101
|
Rendal C, Kusk KO, Trapp S. Optimal choice of pH for toxicity and bioaccumulation studies of ionizing organic chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2395-406. [PMID: 21823161 DOI: 10.1002/etc.641] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/03/2011] [Accepted: 07/14/2011] [Indexed: 05/02/2023]
Abstract
It is recognized that the pH of exposure solutions can influence the toxicity and bioaccumulation of ionizing compounds. The present study investigates whether it can be considered a general rule that an ionizable compound is more toxic and more bioaccumulative when in the neutral state. Three processes were identified to explain the behavior of ionizing compounds with changing pH: the change in lipophilicity when a neutral compound becomes ionized, electrical attraction, and the ion trap. The literature was screened for bioaccumulation and toxicity tests of ionizing organic compounds performed at multiple pH levels. Toxicity and bioconcentration factors (BCFs) were higher for acids at lower pH values, whereas the opposite was true for bases. The effect of pH was most pronounced when pH - pK(a) was in the range of -1 to 3 for acids, and -3 to 1 for bases. The factor by which toxicity and BCF changed with pH was correlated with the lipophilicity of the compound (log K(OW) of the neutral compound). For both acids and bases, the correlation was positive, but it was significant only for acids. Because experimental data in the literature were limited, results were supplemented with model simulations using a dynamic flux model based on the Fick-Nernst-Planck diffusion equation known as the cell model. The cell model predicts that bases with delocalized charges may in some cases show declining bioaccumulation with increasing pH. Little information is available for amphoteric and zwitterionic compounds; however, based on simulations with the cell model, it is expected that the highest toxicity and bioaccumulation of these compounds will be found where the compounds are most neutral, at the isoelectric point.
Collapse
Affiliation(s)
- Cecilie Rendal
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark.
| | | | | |
Collapse
|
102
|
Houston MA, Augenlicht LH, Heerdt BG. Intrinsic mitochondrial membrane potential and associated tumor phenotype are independent of MUC1 over-expression. PLoS One 2011; 6:e25207. [PMID: 21966455 PMCID: PMC3179472 DOI: 10.1371/journal.pone.0025207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/29/2011] [Indexed: 01/04/2023] Open
Abstract
We have established previously that minor subpopulations of cells with stable differences in their intrinsic mitochondrial membrane potential (Δψm) exist within populations of mammary and colonic carcinoma cells and that these differences in Δψm are linked to tumorigenic phenotypes consistent with increased probability of participating in tumor progression. However, the mechanism(s) involved in generating and maintaining stable differences in intrinsic Δψm and how they are linked to phenotype are unclear. Because the mucin 1 (MUC1) oncoprotein is over-expressed in many cancers, with the cytoplasmic C-terminal fragment (MUC1 C-ter) and its integration into the outer mitochondrial membrane linked to tumorigenic phenotypes similar to those of cells with elevated intrinsic Δψm, we investigated whether endogenous differences in MUC1 levels were linked to stable differences in intrinsic Δψm and/or to the tumor phenotypes associated with the intrinsic Δψm. We report that levels of MUC1 are significantly higher in subpopulations of cells with elevated intrinsic Δψm derived from both mammary and colonic carcinoma cell lines. However, using siRNA we found that down-regulation of MUC1 failed to significantly affect either the intrinsic Δψm or the tumor phenotypes associated with increased intrinsic Δψm. Moreover, whereas pharmacologically mediated disruption of the Δψm was accompanied by attenuation of tumor phenotype, it had no impact on MUC1 levels. Therefore, while MUC1 over-expression is associated with subpopulations of cells with elevated intrinsic Δψm, it is not directly linked to the generation or maintenance of stable alterations in intrinsic Δψm, or to intrinsic Δψm associated tumor phenotypes. Since the Δψm is the focus of chemotherapeutic strategies, these data have important clinical implications in regard to effectively targeting those cells within a tumor cell population that exhibit stable elevations in intrinsic Δψm and are most likely to contribute to tumor progression.
