101
|
Loan Young T, Chang Wang K, James Varley A, Li B. Clinical Delivery of Circular RNA: Lessons Learned from RNA Drug Development. Adv Drug Deliv Rev 2023; 197:114826. [PMID: 37088404 DOI: 10.1016/j.addr.2023.114826] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Circular RNAs (circRNA) represent a distinct class of covalently closed-loop RNA molecules, which play diverse roles in regulating biological processes and disease states. The enhanced stability of synthetic circRNAs compared to their linear counterparts has recently garnered considerable research interest, paving the way for new therapeutic applications. While clinical circRNA technology is still in its early stages, significant advancements in mRNA technology offer valuable insights into its potential future applications. Two primary obstacles that must be addressed are the development of efficient production methods and the optimization of delivery systems. To expedite progress in this area, this review aims to provide an overview of the current state of knowledge on circRNA structure and function, outline recent techniques for synthesizing circRNAs, highlight key delivery strategies and applications, and discuss the current challenges and future prospects in the field of circRNA-based therapeutics.
Collapse
Affiliation(s)
- Tiana Loan Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Kevin Chang Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Andrew James Varley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Bowen Li
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3M2, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C1, Canada.
| |
Collapse
|
102
|
Lee MH, Thomas JL, Lin CY, Li YCE, Lin HY. Activation of Insulin Gene Expression via Transfection of a CRISPR/dCas9a System Using Magnetic Peptide-Imprinted Nanoparticles. Pharmaceutics 2023; 15:pharmaceutics15041311. [PMID: 37111797 PMCID: PMC10144049 DOI: 10.3390/pharmaceutics15041311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A CRISPRa transcription activation system was used to upregulate insulin expression in HEK293T cells. To increase the delivery of the targeted CRISPR/dCas9a, magnetic chitosan nanoparticles, imprinted with a peptide from the Cas9 protein, were developed, characterized, and then bound to dCas9a that was complexed with a guide RNA (gRNA). The adsorption of dCas9 proteins conjugated with activators (SunTag, VPR, and p300) to the nanoparticles was monitored using both ELISA kits and Cas9 staining. Finally, the nanoparticles were used to deliver dCas9a that was complexed with a synthetic gRNA into HEK293T cells to activate their insulin gene expression. Delivery and gene expression were examined using quantitative real-time polymerase chain reaction (qRT-PCR) and staining of insulin. Finally, the long-term release of insulin and the cellular pathway related to stimulation by glucose were also investigated.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chien-Yu Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| |
Collapse
|
103
|
Allemailem KS, Almatroodi SA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin WAI, Aljamaan AN, Rahmani AH, Khan AA. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Int J Mol Sci 2023; 24:7052. [PMID: 37108214 PMCID: PMC10139162 DOI: 10.3390/ijms24087052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
104
|
Zhu X, Gao M, Yang Y, Li W, Bao J, Li Y. The CRISPR/Cas9 System Delivered by Extracellular Vesicles. Pharmaceutics 2023; 15:pharmaceutics15030984. [PMID: 36986843 PMCID: PMC10053467 DOI: 10.3390/pharmaceutics15030984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems can precisely manipulate DNA sequences to change the characteristics of cells and organs, which has potential in the mechanistic research on genes and the treatment of diseases. However, clinical applications are restricted by the lack of safe, targeted and effective delivery vectors. Extracellular vesicles (EVs) are an attractive delivery platform for CRISPR/Cas9. Compared with viral and other vectors, EVs present several advantages, including safety, protection, capacity, penetrating ability, targeting ability and potential for modification. Consequently, EVs are profitably used to deliver the CRISPR/Cas9 in vivo. In this review, the advantages and disadvantages of the delivery form and vectors of the CRISPR/Cas9 are concluded. The favorable traits of EVs as vectors, such as the innate characteristics, physiological and pathological functions, safety and targeting ability of EVs, are summarized. Furthermore, in terms of the delivery of the CRISPR/Cas9 by EVs, EV sources and isolation strategies, the delivery form and loading methods of the CRISPR/Cas9 and applications have been concluded and discussed. Finally, this review provides future directions of EVs as vectors of the CRISPR/Cas9 system in clinical applications, such as the safety, capacity, consistent quality, yield and targeting ability of EVs.
Collapse
Affiliation(s)
- Xinglong Zhu
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengyu Gao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongfeng Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Key Laboratory of Transplant Engineering and Immunology, Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
105
|
Liu J, Li G, Guo H, Ni C, Gao Y, Cao X, Xia J, Shi X, Guo R. Dual-Responsive Core-Shell Tecto Dendrimers Enable Efficient Gene Editing of Cancer Cells to Boost Immune Checkpoint Blockade Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12809-12821. [PMID: 36853989 DOI: 10.1021/acsami.2c22584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has become a promising strategy in treating multiple tumor types, but the therapeutic efficacy is still unsatisfactory due to the temporary and inefficient blocking and the poor immune responsiveness. Herein, we report the development of dual reactive oxygen species (ROS)- and pH-responsive core-shell tecto dendrimers loaded with gold nanoparticles (for short, Au CSTDs) to deliver a plasmid-clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9 system for the permanent disruption of the programmed death ligand 1 (PD-L1) gene in cancer cells to boost cancer immunotherapy. In our work, Au CSTDs were constructed using lactobionic acid (LA)-modified generation 5 poly(amidoamine) dendrimers entrapped with gold nanoparticles as cores and phenylboronic acid (PBA)-conjugated generation 3 dendrimers as shells via the formation of responsive phenylborate ester bonds between PBA and LA. The plasmid-CRISPR/Cas9 system can be efficiently compacted and specifically taken up by cancer cells overexpressing sialic acids due to the PBA-mediated targeting and be responsively released in cancer cells by the responsive dissociation of the Au CSTDs, leading to the successful endosomal escape and the efficient knockout of the PD-L1 gene. Further in vivo delivery in a mouse melanoma model reveals that the developed Au CSTDs/plasmid-CRISPR/Cas9 complexes can be specifically accumulated at the tumor site for enhanced computed tomography (CT) imaging of tumors, owing to the X-ray attenuation effect of Au, and disrupt the PD-L1 expression in tumor cells, thus promoting the ICB-based antitumor immunity. The designed dual-responsive Au CSTDs may be developed as a versatile tool for genetic engineering of other cell types to achieve different therapeutic effects for expanded space of biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, China
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
106
|
Llargués-Sistac G, Bonjoch L, Castellvi-Bel S. HAP1, a new revolutionary cell model for gene editing using CRISPR-Cas9. Front Cell Dev Biol 2023; 11:1111488. [PMID: 36936678 PMCID: PMC10020200 DOI: 10.3389/fcell.2023.1111488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The use of next-generation sequencing (NGS) technologies has been instrumental in the characterization of the mutational landscape of complex human diseases like cancer. But despite the enormous rise in the identification of disease candidate genetic variants, their functionality is yet to be fully elucidated in order to have a clear implication in patient care. Haploid human cell models have become the tool of choice for functional gene studies, since they only contain one copy of the genome and can therefore show the unmasked phenotype of genetic variants. Over the past few years, the human near-haploid cell line HAP1 has widely been consolidated as one of the favorite cell line models for functional genetic studies. Its rapid turnover coupled with the fact that only one allele needs to be modified in order to express the subsequent desired phenotype has made this human cell line a valuable tool for gene editing by CRISPR-Cas9 technologies. This review examines the recent uses of the HAP1 cell line model in functional genetic studies and high-throughput genetic screens using the CRISPR-Cas9 system. It covers its use in an attempt to develop new and relevant disease models to further elucidate gene function, and create new ways to understand the genetic basis of human diseases. We will cover the advantages and potential of the use of CRISPR-Cas9 technology on HAP1 to easily and efficiently study the functional interpretation of gene function and human single-nucleotide genetic variants of unknown significance identified through NGS technologies, and its implications for changes in clinical practice and patient care.
