101
|
Li X, Wang W, Dong F, Zhang Z, Han L, Luo X, Huang J, Feng Z, Chen Z, Jia G, Zhang T. Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05354] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xibao Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Weiwei Wang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Fan Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhiqiang Zhang
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Lu Han
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xudong Luo
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Juntong Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhijun Feng
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi Chen
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
102
|
Li L, Zhai L, Liu H, Li B, Li M, Wang B. A novel H2O2photoelectrochemical sensor based on ternary RGO/Ag-TiO2 nanotube arrays nanocomposite. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
103
|
Sun Q, Liu Y, Liu Z, Huang G, Yuan S, Yang G, Wang K, Zhang P, Li N. Symbiotic composite composed of MoS 2 and pelagic clay with enhanced disinfection efficiency. RSC Adv 2021; 11:9621-9627. [PMID: 35423425 PMCID: PMC8695455 DOI: 10.1039/d1ra00008j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/11/2021] [Indexed: 12/03/2022] Open
Abstract
Molybdenum disulfide (MoS2) has attracted increasing attention as a promising photocatalyst. In addition to its application in photocatalytic hydrogen production and pollutant degradation, MoS2 is also used in water disinfection. However, its poor disinfection performance limits its practical utility. Herein, we prepared a symbiotic composite composed of MoS2 and pelagic clay (MoS2/PC) as a photocatalyst for water disinfection. The composite achieved a high disinfection rate of 99.95% to Escherichia coli (E. coli) under visible light illumination, which is significantly higher than that of bulk MoS2 (61.87%). Characterization shows that abundant hydroxyl groups in illite/montmorillonite (I/M) formed during hydrothermal synthesis of MoS2, which contributed to the enhanced disinfection activity. Those hydroxyl groups can attract photogenerated holes through electrostatic attraction, and facilitate the separation of photogenerated charge carriers, thereby enhancing the disinfection activity. Moreover, the good hydrophilicity of pelagic clay improves the dispersity of MoS2 in water, which is beneficial for its utility in aqueous solutions. In addition, the symbiotic structure restricts the growth and aggregation of MoS2 nanosheets and shortens the diffusion distance of charge carriers to the material surface, further reducing the recombination of electrons and holes. This study provides a way to improve the disinfection activity of MoS2 and also sheds light on high value-added utilization of pelagic clay.
Collapse
Affiliation(s)
- Qiwei Sun
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Yuhua Liu
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Zhipeng Liu
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Guoqing Huang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Shisheng Yuan
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Guohua Yang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Kaiwen Wang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Peiping Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| | - Nan Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University 2699, Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
104
|
Effect of TiO2 modification with fluorine on the physicochemical properties and activity in the photocatalytic oxidation of pollutants in air under UV irradiation. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
105
|
Bui DN, Minh TT. Investigation of TNT red wastewater treatment technology using the combination of advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143852. [PMID: 33248762 DOI: 10.1016/j.scitotenv.2020.143852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Different types of advanced oxidation processes and their combinations such as O3/H2O2/UV, O3/Fenton/UV, O3/TiO2/UV, Fenton/H2O2/UV, Fenton/TiO2/UV, TiO2/H2O2/UV, TiO2/H2O2/O3/UV, TiO2/O3/Fenton/UV, TiO2/H2O2/Fenton/UV and O3/H2O2/Fenton/UV were studied for the treatment of undiluted red wastewater from Z113 Factory. The treatment efficiency was evaluated by analyzing chemical oxygen demand (COD) reduction, % degradation of α-TNT, 2,4-DNT, 2,6-DNT, 2,4-DNT-3-SO3Na and 2,4-DNT-5-SO3Na. Among studied processes Fenton/TiO2/O3/UV was the most effective technology to treat red wastewater. It allows to reduce >99% of COD, α-TNT, 2,4-DNT, 2,6-DNT, 2,4-DNT-3-SO3Na and 2,4-DNT-5-SO3Na after 30 h of treatment with optimum operating conditions: rotation speed of 600 rpm, pH of 4 and temperature of 40 °C. According to the chromatograms obtained by gas chromatograph/mass spectrometer (GC/MS), intermediates of the decomposition of pollutants in red wastewater were identified. GC/MS, HPLC, UV-vis and Bacterial Toxicity test were used to assess effluent quality changes before and after treatment. By economic analysis, the studied process had the potential to apply in practice to treat real wastewater at the Z113 Factory.
Collapse
Affiliation(s)
- Dinh Nhi Bui
- Faculty of Environmental Technology, Viet Tri University of Industry, Viet Nam.