Collapse
Affiliation(s)
- Michele A. Houston
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, United States of America
| | - Leonard H. Augenlicht
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, United States of America
| | - Barbara G. Heerdt
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
103
|
Papadopoulou LC, Tsiftsoglou AS. Transduction of human recombinant proteins into mitochondria as a protein therapeutic approach for mitochondrial disorders. Pharm Res 2011; 28:2639-56. [PMID: 21874377 DOI: 10.1007/s11095-011-0546-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 07/21/2011] [Indexed: 01/10/2023]
Abstract
Protein therapy is considered an alternative approach to gene therapy for treatment of genetic-metabolic disorders. Human protein therapeutics (PTs), developed via recombinant DNA technology and used for the treatment of these illnesses, act upon membrane-bound receptors to achieve their pharmacological response. On the contrary, proteins that normally act inside the cells cannot be developed as PTs in the conventional way, since they are not able to "cross" the plasma membrane. Furthermore, in mitochondrial disorders, attributed either to depleted or malfunctioned mitochondrial proteins, PTs should also have to reach the subcellular mitochondria to exert their therapeutic potential. Nowadays, there is no effective therapy for mitochondrial disorders. The development of PTs, however, via the Protein Transduction Domain (PTD) technology offered new opportunities for the deliberate delivery of human recombinant proteins inside eukaryotic subcellular organelles. To this end, mitochondrial disorders could be clinically encountered with the delivery of human mitochondrial proteins (engineered via recombinant DNA and PTD technologies) at specific intramitochondrial sites to exert their function. Overall, PTD-mediated Protein Replacement Therapy emerges as a suitable model system for the therapeutic approach for mitochondrial disorders.
Collapse
Affiliation(s)
- Lefkothea C Papadopoulou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR54124, Macedonia, Greece.
| | | |
Collapse
|
104
|
Zheng N, Tsai HN, Zhang X, Rosania GR. The subcellular distribution of small molecules: from pharmacokinetics to synthetic biology. Mol Pharm 2011; 8:1619-28. [PMID: 21805990 DOI: 10.1021/mp200092v] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The systemic pharmacokinetics and pharmacodynamics of small molecules are determined by subcellular transport phenomena. Although approaches used to study the subcellular distribution of small molecules have gradually evolved over the past several decades, experimental analysis and prediction of cellular pharmacokinetics remains a challenge. In this review, we survey the progress of subcellular distribution research since the 1960s, with a focus on the advantages, disadvantages and limitations of the various experimental techniques. Critical review of the existing body of knowledge points to many opportunities to advance the rational design of organelle-targeted chemical agents. These opportunities include (1) development of quantitative, non-fluorescence-based, whole cell methods and techniques to measure the subcellular distribution of chemical agents in multiple compartments; (2) exploratory experimentation with nonspecific transport probes that have not been enriched with putative, organelle-targeting features; (3) elaboration of hypothesis-driven, mechanistic and modeling-based approaches to guide experiments aimed at elucidating subcellular distribution and transport; and (4) introduction of revolutionary conceptual approaches borrowed from the field of synthetic biology combined with cutting edge experimental strategies. In our laboratory, state-of-the-art subcellular transport studies are now being aimed at understanding the formation of new intracellular membrane structures in response to drug therapy, exploring the function of drug-membrane complexes as intracellular drug depots, and synthesizing new organelles with extraordinary physical and chemical properties.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
105
|
Baik J, Rosania GR. Molecular imaging of intracellular drug-membrane aggregate formation. Mol Pharm 2011; 8:1742-9. [PMID: 21800872 DOI: 10.1021/mp200101b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clofazimine is a lipophilic antibiotic with an extremely long pharmacokinetic half-life associated with the appearance of crystal-like drug inclusions, in vivo. Here, we studied how clofazimine accumulates inside cells in the presence of supersaturating, extracellular concentrations of the drug (in the range of physiological drug concentrations). Based on a combination of molecular imaging, biochemical analysis and electron microscopy techniques, clofazimine mass increased inside cells in vitro, over a period of several days, with discrete clofazimine inclusions forming in the cytoplasm. These inclusions grew in size, number and density, as long as the drug-containing medium was replenished. With Raman confocal microscopy, clofazimine's spectral signature in these inclusions resembled that of amorphous clofazimine precipitates and was unlike that of clofazimine crystals. Additional experiments revealed that clofazimine first accumulated in mitochondria, with ensuing changes in mitochondrial structure and function. In turn, the degenerating organelles coalesced, fused with each other and condensed to form prominent drug-membrane aggregates (dubbed autophagosome-like drug inclusions or "aldis"). Like clofazimine, it is possible that intracellular drug-membrane aggregate formation is a common phenomenon underlying the reported phenotypic effects of many other small molecule drugs.
