101
|
Lee HS, Han DH, Cho K, Park SB, Kim C, Leem G, Jung DE, Kwon SS, Kim CH, Jo JH, Lee HW, Song SY, Park JY. Integrative analysis of multiple genomic data from intrahepatic cholangiocarcinoma organoids enables tumor subtyping. Nat Commun 2023; 14:237. [PMID: 36646721 PMCID: PMC9842736 DOI: 10.1038/s41467-023-35896-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
As genomic analysis technology has advanced, it has become possible to sub-classify intrahepatic cholangiocarcinoma (ICC) at the histological or molecular level. Here, we verify the recently suggested two subgroups of ICC in the organoids model, compare the characteristics between types. ICC patients are subclassified into small-duct (SD) and large-duct (LD) subtype according to histological characteristics. ICC organoids are established, and unsupervised principal component analysis clustering separates each type of ICC. Differential gene expression reveals enrichment on KRAS, TGFβ and ERBB2 signaling pathways in LD-type compared with SD-type (P < 0.05). Gene set enrichment analysis demonstrates that the cholangiocarcinoma class 2 signature, defined by Andersen et al., is enriched in the LD-type (enrichment Score = 2.19, P < 0.001). A protein-protein interaction network analysis identifies ZNF217 as a significant hub protein (odds ratio = 4.96, P = 0.0105). We perform prospective modeling of histological subtype using patient-derived organoids. Moreover, gene expression profiling of ICC organoids enables identification of type-specific targetable pathways.
Collapse
Affiliation(s)
- Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Dai Hoon Han
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungjoo Cho
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chanyang Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Galam Leem
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dawoon E Jung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Soon Sung Kwon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Won Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| | - Jun Yong Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
102
|
Kim DU. Are the Immunohistochemistry-Based Biomarkers Helpful for Predicting Prognosis in Patients with Surgically Resected Cholangiocarcinoma? Gut Liver 2023; 17:10-11. [PMID: 36636886 PMCID: PMC9840913 DOI: 10.5009/gnl220542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Dong Uk Kim
- Department of Internal Medicine, Pusan National University College of Medicine and Biomedical Research Center, Pusan National University Hospital, Busan, Korea,Corresponding AuthorDong Uk Kim, ORCIDhttps://orcid.org/0000-0002-7208-7753, E-mail
| |
Collapse
|
103
|
Koonmee S, Sa-Ngiamwibool P, Aphivatanasiri C, Kunprom W, Intarawichian P, Bamrungkit W, Sangkhamanon S, Thanee M. Pathology of Cholangiocarcinoma. Recent Results Cancer Res 2023; 219:91-107. [PMID: 37660332 DOI: 10.1007/978-3-031-35166-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The liver excretes bile through the biliary system, which has a complicated anatomical structure. Cholangiocarcinoma, a malignant bile duct epithelial tumor, is separated into intrahepatic and extrahepatic portions depending on the structure of the bile duct and exhibits both similarities and varieties in patient presentations and staging. The three main macroscopic characteristics of cholangiocarcinoma-mass formating, intraductal growth, and periductal infiltrating types-allow pathologists and surgeons to see and analyze the cancerous tissue. The majority of cholangiocarcinoma patients are in advanced stages and poor prognosis. Although surgery is the main treatment option, target therapy based on molecular pathology background offers hope for improving patient's prognosis.
Collapse
Affiliation(s)
- Supinda Koonmee
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Prakasit Sa-Ngiamwibool
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaiwat Aphivatanasiri
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Waritta Kunprom
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Walailak Bamrungkit
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakkarn Sangkhamanon
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Malinee Thanee
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
104
|
Reyes D, Ganesan N, Boffetta P, Labgaa I. Arsenic-contaminated drinking water and cholangiocarcinoma. Eur J Cancer Prev 2023; 32:10-17. [PMID: 35044987 DOI: 10.1097/cej.0000000000000740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is an aggressive tumor occurring in bile ducts and associated with dismal outcomes. It can be classified according to anatomical location as intrahepatic cholangiocarcinoma (ICC) or extrahepatic cholangiocarcinoma (ECC). Although some risk factors have been identified, our understanding of these tumors remains limited. Arsenic (As) is a prevalent toxicant with established associations with bladder, skin and lung cancers while pilot data on its potential carcinogenic role on digestive tumors are emerging. This ecological study aimed to investigate the association between exposure to As-contaminated drinking water and CCA. METHODS Analyses were conducted for the US, Taiwan and India due to the quality of publicly available datasets including small area-level information. Statistics included coefficient correlations analyses as well as univariate and multivariate linear regressions. RESULTS In the US, no correlation was observed between As and CCA. In Taiwan, correlations were identified for ICC in men (Spearman = 0.55, P = 0.01) and women (Spearman = 0.67, P < 0.01), as well as for ECC in men (Spearman = 0.62, P < 0.01). In India, counties with As level of at least 50 µg/L showed higher incidences of ECC in men ( R2 = 0.26, P = 0.01) and women ( R2 = 0.31, P < 0.01). CONCLUSION These findings highlighted a potential carcinogenic impact of As in drinking water on bile duct cancers, paving the way for future studies aiming to replicate this association with individual data as well as its clinical and ecological implications.
Collapse
Affiliation(s)
- Darrian Reyes
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai
| | - Nivetha Ganesan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ismail Labgaa
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
105
|
Roth GS, Neuzillet C, Sarabi M, Edeline J, Malka D, Lièvre A. Cholangiocarcinoma: what are the options in all comers and how has the advent of molecular profiling opened the way to personalised medicine ? Eur J Cancer 2023; 179:1-14. [PMID: 36463640 DOI: 10.1016/j.ejca.2022.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Cholangiocarcinoma is a deadly cancer comprising very heterogenous subtypes with a limited therapeutic arsenal in all comers. However, recent significant advances were made with immunotherapy in the first-line treatment of advanced cholangiocarcinoma, with the addition of durvalumab to cisplatin-gemcitabine chemotherapy showing a survival benefit. In the second line setting, only FOLFOX (5FU/folinic acid-oxaliplatin) is validated by a phase 3 trial, yet with a very modest benefit on survival; new options using 5FU with nanoliposomal-irinotecan may emerge in the next few years. The advent of molecular profiling in advanced cholangiocarcinoma in the last decade revealed frequent targetable alterations such as IDH1 mutations, FGFR2 fusions or rearrangements, HER2 amplification, BRAF V600E mutation and others. This strategy opened the way to personalised medicine for patients which are still fit after first-line treatment and the use of targeted inhibitors in first line constitutes a huge challenge with many ongoing trials to improve patients' care. This review exposes the recent clinical trial findings in non-molecularly selected advanced cholangiocarcinoma, offers a focus on how systematic molecular screening should be structured to allow patients to access to personalised medicine, and details which are the therapeutic options accessible in case of actionable alteration.
Collapse
Affiliation(s)
- Gael S Roth
- Univ. Grenoble Alpes / Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes / Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, Grenoble, France.
| | - Cindy Neuzillet
- Institut Curie, Versailles Saint-Quentin University - Paris Saclay University, Saint-Cloud, France
| | - Matthieu Sarabi
- Medical Oncology Department, Centre Léon Bérard, 28 Rue Laennec, Lyon 69008, France; Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Lyon, France
| | | | - David Malka
- Medical Oncology, Institut Mutualiste Montsouris, Paris, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, University of Rennes 1, INSERM Unité 1242, Rennes, France
| |
Collapse
|
106
|
Yu X, Zhu L, Wang T, Chen J. Immune microenvironment of cholangiocarcinoma: Biological concepts and treatment strategies. Front Immunol 2023; 14:1037945. [PMID: 37138880 PMCID: PMC10150070 DOI: 10.3389/fimmu.2023.1037945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Cholangiocarcinoma is characterized by a poor prognosis with limited treatment and management options. Chemotherapy using gemcitabine with cisplatin is the only available first-line therapy for patients with advanced cholangiocarcinoma, although it offers only palliation and yields a median survival of < 1 year. Recently there has been a resurgence of immunotherapy studies focusing on the ability of immunotherapy to inhibit cancer growth by impacting the tumor microenvironment. Based on the TOPAZ-1 trial, the US Food and Drug Administration has approved the combination of durvalumab and gemcitabine with cisplatin as the first-line treatment of cholangiocarcinoma. However, immunotherapy, like immune checkpoint blockade, is less effective in cholangiocarcinoma than in other types of cancer. Although several factors such as the exuberant desmoplastic reaction are responsible for cholangiocarcinoma treatment resistance, existing literature on cholangiocarcinoma cites the inflammatory and immunosuppressive environment as the most common factor. However, mechanisms activating the immunosuppressive tumor microenvironment contributing to cholangiocarcinoma drug resistance are complicated. Therefore, gaining insight into the interplay between immune cells and cholangiocarcinoma cells, as well as the natural development and evolution of the immune tumor microenvironment, would provide targets for therapeutic intervention and improve therapeutic efficacy by developing multimodal and multiagent immunotherapeutic approaches of cholangiocarcinoma to overcome the immunosuppressive tumor microenvironment. In this review, we discuss the role of the inflammatory microenvironment-cholangiocarcinoma crosstalk and reinforce the importance of inflammatory cells in the tumor microenvironment, thereby highlighting the explanatory and therapeutic shortcomings of immunotherapy monotherapy and proposing potentially promising combinational immunotherapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Jiang Chen,
| |
Collapse
|
107
|
Yang Y, Zhang X. An overview of extrahepatic cholangiocarcinoma: from here to where? Front Oncol 2023; 13:1171098. [PMID: 37197436 PMCID: PMC10183586 DOI: 10.3389/fonc.2023.1171098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Extrahepatic cholangiocarcinoma (eCCA) contains perihilar cholangiocarcinoma and distal cholangiocarcinoma both of which can arise at any point of the biliary tree and originate from disparate anatomical sites. Generally, the incidence of eCCA is increasing globally. Though surgical resection is the principal treatment of choice for the early stages of eCCA, optimal survival remains restricted by the high risk of recurrence when most patients are present with unresectable disease or distant metastasis. Furthermore, both intra- and intertumoral heterogeneity make it laborious to determine molecularly targeted therapies. In this review, we mainly focused on current findings in the field of eCCA, mostly including epidemiology, genomic abnormalities, molecular pathogenesis, tumor microenvironment, and other details while a summary of the biological mechanisms driving eCCA may shed light on intricate tumorigenesis and feasible treatment strategies.