| | - Thi Thao Minh
- Faculty of Environmental Technology, Viet Tri University of Industry, Viet Nam
| |
Collapse
|
106
|
Yanushevska OI, Vlasenko NV, Telbis GM, Leonenko EV, Didenko OZ, Prozorovich VG, Ivanets AI, Dontsova TA. Acid–base and photocatalytic properties of TiO2-based nanomaterials. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01709-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
107
|
Bui HT, Weon S, Bae JW, Kim EJ, Kim B, Ahn YY, Kim K, Lee H, Kim W. Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:123976. [PMID: 33080555 DOI: 10.1016/j.jhazmat.2020.123976] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The engineering of oxygen vacancies in CeO2 nanoparticles (NPs) allows the specific fine-tuning of their oxidation power, and this can be used to rationally control their activity and selectivity in the photocatalytic oxidation (PCO) of aromatic pollutants. In the current study, a facile strategy for generating exceptionally stable oxygen vacancies in CeO2 NPs through simple acid (CeO2-A) or base (CeO2-B) treatment was developed. The selective (or mild) PCO activities of CeO2-A and CeO2-B in the degradation of a variety of aromatic substrates in water were successfully demonstrated. CeO2-B has more oxygen vacancies and exhibits superior photocatalytic performance compared to CeO2-A. Control of oxygen vacancies in CeO2 facilitates the adsorption and reduction of dissolved O2 due to their high oxygen-storage ability. The oxygen vacancies in CeO2-B as active sites for oxygen-mediated reactions act as (i) adsorption and reduction reaction sites for dissolved O2, and (ii) photogenerated electron scavenging sites that promote the formation of H2O2 by multi-electron transfer. The oxygen vacancies in CeO2-B are particularly stable and can be used repeatedly over 30 h without losing activity. The selective PCOs of organic substrates were studied systematically, revealing that the operating mechanisms for UV-illuminated CeO2-B are very different from those for conventional TiO2 photocatalysts. Thus, the present study provides new insights into the design of defect-engineered metal oxides for the development of novel photocatalysts.
Collapse
Affiliation(s)
- Hoang Tran Bui
- Department of Chemical and Biological Engineering, Research Institute of Global Environment, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Seunghyun Weon
- School of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| | - Ji Won Bae
- Department of Chemistry, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Eun-Ju Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Bupmo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| | - Wooyul Kim
- Department of Chemical and Biological Engineering, Research Institute of Global Environment, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
108
|
Bhat AP, Gogate PR. Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123657. [PMID: 33264866 DOI: 10.1016/j.jhazmat.2020.123657] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen-containing amino and azo compounds are widely used in textile, agricultural and chemical industries. Most of these compounds have been demonstrated to be resistant to conventional degradation processes. Advanced oxidation processes can be effective to mineralize nitrogen-containing compounds and improve the efficacy of overall treatment schemes. Due to a global concern for the occurrence of toxic and hazardous amino-compounds and their harmful degradation products in water, it is important to develop technologies that focus on all the aspects of their degradation. Our focus is to present a state-of-the-art review on the degradation of several amine- and azo-based compounds using advanced oxidation processes. The categories reviewed are aromatic amines, aliphatic amines, N-containing dyes and N-containing pesticides. Data has been compiled for degradation efficiencies of each process, reaction mechanisms focusing on specific attack of oxidants on N atoms, the effect of process parameters like pH, initial concentration, time of treatment, etc. and identification of intermediates. Several AOPs have been compared to provide a systematic overview of available literature that will drive essential aspects of future research on amine-based compounds. Ozone is observed to be highly reactive to most amines, dyes and pesticides, followed by Fenton processes. Degradation of amines is highly sensitive to pH and mechanisms differ at different pH values. Cavitation is a promising alternative pre-treatment method for cost reduction. Hybrid methods under optimized conditions are demonstrated to give synergistic effects and must be tailored for specific effluents in question. In conclusion, even though nitrogen-containing compounds are recalcitrant in nature, the use of advanced oxidation processes at carefully established optimum conditions can yield highly efficient degradation of the compounds.
Collapse
Affiliation(s)
- Akash P Bhat
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Parag R Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
109
|
1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113057] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
110
|
Ray SK, Hur J. A critical review on modulation of NiMoO 4-based materials for photocatalytic applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111562. [PMID: 33126189 DOI: 10.1016/j.jenvman.2020.111562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Semiconductor photocatalysis has been widely utilized to solve the problems of energy shortage and environmental pollution. Among the explored photocatalysts, nickel molybdate (NiMoO4) has revealed many advantages for photocatalytic applications, which include visible light absorption, low cost, environment-friendly, large surface area, good electrical conductivities, and tailorable band structure. However, the recombination of photogenerated carriers, which diminishes photocatalytic efficiency, has been held as a major hurdle to the widespread application of this material. To overcome this limitation, various surface modulations such as morphology control, doping of heteroatom, deposition of noble metal nanoparticles, and fabrication of composite structures have been explored in many published studies. This article comprehensively reviews the recent progress in the modulations of NiMoO4-based materials to improve the photocatalytic efficiency. The enhanced photocatalytic capabilities of NiMoO4-based materials are reviewed in terms of such applications as pollutant removal, disinfection of bacteria, and water splitting. The current challenges and possible future direction of research in this field are also highlighted. This comprehensive review is expected to advance the design of highly efficient NiMoO4-based materials for photocatalytic applications.
Collapse
Affiliation(s)
- Schindra Kumar Ray
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
111
|
Bai X, Hou S, Wang X, Hao D, Sun B, Jia T, Shi R, Ni BJ. Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00803j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Proposed scheme of the surface and interface engineering to improve the charge separation efficiency of MXene-based photocatalysts.