Collapse
Affiliation(s)
- Jason Baik
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
106
|
Weissig V. From Serendipity to Mitochondria-Targeted Nanocarriers. Pharm Res 2011; 28:2657-68. [DOI: 10.1007/s11095-011-0556-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 08/02/2011] [Indexed: 12/13/2022]
|
107
|
Theodossiou TA, Sideratou Z, Tsiourvas D, Paleos CM. A novel mitotropic oligolysine nanocarrier: Targeted delivery of covalently bound D-Luciferin to cell mitochondria. Mitochondrion 2011; 11:982-6. [PMID: 21856448 DOI: 10.1016/j.mito.2011.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 01/24/2023]
Abstract
New and emerging therapeutic approaches focus on the targeted delivery of therapeutic agents to cell mitochondria with high specificity. Herein we present a novel mitotropic nanocarrier based on an oligolysine scaffold by addition of two triphenylphosphonium cations per oligomer. Although the parent oligolysine failed to enter healthy cells, the triphenylphosphonium modified carrier, with or without D-Luciferin, attached as cargo molecule, demonstrated striking mitochondrial specificity. Furthermore, the oligolysine bound d-Luciferin exhibited chemiluminescence, of lower intensity than free d-Luciferin, yet of remarkably longer steady-state temporal profile.
Collapse
Affiliation(s)
- Theodossis A Theodossiou
- Institute of Physical Chemistry, NCSR Demokritos, Patriarchou Gregoriou & Neapoleos, 153 10 Aghia Paraskevi, Attiki, Greece.
| | | | | | | |
Collapse
|
108
|
Ibrahim N, Handa H, Cosset A, Koulintchenko M, Konstantinov Y, Lightowlers RN, Dietrich A, Weber-Lotfi F. DNA delivery to mitochondria: sequence specificity and energy enhancement. Pharm Res 2011; 28:2871-82. [PMID: 21748538 DOI: 10.1007/s11095-011-0516-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/15/2011] [Indexed: 12/15/2022]
Abstract
PURPOSE Mitochondria are competent for DNA uptake in vitro, a mechanism which may support delivery of therapeutic DNA to complement organelle DNA mutations. We document here key aspects of the DNA import process, so as to further lay the ground for mitochondrial transfection in intact cells. METHODS We developed DNA import assays with isolated mitochondria from different organisms, using DNA substrates of various sequences and sizes. Further import experiments investigated the possible role of ATP and protein phosphorylation in the uptake process. The fate of adenine nucleotides and the formation of phosphorylated proteins were analyzed. RESULTS We demonstrate that the efficiency of mitochondrial uptake depends on the sequence of the DNA to be translocated. The process becomes sequence-selective for large DNA substrates. Assays run with a natural mitochondrial plasmid identified sequence elements which promote organellar uptake. ATP enhances DNA import and allows tight integration of the exogenous DNA into mitochondrial nucleoids. ATP hydrolysis has to occur during the DNA uptake process and might trigger phosphorylation of co-factors. CONCLUSIONS Our data contribute critical information to optimize DNA delivery into mitochondria and open the prospect of targeting whole mitochondrial genomes or complex constructs into mammalian organelles in vitro and in vivo.
Collapse
Affiliation(s)
- Noha Ibrahim
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Dimeric Cationic Amphiphilic Polyproline Helices for Mitochondrial Targeting. Pharm Res 2011; 28:2797-807. [DOI: 10.1007/s11095-011-0493-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/24/2011] [Indexed: 12/27/2022]
|
110
|
Biswas S, Dodwadkar NS, Sawant RR, Koshkaryev A, Torchilin VP. Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J Drug Target 2011; 19:552-61. [PMID: 21348804 DOI: 10.3109/1061186x.2010.536983] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel mitochondrial-targeted liposomal drug-delivery system was prepared by modification of the liposomal surface with a newly synthesized polymer, rhodamine-123 (Rh123)-PEG-DOPE inserted into the liposomal lipid bilayer. This novel polymer was synthesized by conjugating the mitochondriotropic dye Rh123, with the amphiphilic polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate. The modified liposomes showed better uptake by cells (HeLa, B16F10) estimated by fluorescence microscopy and FACS analysis. The co-localization study with stained mitochondria as well as with the isolation of mitochondria of the cultured cells after their treatment with Rh123 liposomes showed a high degree of accumulation of the modified liposomes in the mitochondria. We also prepared mitochondrial-targeted and nontargeted paclitaxel (PCL)-loaded liposomes. Mitochondrial-targeted PCL-loaded liposomes demonstrated enhanced cytotoxicity toward cancer cells compared with nontargeted drug-loaded liposomes or free PCL. Thus, Rh123-modified liposomes target mitochondria efficiently and can facilitate the delivery of a therapeutic payload to mitochondria.