Collapse
Affiliation(s)
- Gemma Llargués-Sistac
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain
| | | | - Sergi Castellvi-Bel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain
| |
Collapse
|
107
|
Meng X, Wu T, Lou Q, Niu K, Jiang L, Xiao Q, Xu T, Zhang L. Optimization of CRISPR-Cas system for clinical cancer therapy. Bioeng Transl Med 2023; 8:e10474. [PMID: 36925702 PMCID: PMC10013785 DOI: 10.1002/btm2.10474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is a genetic disease caused by alterations in genome and epigenome and is one of the leading causes for death worldwide. The exploration of disease development and therapeutic strategies at the genetic level have become the key to the treatment of cancer and other genetic diseases. The functional analysis of genes and mutations has been slow and laborious. Therefore, there is an urgent need for alternative approaches to improve the current status of cancer research. Gene editing technologies provide technical support for efficient gene disruption and modification in vivo and in vitro, in particular the use of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. Currently, the applications of CRISPR-Cas systems in cancer rely on different Cas effector proteins and the design of guide RNAs. Furthermore, effective vector delivery must be met for the CRISPR-Cas systems to enter human clinical trials. In this review article, we describe the mechanism of the CRISPR-Cas systems and highlight the applications of class II Cas effector proteins. We also propose a synthetic biology approach to modify the CRISPR-Cas systems, and summarize various delivery approaches facilitating the clinical application of the CRISPR-Cas systems. By modifying the CRISPR-Cas system and optimizing its in vivo delivery, promising and effective treatments for cancers using the CRISPR-Cas system are emerging.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Tian‐gang Wu
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qiu‐yue Lou
- Anhui Provincial Center for Disease Control and PreventionHefeiPeople's Republic of China
| | - Kai‐yuan Niu
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
- Department of OtolaryngologyThe Third Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Jiang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qing‐zhong Xiao
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural ProductsAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceHefeiChina
| | - Lei Zhang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
- Department of PeriodontologyAnhui Stomatology Hospital Affiliated to Anhui Medical UniversityHefeiChina
| |
Collapse
|
108
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
109
|
Strategies for generation of mice via CRISPR/HDR-mediated knock-in. Mol Biol Rep 2023; 50:3189-3204. [PMID: 36701041 DOI: 10.1007/s11033-023-08278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
CRISPR/Cas9 framework is generally used to generate genetically modified mouse models. The clustered regularly interspaced short palindromic repeat gene editing technique, can efficiently generate knock-outs using the non-homologous end-joining repair pathway. Small knock-ins also work precisely using a repair template with help of homology-directed-repair (HDR) mechanism. However, when the fragment size is larger than 4-5 kb, the knock-in tends to be error prone and the efficiency decreases. Certain types of modifications, in particular insertions of very large DNA fragments (10-100 kb) or entire gene replacements, are still difficult. The HDR process needs further streamlining and improvement. Here in this review, we describe methods to enhance the efficiency of the knock-in through checking each step from the guide design to the microinjection and choice of the oocyte donors. This helps in understanding the parameters that can be modified to get improved knock-in efficiency via CRISPR targeting.
Collapse
|
110
|
Fu B, Ying J, Chen Q, Zhang Q, Lu J, Zhu Z, Yu P. Enhancing the biosynthesis of riboflavin in the recombinant Escherichia coli BL21 strain by metabolic engineering. Front Microbiol 2023; 13:1111790. [PMID: 36726568 PMCID: PMC9885008 DOI: 10.3389/fmicb.2022.1111790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
In this study, to construct the riboflavin-producing strain R1, five key genes, ribA, ribB, ribC, ribD, and ribE, were cloned and ligated to generate the plasmid pET-AE, which was overexpressed in Escherichia coli BL21. The R1 strain accumulated 182.65 ± 9.04 mg/l riboflavin. Subsequently, the R2 strain was constructed by the overexpression of zwf harboring the constructed plasmid pAC-Z in the R1 strain. Thus, the level of riboflavin in the R2 strain increased to 319.01 ± 20.65 mg/l (74.66% increase). To further enhance ribB transcript levels and riboflavin production, the FMN riboswitch was deleted from E. coli BL21 with CRISPR/Cas9 to generate the R3 strain. The R4 strain was constructed by cotransforming pET-AE and pAC-Z into the R3 strain. Compared to those of E. coli BL21, the ribB transcript levels of R2 and R4 improved 2.78 and 3.05-fold, respectively. The R4 strain accumulated 437.58 ± 14.36 mg/l riboflavin, increasing by 37.17% compared to the R2 strain. These results suggest that the deletion of the FMN riboswitch can improve the transcript level of ribB and facilitate riboflavin production. A riboflavin titer of 611.22 ± 11.25 mg/l was achieved under the optimal fermentation conditions. Ultimately, 1574.60 ± 109.32 mg/l riboflavin was produced through fed-batch fermentation with 40 g/l glucose. This study contributes to the industrial production of riboflavin by the recombinant E. coli BL21.