Collapse
|
108
|
Testa U, Pelosi E, Castelli G. Cholangiocarcinoma: Molecular Abnormalities and Cells of Origin. Technol Cancer Res Treat 2023; 22:15330338221128689. [PMID: 36872875 PMCID: PMC9989414 DOI: 10.1177/15330338221128689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 03/07/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are a group of heterogeneous epithelial malignancies that can originate at the level of any location of the biliary tree. These tumors are relatively rare but associated with a high rate of mortality. CCAs are morphologically and molecularly heterogeneous and for their location can be distinguished as intracellular and extracellular, subdivided into perihilar and distal. Recent epidemiological, molecular, and cellular studies have supported that the consistent heterogeneity observed for CCAs may result from the convergence of various key elements mainly represented by risk factors, heterogeneity of the associated molecular abnormalities at genetic and epigenetic levels and by different potential cells of origin. These studies have consistently contributed to better defining the pathogenesis of CCAs and to identify in some instances new therapeutic targets. Although the therapeutic progress were still limited, these observations suggest that a better understanding of the molecular mechanisms underlying CCA in the future will help to develop more efficacious treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| |
Collapse
|
109
|
Loilome W, Namwat N, Jusakul A, Techasen A, Klanrit P, Phetcharaburanin J, Wangwiwatsin A. The Hallmarks of Liver Fluke Related Cholangiocarcinoma: Insight into Drug Target Possibility. Recent Results Cancer Res 2023; 219:53-90. [PMID: 37660331 DOI: 10.1007/978-3-031-35166-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nisana Namwat
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
110
|
Harding JJ, Khalil DN, Fabris L, Abou-Alfa GK. Rational development of combination therapies for biliary tract cancers. J Hepatol 2023; 78:217-228. [PMID: 36150578 PMCID: PMC11111174 DOI: 10.1016/j.jhep.2022.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Biliary tract cancers are an uncommon set of gastrointestinal malignancies that are associated with high morbidity and mortality rates. Most patients present with incurable locally advanced or metastatic disease. The pathophysiology of biliary tract cancer can be exploited for direct therapeutic benefit, and indeed, chemotherapy, precision medicine, immunotherapy and combination treatments are now applied as both standard-of-care and investigational therapies. In the first-line setting, the immune-based chemotherapy combination of durvalumab plus gemcitabine and cisplatin has recently been shown to improve survival compared to chemotherapy alone. In the second-line, precision medicine can be employed in those with select genetic alterations in IDH1/2 (isocitrate dehydrogenase 1/2), FGFR2 (fibroblast growth factor receptor 2), KRAS, BRAF, ERBB2, NTRK (neurotrophic receptor tyrosine kinase), ROS, RET, and/or deficiencies in mismatch repair enzymes. In those patients without targetable genetic alterations, fluoropyridine doublets lead to modest improvements in outcomes. Next-generation sequencing is critical for direct patient care and to help elucidate genomic mechanisms of resistance in a research context. Currently, multiple clinical trials are ongoing - hence, this review seeks to provide an update on evolving standards of care and ongoing investigational agents, limitations to current treatments, and a framework for effective combination drug development for the future.
Collapse
Affiliation(s)
- James J Harding
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Medical College at Cornell University, New York, NY, USA
| | - Danny N Khalil
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Medical College at Cornell University, New York, NY, USA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, and Division of General Medicine, Padua University-Hospital, Padua, Italy; Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Medical College at Cornell University, New York, NY, USA.
| |
Collapse
|
111
|
The Emerging Role of Ferroptosis in Liver Cancers. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122128. [PMID: 36556493 PMCID: PMC9788082 DOI: 10.3390/life12122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Liver cancer represents a global health challenge with worldwide growth. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Indeed, approximately 90% of HCC cases have a low survival rate. Moreover, cholangiocarcinoma (CC) is another malignant solid tumor originating from cholangiocytes, the epithelial cells of the biliary system. It is the second-most common primary liver tumor, with an increasing course in morbidity and mortality. Tumor cells always show high metabolic levels, antioxidant modifications, and an increased iron uptake to maintain unlimited growth. In recent years, alterations in iron metabolism have been shown to play an important role in the pathogenesis of HCC. Several findings show that a diet rich in iron can enhance HCC risk. Hence, elevated iron concentration inside the cell may promote the development of HCC. Growing evidence sustains that activating ferroptosis may potentially block the proliferation of HCC cells. Even in CC, it has been shown that ferroptosis plays a crucial role in the treatment of tumors. Several data confirmed the inhibitory effect in cell growth of photodynamic therapy (PDT) that can induce reactive oxygen species (ROS) in CC, leading to an increase in malondialdehyde (MDA) and a decrease in intracellular glutathione (GSH). MDA and GSH depletion/modulation are crucial in inducing ferroptosis, suggesting that PDT may have the potential to induce this kind of cell death through these ways. A selective induction of programmed cell death in cancer cells is one of the main treatments for malignant tumors; thus, ferroptosis may represent a novel therapeutic strategy against HCC and CC.
Collapse
|
112
|
Xu L, Xiao T, Xu L, Yao W. Identification of therapeutic targets and prognostic biomarkers in cholangiocarcinoma via WGCNA. Front Oncol 2022; 12:977992. [PMID: 36591499 PMCID: PMC9795187 DOI: 10.3389/fonc.2022.977992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor for which limited treatment methods and prognostic signatures are available. This study aims to identify potential therapeutic targets and prognostic biomarkers for CCA. Methods Based on differentially expressed genes (DEGs) identified from The Cancer Genome Atlas (TCGA) data, our study identified key gene modules correlated with CCA patient survival by weighted gene coexpression network analysis (WGCNA). Cox regression analysis identified survival-related genes in the key gene modules. The biological properties of the survival-related genes were evaluated by CCK-8 and transwell assays. Then, these genes were used to construct a prognostic signature that was internally and externally validated. Additionally, by combining clinical characteristics with the gene-based prognostic signature, a nomogram for survival prediction was built. Results WGCNA divided the 1531 DEGs into four gene modules, and the yellow gene module was significantly associated with overall survival (OS) and histologic neoplasm grade. Our study identified the lncRNA AGAP2-AS1 and a novel gene, GOLGA7B, that are closely related to survival. GOLGA7B downregulation promoted the invasion, migration and proliferation of CCA cells, but AGAP2-AS1 had the opposite effect. AGAP2-AS1 and GOLGA7B were integrated into a gene-based prognostic signature, and both internal and external validation studies confirmed that this two-gene prognostic signature and nomogram could accurately predict CCA patient prognosis. Conclusion AGAP2-AS1 and GOLGA7B are potential therapeutic targets and prognostic biomarkers for CCA.
Collapse
Affiliation(s)
- Lei Xu
- Department of Pediatrics Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Xiao
- Department of Ultrasonography Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Xu
- Department of Nursing Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Wei Yao,
| |
Collapse
|
113
|
Duwe L, Fouassier L, Lafuente-Barquero J, Andersen JB. Unraveling the actin cytoskeleton in the malignant transformation of cholangiocyte biology. Transl Oncol 2022; 26:101531. [PMID: 36113344 PMCID: PMC9483793 DOI: 10.1016/j.tranon.2022.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Correct actin cytoskeleton organization is vital in the liver organ homeostasis and disease control. Rearrangements of the actin cytoskeleton may play a vital role in the bile duct cells cholangiocytes. An abnormal actin network leads to aberrant cell morphology, deregulated signaling networks and ultimately triggering the development of cholangiocarcinoma (CCA) and paving the route for cancer cell dissemination (metastasis). In this review, we will outline alterations of the actin cytoskeleton and the potential role of this dynamic network in initiating CCA, as well as regulating the course of this malignancy. Actin rearrangements not only occur because of signaling pathways, but also regulate and modify cellular signaling. This emphasizes the importance of the actin cytoskeleton itself as cause for aberrant signaling and in promoting tumorigenic phenotypes. We will highlight the impact of aberrant signaling networks on the actin cytoskeleton and its rearrangement as potential cause for CCA. Often, these exact mechanisms in CCA are limited understood and still must be elucidated. Indeed, focusing future research on how actin affects and regulates other signaling pathways may provide more insights into the mechanisms of CCA development, progression, and metastasis. Moreover, manipulation of the actin cytoskeleton organization highlights the potential for a novel therapeutic area.
Collapse
Affiliation(s)
- Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK2200, Denmark.
| |
Collapse
|
114
|
Ruiz de Gauna M, Biancaniello F, González‐Romero F, Rodrigues PM, Lapitz A, Gómez‐Santos B, Olaizola P, Di Matteo S, Aurrekoetxea I, Labiano I, Nieva‐Zuluaga A, Benito‐Vicente A, Perugorria MJ, Apodaka‐Biguri M, Paiva NA, Sáenz de Urturi D, Buqué X, Delgado I, Martín C, Azkargorta M, Elortza F, Calvisi DF, Andersen JB, Alvaro D, Cardinale V, Bujanda L, Banales J, Aspichueta P. Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology 2022; 76:1617-1633. [PMID: 35030285 PMCID: PMC9790564 DOI: 10.1002/hep.32344] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.
Collapse
|
115
|
Tan S, Yu J, Huang Q, Zhou N, Xiong X, Gou H. Durable response to the combination of pembrolizumab and nab-paclitaxel in a metastatic extrahepatic cholangiocarcinoma: A case report and literature review. Front Pharmacol 2022; 13:1037646. [DOI: 10.3389/fphar.2022.1037646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor with poor overall survival. Although the first-line standard chemotherapy (gemcitabine plus cisplatin) combined with immunotherapy has yielded positive results with survival prolongation, the efficacy remains unsatisfactory, and new treatment modalities need to be explored.Case presentation: We report the case of a patient with metastatic extrahepatic CCA who achieved a durable response and good tolerance to the combination treatment of pembrolizumab and nab-paclitaxel following progression on gemcitabine plus capecitabine chemotherapy. The tumor samples of the patient revealed low TMB, MSS, negative PD-L1 expression, and negative CD8+ TIL expression. This patient was treated with 3 cycles of pembrolizumab plus nab-paclitaxel and cisplatin, followed by 5 cycles of pembrolizumab plus nab-paclitaxel. Finally, 10 cycles of pembrolizumab monotherapy were administered. The patient survived for over 27 months after the initiation of combined therapy and was still in continuous remission at the last follow-up.Conclusion: As far as we know, this is the first report that pembrolizumab plus nab-paclitaxel successfully treated a patient with advanced CCA. This combination therapy might be a potential treatment option for patients with cholangiocarcinoma, and further clinical trials are needed to explore the outcomes.