Collapse
Affiliation(s)
- Swati Biswas
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
111
|
Solomon M, D’Souza GGM. Approaches to Achieving Sub-cellular Targeting of Bioactives Using Pharmaceutical Nanocarriers. INTRACELLULAR DELIVERY 2011. [DOI: 10.1007/978-94-007-1248-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
112
|
Abstract
The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 955 S. Springfield Ave., Unit C403, Springfield, NJ 07081, USA.
| |
Collapse
|
113
|
Picone P, Bondi ML, Montana G, Bruno A, Pitarresi G, Giammona G, Di Carlo M. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: improved delivery by solid lipid nanoparticles. Free Radic Res 2010; 43:1133-45. [PMID: 19863373 DOI: 10.1080/10715760903214454] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxidative stress and dysfunctional mitochondria are among the earliest events in AD, triggering neurodegeneration. The use of natural antioxidants could be a neuroprotective strategy for blocking cell death. Here, the antioxidant action of ferulic acid (FA) on different paths leading to degeneration of recombinant beta-amyloid peptide (rAbeta42) treated cells was investigated. Further, to improve its delivery, a novel drug delivery system (DDS) was used. Solid lipid nanoparticles (SLNs), empty or containing ferulic acid (FA-SNL), were developed as DDS. The resulting particles had small colloidal size and highly negative surface charge in water. Using neuroblastoma cells and rAbeta42 oligomers, it was demonstrated that free and SLNs-loaded FA recover cell viability. FA treatment, in particular if loaded into SLNs, decreased ROS generation, restored mitochondrial membrane potential (Deltapsi(m)) and reduced cytochrome c release and intrinsic pathway apoptosis activation. Further, FA modulated the expression of Peroxiredoxin, an anti-oxidative protein, and attenuated phosphorylation of ERK1/2 activated by Abeta oligomers.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM), CNR, via Ugo La Malfa, 153, 90146, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
114
|
Horobin RW, Stockert JC. Uptake and localization mechanisms of fluorescent and colored lipid probes. 1. Physicochemistry of probe uptake and localization, and the use of QSAR models for selectivity prediction. Biotech Histochem 2010; 86:379-93. [DOI: 10.3109/10520295.2010.515489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- RW Horobin
- School of Life Sciences, The University of Glasgow, University Avenue,
Glasgow G12 8QQ, Scotland, UK
| | - JC Stockert
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid,
Cantoblanco, Madrid 28049
- Center for Biological Research, High Council of Scientific Research,
Madrid 28040, Spain
| |
Collapse
|
115
|
Approaches for targeting mitochondria in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:689-96. [PMID: 20732297 DOI: 10.1016/j.bbabio.2010.08.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/11/2010] [Accepted: 08/15/2010] [Indexed: 12/24/2022]
Abstract
The recognition of the role that mitochondria play in human health and disease is evidenced by the emergence in recent decades of a whole new field of "Mitochondrial Medicine". Molecules located on or inside mitochondria are considered prime pharmacological targets and a wide range of efforts are underway to exploit these targets to develop targeted therapies for various diseases including cancer. However the concept of targeting, while seemingly simple in theory, has multiple subtly different practical approaches. The focus of this article is to highlight these differences in the context of a discussion on the current status of various mitochondria-targeted approaches to cancer therapy.
Collapse
|
116
|
Biasutto L, Dong LF, Zoratti M, Neuzil J. Mitochondrially targeted anti-cancer agents. Mitochondrion 2010; 10:670-81. [PMID: 20601192 DOI: 10.1016/j.mito.2010.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 01/12/2023]
Abstract
Cancer is an ever-increasing problem that is yet to be harnessed. Frequent mutations make this pathology very variable and, consequently, a considerable challenge. Intriguingly, mitochondria have recently emerged as novel targets for cancer therapy. A group of agents with anti-cancer activity that induce apoptosis by way of mitochondrial destabilisation, termed mitocans, have been a recent focus of research. Of these compounds, many are hydrophobic agents that associate with various sub-cellular organelles. Clearly, modification of such structures with mitochondria-targeting moieties, for example tagging them with lipophilic cations, would be expected to enhance their activity. This may be accomplished by the addition of triphenylphosphonium groups that direct such compounds to mitochondria, enhancing their activity. In this paper, we will review agents that possess anti-cancer activity by way of destabilizing mitochondria and their possible targets. We propose that mitochondrial targeting, in particular where the agent associates directly with the target, results in more specific and efficient anti-cancer drugs of potential high clinical relevance.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience and Dept. of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
117
|
Abstract
Mitochondria are key organelles that perform essential cellular functions and play pivotal roles in cell death and survival signaling. Hence, they represent an attractive target for drugs to treat metabolic, degenerative, and hyperproliferative diseases. Targeting mitochondria with organelle-specific agents or prodrugs has proven to be an effective therapeutic strategy. More specifically, controlling the cellular ROS balance via selective delivery of an antioxidant "payload" into mitochondria is an elegant emerging therapeutic concept. Herein, we review the recent medicinal chemistry and clinical data of these exploratory strategies, which should point the way for future generations of therapeutics.
