101
|
Sanna D, Lubinu G, Ugone V, Garribba E. Influence of temperature on the equilibria of oxidovanadium(IV) complexes in solution. Dalton Trans 2021; 50:16326-16335. [PMID: 34734597 DOI: 10.1039/d1dt02680a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The equilibria in the solution of three different oxidovanadium(IV) complexes, VO(dhp)2 (dhp = 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonato), VO(ma)2 (ma = maltolato) and VO(pic)2(H2O) (pic = picolinato), were examined in the temperature range of 120-352 K through a combination of instrumental (EPR spectroscopy) and computational techniques (DFT methods). The results revealed that a general equilibrium exists: VOL2 + H2O ⇄ cis-VOL2(H2O) ⇄ trans-VOL2(H2O), where cis and trans refer to the relative position of H2O and the oxido ligand. The equilibrium is more or less shifted to the right depending on the ligand, the temperature, the ionic strength and the coordinating properties of the solvent. With VO(dhp)2, only the square pyramidal species exists at 298 K in aqueous solution, while at 120 K the cis- and trans-VO(dhp)2(H2O) species are also present. The complex of maltol exists almost exclusively in the form cis-VO(ma)2(H2O) in aqueous solution at 298 K, while the trans species can be revealed only at higher temperatures, where the EPR linewidth significantly decreases. The equilibria involving 1-methylimidazole (MeIm), a model for the side chain His coordination, are also influenced by temperature, with its coordination being favored by decreasing the temperature. The implications of these results in the study of the (vanadium complex)-protein systems are discussed and the interaction with myoglobin (Mb) is examined as a representative example.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy.
| | - Giuseppe Lubinu
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy.
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
102
|
He Z, You G, Liu Q, Li N. Alzheimer's Disease and Diabetes Mellitus in Comparison: The Therapeutic Efficacy of the Vanadium Compound. Int J Mol Sci 2021; 22:ijms222111931. [PMID: 34769364 PMCID: PMC8584792 DOI: 10.3390/ijms222111931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is an intractable neurodegenerative disease that leads to dementia, primarily in elderly people. The neurotoxicity of amyloid-beta (Aβ) and tau protein has been demonstrated over the last two decades. In line with these findings, several etiological hypotheses of AD have been proposed, including the amyloid cascade hypothesis, the oxidative stress hypothesis, the inflammatory hypothesis, the cholinergic hypothesis, et al. In the meantime, great efforts had been made in developing effective drugs for AD. However, the clinical efficacy of the drugs that were approved by the US Food and Drug Association (FDA) to date were determined only mild/moderate. We recently adopted a vanadium compound bis(ethylmaltolato)-oxidovanadium (IV) (BEOV), which was originally used for curing diabetes mellitus (DM), to treat AD in a mouse model. It was shown that BEOV effectively reduced the Aβ level, ameliorated the inflammation in brains of the AD mice, and improved the spatial learning and memory activities of the AD mice. These finding encouraged us to further examine the mechanisms underlying the therapeutic effects of BEOV in AD. In this review, we summarized the achievement of vanadium compounds in medical studies and investigated the prospect of BEOV in AD and DM treatment.
Collapse
Affiliation(s)
- Zhijun He
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Guanying You
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
| | - Qiong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Nan Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Z.H.); (G.Y.); (Q.L.)
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-(0)755-2653-5432; Fax: +86-(0)755-8671-3951
| |
Collapse
|
103
|
Riedel F, Aparicio-Soto M, Curato C, Thierse HJ, Siewert K, Luch A. Immunological Mechanisms of Metal Allergies and the Nickel-Specific TCR-pMHC Interface. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10867. [PMID: 34682608 PMCID: PMC8535423 DOI: 10.3390/ijerph182010867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Besides having physiological functions and general toxic effects, many metal ions can cause allergic reactions in humans. We here review the immune events involved in the mediation of metal allergies. We focus on nickel (Ni), cobalt (Co) and palladium (Pd), because these allergens are among the most prevalent sensitizers (Ni, Co) and immediate neighbors in the periodic table of the chemical elements. Co-sensitization between Ni and the other two metals is frequent while the knowledge on a possible immunological cross-reactivity using in vivo and in vitro approaches remains limited. At the center of an allergic reaction lies the capability of a metal allergen to form T cell epitopes that are recognized by specific T cell receptors (TCR). Technological advances such as activation-induced marker assays and TCR high-throughput sequencing recently provided new insights into the interaction of Ni2+ with the αβ TCR-peptide-major histocompatibility complex (pMHC) interface. Ni2+ functionally binds to the TCR gene segment TRAV9-2 or a histidine in the complementarity determining region 3 (CDR3), the main antigen binding region. Thus, we overview known, newly identified and hypothesized mechanisms of metal-specific T cell activation and discuss current knowledge on cross-reactivity.