Collapse
|
116
|
Malik IA, Rajput M, Werner R, Fey D, Salehzadeh N, von Arnim CAF, Wilting J. Differential in vitro effects of targeted therapeutics in primary human liver cancer: importance for combined liver cancer. BMC Cancer 2022; 22:1193. [PMCID: PMC9675209 DOI: 10.1186/s12885-022-10247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/29/2022] [Indexed: 11/21/2022] Open
Abstract
The incidence of primary liver tumors, hepatocellular carcinoma (HCC), intrahepatic cholangiocellular carcinoma (ICC), and combined HCC/ICC (cHCC/CC) is increasing. For ICC, targeted therapy exists only for a small subpopulation of patients, while for HCC, Sorafenib and Lenvatinib are in use. Diagnosis of cHCC/CC is a great challenge and its incidence is underestimated, bearing the risk of unintended non-treatment of ICC. Here, we investigated effects of targeted inhibitors on human ICC cell lines (HUH28, RBE, SSP25), in comparison to extrahepatic (E)CC lines (EGI1, CCC5, TFK1), and HCC/hepatoblastoma cell lines (HEP3B, HUH7, HEPG2). Cells were challenged with: AKT inhibitor MK-2206; multikinase inhibitors Sorafenib, Lenvatinib and Dasatinib; PI3-kinase inhibitors BKM-120, Wortmannin, LY294002, and CAL-101; and mTOR inhibitor Rapamycin. Dosage of the substances was based on the large number of published data of recent years. Proliferation was analyzed daily for four days. All cell lines were highly responsive to MK-2206. Thereby, MK-2206 reduced expression of phospho(p)-AKT in all ICC, ECC, and HCC lines, which mostly corresponded to reduction of p-mTOR, whereas p-ERK1/2 was upregulated in many cases. Lenvatinib showed inhibitory effects on the two HCC cell lines, but not on HEPG2, ICCs and ECCs. Sorafenib inhibited proliferation of all cells, except the ECC line CCC5. However, at reduced dosage, we observed increased cell numbers in some ICC experiments. Dasatinib was highly effective especially in ICC cell lines. Inhibitory effects were observed with all four PI3-kinase inhibitors. However, cell type-specific differences were also evident here. Rapamycin was most effective in the two HCC cell lines. Our studies show that the nine inhibitors differentially target ICC, ECC, and HCC/hepatoblastoma lines. Caution should be taken with Lenvatinib and Sorafenib administration in patients with cHCC/CC as the drugs may have no effects on, or might even stimulate, ICC.
Collapse
Affiliation(s)
- Ihtzaz Ahmed Malik
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Mansi Rajput
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Rieke Werner
- grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Dorothea Fey
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany ,grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Niloofar Salehzadeh
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany ,grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| | - Christine A. F. von Arnim
- grid.411984.10000 0001 0482 5331Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany
| | - Jörg Wilting
- grid.411984.10000 0001 0482 5331Department of Anatomy and Cell Biology, University Medical Center Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| |
Collapse
|
117
|
Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol Int 2022; 72:589-605. [PMID: 36349994 PMCID: PMC10098476 DOI: 10.1111/pin.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| | - Akira Hara
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
118
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
119
|
Zhang S, Cui Y, Zhao X, Zhang Q, Li C, Huang Q, Liu G. Development and validation of a prognostic nomogram for extrahepatic bile duct adenocarcinoma. Front Oncol 2022; 12:950335. [PMID: 36408181 PMCID: PMC9668252 DOI: 10.3389/fonc.2022.950335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The aim of this study is to establish a prognostic nomogram for patients with extrahepatic bile duct adenocarcinoma (EBDA). METHODS From the Surveillance, Epidemiology, and End Results database, we retrieved clinical data from 1,485 patients diagnosed with EBDA between 2004 and 2015. These patients were randomly assigned to either the training or validation group in a ratio of 2:1. Cox proportional risk regression models were used to analyze the association of each variable with overall survival (OS). Univariate and multifactorial Cox regression analyses were performed to identify prognostic factors, and prognostic nomograms were created on the basis of the results of Cox multifactorial regression analysis. Performance was assessed by calibration curves and ROC curves. Internal validation was performed using the validation cohort. The Kaplan-Meier method was used to perform log-rank constructions for different risk groups. RESULTS The results indicated that age, race, N and M stages of tumor-lymph node metastases based on AJCC version 6, surgery, and chemotherapy were independent prognostic factors for OS in patients with EBDA. The constructed nomograms showed decent classification in predicting both 3- and 5-year survival rates. The calibration curves also show a high degree of agreement between the predicted and actual operating systems. CONCLUSIONS The nomogram that we constructed provides a relatively accurate and applicable prediction of survival outcome in patients with EBDA, which helps to provide reference and guidance for patient treatment.
Collapse
Affiliation(s)
- Shiyao Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,Tianjin General Surgery Institute, Tianjin, China
| | - You Cui
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,Tianjin General Surgery Institute, Tianjin, China
| | - Xinyu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,Tianjin General Surgery Institute, Tianjin, China
| | - Qi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,Tianjin General Surgery Institute, Tianjin, China
| | - Chunqiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,Tianjin General Surgery Institute, Tianjin, China
| | - Qianpeng Huang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,Tianjin General Surgery Institute, Tianjin, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,Tianjin General Surgery Institute, Tianjin, China,*Correspondence: Gang Liu,
| |
Collapse
|
120
|
Høgdall D, O'Rourke CJ, Larsen FO, Zarforoushan S, Christensen TD, Ghazal A, Boisen MK, Muñoz-Garrido P, Johansen JS, Andersen JB. Whole blood microRNAs capture systemic reprogramming and have diagnostic potential in patients with biliary tract cancer. J Hepatol 2022; 77:1047-1058. [PMID: 35750139 DOI: 10.1016/j.jhep.2022.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Late diagnosis is a critical factor undermining clinical management of patients with biliary tract cancer (BTC). While biliary tumours display extensive inter-patient heterogeneity, the host immune response may be comparatively homogenous, providing diagnostic opportunities. Herein, we investigated whether cancer-associated systemic reprogramming could be detected non-invasively to improve diagnosis of BTC. METHODS In this prospective Danish study, whole blood (WB) microRNA (miRNA) profiling was performed in samples from 218 patients with BTC, 99 healthy participants, and 69 patients with differential diagnoses split into discovery (small RNA-sequencing) and validation (RT-qPCR) cohorts. miRNA expression and activity were further investigated in 119 and 660 BTC tissues, respectively. RESULTS Four WB miRNAs (let-7a-3p, miR-92b-5p, miR-145-3p, miR-582-3p) were identified and validated as diagnostic of BTC on univariable analysis. Two diagnostic miRNA indexes were subsequently identified that were elevated in patients with BTC and in patients with differential diagnoses, compared to healthy participants. The combination of these miRNA indexes with serum CA 19-9 significantly improved the diagnostic performance of CA 19-9 alone, consistently achieving superior AUC values irrespective of clinical setting (minimum AUC >0.84) or tumour location (minimum AUC >0.87). The diagnostic information captured by miRNA indexes was not recapitulated by routine clinical measurements. Index miRNA expression in BTC tissues was associated with distinct pathobiological and immune features. CONCLUSIONS WB miRNA profiles are altered in patients with BTC. Quantification of miRNA indexes in combination with serum CA 19-9 has the potential to improve early diagnosis of BTC, pending further validation. LAY SUMMARY Surgery is currently the only curative intervention for patients with biliary tract cancer (BTC). However, resection is not possible for most patients who are diagnosed with late-stage disease. With the aim of identifying new early diagnostic opportunities, we analysed circulating microRNAs (small non-coding RNAs whose role in cancer is being increasingly recognised) in whole blood samples. We identified a microRNA signature that could distinguish patients with BTC from healthy participants. These miRNAs significantly improved the diagnostic potential of the routinely measured biomarker, CA 19-9, and were implicated in distinct immune processes in tumour tissues.
Collapse
Affiliation(s)
- Dan Høgdall
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Finn O Larsen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Shahryar Zarforoushan
- Department of Radiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Troels D Christensen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Awaisa Ghazal
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mogens K Boisen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Patricia Muñoz-Garrido
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, Department of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
121
|
Brown ZJ, Patwardhan S, Bean J, Pawlik TM. Molecular diagnostics and biomarkers in cholangiocarcinoma. Surg Oncol 2022; 44:101851. [PMID: 36126350 DOI: 10.1016/j.suronc.2022.101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Regardless of anatomic origin, cholangiocarcinoma is generally an aggressive malignancy with a relatively high case fatality. Surgical resection with curative intent remains the best opportunity to achieve meaningful long-term survival. Most patients present, however, with advanced disease and less than 20% of patients are candidates for surgical resection. Unfortunately, even patients who undergo resection have a 5-year survival that ranges from 20 to 40%. Biomarkers are indicators of normal, pathologic, or biologic responses to an intervention and can range from a characteristic (i.e., blood pressure reading which can detect hypertension) to specific genetic mutations or proteins (i.e., carcinoembryonic antigen level). Novel biomarkers and improved molecular diagnostics represent an attractive opportunity to improve detection as well as to identify novel therapeutic targets for patients with cholangiocarcinoma. We herein review the latest advances in molecular diagnostics and biomarkers related to the early detection and treatment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| | - Satyajit Patwardhan
- Dept of HPB Surgery and Liver Transplantation, Global Hospital, Mumbai, India
| | - Joal Bean
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
122
|
Takayama H, Kobayashi S, Gotoh K, Sasaki K, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Asaoka T, Noda T, Wada H, Takahashi H, Tanemura M, Doki Y, Eguchi H. Prognostic value of functional SMAD4 localization in extrahepatic bile duct cancer. World J Surg Oncol 2022; 20:291. [PMID: 36088360 PMCID: PMC9463834 DOI: 10.1186/s12957-022-02747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
SMAD4 is a key mediator of TGFβ signaling and one of the mutated genes in extrahepatic bile duct cancer (eBDC). It has been also reported that SMAD4 has dual functions, in carcinogenesis via silencing and in tumor invasion/metastasis via signaling, depending on tumor stage. We previously visualized more nuclear transitioning functional SMAD4 at the tumor invasion front than the central lesion. So, we investigated the localization of functional SMAD4 (e.g., invasion area or metastasis lesion) and its association with chemotherapy and chemo-radiation therapy.
Methods
We performed SMAD4 immunostaining on 98 resected eBDC specimens and evaluated the presence of the functional form of nuclear SMAD4 at the central lesion, invasion front, and metastatic lymph node. We also examined the influence on chemotherapy after recurrence (n = 33) and neoadjuvant chemo-radiation therapy (NAC-RT, n = 21) and the prognostic value of using retrospective data.