Collapse
Affiliation(s)
| | - Peter Wipf
- University of Pittsburgh, Department of Chemistry, Pittsburgh PA 15260, USA
| |
Collapse
|
118
|
Belostotsky I, da Silva SM, Paez MG, Indig GL. Mitochondrial targeting for photochemotherapy. Can selective tumor cell killing be predicted based onn-octanol/water distribution coefficients? Biotech Histochem 2010; 86:302-14. [DOI: 10.3109/10520295.2010.483656] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
119
|
Achrem-Achremowicz J, Kepczyńska E, Zylewski M, Janeczko Z. Synthesis of betulin derivatives and the determination of their relative lipophilicities using reversed-phase thin-layer chromatography. Biomed Chromatogr 2010; 24:261-7. [PMID: 19591243 DOI: 10.1002/bmc.1282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A series of superlipophilic or highly lipophilic semisynthetic betulin derivatives was prepared and their relative lipophilicity was measured by reversed-phase thin-layer chromatography (RP-TLC) at different pH values using 1,4-dioxane-acetate buffer mixtures as mobile phases. Cholesterol, 17beta-estradiol and pure betulin were used as the reference compounds. Linear relationships were found between R(M) values and 1,4-dioxane concentrations in the mobile phases. LogP values were also calculated with computer programs ACD/LogP (ChemSketch 11.0, Advanced Chemistry Development Inc.) and ClogP (Daylight Chemical Information Systems Inc.). The empirical and theoretical data were compared, and the R(M0) values correlated well with logP. Two of the synthesized betulin derivatives are reported for the first time.
Collapse
Affiliation(s)
- Jacek Achrem-Achremowicz
- Department of Raw Materials and Fruit and Vegetable Processing, Agricultural University, Kraków, Poland.
| | | | | | | |
Collapse
|
120
|
Trapani V, Farruggia G, Marraccini C, Iotti S, Cittadini A, Wolf FI. Intracellular magnesium detection: imaging a brighter future. Analyst 2010; 135:1855-66. [DOI: 10.1039/c0an00087f] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
121
|
Kagan VE, Wipf P, Stoyanovsky D, Greenberger JS, Borisenko G, Belikova NA, Yanamala N, Samhan Arias AK, Tungekar MA, Jiang J, Tyurina YY, Ji J, Klein-Seetharaman J, Pitt BR, Shvedova AA, Bayir H. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions. Adv Drug Deliv Rev 2009; 61:1375-85. [PMID: 19716396 PMCID: PMC2784017 DOI: 10.1016/j.addr.2009.06.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Aguirre JD, Angeles-Boza AM, Chouai A, Turro C, Pellois JP, Dunbar KR. Anticancer activity of heteroleptic diimine complexes of dirhodium: a study of intercalating properties, hydrophobicity and in cellulo activity. Dalton Trans 2009:10806-12. [PMID: 20023910 DOI: 10.1039/b915357h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The series of complexes cis-[Rh(2)(mu-O(2)CCH(3))(2)(dppn)(L)](2+), where dppn = benzo[i]dipyrido[3,2-a:2',3'-c] phenazine, and L = bpy (2,2'-bipyridine) (1), phen (1,10-phenanthroline) (2), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline) (3), dppz (dipyrido[3,2-a:2',3'-c]phenazine) (4), and dppn (5) were synthesized and their effect on the human cancer cells HeLa and COLO-316 was monitored. Complexes 1 and 2 interact with DNA through intercalation, whereas compounds 3-5 bind only electrostatically. It was found that the dirhodium complex 4 is the most effective compound at inhibiting cell viability of the human cancer cells HeLa and COLO-316. A general conclusion is that the hydrophobicity of the compounds correlates with their in cellulo activity in both cell lines. The ability of the compounds to reach nuclear DNA and form adducts was explored using the comet assay. The results indicate that compounds 1-5 either do not form adducts with DNA that are detrimental to the cell or that they are successfully repaired by the cellular machinery. The results of an annexin V assay indicate that compounds 1-4 trigger apoptosis, whereas compound 5 clearly does not. These findings are significant because they support the contention that dirhodium complexes can be tuned to direct their effect to cellular targets other than nuclear DNA.