Collapse
Affiliation(s)
- Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Junhui Ying
- College of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Qingwei Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Qili Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China,*Correspondence: Ping Yu,
| |
Collapse
|
111
|
Chen Z, Lehertshuber C, Schunkert H. Genome Editing in Dyslipidemia and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:139-156. [DOI: 10.1007/978-981-19-5642-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
112
|
Sun Y, Sha Y, Cui G, Meng F, Zhong Z. Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Adv Drug Deliv Rev 2023; 192:114624. [PMID: 36435229 DOI: 10.1016/j.addr.2022.114624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The development of carrier systems that are able to transport and release therapeutics to target cells is an emergent strategy to treat cancer; however, they following endocytosis are usually trapped in the endo/lysosomal compartments. The efficacy of drug conjugates and nanotherapeutics relies critically on their intracellular drug release ability, for which advanced systems responding to the unique lysosomal environment such as acidic pH and abundant enzymes (e.g. cathepsin B, sulfatase and β-glucuronidase) or equipped with photochemical internalization property have been energetically pursued. In this review, we highlight the recent designs of smart systems that promote efficient lysosomal release and/or escape of anticancer agents including chemotherapeutics (e.g. doxorubicin, platinum, chloroquine and hydrochloroquine) and biotherapeutics (e.g. proteins, siRNA, miRNA, mRNA and pDNA) to cancer cells or immunotherapeutic agents (e.g. antigens, mRNA and immunoadjuvants) to antigen-presenting cells (APCs), thereby boosting cancer therapy and immunotherapy. Lysosomal-mediated drug release presents an appealing approach to develop innovative cancer therapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
113
|
Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:315-339. [PMID: 36454475 DOI: 10.1007/978-981-19-5642-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
114
|
Sari-Ak D, Alomari O, Shomali RA, Lim J, Thimiri Govinda Raj DB. Advances in CRISPR-Cas9 for the Baculovirus Vector System: A Systematic Review. Viruses 2022; 15:54. [PMID: 36680093 PMCID: PMC9864449 DOI: 10.3390/v15010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The baculovirus expression vector systems (BEVS) have been widely used for the recombinant production of proteins in insect cells and with high insert capacity. However, baculovirus does not replicate in mammalian cells; thus, the BacMam system, a heterogenous expression system that can infect certain mammalian cells, was developed. Since then, the BacMam system has enabled transgene expression via mammalian-specific promoters in human cells, and later, the MultiBacMam system enabled multi-protein expression in mammalian cells. In this review, we will cover the continual development of the BEVS in combination with CRPISPR-Cas technologies to drive genome-editing in mammalian cells. Additionally, we highlight the use of CRISPR-Cas in glycoengineering to potentially produce a new class of glycoprotein medicines in insect cells. Moreover, we anticipate CRISPR-Cas9 to play a crucial role in the development of protein expression systems, gene therapy, and advancing genome engineering applications in the future.
Collapse
Affiliation(s)
- Duygu Sari-Ak
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences, 34668 Istanbul, Turkey
| | - Omar Alomari
- Hamidiye International School of Medicine, University of Health Sciences, 34668 Istanbul, Turkey; (O.A.); (R.A.S.)
| | - Raghad Al Shomali
- Hamidiye International School of Medicine, University of Health Sciences, 34668 Istanbul, Turkey; (O.A.); (R.A.S.)
| | - Jackwee Lim
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| | - Deepak B. Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines Group, Synthetic Biology and Precision Medicine Centre, Next Generation Health Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa;
| |
Collapse
|
115
|
Oliynyk RT, Church GM. Efficient modification and preparation of circular DNA for expression in cell culture. Commun Biol 2022; 5:1393. [PMID: 36543890 PMCID: PMC9772414 DOI: 10.1038/s42003-022-04363-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
DNA plasmids are an essential tool for delivery and expression of RNAs and proteins in cell culture experiments. The preparation of plasmids typically involves a laborious process of bacterial cloning, validation, and purification. While the expression plasmids can be designed and ordered from the contract manufacturers, the cost may be prohibitive when a large number of plasmids is required. We have developed an efficient fully synthetic method and protocol that enables the production of circularized DNA containing expression elements ready for transfection in as little as 3 hours, thereby eliminating the bacterial cloning steps. The protocol describes how to take a linear double-stranded DNA fragment and efficiently circularize and purify this DNA fragment with minimal hands-on time. As proof of the principle, we applied Circular Vector expressing engineered prime editing guide RNA (epegRNA) in cell culture, and demonstrated matching and even exceeding performance of this method as compared to guides expressed by plasmids. The method's speed of preparation, low cost, and ease of use will make it a useful tool in applications requiring the expression of short RNAs and proteins.
Collapse
Affiliation(s)
- Roman Teo Oliynyk
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Computer Science, University of Auckland, Auckland, New Zealand.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
116
|
New Therapeutics for Extracellular Vesicles: Delivering CRISPR for Cancer Treatment. Int J Mol Sci 2022; 23:ijms232415758. [PMID: 36555398 PMCID: PMC9779094 DOI: 10.3390/ijms232415758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers are defined by genetic defects, which underlines the prospect of using gene therapy in patient care. During the past decade, CRISPR technology has rapidly evolved into a powerful gene editing tool with high fidelity and precision. However, one of the impediments slowing down the clinical translation of CRISPR-based gene therapy concerns the lack of ideal delivery vectors. Extracellular vesicles (EVs) are nano-sized membrane sacs naturally released from nearly all types of cells. Although EVs are secreted for bio-information conveyance among cells or tissues, they have been recognized as superior vectors for drug or gene delivery. Recently, emerging evidence has spotlighted EVs in CRISPR delivery towards cancer treatment. In this review, we briefly introduce the biology and function of the CRISPR system and follow this with a summary of current delivery methods for CRISPR applications. We emphasize the recent progress in EV-mediated CRISPR editing for various cancer types and target genes. The reported strategies for constructing EV-CRISPR vectors, as well as their limitations, are discussed in detail. The review aims to throw light on the clinical potential of engineered EVs and encourage the expansion of our available toolkit to defeat cancer.
Collapse
|
117
|
Chien Y, Hsiao YJ, Chou SJ, Lin TY, Yarmishyn AA, Lai WY, Lee MS, Lin YY, Lin TW, Hwang DK, Lin TC, Chiou SH, Chen SJ, Yang YP. Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. J Nanobiotechnology 2022; 20:511. [DOI: 10.1186/s12951-022-01717-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
AbstractInherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Collapse
|
118
|
Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
119
|
Li F, Mei Z, Ju N, Sui L, Fan X, Wang Z, Li J, Jiang Y, Cui W, Shan Z, Zhou H, Wang L, Qiao X, Tang L, Wang X, Li Y. Evaluation of the immunogenicity of auxotrophic Lactobacillus with CRISPR-Cas9D10A system-mediated chromosomal editing to express porcine rotavirus capsid protein VP4. Virulence 2022; 13:1315-1330. [PMID: 35920261 PMCID: PMC9351582 DOI: 10.1080/21505594.2022.2107646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
Porcine rotavirus (PoRV) is an important pathogen, leading to the occurrence of viral diarrhoea . As the infection displays obvious enterotropism, intestinal mucosal immunity is the significant line of defence against pathogen invasion. Moreover, as lactic acid bacteria (LAB) show acid resistance, bile salt resistance and immune regulation, it is of great significance to develop an oral vaccine. Most traditional plasmid delivery vectors use antibiotic genes as selective markers, easily leading to antibiotic accumulation. Therefore, to select a food-grade marker in genetically engineering food-grade microorganisms is vital. Based on the CRISPR-Cas9D10A system, we constructed a stable auxotrophic Lactobacillus paracasei HLJ-27 (Lactobacillus △Alr HLJ-27) strain. In addition, as many plasmids replicate in the host bacteria, resulting in internal gene deletions. In this study,we used a temperature-sensitive gene editing plasmidto insert the VP4 gene into the genome, yielding the insertion mutant strains VP4/△Alr HLJ-27, VP4/△Alr W56, and VP4/W56. This recombinant bacterium efficiently induced secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses. These oral mucosal vaccines have the potential to act as an alternative to the application of antibiotics in the future and induce efficient immune responses against PEDV infection.