Results
In 73 patients without NAC-RT, 8.2% had loss of SMAD4 expression and 23.3% had heterogeneous expression. Patients without SMAD4 expression at any site had significantly poorer overall survival (OS) than other patients (P = 0.014). Expression of SMAD4 at the invasion front was related to better survival (recurrence-free survival [RFS] P = 0.033; OS P = 0.047), and no SMAD4 expression at the metastatic lymph node was related to poorer OS (P = 0.011). The patients who had high SMAD4 expression had poorer prognosis after recurrence (RFS P = 0.011; OS P = 0.056). At the residual cancer in the resected specimen, SMAD4 was highly expressed after NAC-RT (P = 0.039).
Conclusions
Loss of SMAD4 protein expression was a poor prognostic factor in eBDC at resectable stage. However, the intensity of functional SMAD4 in eBDC is a marker of resistance to chemo-radiotherapy and malignant potential at advanced stages.
Collapse
|
123
|
Ardito F, Razionale F, Campisi A, Carlino A, Vellone M, Vani S, Larocca LM, Giuliante F. The Impact of KRAS Mutational Status on Long-Term Survival following Liver Resection for Hilar Cholangiocarcinoma. Cancers (Basel) 2022; 14:4370. [PMID: 36139531 PMCID: PMC9496723 DOI: 10.3390/cancers14184370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
KRAS mutation is reportedly associated with poor prognosis in patients with different cancer types. However, mutational data on hilar cholangiocarcinoma are few and controversial. The aim of this study was to evaluate the rate of KRAS mutations in a single-center homogeneous population resected for hilar cholangiocarcinoma and the subsequent impact on prognosis. KRAS mutation status was evaluated in 54 patients undergoing major hepatectomy combined with resection of the main biliary confluence and regional lymphadenectomy for hilar cholangiocarcinoma between 2001 and 2019. Among these 54 patients, 12 (22.2%) had a KRAS mutation. KRAS mutation was not related with pathologic characteristics of the tumor. Five-year overall survival (OS) in patients with KRAS mutation was significantly lower than that observed in patients with KRAS wild type (0 vs. 49.2%, respectively; p = 0.003). In the multivariable analysis; independent predictors of poor OS were KRAS mutation (HR = 5.384; p = 0.003) and lymph node metastases (HR = 2.805; p = 0.023). The results of our study suggested that KRAS mutation in hilar cholangiocarcinoma was not rarely observed. KRAS mutation was an independent strong predictor of poor OS. KRAS mutation analysis should be included in the routine pathologic evaluation of resected hilar cholangiocarcinoma in order to better stratify prognosis.
Collapse
Affiliation(s)
- Francesco Ardito
- Hepatobiliary Surgery Unit, Foundation Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Razionale
- Hepatobiliary Surgery Unit, Foundation Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Campisi
- Hepatobiliary Surgery Unit, Foundation Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Angela Carlino
- Department of Pathology, Foundation Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Maria Vellone
- Hepatobiliary Surgery Unit, Foundation Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Simone Vani
- Hepatobiliary Surgery Unit, Foundation Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Luigi M. Larocca
- Department of Pathology, Foundation Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Felice Giuliante
- Hepatobiliary Surgery Unit, Foundation Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
124
|
Chaiyadet S, Tangkawattana S, Smout MJ, Ittiprasert W, Mann VH, Deenonpoe R, Arunsan P, Loukas A, Brindley PJ, Laha T. Knockout of liver fluke granulin, Ov-grn-1, impedes malignant transformation during chronic infection with Opisthorchis viverrini. PLoS Pathog 2022; 18:e1010839. [PMID: 36137145 PMCID: PMC9531791 DOI: 10.1371/journal.ppat.1010839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/04/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023] Open
Abstract
Infection with the food-borne liver fluke Opisthorchis viverrini is the principal risk factor for cholangiocarcinoma (CCA) in the Mekong Basin countries of Thailand, Lao PDR, Vietnam, Myanmar and Cambodia. Using a novel model of CCA, involving infection with gene-edited liver flukes in the hamster during concurrent exposure to dietary nitrosamine, we explored the role of the fluke granulin-like growth factor Ov-GRN-1 in malignancy. We derived RNA-guided gene knockout flukes (ΔOv-grn-1) using CRISPR/Cas9/gRNA materials delivered by electroporation. Genome sequencing confirmed programmed Cas9-catalyzed mutations of the targeted genes, which was accompanied by rapid depletion of transcripts and the proteins they encode. Gene-edited parasites colonized the biliary tract of hamsters and developed into adult flukes. However, less hepatobiliary tract disease manifested during chronic infection with ΔOv-grn-1 worms in comparison to hamsters infected with control gene-edited and mock-edited parasites. Specifically, immuno- and colorimetric-histochemical analysis of livers revealed markedly less periductal fibrosis surrounding the flukes and less fibrosis globally within the hepatobiliary tract during infection with ΔOv-grn-1 genotype worms, minimal biliary epithelial cell proliferation, and significantly fewer mutations of TP53 in biliary epithelial cells. Moreover, fewer hamsters developed high-grade CCA compared to controls. The clinically relevant, pathophysiological phenotype of the hepatobiliary tract confirmed a role for this secreted growth factor in malignancy and morbidity during opisthorchiasis.
Collapse
Affiliation(s)
- Sujittra Chaiyadet
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirikachorn Tangkawattana
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand, and WHO Collaborating Center for Research and Control of Opisthorchiasis, Tropical Disease Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J. Smout
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Victoria H. Mann
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Raksawan Deenonpoe
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patpicha Arunsan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
125
|
Param NJ, Bramel ER, Sia D. The Molecular Pathogenesis and Targeted Therapies for Cholangiocarcinoma. Surg Pathol Clin 2022; 15:529-539. [PMID: 36049834 DOI: 10.1016/j.path.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cholangiocarcinoma (CCA) is a group of malignancies of the bile ducts with high mortality rates and limited treatment options. In the past decades, remarkable efforts have been dedicated toward elucidating the specific molecular signaling pathways and oncogenic loops driving cholangiocarcinogenesis to ultimately develop more effective therapies. Despite some recent advances, an extensive intra- and inter-tumor heterogeneity together with a poorly understood immunosuppressive microenvironment significantly compromises the efficacy of available treatments. Here, we provide a concise review of the latest advances and current knowledge of the molecular pathogenesis of CCA focusing on clinically relevant aberrations as well as future research avenues.
Collapse
Affiliation(s)
- Nesteene Joy Param
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, 11th Floor Room 70-E, New York, NY 10029, USA
| | - Emily R Bramel
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, 11th Floor Room 70-E, New York, NY 10029, USA
| | - Daniela Sia
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, 11th Floor Room 70-E, New York, NY 10029, USA.
| |
Collapse
|
126
|
Li M, Zhou X, Wang W, Ji B, Shao Y, Du Q, Yao J, Yang Y. Selecting an Appropriate Experimental Animal Model for Cholangiocarcinoma Research. J Clin Transl Hepatol 2022; 10:700-710. [PMID: 36062286 PMCID: PMC9396327 DOI: 10.14218/jcth.2021.00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive biliary tree malignancy with intrahepatic and extra-hepatic subtypes that differ in molecular pathogeneses, epidemiology, clinical manifestations, treatment, and prognosis. The overall prognosis and patient survival remains poor because of lack of early diagnosis and effective treatments. Preclinical in vivo studies have become increasingly paramount as they are helpful not only for the study of the fundamental molecular mechanisms of CCA but also for developing novel and effective therapeutic approaches of this fatal cancer. Recent advancements in cell and molecular biology have made it possible to mimic the pathogenicity of human CCA in chemical-mechanical, infection-induced inflammatory, implantation, and genetically engineered animal models. This review is intended to help investigators understand the particular strengths and weaknesses of the currently used in vivo animal models of human CCA and their related modeling techniques to aid in the selection of the one that is the best for their research needs.
Collapse
Affiliation(s)
- Man Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xueli Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yu Shao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qianyu Du
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jinghao Yao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Correspondence to: Yan Yang, Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China. ORCID: https://orcid.org/0000-0003-0887-2770. Tel: +86-552-3086178, Fax: +86-552-3074480, E-mail:
| |
Collapse
|
127
|
Prinz C, Frese R, Grams M, Fehring L. Emerging Role of microRNA Dysregulation in Diagnosis and Prognosis of Extrahepatic Cholangiocarcinoma. Genes (Basel) 2022; 13:1479. [PMID: 36011390 PMCID: PMC9407895 DOI: 10.3390/genes13081479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Extrahepatic cholangiocarcinomas, also called bile duct carcinomas, represent a special entity in gastrointestinal tumors, and histological specimens of the tumors are often difficult to obtain. A special feature of these tumors is the strong neovascularization, which can often be seen in the endoluminal endoscopic procedure called cholangioscopy, performed alone or in combination with laserscanning techniques. The additional analysis of microRNA expression profiles associated with inflammation and neovascularization in bile duct tumors or just the bile duct fluid of these patients could be of enormous additional importance. In particular, the dysregulation of microRNA in these cholangiocarcinomas (CCA) was previously reported to affect epigenetics (reported for miR-148, miR-152), inflammation (determined for miR-200, miR-125, and miR-605), and chemoresistance (miR-200b, 204) in patients with cholangiocarcinoma. More importantly, in the context of malignant neovascularization, well-defined microRNAs including miR-141, miR-181, miR-191, and miR-200b have been found to be dysregulated in cholangiocarcinoma and have been associated with an increased proliferation and vascularization in CCA. Thus, a panel of these microRNA molecules together with the clinical aspects of these tumors might facilitate tumor diagnosis and early treatment. To our knowledge, this is the first review that outlines the unique potential of combining macroscopic findings from cholangioscopy with microRNA expression.