Collapse
Affiliation(s)
- J Dafhne Aguirre
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
123
|
Alakoskela JM, Vitovic P, Kinnunen PKJ. Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 2009; 4:1224-51. [PMID: 19551800 DOI: 10.1002/cmdc.200900052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic properties of lipid bilayers reflecting the chemical structures and organization of the constituent phospholipids are considered. The interactions of drugs with phospholipids are important in various processes, such as drug absorption, tissue distribution, and subcellular distribution. In addition, drug-lipid interactions may lead to changes in lipid-dependent protein activities, and further, to functional and morphological changes in cells, a prominent example being the phospholipidosis (PLD) induced by cationic amphiphilic drugs. Herein we briefly review drug-lipid interactions in general and the significance of these interactions in PLD in particular. We also focus on a potential causal connection between drug-induced PLD and steatohepatitis, which is induced by some cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Juha-Matti Alakoskela
- Division of Biochemistry, Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland.
| | | | | |
Collapse
|
124
|
D'Souza GGM, Weissig V. Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 2009; 6:1135-48. [DOI: 10.1517/17425240903236101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
125
|
Belikova NA, Jiang J, Stoyanovsky DA, Glumac A, Bayir H, Greenberger JS, Kagan VE. Mitochondria-targeted (2-hydroxyamino-vinyl)-triphenyl-phosphonium releases NO(.) and protects mouse embryonic cells against irradiation-induced apoptosis. FEBS Lett 2009; 583:1945-50. [PMID: 19427865 PMCID: PMC2696693 DOI: 10.1016/j.febslet.2009.04.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/16/2009] [Accepted: 04/30/2009] [Indexed: 11/26/2022]
Abstract
Generation of reactive oxygen species by damaged respiratory chain followed by the formation of cytochrome c (cyt c)-cardiolipin (CL) complex with peroxidase activity are early events in apoptosis. By quenching the peroxidase activity of cyt c-CL complexes in mitochondria, nitric oxide can exert anti-apoptotic effects. Therefore, mitochondria-targeted pro-drugs capable of gradual nitric oxide radical (NO*) release are promising radioprotectants. Here we demonstrate that (2-hydroxyamino-vinyl)-triphenyl-phosphonium effectively accumulates in mitochondria, releases NO* upon mitochondrial peroxidase reaction, protects mouse embryonic cells from irradiation-induced apoptosis and increases their clonogenic survival after irradiation. We conclude that mitochondria-targeted peroxidase-activatable NO-donors represent a new interesting class of radioprotectors.
Collapse
Affiliation(s)
- Natalia A Belikova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Jianfei Jiang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Detcho A Stoyanovsky
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ashley Glumac
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Hülya Bayir
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|
126
|
De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M. Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: A demonstration of the ambivalent redox character of polyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1425-32. [PMID: 19523917 DOI: 10.1016/j.bbabio.2009.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 01/08/2023]
Abstract
The Ca(2+)- and oxidative stress-induced mitochondrial permeability transition (MPT) plays an important role in phenomena ranging from tissue damage upon infarction to muscle wasting in some forms of dystrophy. The process is due to the activation of a large pore in the inner mitochondrial membrane. Anti-oxidants are considered a preventive and remedial tool, and mitochondria-targeted redox-active compounds have been developed. Plant polyphenols are generally considered as anti-oxidants, and thus candidates to the role of mitochondria-protecting agents. In patch-clamp experiments, easily oxidizable polyphenols induced closure of the MPT channel. In swelling experiments with suspensions of mitochondria, high (20-50 microM) concentrations of quercetin, the most efficient inhibitor, promoted instead the onset of the MPT. Chelators of Fe(2+/3+) and Cu(+/2+) ions counteracted this effect. Fluorescent indicators of superoxide production confirmed that quercetin potentiates O(2)(*-) generation by isolated mitochondria and cultured cells. Since this was not affected by chelating Fe and Cu ions, the MPT-inducing effect can be ascribed to a "secondary", metal ion-catalyzed production of ROS. These results are a direct demonstration of the ambivalent redox character of polyphenols. Their mode of action in vivo cannot be taken for granted, but needs to be experimentally verified.