Collapse
Affiliation(s)
- Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Shanshan Hou
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Xuyu Wang
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Derek Hao
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| | - Boxuan Sun
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Tianqi Jia
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Rui Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW)
- School of Civil and Environmental Engineering
- University of Technology Sydney (UTS)
- Sydney
- Australia
| |
Collapse
|
112
|
Phosphotungstic acid immobilized onto ZnO coated zerovalent iron (Fe@ZnO/PW) core/shell magnetic nanocomposite for enhanced photocatalytic bacterial inactivation under visible light. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
113
|
Thirunavukkarasu GK, Monfort O, Motola M, Motlochová M, Gregor M, Roch T, Čaplovicová M, Lavrikova AY, Hensel K, Brezová V, Jerigová M, Šubrt J, Plesch G. Ce ion surface-modified TiO 2 aerogel powders: a comprehensive study of their excellent photocatalytic efficiency in organic pollutant removal. NEW J CHEM 2021. [DOI: 10.1039/d0nj05976e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The surface modification of TiO2 aerogel powders by cerium ions has led to enhanced photoinduced properties.
Collapse
|
114
|
Chakraborty AK, Ganguli S, Bera S. Enhancing the photocatalytic efficiency of the BiOCl/Bi 3O 4Cl composite modified with WO 3 for environmental purification under visible light. NEW J CHEM 2021. [DOI: 10.1039/d1nj02825a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The role of WO3 in enhancing the photocatalytic behavior of the composite photocatalyst towards the decomposition of organic pollutants in the environment under visible light has been demonstrated.
Collapse
Affiliation(s)
- Ashok Kumar Chakraborty
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Sumon Ganguli
- Biomaterials Research Laboratory (BRL), Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong-4331, Bangladesh
| | - Sandipan Bera
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, Republic of Korea
| |
Collapse
|
115
|
Abstract
Methane reforming is an important potential technology for solving both environmental and energy problems. This technology is important because methane is counted as a greenhouse gas, but on the other hand, it can be reformed into industrially valuable compounds. More research has focused on photocatalytic methane reforming, which has a higher activity than thermal catalysts under dark conditions. The reaction selectivity toward specific products in photocatalytic methane reforming is sometimes different from thermal catalyst systems. Herein, we discuss recent advances in photocatalytic methane reforming to provide various strategies for reforming.
Collapse
|
116
|
|
117
|
Suzuki H, Awa K, Naya SI, Tada H. Heat treatment effect of a hybrid consisting of SnO2 nanorod and rutile TiO2 with heteroepitaxial junction on the photocatalytic activity. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
118
|
Li H, Huang G, Xu H, Yang Z, Xu X, Li J, Qu A, Chen Y. Enhancing photodegradation activity of g-C3N4 via decorating with S-doped carbon nitride quantum dots by in situ polymerization. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
119
|
Chen P, Lei B, Dong X, Wang H, Sheng J, Cui W, Li J, Sun Y, Wang Z, Dong F. Rare-Earth Single-Atom La-N Charge-Transfer Bridge on Carbon Nitride for Highly Efficient and Selective Photocatalytic CO 2 Reduction. ACS NANO 2020; 14:15841-15852. [PMID: 33142059 DOI: 10.1021/acsnano.0c07083] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Photocatalytic CO2 conversion into valuable solar fuels is highly appealing, but lack of directional charge-transfer channel and insufficient active sites resulted in limited CO2 reduction efficiency and selectivity for most photocatalytic systems. Herein, we designed and fabricated rare-earth La single-atoms on carbon nitride with La-N charge-transfer bridge as the active center for photocatalytic CO2 reaction. The formation of La single-atoms was certified by spherical aberration-corrected HAADF-STEM, STEM-EELS, EXAFS, and theoretical calculations. The electronic structure of the La-N bridge enables a high CO-yielding rate of 92 μmol·g-1·h-1 and CO selectivity of 80.3%, which is superior to most g-C3N4-based photocatalytic CO2 reductions. The CO production rate remained nearly constant under light irradiation for five cycles of 20 h, indicating its stability. The closely combined experimental and DFT calculations clearly elucidated that the variety of electronic states induced by 4f and 5d orbitals of the La single atom and the p-d orbital hybridization of La-N atoms enabled the formation of charge-transfer channel. The La-N charge bridges are found to function as the key active center for CO2 activation, rapid COOH* formation, and CO desorption. The present work would provide a mechanistic understanding into the utilization of rare-earth single-atoms in photocatalysis for solar energy conversion.