Collapse
Affiliation(s)
- Christian Prinz
- Medizinische Klinik 2, Helios Universitätsklinikum, 42283 Wuppertal, Germany
- Lehrstuhl für Innere Medizin 1 der, University of Witten gGmbH, 42283 Wuppertal, Germany
| | - Robin Frese
- Medizinische Klinik 2, Helios Universitätsklinikum, 42283 Wuppertal, Germany
- Lehrstuhl für Innere Medizin 1 der, University of Witten gGmbH, 42283 Wuppertal, Germany
| | - Mashiba Grams
- Medizinische Klinik 2, Helios Universitätsklinikum, 42283 Wuppertal, Germany
- Lehrstuhl für Innere Medizin 1 der, University of Witten gGmbH, 42283 Wuppertal, Germany
| | - Leonard Fehring
- Medizinische Klinik 2, Helios Universitätsklinikum, 42283 Wuppertal, Germany
- Lehrstuhl für Innere Medizin 1 der, University of Witten gGmbH, 42283 Wuppertal, Germany
| |
Collapse
|
128
|
Høgdall D, O'Rourke CJ, Andersen JB. Molecular therapeutic targets for cholangiocarcinoma: Present challenges and future possibilities. Adv Cancer Res 2022; 156:343-366. [PMID: 35961705 DOI: 10.1016/bs.acr.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diagnosis of cholangiocarcinoma (CCA) is implicit with poor prognosis and limited treatment options, underscoring the near equivalence of incidence and mortality rates in this disease. In less than 9years from genomic identification to FDA-approval of the corresponding inhibitors, fibroblast growth factor receptor 2 (FGFR2) rearrangements and isocitrate dehydrogenase 1 (IDH1) mutations became exemplary successes of precision oncology in subsets of patients with CCA. However, clinical trial results from multikinase inhibitors in unselected populations have been less successful, while the impact of immunotherapies are only beginning to impact this setting. Development of future therapeutics is incumbent with new challenges. Many driver alterations occur in tumor suppressor-like genes which are not directly druggable. Therapeutically, this will require identification of ensuant "non-oncogene addiction" involving genes which are not themselves oncogenes but become tumor survival dependencies when a specific driver alteration occurs. The low recurrence frequency of genomic alterations between CCA patients will require careful evaluation of targeted agents in biomarker-enrolled trials, including basket trial settings. Systematic expansion of candidate drug targets must integrate genes affected by non-genetic alterations which incorporates the fundamental contribution of the microenvironment and immune system to treatment response, disease facets which have been traditionally overlooked by DNA-centric analyses. As treatment resistance is an inevitability in advanced disease, resistance mechanisms require characterization to guide the development of combination therapies to increase the duration of clinical benefit. Patient-focused clinical, technological and analytical synergy is needed to deliver future solutions to these present therapeutic challenges.
Collapse
Affiliation(s)
- Dan Høgdall
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology, Herlev and Gentofte Hospital, Herlev, Copenhagen University Hospital, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
129
|
Yang Y, Yuan J, Liu Z, Cao W, Liu P. The expression, clinical relevance, and prognostic significance of HJURP in cholangiocarcinoma. Front Oncol 2022; 12:972550. [PMID: 35965590 PMCID: PMC9366246 DOI: 10.3389/fonc.2022.972550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCholangiocarcinoma (CCA) is the malignancy originating from the biliary epithelium, including intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCA. The prognosis of CCA is very poor, and the biomarkers of different CCA subsets should be investigated separately. Holliday junction recognition protein (HJURP) is a key component of the pre-nucleosomal complex, which is responsible for normal mitosis. The ectopic expression of HJURP has been reported in several cancers, but not CCA.Materials and methodsIn our study, we investigated the expression of HJURP in 127 CCA patients which were composed of 32 iCCAs, 71 pCCAs, and 24 dCCAs with immunohistochemistry and divided these patients into subgroups with a low or high expression of HJURP. With chi-square test and univariate and multivariate analyses, we evaluated the clinical relevance and prognostic significance of HJURP in iCCAs, pCCAs, and dCCAs.ResultsHJURP was ectopically upregulated in CCAs compared with the para-tumor tissues based on TCGA and other mRNA-seq databases. A high expression of HJURP was correlated with low overall survival rates of iCCA and pCCA, but not in dCCA. Moreover, HJURP was an independent prognostic biomarker in both iCCA and pCCA. Patients with high HJURP were more likely to suffer CCA-related death after operation.ConclusionsHJURP was an independent prognostic biomarker in both iCCA and pCCA, but not in dCCA. Our results provide more evidence of the molecular features of different CCA subsets and suggest that patients with high HJURP are more high-risk, which can guide more precision follow-up and treatment of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jinyan Yuan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Zhenzhong Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Wenwen Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Pei Liu
- Department of Burn and Plastic Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, China
- *Correspondence: Pei Liu,
| |
Collapse
|
130
|
Xiao Y, Zhang B, Cloyd JM, Alaimo L, Xu G, Du S, Mao Y, Pawlik TM. Novel Drug Candidate Prediction for Intrahepatic Cholangiocarcinoma via Hub Gene Network Analysis and Connectivity Mapping. Cancers (Basel) 2022; 14:cancers14133284. [PMID: 35805055 PMCID: PMC9265136 DOI: 10.3390/cancers14133284] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy, and there is a need for effective systemic therapies. Gene expression profile-based analyses may allow for efficient screening of potential drug candidates to serve as novel therapeutics for patients with ICC. The RNA expression profile of ICC and normal biliary epithelial cells were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Function annotation and enrichment pathway analyses of the differentially expressed genes (DEGs) were finished using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A weighted gene co-expression network (WGCN) was constructed by WGCN analysis (WGCNA). Key genes from the DEGs and co-expression gene modules were analyzed to generate a protein-protein interaction (PPI) network. The association between the top 10 screened hub genes and the overall and disease-free survival of ICC patients was examined. The Connectivity Map (cMap) analysis was performed to identify possible drugs for ICC using hub genes. A total of 151 key genes were selected from the overlapping genes of 1287 GSE-DEGs, 8183 TCGA-DEGs and 1226 genes in the mixed modules. A total of 10 hub genes of interest (CTNNB1, SPP1, COL1A2, COL3A1, SMAD3, SRC, VCAN, PKLR, GART, MRPS5) were found analyzing protein-protein interaction. Using the cMap, candidate drugs screened with potential efficacy for ICC included three tyrosine kinase inhibitors (dasatinib, NVP-BHG712, tivantinib), two cannabinoid receptor agonists (palmitoylethanolamide, arachidonamide), two antibiotics (moxifloxacin, amoxicillin), one estrogen receptor agonist (levonorgestrel), one serine/threonine protein kinase inhibitor (MK-2206) and other small molecules. Key genes from network and PPI analysis allowed us to identify potential drugs for ICC. The identification of novel gene expression profiles and related drug screening may accelerate the identification of potential novel drug therapies for ICC.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.X.); (B.Z.); (S.D.); (Y.M.)
| | - Baoluhe Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.X.); (B.Z.); (S.D.); (Y.M.)
| | - Jordan M. Cloyd
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; (J.M.C.); (L.A.)
| | - Laura Alaimo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; (J.M.C.); (L.A.)
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, Chengdu 610040, China;
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.X.); (B.Z.); (S.D.); (Y.M.)
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; (Y.X.); (B.Z.); (S.D.); (Y.M.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH 43210, USA; (J.M.C.); (L.A.)
- Correspondence: ; Tel.: +1-614-293-8701
| |
Collapse
|
131
|
Lin J, Dai Y, Sang C, Song G, Xiang B, Zhang M, Dong L, Xia X, Ma J, Shen X, Ji S, Zhang S, Wang M, Fang H, Zhang X, Wang X, Zhang B, Zhou J, Fan J, Zhou H, Gao D, Gao Q. Multimodule characterization of immune subgroups in intrahepatic cholangiocarcinoma reveals distinct therapeutic vulnerabilities. J Immunother Cancer 2022; 10:jitc-2022-004892. [PMID: 35863823 PMCID: PMC9310257 DOI: 10.1136/jitc-2022-004892] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background Immune microenvironment is well recognized as a critical regulator across cancer types, despite its complex roles in different disease conditions. Intrahepatic cholangiocarcinoma (iCCA) is characterized by a tumor-reactive milieu, emphasizing a deep insight into its immunogenomic profile to provide prognostic and therapeutic implications. Methods We performed genomic, transcriptomic, and proteomic characterization of 255 paired iCCA and adjacent liver tissues. We validated our findings through H&E staining (n=177), multiplex immunostaining (n=188), single-cell RNA sequencing (scRNA-seq) (n=10), in vitro functional studies, and in vivo transposon-based mouse models. Results Integrated multimodule data identified three immune subgroups with distinct clinical, genetic, and molecular features, designated as IG1 (immune-suppressive, 25.1%), IG2 (immune-exclusion, 42.7%), and IG3 (immune-activated, 32.2%). IG1 was characterized by excessive infiltration of neutrophils and immature dendritic cells (DCs). The hallmark of IG2 was the relatively higher tumor-proliferative activity and tumor purity. IG3 exhibited an enrichment of adaptive immune cells, natural killer cells, and activated DCs. These immune subgroups were significantly associated with prognosis and validated in two independent cohorts. Tumors with KRAS mutations were enriched in IG1 and associated with myeloid inflammation-dominated immunosuppression. Although tumor mutation burden was relatively higher in IG2, loss of heterozygosity in human leucocyte antigen and defects in antigen presentation undermined the recognition of neoantigens, contributing to immune-exclusion behavior. Pathological analysis confirmed that tumor-infiltrating lymphocytes and tertiary lymphoid structures were both predominant in IG3. Hepatitis B virus (HBV)-related samples tended to be under-represented in IG1, and scRNA-seq analyses implied that HBV infection indeed alleviated myeloid inflammation and reinvigorated antitumor immunity. Conclusions Our study elucidates that the immunogenomic traits of iCCA are intrinsically heterogeneous among patients, posing great challenge and opportunity for the application of personalized immunotherapy.
Collapse
Affiliation(s)
- Jian Lin
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Sang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Bin Xiang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Liangqing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoli Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xia Shen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shuyi Ji
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Mingjie Wang
- Department of Gastroenterology & Hepatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangdong Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Daming Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Gao
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China .,Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
132
|
Baicalin Induced Apoptosis of Human Cholangiocarcinoma Cell through Activating AMPK/mTORC1/p70S6K Signaling Pathway. Bull Exp Biol Med 2022; 173:366-370. [DOI: 10.1007/s10517-022-05550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 10/17/2022]
|
133
|
Ye Y, Lui VCH, Tam PKH. Pathogenesis of Choledochal Cyst: Insights from Genomics and Transcriptomics. Genes (Basel) 2022; 13:genes13061030. [PMID: 35741793 PMCID: PMC9223186 DOI: 10.3390/genes13061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Choledochal cysts (CC) is characterized by extra- and/or intra-hepatic b\ile duct dilations. There are two main theories, “pancreaticobiliary maljunction” and “congenital stenosis of bile ducts” proposed for the pathogenesis of CC. Although family cases or CC associated with other anomalies have been reported, the molecular pathogenesis of CC is still poorly understood. Recent advances in transcriptomics and genomics analysis platforms have unveiled key expression signatures/genes/signaling pathways in the pathogenesis of human diseases including CC. This review summarizes insights from genomics and transcriptomics studies into the pathogenesis of CC, with the aim to improve (i) our understanding of its underlying complex pathomechanisms, and (ii) clinical management of different subtypes of CC, in particular their associated hepatic fibrotic change and their risk of malignancy transformation.