Collapse
Affiliation(s)
- Fengsai Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhuyuan Mei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ning Ju
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ling Sui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zi Wang
- Tongliao Institute of agriculture and animal husbandry, Tongliao City, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| |
Collapse
|
120
|
Huang K, Zapata D, Tang Y, Teng Y, Li Y. In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials 2022; 291:121876. [PMID: 36334354 PMCID: PMC10018374 DOI: 10.1016/j.biomaterials.2022.121876] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 12/07/2022]
Abstract
Since its mechanism discovery in 2012 and the first application for mammalian genome editing in 2013, CRISPR-Cas9 has revolutionized the genome engineering field and created countless opportunities in both basic science and translational medicine. The first clinical trial of CRISPR therapeutics was initiated in 2016, which employed ex vivo CRISPR-Cas9 edited PD-1 knockout T cells for the treatment of non-small cell lung cancer. So far there have been dozens of clinical trials registered on ClinicalTrials.gov in regard to using the CRISPR-Cas9 genome editing as the main intervention for therapeutic applications; however, most of these studies use ex vivo genome editing approach, and only a few apply the in vivo editing strategy. Compared to ex vivo editing, in vivo genome editing bypasses tedious procedures related to cell isolation, maintenance, selection, and transplantation. It is also applicable to a wide range of diseases and disorders. The main obstacles to the successful translation of in vivo therapeutic genome editing include the lack of safe and efficient delivery system and safety concerns resulting from the off-target effects. In this review, we highlight the therapeutic applications of in vivo genome editing mediated by the CRISPR-Cas9 system. Following a brief introduction of the history, biology, and functionality of CRISPR-Cas9, we showcase a series of exemplary studies in regard to the design and implementation of in vivo genome editing systems that target the brain, inner ear, eye, heart, liver, lung, muscle, skin, immune system, and tumor. Current challenges and opportunities in the field of CRISPR-enabled therapeutic in vivo genome editing are also discussed.
Collapse
Affiliation(s)
- Kun Huang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Daniel Zapata
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Yan Tang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Yamin Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
121
|
Gleerup JL, Mogensen TH. CRISPR-Cas in Diagnostics and Therapy of Infectious Diseases. J Infect Dis 2022; 226:1867-1876. [PMID: 35446391 DOI: 10.1093/infdis/jiac145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Infectious diseases are a major threat to the global health. The rise in antimicrobial-resistant organisms, incurable chronic infections, and an increasing demand for rapid accurate diagnostics have prompted researchers to experiment with new approaches. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) is a naturally occurring adaptive immune system in bacteria that has been developed as a tool for performing genomic alterations in any genome of interest, including humans and microbes. Accordingly, several studies have been conducted to investigate how the technology can be utilized in infectious diseases to improve diagnostics, disrupt antimicrobial resistance, and cure chronic infections. This review provides an overview of the CRISPR-Cas system and how it has been applied in studies on infectious diseases. The review also investigates the current challenges of the technology and the improvements that are needed for the platform to be adopted for clinical use in patients.
Collapse
Affiliation(s)
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
122
|
Maharajan T, Krishna TPA, Rakkammal K, Ceasar SA, Ramesh M. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. PLANTA 2022; 256:106. [PMID: 36326904 DOI: 10.1007/s00425-022-04023-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Application of the recently developed CRISPR/Cas tools might help enhance cereals' growth and yield under biotic and abiotic stresses. Cereals are the most important food crops for human life and an essential source of nutrients for people in developed and developing countries. The growth and yield of all major cereals are affected by both biotic and abiotic stresses. To date, molecular breeding and functional genomic studies have contributed to the understanding and improving cereals' growth and yield under biotic and abiotic stresses. Clustered, regularly inter-spaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been predicted to play a major role in precision plant breeding and developing non-transgenic cereals that can tolerate adverse effects of climate change. Variants of next-generation CRISPR/Cas tools, such as prime editor, base editor, CRISPR activator and repressor, chromatin imager, Cas12a, and Cas12b, are currently used in various fields, including plant science. However, few studies have been reported on applying the CRISPR/Cas system to understand the mechanism of biotic and abiotic stress tolerance in cereals. Rice is the only plant used frequently for such studies. Genes responsible for biotic and abiotic stress tolerance have not yet been studied by CRISPR/Cas system in other major cereals (sorghum, barley, maize and small millets). Examining the role of genes that respond to biotic and abiotic stresses using the CRISPR/Cas system may help enhance cereals' growth and yield under biotic and abiotic stresses. It will help to develop new and improved cultivars with biotic- and abiotic-tolerant traits for better yields to strengthen food security. This review provides information for cereal researchers on the current status of the CRISPR/Cas system for improving biotic and abiotic stress tolerance in cereals.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India
| | - T P Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India.
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| |
Collapse
|
123
|
Inoue M, Muta K, Mohammed AFA, Onodera R, Higashi T, Ouchi K, Ueda M, Ando Y, Arima H, Jono H, Motoyama K. Feasibility Study of Dendrimer-Based TTR-CRISPR pDNA Polyplex for Ocular Amyloidosis <i>in Vitro</i>. Biol Pharm Bull 2022; 45:1660-1668. [DOI: 10.1248/bpb.b22-00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Masamichi Inoue
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kyosuke Muta
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Risako Onodera
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University
| | - Kenta Ouchi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
124
|
Madhi ZS, Shallan MA, Almaamuri AM, Alhussainy AA, AL- Salih SSS, Raheem AK, Alwan HJ, Jalil AT. Lipids and lipid derivatives for delivery of the CRISPR/Cas9 system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
125
|
Viegas JSR, Bentley MVLB, Vicentini FTMDC. Challenges to perform an efficiently gene therapy adopting non-viral vectors: Melanoma landscape. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
126
|
Liu X, Cui S, Qi Q, Lei H, Zhang Y, Shen W, Fu F, Tian T, Zhou X. G-quadruplex-guided RNA engineering to modulate CRISPR-based genomic regulation. Nucleic Acids Res 2022; 50:11387-11400. [PMID: 36263801 PMCID: PMC9638906 DOI: 10.1093/nar/gkac870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022] Open
Abstract
It is important to develop small moelcule-based methods to modulate gene editing and expression in human cells. The roles of the G-quadruplex (G4) in biological systems have been widely studied. Here, G4-guided RNA engineering is performed to generate guide RNA with G4-forming units (G4-gRNA). We further demonstrate that chemical targeting of G4-gRNAs holds promise as a general approach for modulating gene editing and expression in human cells. The rich structural diversity of RNAs offers a reservoir of targets for small molecules to bind, thus creating the potential to modulate RNA biology.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Shuangyu Cui
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Huajun Lei
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yutong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Shen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Fang Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
127
|
Application of Gene Therapy in Hemophilia. Curr Med Sci 2022; 42:925-931. [PMID: 36260269 DOI: 10.1007/s11596-022-2645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/14/2022] [Indexed: 11/03/2022]
Abstract
Gene therapy refers to introducing normal exogenous genes into target cells to correct or compensate for the diseases caused by defective and abnormal genes for the purpose of therapy. It holds out hope of a cure for single-gene genetic diseases such as thalassemia, hemophilia, etc. At present, gene therapy is performed in two ways: introducing exogenous genes, and gene editing. A great number of clinical trials of gene therapy in hemophilia have been carried out using viral vectors to introduce foreign genes into target cells. However, the production of neutralizing antibodies following injection and the inability to prepare viral vectors in large quantities limit their application. Although gene-editing methods like CRISPR avoid the above problems, the potential risks of off-target effects are still unknown. More trials and evidence are needed to elucidate the safety and accuracy of gene therapy. This paper will review the bench and clinical work of gene therapy in hemophilia in recent years, and summarize the challenges and prospects of gene therapy, so as to provide directions for future scientific research in this field.