Collapse
Affiliation(s)
- Peng Chen
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Ben Lei
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xing'an Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wen Cui
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- The Center of New Energy Materials and Technology, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jieyuan Li
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhiming Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
120
|
Chen Z, Peng Y, Chen J, Wang C, Yin H, Wang H, You C, Li J. Performance and Mechanism of Photocatalytic Toluene Degradation and Catalyst Regeneration by Thermal/UV Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14465-14473. [PMID: 33119280 DOI: 10.1021/acs.est.0c06048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work presents a new strategy for industrial flue gas purification with TiO2-based photocatalysis technology, which could be achieved by a novel dual-stage circulating photocatalytic reactor. A lab-scale fixed bed reactor is utilized to investigate the performance of photocatalytic toluene degradation and inactive catalyst regeneration by thermal/UV treatment. The relationships between operational conditions and toluene oxidation are surveyed and discussed in detail. The results show that the intermediates could be further removed and decomposed by introducing UV radiation, compared with heat treatment alone. To reveal the photocatalytic mechanism and identify the accumulated intermediates over anatase TiO2, the adsorbed toluene and aromatic intermediates are identified by XPS, in situ DRIFTS, and on-line MS. The aromatic ring and other covalent bonds (C═O, C-O, and O-H) are detected during photocatalytic oxidation. The reaction pathway involving hydrogen abstraction is referred as the dominant pathway for toluene degradation, and ring opening via ·OH radicals is crucial to make aromatic intermediates change into CO2 and H2O. The results indicate that benzoic acid and benzaldehyde are the main accumulation because of their high reaction energy. A possible reaction mechanism is proposed for toluene oxidation, deactivation, and regeneration of catalysts, which has a significant value for guiding the practical applications.
Collapse
Affiliation(s)
- Zhen Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chizhong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haiming Wang
- Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Changfu You
- Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
121
|
Abstract
The natural environment is constantly under threat from man-made pollution. More and more pharmaceuticals are recognized as emerging pollutants due to their growing concentration in the environment. One such chemical is ibuprofen which has been detected in processed sewage. The ineffectiveness of water methods treatment currently used raises the need for new remediation techniques, one of such is photodegradation of pollutants. In the present study, zinc(II) and copper(II) phthalocyanines were grafted onto pure anatase TiO2 nanoparticles (5 and 15 nm) to form photocatalysts for photodecomposition of ibuprofen in water. The nanoparticles were subjected to physicochemical characterization, including: thermogravimetric analysis, X-ray powder diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller surface area analysis and particle size measurements. In addition, they were assessed by means of electron spin resonance spectroscopy to evaluate the free radical generation. The materials were also tested for their photocatalytic activity under either UV (365 nm) or visible light (665 nm) irradiation. After 6 h of irradiation, almost complete removal of ibuprofen under UV light was observed, as assessed by liquid chromatography coupled to mass spectrometry. The reaction kinetics calculations revealed that the copper(II) phthalocyanine-containing nanoparticles were acting at a faster rate than those with zinc(II) derivative. The solutions after the photoremediation experiments were subjected to Microtox® acute toxicity analysis.
Collapse
|
122
|
Photocatalytic hydrogen production using FeTiO3 concentrates modified by high energy ball milling and the presence of Mg precursors. Top Catal 2020. [DOI: 10.1007/s11244-020-01396-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
123
|
Mancuso A, Sacco O, Sannino D, Pragliola S, Vaiano V. Enhanced visible-light-driven photodegradation of Acid Orange 7 azo dye in aqueous solution using Fe-N co-doped TiO2. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
124
|
Alonizan N, Chouiref L, Omri K, Gondal MA, Madkhali N, Ghrib T, Alhassan AI. Photocatalytic Activity, Microstructures and Luminescent Study of Ti-ZS:M Nano-composites Materials. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01598-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
125
|
Seal K, Chaudhuri H, Basu S, Mandal MK, Pal S. Study on Effect of the Solvothermal Temperature on Synthesis of 3D Hierarchical TiO2 Nanoflower and Its Application as Photocatalyst in Degradation of Organic Pollutants in Wastewater. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04988-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
126
|
Hanatani K, Yoshihara K, Sakamoto M, Saitow KI. Nanogap-Rich TiO 2 Film for 2000-Fold Field Enhancement with High Reproducibility. J Phys Chem Lett 2020; 11:8799-8809. [PMID: 32902290 DOI: 10.1021/acs.jpclett.0c02286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Titanium dioxide (TiO2) is a crucial semiconductor for photocatalysts, solar cells, hydrogen evolution reactions, and antivirus agents. The properties and performances of these applications can improve significantly if the integrated TiO2 acts as a light harvester through a large field enhancement. This study investigates the electromagnetic field enhancement of a nanogap-rich TiO2 film with a large area, prepared by a facile dry process at room temperature. Herein, the loading pressure is applied to the TiO2 particles for closely packing them in the film. The field enhancement, as a function of the loading pressure, is explored from the fluorescence intensity enhancement of a dye molecule. An average enhancement factor >2000 is achieved, which is a remarkable record for semiconductors. Furthermore, the reproducibility is significant; the relative standard deviation value is small (∼4%). Calculations were performed using the finite-difference-time-domain method. A nanogap of 5 nm yields the highest EF for triangular-prism TiO2 particles.