Collapse
Affiliation(s)
- Yongqin Ye
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
- Department of Surgery, School of Clinical Medicine, University of Hong Kong, Hong Kong, China;
| | - Vincent Chi Hang Lui
- Department of Surgery, School of Clinical Medicine, University of Hong Kong, Hong Kong, China;
| | - Paul Kwong Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
- Correspondence:
| |
Collapse
|
134
|
Arechederra M, Rullán M, Amat I, Oyon D, Zabalza L, Elizalde M, Latasa MU, Mercado MR, Ruiz-Clavijo D, Saldaña C, Fernández-Urién I, Carrascosa J, Jusué V, Guerrero-Setas D, Zazpe C, González-Borja I, Sangro B, Herranz JM, Purroy A, Gil I, Nelson LJ, Vila JJ, Krawczyk M, Zieniewicz K, Patkowski W, Milkiewicz P, Cubero FJ, Alkorta-Aranburu G, G Fernandez-Barrena M, Urman JM, Berasain C, Avila MA. Next-generation sequencing of bile cell-free DNA for the early detection of patients with malignant biliary strictures. Gut 2022; 71:1141-1151. [PMID: 34285068 PMCID: PMC9120390 DOI: 10.1136/gutjnl-2021-325178] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Despite significant progresses in imaging and pathological evaluation, early differentiation between benign and malignant biliary strictures remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary strictures, enabling the collection of bile. We tested the diagnostic potential of next-generation sequencing (NGS) mutational analysis of bile cell-free DNA (cfDNA). DESIGN A prospective cohort of patients with suspicious biliary strictures (n=68) was studied. The performance of initial pathological diagnosis was compared with that of the mutational analysis of bile cfDNA collected at the time of first ERCP using an NGS panel open to clinical laboratory implementation, the Oncomine Pan-Cancer Cell-Free assay. RESULTS An initial pathological diagnosis classified these strictures as of benign (n=26), indeterminate (n=9) or malignant (n=33) origin. Sensitivity and specificity of this diagnosis were 60% and 100%, respectively, as on follow-up 14 of the 26 and eight of the nine initially benign or indeterminate strictures resulted malignant. Sensitivity and specificity for malignancy of our NGS assay, herein named Bilemut, were 96.4% and 69.2%, respectively. Importantly, one of the four Bilemut false positives developed pancreatic cancer after extended follow-up. Remarkably, the sensitivity for malignancy of Bilemut was 100% in patients with an initial diagnosis of benign or indeterminate strictures. Analysis of 30 paired bile and tissue samples also demonstrated the superior performance of Bilemut. CONCLUSION Implementation of Bilemut at the initial diagnostic stage for biliary strictures can significantly improve detection of malignancy, reduce delays in the clinical management of patients and assist in selecting patients for targeted therapies.
Collapse
Affiliation(s)
- Maria Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - María Rullán
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Irene Amat
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
| | - Daniel Oyon
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Lucia Zabalza
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Maria Elizalde
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Maria R Mercado
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
| | - David Ruiz-Clavijo
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Cristina Saldaña
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Ignacio Fernández-Urién
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Juan Carrascosa
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Vanesa Jusué
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - David Guerrero-Setas
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Molecular Pathology of Cancer Group, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Cruz Zazpe
- Department of General Surgery, Navarra University Hospital Complex, Pamplona, Spain
| | | | - Bruno Sangro
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Liver Unit, Dept. of Internal Medicine, Clinica Universitaria de Navarra, Pamplona, Spain,CIBEREHD, Madrid, Spain
| | - Jose M Herranz
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain,CIBEREHD, Madrid, Spain
| | - Ana Purroy
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Biobank Unit, Navarrabiomed, Pamplona, Spain
| | - Isabel Gil
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Biobank Unit, Navarrabiomed, Pamplona, Spain
| | - Leonard J Nelson
- Institute for Bioengineering, University of Edinburgh, Edinburgh, UK
| | - Juan J Vila
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany,Liver and Internal Medicine Unit, Medical University of Warsaw, Warszawa, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Waldemar Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland,Translational Medicine Group, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Francisco Javier Cubero
- CIBEREHD, Madrid, Spain,Department of Immunology, Ophtalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,CIBEREHD, Madrid, Spain
| | - Jesus M Urman
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain,Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain .,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain.,CIBEREHD, Madrid, Spain
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain .,Navarra Institute for Health Research, IdiSNA, Pamplona, Spain.,CIBEREHD, Madrid, Spain
| |
Collapse
|
135
|
Normanno N, Martinelli E, Melisi D, Pinto C, Rimassa L, Santini D, Scarpa A. Role of molecular genetics in the clinical management of cholangiocarcinoma. ESMO Open 2022; 7:100505. [PMID: 35696744 PMCID: PMC9198375 DOI: 10.1016/j.esmoop.2022.100505] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of cholangiocarcinoma (CCA) has steadily increased during the past 20 years, and mortality is increasing. The majority of patients with CCA have advanced or metastatic disease at diagnosis, and treatment options for unresectable disease are limited, resulting in poor prognosis. However, recent identification of targetable genomic alterations has expanded treatment options for eligible patients. Given the importance of early and accurate diagnosis in optimizing patient outcomes, this review discusses best practices in CCA diagnosis, with a focus on categorizing molecular genetics and available targeted therapies. Imaging and staging of CCAs are discussed, as well as recommended biopsy collection techniques, and molecular and genomic profiling methodologies, which have become increasingly important as molecular biomarker data accumulate. Approved agents targeting actionable genomic alterations specifically in patients with CCA include ivosidenib for tumors harboring IDH1 mutations, and infigratinib and pemigatinib for those with FGFR2 fusions. Other agents currently under development in this indication have shown promising results, which are presented here.
Collapse
Affiliation(s)
- N Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale-IRCCS, Naples, Italy.
| | - E Martinelli
- Medical Oncology, Department of Precision Medicine, Università della Campania 'L. Vanvitelli', Naples, Italy
| | - D Melisi
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy; Digestive Molecular Clinical Oncology Research Unit, University of Verona, Policlinico B.B. Rossi, Verona, Italy
| | - C Pinto
- Medical Oncology Unit, Comprehensive Cancer Centre, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - L Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - D Santini
- Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - A Scarpa
- ARC-Net Research Centre and Section of Pathology, Department of Diagnostics and Public Health, University of Verona, Policlinico G.B. Rossi, Verona, Italy
| |
Collapse
|
136
|
Abstract
The evolutionary history of hepatobiliary cancers is embedded in their genomes. By analysing their catalogue of somatic mutations and the DNA sequence context in which they occur, it is possible to infer the mechanisms underpinning tumorigenesis. These mutational signatures reflect the exogenous and endogenous origins of genetic damage as well as the capacity of hepatobiliary cells to repair and replicate DNA. Genomic analysis of thousands of patients with hepatobiliary cancers has highlighted the diversity of mutagenic processes active in these malignancies, highlighting a prominent source of the inter-cancer-type, inter-patient, intertumour and intratumoural heterogeneity that is observed clinically. However, a substantial proportion of mutational signatures detected in hepatocellular carcinoma and biliary tract cancer remain of unknown cause, emphasizing the important contribution of processes yet to be identified. Exploiting mutational signatures to retrospectively understand hepatobiliary carcinogenesis could advance preventative management of these aggressive tumours as well as potentially predict treatment response and guide the development of therapies targeting tumour evolution.
Collapse
|
137
|
Zhang Y, Ma Z, Li C, Wang C, Jiang W, Chang J, Han S, Lu Z, Shao Z, Wang Y, Wang H, Jiao C, Wang D, Wu X, Shen H, Wang X, Hu Z, Li X. The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers. Nat Commun 2022; 13:3061. [PMID: 35650238 PMCID: PMC9160072 DOI: 10.1038/s41467-022-30708-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Molecular variation between geographical populations and subtypes indicate potential genomic heterogeneity and novel genomic features within CCA. Here, we analyze exome-sequencing data of 87 perihilar cholangiocarcinoma (pCCA) and 261 intrahepatic cholangiocarcinoma (iCCA) cases from 3 Asian centers (including 43 pCCAs and 24 iCCAs from our center). iCCA tumours demonstrate a higher tumor mutation burden and copy number alteration burden (CNAB) than pCCA tumours, and high CNAB indicates a poorer pCCA prognosis. We identify 12 significantly mutated genes and 5 focal CNA regions, and demonstrate common mutations in post-transcriptional modification-related potential driver genes METTL14 and RBM10 in pCCA tumours. Finally we demonstrate the tumour-suppressive role of METTL14, a major RNA N6-adenosine methyltransferase (m6A), and illustrate that its loss-of-function mutation R298H may act through m6A modification on potential driver gene MACF1. Our results may be valuable for better understanding of how post-transcriptional modification can affect CCA development, and highlight both similarities and differences between pCCA and iCCA.
Collapse
Affiliation(s)
- Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Zijian Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Zefa Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Zicheng Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Hongwei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Chenyu Jiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Dong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, China.
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, 210029, China.
| |
Collapse
|
138
|
Niger M, Nichetti F, Casadei-Gardini A, Morano F, Pircher C, Tamborini E, Perrone F, Canale M, Lipka DB, Vingiani A, Agnelli L, Dobberkau A, Hüllein J, Korell F, Heilig CE, Pusceddu S, Corti F, Droz M, Ulivi P, Prisciandaro M, Antista M, Bini M, Cattaneo L, Milione M, Glimm H, Köhler BC, Pruneri G, Hübschmann D, Fröhling S, Mazzaferro V, Pietrantonio F, Di Bartolomeo M, de Braud F. MGMT inactivation as a new biomarker in patients with advanced biliary tract cancers. Mol Oncol 2022; 16:2733-2746. [PMID: 35621918 PMCID: PMC9297767 DOI: 10.1002/1878-0261.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022] Open
Abstract
Biliary tract cancers (BTCs) have poor prognosis and limited therapeutic options. The impact of O6 -methylguanine-DNA methyltransferase (MGMT) inactivation in advanced BTC patients is not established. We investigated the prevalence, prognostic and predictive impact of MGMT inactivation in two multicenter cohorts. MGMT inactivation was assessed through PCR and immunohistochemistry (IHC) in an Italian cohort; the results were then externally validated using RNA sequencing (RNA-seq) data from the BTC subcohort of the MASTER (Molecularly Aided Stratification for Tumor Eradication Research) precision oncology program of the National Center for Tumor Diseases Heidelberg and the German Cancer Consortium. Among 164 Italian cases, 18% presented MGMT promoter hypermethylation (>14%) and 73% had negative MGMT protein expression. Both were associated with worse overall survival (OS) (HR 2.31; p<.001 and HR 1.99, p=0.012, respectively). In the MASTER cohort, patients with lower MGMT mRNA expression showed significantly poorer OS (mOS 20.4 vs 31.7 months, unadjusted HR 1.89; p=0.043). Our results suggest that MGMT inactivation is a frequent epigenetic alteration in BTC, with a significant prognostic impact, and provide the rationale to explore DNA-damaging agents in MGMT-inactivated BTCs.