Collapse
Affiliation(s)
- Umberto De Marchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
127
|
Zhao Y, Neuzil J, Wu K. Vitamin E analogues as mitochondria-targeting compounds: from the bench to the bedside? Mol Nutr Food Res 2009; 53:129-39. [PMID: 19072740 DOI: 10.1002/mnfr.200800045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite considerable effort focusing on designing and finding efficient anti-cancer drugs over the last decade, little progress has been achieved, in particular in case of highly recalcitrant malignancies. Also, since there is a trend suggesting that deaths from cancers may be more frequent than from cardiovascular diseases, it is important to look for novel efficient and selective therapeutic approaches to gradually start winning the battle with cancer. Redox-silent vitamin E analogues, epitomised by alpha-tocopheryl succinate, give some hope in the quest for drugs with such properties. Thus far, these agents have been successfully tested in experimental animals with different types of cancer, showing high efficacy against malignancies including HER2-positive breast carcinomas or malignant mesotheliomas. Further research will provide additional, necessary data to launch clinical trials, possibly in near future, translating into development of innovative anti-cancer drugs acting by targeting mitochondria selectively in cancer cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Nutrition and Food, Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | |
Collapse
|
128
|
Róg T, Martinez-Seara H, Munck N, Orešič M, Karttunen M, Vattulainen I. Role of Cardiolipins in the Inner Mitochondrial Membrane: Insight Gained through Atom-Scale Simulations. J Phys Chem B 2009; 113:3413-22. [DOI: 10.1021/jp8077369] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, P. O. Box 527, FI-33101 Temrpere, Finland, Department of Physical Chemistry, Barcelona University, Spain, VTT Technical Research Centre of Finland, Espoo, FI-02044 VVT, Finland, Department of Applied Mathematics, University of Western Ontario, London (ON), Canada N6A 3K7, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark, and Department of Applied Physics, Helsinki University of Technology, P. O. Box
| | - Hector Martinez-Seara
- Department of Physics, Tampere University of Technology, P. O. Box 527, FI-33101 Temrpere, Finland, Department of Physical Chemistry, Barcelona University, Spain, VTT Technical Research Centre of Finland, Espoo, FI-02044 VVT, Finland, Department of Applied Mathematics, University of Western Ontario, London (ON), Canada N6A 3K7, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark, and Department of Applied Physics, Helsinki University of Technology, P. O. Box
| | - Nana Munck
- Department of Physics, Tampere University of Technology, P. O. Box 527, FI-33101 Temrpere, Finland, Department of Physical Chemistry, Barcelona University, Spain, VTT Technical Research Centre of Finland, Espoo, FI-02044 VVT, Finland, Department of Applied Mathematics, University of Western Ontario, London (ON), Canada N6A 3K7, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark, and Department of Applied Physics, Helsinki University of Technology, P. O. Box
| | - Matej Orešič
- Department of Physics, Tampere University of Technology, P. O. Box 527, FI-33101 Temrpere, Finland, Department of Physical Chemistry, Barcelona University, Spain, VTT Technical Research Centre of Finland, Espoo, FI-02044 VVT, Finland, Department of Applied Mathematics, University of Western Ontario, London (ON), Canada N6A 3K7, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark, and Department of Applied Physics, Helsinki University of Technology, P. O. Box
| | - Mikko Karttunen
- Department of Physics, Tampere University of Technology, P. O. Box 527, FI-33101 Temrpere, Finland, Department of Physical Chemistry, Barcelona University, Spain, VTT Technical Research Centre of Finland, Espoo, FI-02044 VVT, Finland, Department of Applied Mathematics, University of Western Ontario, London (ON), Canada N6A 3K7, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark, and Department of Applied Physics, Helsinki University of Technology, P. O. Box
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P. O. Box 527, FI-33101 Temrpere, Finland, Department of Physical Chemistry, Barcelona University, Spain, VTT Technical Research Centre of Finland, Espoo, FI-02044 VVT, Finland, Department of Applied Mathematics, University of Western Ontario, London (ON), Canada N6A 3K7, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark, and Department of Applied Physics, Helsinki University of Technology, P. O. Box
| |
Collapse
|
129
|
In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Toxicol In Vitro 2009; 23:134-40. [DOI: 10.1016/j.tiv.2008.09.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/19/2008] [Accepted: 09/26/2008] [Indexed: 01/30/2023]
|
130
|