Collapse
Affiliation(s)
- Kaito Hanatani
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kumi Yoshihara
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masanori Sakamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ken-Ichi Saitow
- Department of Materials Science, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
127
|
Zhang B, Ma X, Ma J, Zhou Y, Liu G, Ma D, Deng Z, Luo M, Xin Y. Fabrication of rGO and g-C3N4 co-modified TiO2 nanotube arrays photoelectrodes with enhanced photocatalytic performance. J Colloid Interface Sci 2020; 577:75-85. [DOI: 10.1016/j.jcis.2020.05.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 11/16/2022]
|
128
|
Chung YH, Han K, Lin CY, O’Neill D, Mul G, Mei B, Yang CM. Photocatalytic hydrogen production by photo-reforming of methanol with one-pot synthesized Pt-containing TiO2 photocatalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
129
|
|
130
|
Application of PANI/TiO2 Composite for Photocatalytic Degradation of Contaminants from Aqueous Solution. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyaniline (PANI) is a promising conducting polymer for surface modification of TiO2 to achieve extended photoresponse to visible light and increased photocatalytic efficiency. In this study, we report the synthesis of a PANI/TiO2 composite with different weight ratios of PANI, which was subsequently employed for photocatalytic degradation of methylene blue (MB), bisphenol A (BPA), and bacteriophage MS2 under visible-light irradiation. The functional groups, morphology, and light response of the composite were characterized by Fourier-transform infrared spectroscopy, field-emission transmission electron microscopy, and diffuse reflectance UV–visible spectroscopy, respectively. The PANI/TiO2 composite containing 4% by weight ratio of PANI was most suitable for MB degradation, and this photocatalyst was very stable even after repeated use (four cycles). The degradation of BPA and bacteriophage MS2 by PANI/TiO2 composite reached 80% in 360 min and 96.2% in 120 min, respectively, under visible-light irradiation. Therefore, the PANI/TiO2 composite with enhanced visible-light photocatalytic efficiency and stability can be widely used for the degradation of water contaminants.
Collapse
|
131
|
Gopalan AI, Lee JC, Saianand G, Lee KP, Sonar P, Dharmarajan R, Hou YL, Ann KY, Kannan V, Kim WJ. Recent Progress in the Abatement of Hazardous Pollutants Using Photocatalytic TiO 2-Based Building Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1854. [PMID: 32948034 PMCID: PMC7559443 DOI: 10.3390/nano10091854] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023]
Abstract
Titanium dioxide (TiO2) has been extensively investigated in interdisciplinary research (such as catalysis, energy, environment, health, etc.) owing to its attractive physico-chemical properties, abundant nature, chemical/environmental stability, low-cost manufacturing, low toxicity, etc. Over time, TiO2-incorporated building/construction materials have been utilized for mitigating potential problems related to the environment and human health issues. However, there are challenges with regards to photocatalytic efficiency improvements, lab to industrial scaling up, and commercial product production. Several innovative approaches/strategies have been evolved towards TiO2 modification with the focus of improving its photocatalytic efficiency. Taking these aspects into consideration, research has focused on the utilization of many of these advanced TiO2 materials towards the development of construction materials such as concrete, mortar, pavements, paints, etc. This topical review focuses explicitly on capturing and highlighting research advancements in the last five years (mainly) (2014-2019) on the utilization of various modified TiO2 materials for the development of practical photocatalytic building materials (PBM). We briefly summarize the prospective applications of TiO2-based building materials (cement, mortar, concretes, paints, coating, etc.) with relevance to the removal of outdoor/indoor NOx and volatile organic compounds, self-cleaning of the surfaces, etc. As a concluding remark, we outline the challenges and make recommendations for the future outlook of further investigations and developments in this prosperous area.
Collapse
Affiliation(s)
- Anantha-Iyengar Gopalan
- Daegyeong Regional Infrastructure Technology Development Center, Kyungpook National University, Daegu 41566, Korea; (A.-I.G.); (K.-P.L.)
| | - Jun-Cheol Lee
- Department of Architecture, Seowon University, Cheongju 28674, Korea;
| | - Gopalan Saianand
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia; (G.S.); (R.D.)
| | - Kwang-Pill Lee
- Daegyeong Regional Infrastructure Technology Development Center, Kyungpook National University, Daegu 41566, Korea; (A.-I.G.); (K.-P.L.)
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia;
- Centre for Material Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia; (G.S.); (R.D.)
| | - Yao-long Hou
- Department of Civil Engineering, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea;
| | - Ki-Yong Ann
- Department of Civil and Environmental Engineering, Hanyang University, Ansan 1588, Korea;
| | | | - Wha-Jung Kim
- Daegyeong Regional Infrastructure Technology Development Center, Kyungpook National University, Daegu 41566, Korea; (A.-I.G.); (K.-P.L.)
| |
Collapse
|
132
|
Vasiljevic ZZ, Dojcinovic MP, Vujancevic JD, Jankovic-Castvan I, Ognjanovic M, Tadic NB, Stojadinovic S, Brankovic GO, Nikolic MV. Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200708. [PMID: 33047033 PMCID: PMC7540765 DOI: 10.1098/rsos.200708] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/04/2020] [Indexed: 05/05/2023]
Abstract
The aim of this work was to synthesize semiconducting oxide nanoparticles using a simple method with low production cost to be applied in natural sunlight for photocatalytic degradation of pollutants in waste water. Iron titanate (Fe2TiO5) nanoparticles with an orthorhombic structure were successfully synthesized using a modified sol-gel method and calcination at 750°C. The as-prepared Fe2TiO5 nanoparticles exhibited a moderate specific surface area. The mesoporous Fe2TiO5 nanoparticles possessed strong absorption in the visible-light region and the band gap was estimated to be around 2.16 eV. The photocatalytic activity was evaluated by the degradation of methylene blue under natural sunlight. The effect of parameters such as the amount of catalyst, initial concentration of the dye and pH of the dye solution on the removal efficiency of methylene blue was investigated. Fe2TiO5 showed high degradation efficiency in a strong alkaline medium that can be the result of the facilitated formation of OH radicals due to an increased concentration of hydroxyl ions.