Collapse
Affiliation(s)
- Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andrea Casadei-Gardini
- Vita-Salute San Raffaele University, Milan, Italy.,Department of Medical Oncology, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Chiara Pircher
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Tamborini
- Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Federica Perrone
- Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST), 47014, Meldola, Italy
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and partner sites
| | - Andrea Vingiani
- Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luca Agnelli
- Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Anna Dobberkau
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and partner sites
| | - Jennifer Hüllein
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Felix Korell
- German Cancer Consortium (DKTK), Heidelberg and partner sites.,Department of Hematology & Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph E Heilig
- German Cancer Consortium (DKTK), Heidelberg and partner sites.,Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michele Droz
- Department of Surgery, Division of HPB, General Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST), 47014, Meldola, Italy
| | - Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marta Bini
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Laura Cattaneo
- Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Massimo Milione
- Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Hanno Glimm
- German Cancer Consortium (DKTK), Heidelberg and partner sites.,Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), Dresden, Germany.,Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, Dresden, Germany
| | - Bruno C Köhler
- German Cancer Consortium (DKTK), Heidelberg and partner sites.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg.,Liver Cancer Center Heidelberg, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Giancarlo Pruneri
- Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and partner sites.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg and partner sites
| | - Vincenzo Mazzaferro
- Department of Surgery, Division of HPB, General Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori di Milano, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
139
|
Carotenuto M, Sacco A, Forgione L, Normanno N. Genomic alterations in cholangiocarcinoma: clinical significance and relevance to therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:200-223. [PMID: 36046845 PMCID: PMC9400790 DOI: 10.37349/etat.2022.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Improving the survival of patients with cholangiocarcinoma (CCA) has long proved challenging, although the treatment of this disease nowadays is on advancement. The historical invariability of survival outcomes and the limited number of agents known to be effective in the treatment of this disease has increased the number of studies designed to identify genetic targetable hits that can be efficacious for novel therapies. In this respect, the increasing feasibility of molecular profiling starting either from tumor tissue or circulating cell-free DNA (cfDNA) has led to an increased understanding of CCA biology. Intrahepatic CCA (iCCA) and extrahepatic CCA (eCCA) display different and typical patterns of actionable genomic alterations, which offer opportunity for therapeutic intervention. This review article will summarize the current knowledge on the genomic alterations of iCCA and eCCA, provide information on the main technologies for genomic profiling using either tumor tissue or cfDNA, and briefly discuss the main clinical trials with targeted agents in this disease.
Collapse
Affiliation(s)
- Marianeve Carotenuto
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Alessandra Sacco
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
140
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
141
|
Aurora kinase A inhibition induces synthetic lethality in SMAD4-deficient colorectal cancer cells via spindle assembly checkpoint activation. Oncogene 2022; 41:2734-2748. [PMID: 35393542 DOI: 10.1038/s41388-022-02293-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
SMAD4 loss-of-function mutations have been frequently observed in colorectal cancer (CRC) and are recognized as a drug target for therapeutic exploitation. In this study, we performed a synthetic lethal drug screening with SMAD4-isogenic CRC cells and found that aurora kinase A (AURKA) inhibition is synthetic lethal with SMAD4 loss. Inhibition of AURKA selectively inhibited the growth of SMAD4-/- CRC in vitro and in vivo. Mechanistically, SMAD4 negatively regulated AURKA level, resulting in the significant elevation of AURKA in SMAD4-/- CRC cells. Inhibition of AURKA induced G2/M cell cycle delay in SMAD4+/+ CRC cells, but induced apoptosis in SMAD4-/- CRC cells. We further observed that a high level of AURKA in SMAD4-/- CRC cells led to abnormal mitotic spindles, leading to cellular aneuploidy. Moreover, SMAD4-/- CRC cells expressed high levels of spindle assembly checkpoint (SAC) proteins, suggesting the hyperactivation of SAC. The silencing of key SAC proteins significantly rescued the AURKA inhibition-induced cell death in SMAD4-/- cells, suggesting that SMAD4-/- CRC cells are hyper-dependent on AURKA activity for mitotic exit and survival during SAC hyperactivation. This study presents a unique synthetic lethal interaction between SMAD4 and AURKA and suggests that AURKA could be a potential drug target in SMAD4-deficient CRC.
Collapse
|
142
|
Silverman IM, Li M, Murugesan K, Krook MA, Javle MM, Kelley RK, Borad MJ, Roychowdhury S, Meng W, Yilmazel B, Milbury C, Shewale S, Feliz L, Burn TC, Albacker LA. Validation and Characterization of FGFR2 Rearrangements in Cholangiocarcinoma with Comprehensive Genomic Profiling. J Mol Diagn 2022; 24:351-364. [PMID: 35176488 DOI: 10.1016/j.jmoldx.2021.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous biliary tract cancer with a poor prognosis. Approximately 30% to 50% of patients harbor actionable alterations, including FGFR2 rearrangements. Pemigatinib, a potent, selective fibroblast growth factor receptor (FGFR) FGFR1-3 inhibitor, is approved for previously treated, unresectable, locally advanced or metastatic CCA harboring FGFR2 fusions/rearrangements, as detected by a US Food and Drug Administration-approved test. The next-generation sequencing (NGS)-based FoundationOneCDx (F1CDx) was US Food and Drug Administration approved for detecting FGFR2 fusions or rearrangements. The precision and reproducibility of F1CDx in detecting FGFR2 rearrangements in CCA were examined. Analytical concordance between F1CDx and an externally validated RNA-based NGS (evNGS) test was performed. Identification of FGFR2 rearrangements in the screening population from the pivotal FIGHT-202 study (NCT02924376) was compared with F1CDx. The reproducibility and repeatability of F1CDx were 90% to 100%. Adjusted positive, negative, and overall percentage agreements were 87.1%, 99.6%, and 98.3%, respectively, between F1CDx and evNGS. Compared with evNGS, F1CDx had a positive predictive value of 96.2% and a negative predictive value of 98.5%. The positive percentage agreement, negative percentage agreement, overall percentage agreement, positive predictive value, and negative predictive value were 100% for F1CDx versus the FIbroblast Growth factor receptor inhibitor in oncology and Hematology Trial-202 (FIGHT-202) clinical trial assay. Of 6802 CCA samples interrogated, 9.2% had FGFR2 rearrangements. Cell lines expressing diverse FGFR2 fusions were sensitive to pemigatinib. F1CDx demonstrated sensitivity, reproducibility, and high concordance with clinical utility in identifying patients with FGFR2 rearrangements who may benefit from pemigatinib treatment.
Collapse
Affiliation(s)
- Ian M Silverman
- Translational Sciences, Incyte Research Institute, Wilmington, Delaware
| | - Meijuan Li
- Research and Development, Foundation Medicine, Cambridge, Massachusetts
| | | | - Melanie A Krook
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Milind M Javle
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robin K Kelley
- University of California San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | | | | | - Wei Meng
- Research and Development, Foundation Medicine, Cambridge, Massachusetts
| | - Bahar Yilmazel
- Research and Development, Foundation Medicine, Cambridge, Massachusetts
| | - Coren Milbury
- Research and Development, Foundation Medicine, Cambridge, Massachusetts
| | - Shantanu Shewale
- Research and Development, Foundation Medicine, Cambridge, Massachusetts
| | - Luis Feliz
- Clinical Development, Incyte Biosciences International Sàrl, Morges, Switzerland
| | - Timothy C Burn
- Translational Sciences, Incyte Research Institute, Wilmington, Delaware.
| | - Lee A Albacker
- Research and Development, Foundation Medicine, Cambridge, Massachusetts.
| |
Collapse
|
143
|
Liu J, Ren G, Li K, Liu Z, Wang Y, Chen T, Mu W, Yang X, Li X, Shi A, Zhao W, Xu B, Chang J, Guo S, Pan C, Zhou T, Zhang Z, Xu Y. The Smad4-MYO18A-PP1A complex regulates β-catenin phosphorylation and pemigatinib resistance by inhibiting PAK1 in cholangiocarcinoma. Cell Death Differ 2022; 29:818-831. [PMID: 34799729 PMCID: PMC8990017 DOI: 10.1038/s41418-021-00897-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Cholangiocarcinoma (CCA), consisting of three subtypes-intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA), is a highly aggressive cancer arising from the bile duct and has an extremely poor prognosis. Pemigatinib is the only FDA-approved targeted drug for CCA, and the CCA treatment options are substantially insufficient considering its poor prognosis and increasing morbidity. Here, we performed next-generation sequencing (NGS) of 15 pCCAs and 16 dCCAs and detected the expression of SMAD4, a frequently mutated gene, in 261 CCAs. By univariate and multivariate analyses, we identified Smad4 as a favorable prognostic biomarker in iCCA and pCCA. With in vitro and in vivo experiments, we demonstrated that Smad4 suppressed CCA proliferation, migration and invasion by inhibiting β-catenin-S675 phosphorylation and intranuclear translocation. We applied LC-MS/MS and multiple biochemical techniques and identified PP1A as the phosphatase in Smad4-mediated dephosphorylation of PAK1-T423, which is responsible for β-catenin-S675 phosphorylation. Moreover, we demonstrated that MYO18A is the PP1-interacting protein of PP1A for substrate recognition in CCA. MYO18A interacts with PP1A via its RVFFR motif and interacts with Smad4 via CC domain. Patients with coexpression of MYO18A and Smad4 have a more favorable prognosis than other patients. Smad4 enhances Pemigatinib efficiency, and Smad4 knockdown results in Pemigatinib resistance. In conclusion, coexpression of Smad4 and MYO18A is a favorable prognostic indicator for iCCA and pCCA. The Smad4-MYO18A-PP1A complex dephosphorylates PAK1-T423 and thus inhibits β-catenin-S675 phosphorylation and its intranuclear localization. Smad4 suppresses CCA proliferation, migration, invasion, and sensitivity to Pemigatinib by governing the phosphorylation and intracellular localization of β-catenin.