Collapse
|
128
|
Godbout K, Tremblay JP. Delivery of RNAs to Specific Organs by Lipid Nanoparticles for Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14102129. [PMID: 36297564 PMCID: PMC9611171 DOI: 10.3390/pharmaceutics14102129] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Gene therapy holds great promise in the treatment of genetic diseases. It is now possible to make DNA modifications using the CRISPR system. However, a major problem remains: the delivery of these CRISPR-derived technologies to specific organs. Lipid nanoparticles (LNPs) have emerged as a very promising delivery method. However, when delivering LNPs intravenously, most of the cargo is trapped by the liver. Alternatively, injecting them directly into organs, such as the brain, requires more invasive procedures. Therefore, developing more specific LNPs is crucial for their future clinical use. Modifying the composition of the lipids in the LNPs allows more specific deliveries of the LNPs to some organs. In this review, we have identified the most effective compositions and proportions of lipids for LNPs to target specific organs, such as the brain, lungs, muscles, heart, liver, spleen, and bones.
Collapse
Affiliation(s)
- Kelly Godbout
- Centre de Recherche du CHU de Québec, Laval University, Quebec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec, Laval University, Quebec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
129
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
130
|
Rani V, Prabhu A. CRISPR-Cas9 based non-viral approaches in nanoparticle elicited therapeutic delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
131
|
Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. SCIENCE ADVANCES 2022; 8:eabp9435. [PMID: 36103526 PMCID: PMC9473578 DOI: 10.1126/sciadv.abp9435] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CRISPR-Cas9 gene editing has emerged as a powerful therapeutic technology, but the lack of safe and efficient in vivo delivery systems, especially for tissue-specific vectors, limits its broad clinical applications. Delivery of Cas9 ribonucleoprotein (RNP) owns competitive advantages over other options; however, the large size of RNPs exceeds the loading capacity of currently available delivery vectors. Here, we report a previously unidentified genome editing delivery system, named exosomeRNP, in which Cas9 RNPs were loaded into purified exosomes isolated from hepatic stellate cells through electroporation. ExosomeRNP facilitated effective cytosolic delivery of RNP in vitro while specifically accumulated in the liver tissue in vivo. ExosomeRNP showed vigorous therapeutic potential in acute liver injury, chronic liver fibrosis, and hepatocellular carcinoma mouse models via targeting p53 up-regulated modulator of apoptosis (PUMA), cyclin E1 (CcnE1), and K (lysine) acetyltransferase 5 (KAT5), respectively. The developed exosomeRNP provides a feasible platform for precise and tissue-specific gene therapies of liver diseases.
Collapse
Affiliation(s)
- Tao Wan
- Liangzhu Laboratory, Zhejiang University Medical Center, Zhejiang University, Hangzhou 311121, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiafeng Zhong
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianhua Zhou
- Liangzhu Laboratory, Zhejiang University Medical Center, Zhejiang University, Hangzhou 311121, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Corresponding author. (X.L.); (Y.P.); (T.Z.)
| | - Yuan Ping
- Liangzhu Laboratory, Zhejiang University Medical Center, Zhejiang University, Hangzhou 311121, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (X.L.); (Y.P.); (T.Z.)
| | - Xiangrui Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Zhejiang University, Hangzhou 311121, China
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Corresponding author. (X.L.); (Y.P.); (T.Z.)
| |
Collapse
|
132
|
Liu Z, Li Z, Li B. Nonviral Delivery of CRISPR/Cas Systems in mRNA Format. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Zhen Liu
- Department of Infectious Disease Shenzhen People's Hospital The First Affiliated Hospital of Southern University of Science and Technology The Second Clinical Medical College of Jinan University Shenzhen 518020 China
| | - Zhenghua Li
- Department of Infectious Disease Shenzhen People's Hospital The First Affiliated Hospital of Southern University of Science and Technology The Second Clinical Medical College of Jinan University Shenzhen 518020 China
| | - Bin Li
- Department of Infectious Disease Shenzhen People's Hospital The First Affiliated Hospital of Southern University of Science and Technology The Second Clinical Medical College of Jinan University Shenzhen 518020 China
- School of Medicine Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
133
|
Nie D, Guo T, Yue M, Li W, Zong X, Zhu Y, Huang J, Lin M. Research Progress on Nanoparticles-Based CRISPR/Cas9 System for Targeted Therapy of Tumors. Biomolecules 2022; 12:1239. [PMID: 36139078 PMCID: PMC9496048 DOI: 10.3390/biom12091239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a genetic mutation disease that seriously endangers the health and life of all human beings. As one of the most amazing academic achievements in the past decade, CRISPR/Cas9 technology has been sought after by many researchers due to its powerful gene editing capability. CRISPR/Cas9 technology shows great potential in oncology, and has become one of the most promising technologies for cancer genome-editing therapeutics. However, its efficiency and the safety issues of in vivo gene editing severely limit its widespread application. Therefore, developing a suitable delivery method for the CRISPR/Cas9 system is an urgent problem to be solved at present. Rapid advances in nanomedicine suggest nanoparticles could be a viable option. In this review, we summarize the latest research on the potential use of nanoparticle-based CRISPR/Cas9 systems in cancer therapeutics, in order to further their clinical application. We hope that this review will provide a novel insight into the CRISPR/Cas9 system and offer guidance for nanocarrier designs that will enable its use in cancer clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mei Lin
- Taizhou People’s Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou 225300, China
| |
Collapse
|
134
|
Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Advances in Chitosan-Based CRISPR/Cas9 Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14091840. [PMID: 36145588 PMCID: PMC9505239 DOI: 10.3390/pharmaceutics14091840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and the associated Cas endonuclease (Cas9) is a cutting-edge genome-editing technology that specifically targets DNA sequences by using short RNA molecules, helping the endonuclease Cas9 in the repairing of genes responsible for genetic diseases. However, the main issue regarding the application of this technique is the development of an efficient CRISPR/Cas9 delivery system. The consensus relies on the use of non-viral delivery systems represented by nanoparticles (NPs). Chitosan is a safe biopolymer widely used in the generation of NPs for several biomedical applications, especially gene delivery. Indeed, it shows several advantages in the context of gene delivery systems, for instance, the presence of positively charged amino groups on its backbone can establish electrostatic interactions with the negatively charged nucleic acid forming stable nanocomplexes. However, its main limitations include poor solubility in physiological pH and limited buffering ability, which can be overcome by functionalising its chemical structure. This review offers a critical analysis of the different approaches for the generation of chitosan-based CRISPR/Cas9 delivery systems and suggestions for future developments.