Collapse
Affiliation(s)
| | - M. P. Dojcinovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | | | - I. Jankovic-Castvan
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - M. Ognjanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - N. B. Tadic
- Faculty of Physics, University of Belgrade, Belgrade, Serbia
| | - S. Stojadinovic
- Faculty of Physics, University of Belgrade, Belgrade, Serbia
| | - G. O. Brankovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - M. V. Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
133
|
Cui X, Li Y, Dong W, Liu D, Duan Q. Microwave-assisted synthesis of novel imine-linked copper porphyrin conjugated microporous polymers as heterogeneous photocatalysts. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
134
|
Investigation of magnetic composites using as photocatalyst and antibacterial application. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
135
|
Cheng JN, Zhao LZ, Li GB, Li F, Yao MM. B/Co/Fe tridoped TiO2/SiO2 composite films for improved photocatalytic degradation of organic pollutants under visible light. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
136
|
Park J, Lim J, Park Y, Han DS, Shon HK, Hoffmann MR, Park H. In Situ-Generated Reactive Oxygen Species in Precharged Titania and Tungsten Trioxide Composite Catalyst Membrane Filters: Application to As(III) Oxidation in the Absence of Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9601-9608. [PMID: 32543843 DOI: 10.1021/acs.est.0c01550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study demonstrates that in situ-generated reactive oxygen species (ROSs) in prephotocharged TiO2 and WO3 (TW) composite particle-embedded inorganic membrane filters oxidize arsenite (As(III)) into arsenate (As(V)) without any auxiliary chemical oxidants under ambient conditions in the dark. TW membrane filters have been charged with UV or simulated sunlight and subsequently transferred to a once-through flow-type system. The charged TW filters can transfer the stored electrons to dissolved O2, producing ROSs that mediate As(III) oxidation in the dark. Dramatic inhibition of As(V) production with O2 removal or addition of ROS quenchers indicates an ROS-mediated As(III) oxidation mechanism. Electron paramagnetic spectroscopic analysis has confirmed the formation of the HO2•/O2•- pair in the dark. The WO3 fraction in the TW filter significantly influences the performance of the As(III) oxidation, while As(V) production is enhanced with increasing charging time and solution pH. The As(III) oxidation is terminated when the singly charged TW filter is fully discharged; however, recharging of TW recovers the catalytic activity for As(III) oxidation. The proposed oxidation process using charged TW membrane filters is practical and environmentally benign for the continuous treatment of As(III)-contaminated water during periods of unavailability of sunlight.
Collapse
Affiliation(s)
- Jiyeon Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Jonghun Lim
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Yiseul Park
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Korea
| | - Dong Suk Han
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Michael R Hoffmann
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Hyunwoong Park
- School of Energy Engineering, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
137
|
Verma P, Mori K, Kuwahara Y, Cho SJ, Yamashita H. Synthesis of plasmonic gold nanoparticles supported on morphology-controlled TiO2 for aerobic alcohol oxidation. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
138
|
Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020. [DOI: 10.3390/catal10070804] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A high-efficiency method to deal with pollutants must be found because environmental problems are becoming more serious. Photocatalytic oxidation technology as the environmentally-friendly treatment method can completely oxidate organic pollutants into pollution-free small-molecule inorganic substances without causing secondary pollution. As a widely used photocatalyst, titanium dioxide (TiO2) can greatly improve the degradation efficiency of pollutants, but several problems are noted in its practical application. TiO2 modified by different materials has received extensive attention in the field of photocatalysis because of its excellent physical and chemical properties compared with pure TiO2. In this review, we discuss the use of different materials for TiO2 modification, highlighting recent developments in the synthesis and application of TiO2 composites using different materials. Materials discussed in the article can be divided into nonmetallic and metallic. Mechanisms of how to improve catalytic performance of TiO2 after modification are discussed, and the future development of modified TiO2 is prospected.
Collapse
|
139
|
Al-Hussaini AS, Abdel-Hameed EM, Hassan MER. Synthesis of Smart Core-shell Nanocomposites with Enhanced Photocatalytic Efficacy. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1784214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ayman S. Al-Hussaini
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Mohamed E. R. Hassan
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
140
|
Abstract
TiO2 probably plays the most important role in photocatalysis due to its excellent chemical and physical properties. However, the band gap of TiO2 corresponds to the Ultraviolet (UV) region, which is inactive under visible irradiation. At present, TiO2 has become activated in the visible light region by metal and nonmetal doping and the fabrication of composites. Recently, nano-TiO2 has attracted much attention due to its characteristics of larger specific surface area and more exposed surface active sites. nano-TiO2 has been obtained in many morphologies such as ultrathin nanosheets, nanotubes, and hollow nanospheres. This work focuses on the application of nano-TiO2 in efficient environmental photocatalysis such as hydrogen production, dye degradation, CO2 degradation, and nitrogen fixation, and discusses the methods to improve the activity of nano-TiO2 in the future.