Collapse
Affiliation(s)
- Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guangli Ren
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Wang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wentao Mu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoqing Yang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Medicine and Health Key Laboratory of Clinical Pathology, Jinan, China
- Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, China
| | - Xingyong Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bowen Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianhua Chang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sen Guo
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang Pan
- Department of Emergency, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhou
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
144
|
Gray S, Lamarca A, Edeline J, Klümpen HJ, Hubner RA, McNamara MG, Valle JW. Targeted Therapies for Perihilar Cholangiocarcinoma. Cancers (Basel) 2022; 14:1789. [PMID: 35406560 PMCID: PMC8997784 DOI: 10.3390/cancers14071789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Perihilar cholangiocarcinoma (pCCA) is the anatomical sub-group of biliary tract cancer (BTC) arising between the second-order intrahepatic bile ducts and the cystic duct. Together with distal and intrahepatic cholangiocarcinoma (dCCA and iCCA; originating distal to, and proximal to this, respectively), gallbladder cancer (GBC) and ampulla of Vater carcinoma (AVC), these clinicopathologically and molecularly distinct entities comprise biliary tract cancer (BTC). Most pCCAs are unresectable at diagnosis, and for those with resectable disease, surgery is extensive, and recurrence is common. Therefore, the majority of patients with pCCA will require systemic treatment for advanced disease. The prognosis with cytotoxic chemotherapy remains poor, driving interest in therapies targeted to the molecular nature of a given patient's cancer. In recent years, the search for efficacious targeted therapies has been fuelled both by whole-genome and epigenomic studies, looking to uncover the molecular landscape of CCA, and by specifically testing for aberrations where established therapies exist in other indications. This review aims to provide a focus on the current molecular characterisation of pCCA, targeted therapies applicable to pCCA, and future directions in applying personalised medicine to this difficult-to-treat malignancy.
Collapse
Affiliation(s)
- Simon Gray
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK; (S.G.); (A.L.); (R.A.H.); (M.G.M.)
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK; (S.G.); (A.L.); (R.A.H.); (M.G.M.)
- Division of Cancer Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Julien Edeline
- Centre Eugène Marquis, Av. de la Bataille Flandres Dunkerque-CS 44229, CEDEX, 35042 Rennes, France;
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Center, P.O. Box 7057, 1081 HV Amsterdam, The Netherlands;
| | - Richard A. Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK; (S.G.); (A.L.); (R.A.H.); (M.G.M.)
- Division of Cancer Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Mairéad G. McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK; (S.G.); (A.L.); (R.A.H.); (M.G.M.)
- Division of Cancer Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Juan W. Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester M20 4BX, UK; (S.G.); (A.L.); (R.A.H.); (M.G.M.)
- Division of Cancer Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| |
Collapse
|
145
|
Bai Y, Chen J, Hu W, Wang L, Wu Y, Yu S. Silibinin Therapy Improves Cholangiocarcinoma Outcomes by Regulating ERK/Mitochondrial Pathway. Front Pharmacol 2022; 13:847905. [PMID: 35401195 PMCID: PMC8983842 DOI: 10.3389/fphar.2022.847905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Silibinin is widely utilized drug in various cancer treatments, though its application in cholangiocarcinoma has not yet been explored. For the first time, we evaluated the anticancer potential and underlying molecular mechanism of silibinin in treatment of cholangiocarcinoma treatment. Methods: HuCCT-1 and CCLP-1 cells were chosen to be an in vitro study model and were exposed to various concentrations of silibinin for indicated times. Cell viability was evaluated by the cell counting kit-8 (CCK-8) assay and half maximal inhibitory (IC50) concentrations were calculated. Cell proliferation capacity was determined through the use of colony formation and 5-Ethynyl-2′- deoxyuridine (EdU) assays. Cell apoptosis and cycle arrest were assessed by Live/Dead staining assay and flow cytometry (FCM). The protein levels of extracellular regulated protein kinases (ERK)/mitochondrial apoptotic pathway were evaluated through western blotting (WB). Mitochondrial membrane potential changes were determined via 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1). A cholangiocarcinoma cell line xenograft model was used to assess the anti-tumor activity of silibinin in vivo. Results: Inhibition of the ERK protein by silibinin led to a significant decrease in mitochondrial membrane potential, which, in turn, caused Cytochrome C to be released from the mitochondria. The activation of downstream apoptotic pathways led to apoptosis of cholangiocarcinoma cells. In general, silibinin inhibited the growth of cholangiocarcinoma cell line xenograft tumors. Conclusions: Silibinin is able to inhibit cholangiocarcinoma through the ERK/mitochondrial apoptotic pathway, which makes silibinin a potential anti-tumor drug candidate for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Yang Bai
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiaqi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Weijian Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lei Wang
- Department of Urology Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| | - Shi’an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| |
Collapse
|
146
|
Yang R, Song Y, Shakoor K, Yi W, Peng C, Liu S. Insights into the role of STAT3 in intrahepatic cholangiocarcinoma (Review). Mol Med Rep 2022; 25:171. [PMID: 35302174 PMCID: PMC8971913 DOI: 10.3892/mmr.2022.12687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary malignant liver tumour whose incidence is second only to that of hepatocellular carcinoma. ICC is a highly heterogeneous disease arising from neoplastic transformation of intrahepatic biliary epithelial cells (cholangiocytes), and it is characterized by a very poor prognosis. Signal transducer and activator of transcription 3 (STAT3) is an important oncogene that is widely expressed in numerous cancers. STAT3 is a candidate target for the treatment of ICC. However, studies on STAT3 and the occurrence and development of ICC require improvements. Therefore, the present review summarized the mechanism of STAT3 in ICC and provided a theoretical basis for STAT3 to become an effective target for determining the prognosis and treatment of ICC.
Collapse
Affiliation(s)
- Ranzhiqiang Yang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Kashif Shakoor
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Weimin Yi
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
147
|
Vij M, Puri Y, Rammohan A, G G, Rajalingam R, Kaliamoorthy I, Rela M. Pathological, molecular, and clinical characteristics of cholangiocarcinoma: A comprehensive review. World J Gastrointest Oncol 2022; 14:607-627. [PMID: 35321284 PMCID: PMC8919011 DOI: 10.4251/wjgo.v14.i3.607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/13/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas are a heterogeneous group of highly aggressive cancers that may arise anywhere within the biliary tree. There is a wide geographical variation with regards to its incidence, and risk-factor associations which may include liver fluke infection, primary sclerosing cholangitis, and hepatolithiasis amongst others. These tumours are classified into intrahepatic, perihilar and distal based on their anatomical location. Morphologically, intrahepatic cholangiocarcinomas are further sub-classified into small and large duct variants. Perihilar and distal cholangiocarcinomas are usually mucin-producing tubular adenocarcinomas. Cholangiocarcinomas develop through a multistep carcinogenesis and are preceded by dysplastic and in situ lesions. While clinical characteristics and management of these tumours have been extensively elucidated in literature, their ultra-structure and tumour biology remain relatively unknown. This review focuses on the current knowledge of pathological characteristics, molecular alterations of cholangiocarcinoma, and its precursor lesions (including biliary intraepithelial neoplasia, intraductal papillary neoplasms of the bile duct, intraductal tubulopapillary neoplasms and mucinous cystic neoplasm).
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical center, Chennai 600044, Tamil Nadu, India
| | - Yogesh Puri
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Gowripriya G
- Department of Pathology, Dr Rela Institute and Medical center, Chennai 600044, Tamil Nadu, India
| | - Rajesh Rajalingam
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| |
Collapse
|
148
|
Cadamuro M, Fabris L, Zhang X, Strazzabosco M. Tumor microenvironment and immunology of cholangiocarcinoma. HEPATOMA RESEARCH 2022; 8:11. [PMID: 39301518 PMCID: PMC11412615 DOI: 10.20517/2394-5079.2021.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Cholangiocarcinoma (CCA), an aggressive tumor originating from both intra- and extra-hepatic biliary cells, represents an unmet need in liver oncology, as treatment remains largely unsatisfactory. A typical feature of CCA is the presence of a complex tumor microenvironment (TME) composed of neoplastic cells, a rich inflammatory infiltrate, and cancer-associated fibroblasts and desmoplastic matrix that makes it extremely chemoresistant to traditional chemotherapeutic drugs. In this review, we describe the cell populations within the TME, in particular those involved in the innate and adaptive immune response and how they interact with tumor cells and with matrix proteins. The TME is crucial for CCA to mount an immune escape response and is the battlefield where molecularly targeted therapies and immune therapy, particularly in combination, may actually prove their therapeutic value.
Collapse
Affiliation(s)
| | - Luca Fabris
- Department of Molecular Medicine (DMM), University of Padua, Padua 35131, Italy
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
149
|
Cadamuro M, Strazzabosco M. Inflammatory pathways and cholangiocarcinoma risk mechanisms and prevention. Adv Cancer Res 2022; 156:39-73. [PMID: 35961707 PMCID: PMC10916841 DOI: 10.1016/bs.acr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholangiocarcinoma (CCA), a neoplasm burdened by a poor prognosis and currently lacking adequate therapeutic treatments, can originate at different levels of the biliary tree, in the intrahepatic, hilar, or extrahepatic area. The main risk factors for the development of CCA are the presence of chronic cholangiopathies of various etiology. To date, the most studied prodromal diseases of CCA are primary sclerosing cholangitis, Caroli's disease and fluke infestations, but other conditions, such as metabolic syndrome, nonalcoholic fatty liver disease and obesity, are emerging as associated with an increased risk of CCA development. In this review, we focused on the analysis of the pro-inflammatory mechanisms that induce the development of CCA and on the role of cells of the immune response in cholangiocarcinogenesis. In very recent times, these cellular mechanisms have been the subject of emerging studies aimed at verifying how the modulation of the inflammatory and immunological responses can have a therapeutic significance and how these can be used as therapeutic targets.
Collapse
Affiliation(s)
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
150
|
Abstract
Liver cancer, more specifically hepatocellular carcinoma (HCC), is the second leading cause of cancer-related death and its incidence is increasing globally. Around 50% of patients with HCC receive systemic therapies, traditionally sorafenib or lenvatinib in the first line and regorafenib, cabozantinib or ramucirumab in the second line. In the past 5 years, immune-checkpoint inhibitors have revolutionized the management of HCC. The combination of atezolizumab and bevacizumab has been shown to improve overall survival relative to sorafenib, resulting in FDA approval of this regimen. More recently, durvalumab plus tremelimumab yielded superior overall survival versus sorafenib and atezolizumab plus cabozantinib yielded superior progression-free survival. In addition, pembrolizumab monotherapy and the combination of nivolumab plus ipilimumab have received FDA Accelerated Approval in the second-line setting based on early efficacy data. Despite these major advances, the molecular underpinnings governing immune responses and evasion remain unclear. The immune microenvironment has crucial roles in the development and progression of HCC and distinct aetiology-dependent immune features have been defined. Inflamed and non-inflamed classes of HCC and genomic signatures have been associated with response to immune-checkpoint inhibitors, yet no validated biomarker is available to guide clinical decision-making. This Review provides information on the immune microenvironments underlying the response or resistance of HCC to immunotherapies. In addition, current evidence from phase III trials on the efficacy, immune-related adverse events and aetiology-dependent mechanisms of response are described. Finally, we discuss emerging trials assessing immunotherapies across all stages of HCC that might change the management of this disease in the near future.
Collapse
|