Collapse
|
135
|
Genetic insights, disease mechanisms, and biological therapeutics for Waardenburg syndrome. Gene Ther 2022; 29:479-497. [PMID: 33633356 DOI: 10.1038/s41434-021-00240-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Waardenburg syndrome (WS), also known as auditory-pigmentary syndrome, is the most common cause of syndromic hearing loss (HL), which accounts for approximately 2-5% of all patients with congenital hearing loss. WS is classified into four subtypes depending on the clinical phenotypes. Currently, pathogenic mutations of PAX3, MITF, SOX10, EDN3, EDNRB or SNAI2 are associated with different subtypes of WS. Although supportive techniques like hearing aids, cochlear implants, or other assistive listening devices can alleviate the HL symptom, there is no cure for WS to date. Recently major progress has been achieved in preclinical studies of genetic HL in animal models, including gene delivery and stem cell replacement therapies. This review focuses on the current understandings of pathogenic mechanisms and potential biological therapeutic approaches for HL in WS, providing strategies and directions for implementing WS biological therapies, as well as possible problems to be faced, in the future.
Collapse
|
136
|
Engineered endosymbionts that alter mammalian cell surface marker, cytokine and chemokine expression. Commun Biol 2022; 5:888. [PMID: 36042261 PMCID: PMC9427783 DOI: 10.1038/s42003-022-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Developing modular tools that direct mammalian cell function and activity through controlled delivery of essential regulators would improve methods of guiding tissue regeneration, enhancing cellular-based therapeutics and modulating immune responses. To address this challenge, Bacillus subtilis was developed as a chassis organism for engineered endosymbionts (EES) that escape phagosome destruction, reside in the cytoplasm of mammalian cells, and secrete proteins that are transported to the nucleus to impact host cell response and function. Two synthetic operons encoding either the mammalian transcription factors Stat-1 and Klf6 or Klf4 and Gata-3 were recombined into the genome of B. subtilis expressing listeriolysin O (LLO) from Listeria monocytogenes and expressed from regulated promoters. Controlled expression of the mammalian proteins from B. subtilis LLO in the cytoplasm of J774A.1 macrophage/monocyte cells altered surface marker, cytokine and chemokine expression. Modulation of host cell fates displayed some expected patterns towards anti- or pro-inflammatory phenotypes by each of the distinct transcription factor pairs with further demonstration of complex regulation caused by a combination of the EES interaction and transcription factors. Expressing mammalian transcription factors from engineered intracellular B. subtilis as engineered endosymbionts comprises a new tool for directing host cell gene expression for therapeutic and research purposes. The establishment of non-pathogenic engineered endosymbionts through B. subtilis is presented, with the aim of delivering mammalian transcription factors to the host cell for therapeutics and research.
Collapse
|
137
|
Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022; 20:354. [PMID: 35918694 PMCID: PMC9344766 DOI: 10.1186/s12951-022-01570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.,School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mysha Ibnat
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada. .,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
138
|
Getahun YA, Ali DA, Taye BW, Alemayehu YA. Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System. Vet Med (Auckl) 2022; 13:173-190. [PMID: 35983086 PMCID: PMC9379109 DOI: 10.2147/vmrr.s366533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
The emergence and spread of multidrug-resistant microbes become a serious threat to animal and human health globally because of their less responsiveness to conventional antimicrobial therapy. Multidrug-resistant microbial infection poses higher morbidity and mortality rate with significant economic losses. Currently, antimicrobial peptides and the CRISPR/Cas9 system are explored as alternative therapy to circumvent the challenges of multidrug-resistant organisms. Antimicrobial peptides are small molecular weight, cationic peptides extracted from all living organisms. It is a promising drug candidate for the treatment of multidrug-resistant microbes by direct microbial killing or indirectly modulating the innate immune system. The CRISPR/Cas9 system is another novel antimicrobial alternative used to manage multidrug-resistant microbial infection. It is a versatile gene-editing tool that uses engineered single guide RNA for targeted gene recognition and the Cas9 enzyme for the destruction of target nucleic acids. Both the CRISPR/Cas9 system and antimicrobial peptides were used to successfully treat nosocomial infections caused by ESKAPE pathogens, which developed resistance to various antimicrobials. Despite, their valuable roles in multidrug-resistant microbial treatments, both the antimicrobial peptides and the CRISPR/Cas systems have various limitations like toxicity, instability, and incurring high manufacturing costs. Thus, this review paper gives detailed explanations of the roles of the CRISPR/Cas9 system and antimicrobial peptides in circumventing the challenges of multidrug-resistant microbial infections, its limitation and prospects in clinical applications.
Collapse
Affiliation(s)
- Yared Abate Getahun
- Livestock and Fishery Research Center, College of Agriculture, Arba Minch University, Arba Minch, Southern Nation Nationalities and Peoples Regional State, Ethiopia
- Correspondence: Yared Abate Getahun, Email
| | - Destaw Asfaw Ali
- Department of Paraclinical Studies, College of Veterinary Medicine, Gondar University, Gondar City, Amhara Regional State, Ethiopia
| | - Bihonegn Wodajnew Taye
- Faculty of Veterinary Medicine, College of Agriculture, Assosa University, Assosa City, Benshangul Gumez Regional State, Ethiopia
| | - Yismaw Alemie Alemayehu
- Department of Animal Science, College of Agriculture, Wollega University, Nekemtie City, Oromia Regional State, Ethiopia
| |
Collapse
|
139
|
Huang L, Zhou M, Abbas G, Li C, Cui M, Zhang XE, Wang DB. A Cancer Cell Membrane-Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of CRISPR/Cas9 and Gold Nanorods. Adv Healthc Mater 2022; 11:e2201038. [PMID: 35670380 DOI: 10.1002/adhm.202201038] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Indexed: 01/24/2023]
Abstract
Bimodal synergistic therapy produces superadditive effect for enhanced therapeutic efficacy. However, how to efficiently and simultaneously deliver several kinds of therapeutic agents is still challenging. A cancer cell membrane-derived nanocarrier (mCas9-sGNRs) is proposed for synergistic photothermal/gene therapy (PTT/GT) by efficient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) and gold nanorods (GNRs). In this approach, Cas9 proteins can be efficiently loaded inside the cell membranes (mCas9) by electrostatic interactions. Similarly, single-guide RNAs, which target survivin, can be loaded onto GNRs (sGNRs) through electrostatic interactions and encapsulated by mCas9. As a result, the nanodelivery systems present advantages in biocompatibility, homologous targeting capacity and loading efficiency of cargoes. In addition, significant antitumor effects is achieved by gene editing of survivin which induces anticancer activity and reduces heat tolerance of cancer cells caused by GNRs mediated PTT due to the downregulation of HSP70. These results indicate the nanotherapeutic platform leads to enhanced PTT/GT efficacy. Therefore, this work not only provides a general strategy to construct a versatile nanoplatform for loading and target delivery of several therapeutic cargos but will also be valuable for PTT/GT and other bimodal synergistic therapy.