Kagan VE, Bayir A, Bayir H, Stoyanovsky D, Borisenko GG, Tyurina YY, Wipf P, Atkinson J, Greenberger JS, Chapkin RS, Belikova NA. Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes: a new strategy in anti-apoptotic drug discovery. Mol Nutr Food Res 2009; 53:104-14. [PMID: 18979502 PMCID: PMC2659540 DOI: 10.1002/mnfr.200700402] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The critical role of mitochondria in programmed cell death leads to the design of mitochondriotropic agents as a strategy in regulating apoptosis. For anticancer therapy, stimulation of proapoptotic mitochondrial events in tumor cells and their suppression in surrounding normal cells represents a promising paradigm for new therapies. Different approaches targeting regulation of components of mitochondrial antioxidant system such as Mn-SOD demonstrated significant antitumor efficiency, particularly in combination therapy. This review is focused on a newly discovered early stage of mitochondria-dependent apoptosis - oxidative lipid signaling involving a mitochondria-specific phospholipid cardiolipin (CL). Cytochrome c (cyt c) acts as a CL-specific peroxidase very early in apoptosis. At this stage, the hostile events are still secluded within the mitochondria and do not reach the cytosolic targets. CL oxidation process is required for the release of pro-apoptotic factors into the cytosol. Manipulation of cyt c interactions with CL, inhibition of peroxidase activity, and prevention of CL peroxidation are prime targets for the discovery of anti-apoptotic drugs acting before the "point-of-no-return" in the fulfillment of the cell death program. Therefore, mitochondria-targeted disruptors and inhibitors of cyt c/CL peroxidase complexes and suppression of CL peroxidation represent new strategies in anti-apoptotic drug discovery.
Collapse
Affiliation(s)
- Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
D'Souza GGM, Cheng SM, Boddapati SV, Horobin RW, Weissig V. Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J Drug Target 2008; 16:578-85. [DOI: 10.1080/10611860802228855] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
132
|
Trapp S, Rosania GR, Horobin RW, Kornhuber J. Quantitative modeling of selective lysosomal targeting for drug design. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2008; 37:1317-28. [PMID: 18504571 PMCID: PMC2711917 DOI: 10.1007/s00249-008-0338-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/15/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick-Nernst-Planck equation. The cell model considers the diffusion of neutral and ionic molecules across biomembranes, protonation to mono- or bivalent ions, adsorption to lipids, and electrical attraction or repulsion. Based on simulation results, high and selective accumulation in lysosomes was found for weak mono- and bivalent bases with intermediate to high log K (ow). These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the optimum range predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation. This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions.
Collapse
Affiliation(s)
- Stefan Trapp
- Technical University of Denmark, Department of Environmental Engineering, DK-2800 Kongens Lyngby, Denmark. Tel +45 4525 1622, Fax +45 4593 2850
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, University of Michigan, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109
| | - Richard W. Horobin
- Division of Neuroscience & Biomedical Systems, IBLS, University of Glasgow, Glasgow, Scotland UK
| | - Johannes Kornhuber
- Johannes Kornhuber, Department of Psychiatry and Psychotherapy, University of Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
133
|
Zhang X, Zheng N, Rosania GR. Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines. J Comput Aided Mol Des 2008; 22:629-45. [PMID: 18338229 PMCID: PMC2516532 DOI: 10.1007/s10822-008-9194-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
Abstract
Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109 USA
| | - Nan Zheng
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109 USA
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109 USA
| |
Collapse
|
134
|
Boddapati SV, D'Souza GGM, Erdogan S, Torchilin VP, Weissig V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. NANO LETTERS 2008; 8:2559-2563. [PMID: 18611058 DOI: 10.1021/nl801908y] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To further increase the therapeutic activity of drugs known to act on intracellular target sites, in vivo drug delivery approaches must actively mediate the specific delivery of drug molecules to the subcellular site of action. We show here that surface modification of nanocarriers with mitochondriotropic triphenylphosphonium cations facilitates the efficient subcellular delivery of a model drug to mitochondria of mammalian cells and improves its activity in vitro and in vivo.
Collapse
Affiliation(s)
- Sarathi V Boddapati
- Northeastern University, Bouve College of Health Sciences, Department of Pharmaceutical Sciences, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
135
|
Mitochondria-Penetrating Peptides. ACTA ACUST UNITED AC 2008; 15:375-82. [DOI: 10.1016/j.chembiol.2008.03.015] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/13/2008] [Accepted: 03/17/2008] [Indexed: 12/22/2022]
|
136
|
Funtionalization of Pharmaceutical Nanocarriers for Mitochondria-Targeted Drug and DNA Delivery. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-0-387-76554-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|