Collapse
|
141
|
Chen J, Zhang X, Bi F, Zhang X, Yang Y, Wang Y. A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J Colloid Interface Sci 2020; 571:275-284. [DOI: 10.1016/j.jcis.2020.03.055] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 11/30/2022]
|
142
|
Magnetically Recoverable TiO 2/SiO 2/γ-Fe 2O 3/rGO Composite with Significantly Enhanced UV-Visible Light Photocatalytic Activity. Molecules 2020; 25:molecules25132996. [PMID: 32630005 PMCID: PMC7412534 DOI: 10.3390/molecules25132996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 11/25/2022] Open
Abstract
In this paper, we report the preparation of a new composite (TiO2/SiO2/γ-Fe2O3/rGO) with a high photocatalytic efficiency. The properties of the composite were examined by different analyses, including X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), photoluminescence (PL), UV-Visible light diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, vibrating-sample magnetometer (VSM), and nitrogen gas physisorption (BET) studies. The photocatalytic efficiency of the proposed composite was evaluated by the degradation of methylene blue under UV and visible light, and the results were compared with titanium dioxide (TiO2), where degradation increased from 30% to 84% and 4% to 66% under UV and visible light, respectively. The significant increase in photocatalytic activity may be explained by the higher adsorption of dye on the surface of the composite and the higher separation and transfer of charge carriers, which in turn promote active sites and photocatalytic efficiency.
Collapse
|
143
|
Fakharian‐Qomi MJ, Sadeghzadeh‐Attar A. Template Based Synthesis of Plasmonic Ag‐modified TiO
2
/SnO
2
Nanotubes with Enhanced Photostability for Efficient Visible‐Light Photocatalytic H
2
Evolution and RhB Degradation. ChemistrySelect 2020. [DOI: 10.1002/slct.202001119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mohammad Javad Fakharian‐Qomi
- Department of Metallurgy and Materials Engineering University of Kashan, P.O. Box. 87317-53153, Ghotb Ravandi Blvd. Kashan Iran
| | - Abbas Sadeghzadeh‐Attar
- Department of Metallurgy and Materials Engineering University of Kashan, P.O. Box. 87317-53153, Ghotb Ravandi Blvd. Kashan Iran
| |
Collapse
|
144
|
Photocatalytic Activities of PET Filaments Deposited with N-Doped TiO2 Nanoparticles Sensitized with Disperse Blue Dyes. Catalysts 2020. [DOI: 10.3390/catal10050531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study, the enhanced photocatalytic activities of polyethylene terephthalate (PET) filaments deposited with N-doped Titanium dioxide (TiO2) nanoparticles sensitized with water insoluble disperse blue SE–2R dye were investigated. The PET filaments were loaded with two types of N-doped TiO2 nanoparticles, one with and the other without being sensitized with disperse blue SE–2R dye, in one-pot hydrothermal process respectively. The differences in photocatalytic activities between the N-doped TiO2 and the dye-sensitized N-doped TiO2 nanoparticles when exposed to both UV rays and visible lights were analyzed and compared by using their photodegradations of methylene blue (MB) dye. It was demonstrated that the disperse blue dye facilitated the electron–hole separation in N-doped TiO2 nanoparticles faster under UV irradiation than that under visible light irradiation. The enhanced photocatalytic activity of the PET filaments loaded with dye-sensitized N-doped TiO2 nanoparticles exposure to UV irradiation, in comparison with that under visible light irradiation, was attributed to both improved light absorption capacity and high separation efficiency of photo-generated electron–hole pairs. Furthermore, the conduction band and band gap of the PET filaments deposited with N-doped TiO2 nanoparticles sensitized with disperse blue SE–2R dye were influenced by the wavelength of light sources, while its valence band was not affected. The PET filaments deposited with dye-sensitized N-doped TiO2 nanoparticles have a potential application to degrade organic pollutants.
Collapse
|
145
|
Pillai V, Lonkar SP, Alhassan SM. Template-Free, Solid-State Synthesis of Hierarchically Macroporous S-Doped TiO 2 Nano-Photocatalysts for Efficient Water Remediation. ACS OMEGA 2020; 5:7969-7978. [PMID: 32309707 PMCID: PMC7161069 DOI: 10.1021/acsomega.9b04409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/05/2020] [Indexed: 05/29/2023]
Abstract
Nanosized sulfur-doped titanium dioxide emerged as an attractive photocatalyst in various environmental remediation applications, yet most synthesis methods require hazardous sulfurizing agents and intricate synthesis procedures. Herein, we present a facile, sustainable, and environmentally friendly preparation process for the production of visible-light-active meso-macroporous sulfur-doped anatase TiO2 (S-TiO2) nanoparticles for the first time. This strategy encompasses solventless mixing of titanium salt and surfeit yet nontoxic abundant elemental sulfur under continuous ball milling and moderate thermoannealing. The characterizations of as-obtained S-TiO2 nanoparticles showed enhanced physicochemical properties including distinctive surface features composed of hierarchical hollow macroporous channels having nanostructured mesoporous core walls. The annealing temperature was observed to control the structure and extent of sulfur doping in TiO2. Upon insertion of a sulfur atom into the TiO2 lattice, the band gap energy of S-TiO2 was significantly lowered, facilitating the enhanced photochemical activity. Owing to the effective S doping (1.7-2.8 atom %), and the interconnected hollow meso-macroporous nanostructure, the resulting nanosized S-TiO2 exhibited unique adsorption properties and superior photocatalytic efficiency for the rapid degradation of hazardous organic dyes and phenols for water remediation. The presented strategy holds high potential to provide rapid production of a hierarchical and highly porous S-TiO2 photocatalyst on a large scale for various environmental remediation and other myriad photochemical applications.