Collapse
Affiliation(s)
- Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Ghulam Abbas
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Mengmeng Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Xian-En Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Dian-Bing Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| |
Collapse
|
140
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
141
|
Shalaby KE, Aouida M, Gupta V, Abdesselem H, El-Agnaf OMA. Development of non-viral vectors for neuronal-targeted delivery of CRISPR-Cas9 RNA-proteins as a therapeutic strategy for neurological disorders. Biomater Sci 2022; 10:4959-4977. [PMID: 35880637 DOI: 10.1039/d2bm00368f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aging population contributes to an increase in the prevalence of neurodegenerative diseases, such as Parkinson's disease (PD). Due to the progressive nature of these diseases and an incomplete understanding of their pathophysiology, current drugs are inefficient, with a limited efficacy and major side effects. In this study, CRISPR-Cas9 RNA-proteins (RNP) composed of a Cas9 nuclease and single-guide RNA were delivered with a non-viral targeted delivery system to rescue the PD-associated phenotype in neuronal cells. Here, we fused the cell-penetrating amphipathic peptide, PepFect14 (PF14), with a short fragment of the rabies virus glycoprotein (C2) previously shown to have an affinity towards nicotinic acetylcholine receptors expressed on neuronal cells and on the blood-brain barrier. The resultant peptide, C2-PF14, was used to complex with and deliver RNPs to neuronal cells. We observed that RNP/C2-PF14 complexes formed nanosized, monodispersed, and nontoxic nanoparticles that led to a specific delivery into neuronal cells. α-Synuclein (α-syn) plays a major role in the pathology of PD and is considered to be a target for therapy. We demonstrated that CRISPR/Cas9 RNP delivered by C2-PF14 achieved α-syn gene (SNCA) editing in neuronal cells as determined by T7EI assay and western blotting. Furthermore, RNP/C2-PF14 relieved PD-associated toxicity in neuronal cells in vitro. This is a proof-of-concept towards simple and safe targeted genome-editing for treating PD and other neurological disorders.
Collapse
Affiliation(s)
- Karim E Shalaby
- Biological and Biomedical Sciences Division, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar. .,Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mustapha Aouida
- Biological and Biomedical Sciences Division, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M A El-Agnaf
- Biological and Biomedical Sciences Division, College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar. .,Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
142
|
Chen XZ, Guo R, Zhao C, Xu J, Song H, Yu H, Pilarsky C, Nainu F, Li JQ, Zhou XK, Zhang JY. A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Front Pharmacol 2022; 13:939090. [PMID: 35935840 PMCID: PMC9353945 DOI: 10.3389/fphar.2022.939090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Cancer becomes one of the main causes of human deaths in the world due to the high incidence and mortality rate and produces serious economic burdens. With more and more attention is paid on cancer, its therapies are getting more of a concern. Previous research has shown that the occurrence, progression, and treatment prognosis of malignant tumors are closely related to genetic and gene mutation. CRISPR/Cas9 has emerged as a powerful method for making changes to the genome, which has extensively been applied in various cell lines. Establishing the cell and animal models by CRISPR/Cas9 laid the foundation for the clinical trials which possibly treated the tumor. CRISPR-Cas9-mediated genome editing technology brings a great promise for inhibiting migration, invasion, and even treatment of tumor. However, the potential off-target effect limits its clinical application, and the effective ethical review is necessary. The article reviews the molecular mechanisms of CRISPR/Cas9 and discusses the research and the limitation related to cancer clinical trials.
Collapse
Affiliation(s)
- Xin-Zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Rong Guo
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cong Zhao
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Christian Pilarsky
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xin-Ke Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
143
|
García-Fernández A, Vivo-Llorca G, Sancho M, García-Jareño AB, Ramírez-Jiménez L, Barber-Cano E, Murguía JR, Orzáez M, Sancenón F, Martínez-Máñez R. Nanodevices for the Efficient Codelivery of CRISPR-Cas9 Editing Machinery and an Entrapped Cargo: A Proposal for Dual Anti-Inflammatory Therapy. Pharmaceutics 2022; 14:pharmaceutics14071495. [PMID: 35890389 PMCID: PMC9322049 DOI: 10.3390/pharmaceutics14071495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
In this article, we report one of the few examples of nanoparticles capable of simultaneously delivering CRISPR-Cas9 gene-editing machinery and releasing drugs for one-shot treatments. Considering the complexity of inflammation in diseases, the synergistic effect of nanoparticles for gene-editing/drug therapy is evaluated in an in vitro inflammatory model as proof of concept. Mesoporous silica nanoparticles (MSNs), able to deliver the CRISPR/Cas9 machinery to edit gasdermin D (GSDMD), a key protein involved in inflammatory cell death, and the anti-inflammatory drug VX-765 (GSDMD45CRISPR-VX-MSNs), were prepared. Nanoparticles allow high cargo loading and CRISPR-Cas9 plasmid protection and, thus, achieve the controlled codelivery of CRISPR-Cas9 and the drug in cells. Nanoparticles exhibit GSDMD gene editing by downregulating inflammatory cell death and achieving a combined effect on decreasing the inflammatory response by the codelivery of VX-765. Taken together, our results show the potential of MSNs as a versatile platform by allowing multiple combinations for gene editing and drug therapy to prepare advanced nanodevices to meet possible biomedical needs.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| | - Gema Vivo-Llorca
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
| | - Mónica Sancho
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Alicia Belén García-Jareño
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Laura Ramírez-Jiménez
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - Eloísa Barber-Cano
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
| | - José Ramón Murguía
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (L.R.-J.); (E.B.-C.)
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, UPV-IIS La Fe, 46026 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain; (G.V.-L.); (J.R.M.); (F.S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, 46012 Valencia, Spain; (M.S.); (A.B.G.-J.)
