- Centre for Indigenous Peoples’ Nutrition and Environment (CINE), McGill University, Montreal, Canada
- School of Dietetics and Human Nutrition, McGill University, Montreal, Canada
| | - Hope A Weiler
- School of Dietetics and Human Nutrition, McGill University, Montreal, Canada
| | - Grace M Egeland
- Centre for Indigenous Peoples’ Nutrition and Environment (CINE), McGill University, Montreal, Canada
- School of Dietetics and Human Nutrition, McGill University, Montreal, Canada
- Department of Public Health and Primary Health Care, University of Bergen and The Norwegian Institute of Public Health, Bergen, Norway
| |
Collapse
|
110
|
Abstract
Manganese (Mn) is an essential trace metal that is pivotal for normal cell function and metabolism. Its homeostasis is tightly regulated; however, the mechanisms of Mn homeostasis are poorly characterized. While a number of proteins such as the divalent metal transporter 1, the transferrin/transferrin receptor complex, the ZIP family metal transporters ZIP-8 and ZIP-14, the secretory pathway calcium ATPases SPCA1 and SPCA2, ATP13A2, and ferroportin have been suggested to play a role in Mn transport, the degree that each of them contributes to Mn homeostasis has still to be determined. The recent discovery of SLC30A10 as a crucial Mn transporter in humans has shed further light on our understanding of Mn transport across the cell. Although essential, Mn is toxic at high concentrations. Mn neurotoxicity has been attributed to impaired dopaminergic (DAergic), glutamatergic and GABAergic transmission, mitochondrial dysfunction, oxidative stress, and neuroinflammation. As a result of preferential accumulation of Mn in the DAergic cells of the basal ganglia, particularly the globus pallidus, Mn toxicity causes extrapyramidal motor dysfunction. Firstly described as "manganism" in miners during the nineteenth century, this movement disorder resembles Parkinson's disease characterized by hypokinesia and postural instability. To date, a variety of acquired causes of brain Mn accumulation can be distinguished from an autosomal recessively inherited disorder of Mn metabolism caused by mutations in the SLC30A10 gene. Both, acquired and inherited hypermanganesemia, lead to Mn deposition in the basal ganglia associated with pathognomonic magnetic resonance imaging appearances of hyperintense basal ganglia on T1-weighted images. Current treatment strategies for Mn toxicity combine chelation therapy to reduce the body Mn load and iron (Fe) supplementation to reduce Mn binding to proteins that interact with both Mn and Fe. This chapter summarizes our current understanding of Mn homeostasis and the mechanisms of Mn toxicity and highlights the clinical disorders associated with Mn neurotoxicity.
Collapse
Affiliation(s)
- Karin Tuschl
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, United Kingdom.
| | | | | |
Collapse
|