Collapse
|
146
|
Abstract
The concentration of carbon dioxide in the air has risen sharply due to the use of fossil fuels, causing environmental problems such as the greenhouse effect, which seriously threatens humans’ living environment. Reducing carbon dioxide emissions while addressing energy shortages requires the conversion of CO2 into high added-value products. In this paper, the status of CO2 conversion research in the past ten years is analyzed using the bibliometric method; the influence of countries and institutions, journal article statistics and other aspects are statistically analyzed, and the research status of carbon dioxide catalytic conversion is briefly introduced. Finally, according to the analysis results and the existing problems of CO2 catalytic conversion research, the future development direction of CO2 catalytic conversion research is prospected.
Collapse
|
147
|
Ti3C2/TiO2 nanowires with excellent photocatalytic performance for selective oxidation of aromatic alcohols to aldehydes. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
148
|
Heterojunctions for Photocatalytic Wastewater Treatment: Positive Holes, Hydroxyl Radicals and Activation Mechanism under UV and Visible Light. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractForming heterojunctions by coupling two or more semiconductors is an important strategy to develop stable and efficient photocatalysts able to operate both under near-UV and visible light. Five novel heterojunction systems were synthesized in the present study, using a modified sol-gel method: Bi2Mo3O12/TiO2, ZnFe2O4/TiO2, FeTiO3/TiO2, WO3(US)/TiO2 and WO3/TiO2. These heterojunction semiconductors were characterized by using XRD, SEM and EDX, UV–Vis diffuse reflectance spectroscopy and BET. Their photocatalytic activities were evaluated using methyl orange (MO) degradation under both near-UV and visible light. From the various heterojunctions developed, the WO3(US)/TiO2 photocatalyst was the one that showed the highest photocatalytic efficiency with this being assigned to the formation of a double heterojunction involving anatase, rutile and monoclinic WO3 phases. On this basis, a photocatalyst activation mechanism applicable to near-UV and visible light irradiation was proposed. This mechanism explains how the photogenerated electrons (e–) and positive holes (h+) can be transferred to the various phases. As a result, and given the reduced holes and electron recombination surface, hydroxyl radicals found were more abundant. To confirm this assumption, hole formation in the valence band was studied, using hole-scavenging reactions involving ion iodine (I–), while hydroxyl radical production used fluorescence spectroscopy.
Collapse
|
149
|
Pedroza-Herrera G, Medina-Ramírez IE, Lozano-Álvarez JA, Rodil SE. Evaluation of the Photocatalytic Activity of Copper Doped TiO2 nanoparticles for the Purification and/or Disinfection of Industrial Effluents. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
150
|
Zhiyong Y, Ruiying Q, Runbo Y, Zhiyin W, Huanrong L. Photodegradation comparison for methyl orange by TiO 2, H 2O 2 and KIO 4. ENVIRONMENTAL TECHNOLOGY 2020; 41:547-555. [PMID: 30059265 DOI: 10.1080/09593330.2018.1505962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The photodegradation of methyl orange in water by the catalyst TiO2 or the oxidants (H2O2, KIO4) or their combination (TiO2 + H2O2, TiO2 + KIO4) under UV light illumination is studied. During the above process, as far as the photodiscoloration degree of methyl orange is concerned, the effect sequence is KIO4 + TiO2 >> KIO4 > TiO2 + H2O2 > TiO2 > H2O2; as far as the photomineralization degree of methyl orange is concerned, the effect sequence is TiO2 ≈ TiO2 + H2O2 > H2O2 > KIO4 + TiO2 >> KIO4; as for the catalysis of TiO2, h+ plays more important role than HO·, the inorganic ions ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]) are generated, especially for the amount of [Formula: see text]. Active HO· is generated, we can measure HO· by terephthalic acid (TA) indirectly: TA reacts with HO· to form highly fluorescent product, namely 2-hydroxyterephthalic acid (TAOH).
Collapse
Affiliation(s)
- Yu Zhiyong
- Department of Chemistry, Renmin University of China, Beijing, People's Republic of China
| | - Qiu Ruiying
- Department of Chemistry, Renmin University of China, Beijing, People's Republic of China
| | - Yang Runbo
- Department of Chemistry, Renmin University of China, Beijing, People's Republic of China
| | - Wang Zhiyin
- Shaanxi Key Laboratory of Catalysis; School of Chemical & Environmental Sciences, Shaanxi University of Technology, Hanzhong, Shaanxi, People's Republic of China
| | - Li Huanrong
- Department of Chemistry, Renmin University of China, Beijing, People's Republic of China
| |
Collapse
|