- Unidad Mixta de Investigación en Nanomedicina y Sensores, UPV-IIS La Fe, 46026 Valencia, Spain
- Correspondence: (A.G.-F.); (M.O.); (R.M.-M.)
| |
Collapse
|
144
|
Yi S, Kim SY, Vincent MP, Yuk SA, Bobbala S, Du F, Scott EA. Dendritic peptide-conjugated polymeric nanovectors for non-toxic delivery of plasmid DNA and enhanced non-viral transfection of immune cells. iScience 2022; 25:104555. [PMID: 35769884 PMCID: PMC9234717 DOI: 10.1016/j.isci.2022.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 10/26/2022] Open
Abstract
Plasmid DNA (pDNA) transfection is advantageous for gene therapies requiring larger genetic elements, including "all-in-one" CRISPR/Cas9 plasmids, but is limited by toxicity as well as poor intracellular release and transfection efficiency in immune cell populations. Here, we developed a synthetic non-viral gene delivery platform composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers linked to a cationic dendritic peptide (DP) via a reduceable bond, PEG-b-PPS-ss-DP (PPDP). A library of self-assembling PPDP polymers was synthesized and screened to identify optimal constructs capable of transfecting macrophages with small (pCMV-DsRed, 4.6 kb) and large (pL-CRISPR.EFS.tRFP, 11.7 kb) plasmids. The optimized PPDP construct transfected macrophages, fibroblasts, dendritic cells, and T cells more efficiently and with less toxicity than a commercial Lipo2K reagent, regardless of pDNA size and under standard culture conditions in the presence of serum. The PPDP technology described herein is a stimuli-responsive polymeric nanovector that can be leveraged to meet diverse challenges in gene delivery.
Collapse
Affiliation(s)
- Sijia Yi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sun-Young Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Michael P. Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Simseok A. Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, USA
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Evan Alexander Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
145
|
Kayesh MEH, Hashem MA, Kohara M, Tsukiyama-Kohara K. In vivo Delivery Tools for Clustered Regularly Interspaced Short Palindromic Repeat/Associated Protein 9-Mediated Inhibition of Hepatitis B Virus Infection: An Update. Front Microbiol 2022; 13:953218. [PMID: 35847068 PMCID: PMC9284033 DOI: 10.3389/fmicb.2022.953218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health problem despite the availability of an effective prophylactic HBV vaccine. Current antiviral therapies are unable to fully cure chronic hepatitis B (CHB) because of the persistent nature of covalently closed circular DNA (cccDNA), a replicative template for HBV, which necessitates the development of alternative therapeutic approaches. The CRISPR/Cas system, a newly emerging genome editing tool, holds great promise for genome editing and gene therapy. Several in vitro and/or in vivo studies have demonstrated the effectiveness of HBV-specific clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (CRISPR/Cas9) systems in cleaving HBV DNA and cccDNA. Although recent advances in CRISPR/Cas technology enhance its prospects for clinical application against HBV infection, in vivo delivery of the CRISPR/Cas9 system at targets sites remains a major challenge that needs to be resolved before its clinical application in gene therapy for CHB. In the present review, we discuss CRISPR/Cas9 delivery tools for targeting HBV infection, with a focus on the development of adeno-associated virus vectors and lipid nanoparticle (LNP)-based CRISPR/Cas ribonucleoprotein (RNP) delivery to treat CHB. In addition, we discuss the importance of delivery tools in the enhancement of the antiviral efficacy of CRISPR/Cas9 against HBV infection.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
- *Correspondence: Mohammad Enamul Hoque Kayesh,
| | - Md Abul Hashem
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
- Kyoko Tsukiyama-Kohara,
| |
Collapse
|
146
|
Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy. Carbohydr Polym 2022; 287:119315. [DOI: 10.1016/j.carbpol.2022.119315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022]
|
147
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
148
|
Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M. CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics 2022; 14:1252. [PMID: 35745824 PMCID: PMC9229276 DOI: 10.3390/pharmaceutics14061252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) and other chronic and debilitating neurodegenerative diseases (NDs) impose a substantial medical, emotional, and financial burden on individuals and society. The origin of PD is unknown due to a complex combination of hereditary and environmental risk factors. However, over the last several decades, a significant amount of available data from clinical and experimental studies has implicated neuroinflammation, oxidative stress, dysregulated protein degradation, and mitochondrial dysfunction as the primary causes of PD neurodegeneration. The new gene-editing techniques hold great promise for research and therapy of NDs, such as PD, for which there are currently no effective disease-modifying treatments. As a result, gene therapy may offer new treatment options, transforming our ability to treat this disease. We present a detailed overview of novel gene-editing delivery vehicles, which is essential for their successful implementation in both cutting-edge research and prospective therapeutics. Moreover, we review the most recent advancements in CRISPR-based applications and gene therapies for a better understanding of treating PD. We explore the benefits and drawbacks of using them for a range of gene-editing applications in the brain, emphasizing some fascinating possibilities.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| | - Muhammad Bilal
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
- Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pierre-Louis Teissedre
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France;
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| |
Collapse
|
149
|
Kimura R, Nirasawa K, Negishi Y, Asayama S. Tunable Gene Expression in Skeletal Muscles by the Molecular Weight of PEG Chain Length of Plasmid DNA Mono-Ion Complexes. CHEM LETT 2022. [DOI: 10.1246/cl.220242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Riku Kimura
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kei Nirasawa
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0397, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0397, Japan
| | - Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
150
|
Nadukkandy AS, Ganjoo E, Singh A, Dinesh Kumar L. Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, unique and comprehensive cancer treatment has ushered new hope in the holistic management of the disease. Cancer immunotherapy, which harnesses the immune system of the patient to attack the cancer cells in a targeted manner, scores over others by being less debilitating compared to the existing treatment strategies. Significant advancements in the knowledge of immune surveillance in the last few decades have led to the development of several types of immune therapy like monoclonal antibodies, cancer vaccines, immune checkpoint inhibitors, T-cell transfer therapy or adoptive cell therapy (ACT) and immune system modulators. Intensive research has established cancer immunotherapy to be a safe and effective method for improving survival and the quality of a patient’s life. However, numerous issues with respect to site-specific delivery, resistance to immunotherapy, and escape of cancer cells from immune responses, need to be addressed for expanding and utilizing this therapy as a regular mode in the clinical treatment. Development in the field of nanotechnology has augmented the therapeutic efficiency of treatment modalities of immunotherapy. Nanocarriers could be used as vehicles because of their advantages such as increased surface areas, targeted delivery, controlled surface and release chemistry, enhanced permeation and retention effect, etc. They could enhance the function of immune cells by incorporating immunomodulatory agents that influence the tumor microenvironment, thus enabling antitumor immunity. Robust validation of the combined effect of nanotechnology and immunotherapy techniques in the clinics has paved the way for a better treatment option for cancer than the already existing procedures such as chemotherapy and radiotherapy. In this review, we discuss the current applications of nanoparticles in the development of ‘smart’ cancer immunotherapeutic agents like ACT, cancer vaccines, monoclonal antibodies, their site-specific delivery, and modulation of other endogenous immune cells. We also highlight the immense possibilities of using nanotechnology to accomplish leveraging the coordinated and adaptive immune system of a patient to tackle the complexity of treating unique disease conditions and provide future prospects in the field of cancer immunotherapy.
Collapse
|