Collapse
Affiliation(s)
- Franziska Riedel
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| | - Marina Aparicio-Soto
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Caterina Curato
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Hermann-Josef Thierse
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Katherina Siewert
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Andreas Luch
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| |
Collapse
|
104
|
Cappai R, Crisponi G, Sanna D, Ugone V, Melchior A, Garribba E, Peana M, Zoroddu MA, Nurchi VM. Thermodynamic Study of Oxidovanadium(IV) with Kojic Acid Derivatives: A Multi-Technique Approach. Pharmaceuticals (Basel) 2021; 14:1037. [PMID: 34681261 PMCID: PMC8541509 DOI: 10.3390/ph14101037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
The good chelating properties of hydroxypyrone (HPO) derivatives towards oxidovanadium(IV) cation, VIVO2+, constitute the precondition for the development of new insulin-mimetic and anticancer compounds. In the present work, we examined the VIVO2+ complex formation equilibria of two kojic acid (KA) derivatives, L4 and L9, structurally constituted by two kojic acid units linked in position 6 through methylene diamine and diethyl-ethylenediamine, respectively. These chemical systems have been characterized in solution by the combined use of various complementary techniques, as UV-vis spectrophotometry, potentiometry, NMR and EPR spectroscopy, ESI-MS spectrometry, and DFT calculations. The thermodynamic approach allowed proposing a chemical coordination model and the calculation of the complex formation constants. Both ligands L4 and L9 form 1:1 binuclear complexes at acidic and physiological pHs, with various protonation degrees in which two KA units coordinate each VIVO2+ ion. The joined use of different techniques allowed reaching a coherent vision of the complexation models of the two ligands toward oxidovanadium(IV) ion in aqueous solution. The high stability of the formed species and the binuclear structure may favor their biological action, and represent a good starting point toward the design of new pharmacologically active vanadium species.
Collapse
Affiliation(s)
- Rosita Cappai
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy;
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy;
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100 Sassari, Italy; (D.S.); (V.U.)
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, 07100 Sassari, Italy; (D.S.); (V.U.)
| | - Andrea Melchior
- DPIA, Laboratorio di Scienze e Tecnologie Chimiche, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy;
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, via Vienna 2, 07100 Sassari, Italy; (E.G.); (M.P.); (M.A.Z.)
| | - Massimiliano Peana
- Dipartimento di Chimica e Farmacia, Università di Sassari, via Vienna 2, 07100 Sassari, Italy; (E.G.); (M.P.); (M.A.Z.)
| | - Maria Antonietta Zoroddu
- Dipartimento di Chimica e Farmacia, Università di Sassari, via Vienna 2, 07100 Sassari, Italy; (E.G.); (M.P.); (M.A.Z.)
| | - Valeria Marina Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy;
| |
Collapse
|
105
|
Tuning the compositional configuration of hydroxyapatite modified with vanadium ions including thermal stability and antibacterial properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
106
|
Albumin-EDTA-Vanadium Is a Powerful Anti-Proliferative Agent, Following Entrance into Glioma Cells via Caveolae-Mediated Endocytosis. Pharmaceutics 2021; 13:pharmaceutics13101557. [PMID: 34683850 PMCID: PMC8540012 DOI: 10.3390/pharmaceutics13101557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Human serum albumin (HSA) is efficiently taken up by cancer cells as a source of carbon and energy. In this study, we prepared a monomodified derivative of HSA covalently linked to an EDTA derivative and investigated its efficacy to shuttle weakly anti-proliferative EDTA associating ligands such as vanadium, into a cancer cell line. HSA-S-MAL-(CH2)2-NH-CO-EDTA was found to associate both with the vanadium anion (+5) and the vanadium cation (+4) with more than thrice the associating affinity of those ligands toward EDTA. Both conjugates internalized into glioma tumor cell line via caveolae-mediated endocytosis pathway and showed potent anti-proliferative capacities. IC50 values were in the range of 0.2 to 0.3 µM, potentiating the anti-proliferative efficacies of vanadium (+4) and vanadium (+5) twenty to thirty fold, respectively. HSA-EDTA-VO++ in particular is a cancer permeable prodrug conjugate. The associated vanadium (+4) is not released, nor is it active anti-proliferatively prior to its engagement with the cancerous cells. The bound vanadium (+4) dissociates from the conjugate under acidic conditions with half maximal value at pH 5.8. In conclusion, the anti-proliferative activity feature of vanadium can be amplified and directed toward a cancer cell line. This is accomplished using a specially designed HSA-EDTA-shuttling vehicle, enabling vanadium to be anti-proliferatively active at the low micromolar range of concentration.
Collapse
|
107
|
Zhang W, Chen H, Zeng Q, Xu S, Xia W, Li Y. Prenatal and postnatal exposure to vanadium and the immune function of children. J Trace Elem Med Biol 2021; 67:126787. [PMID: 34034030 DOI: 10.1016/j.jtemb.2021.126787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The immunotoxicity induced by vanadium exposure have been reported in some toxicology researches. However, evidence from population-based epidemiological studies was lacking. METHODS This study was conducted to assess the associations between prenatal and postnatal exposure to vanadium and immune function of children. A total of 407 pre-school aged children were followed, whose peripheral blood was collected for T lymphocyte subsets and inflammatory cytokines analysis, as well as vanadium concentration measurement. Maternal urine samples were also collected to measure vanadium concentration. We used generalized linear models to evaluate the associations of maternal and children vanadium concentration with children's immune function. Stratification analysis was further conducted to explore the potential gender-specific effects. RESULTS The geometric means of vanadium concentration in maternal urine and children plasma were 0.85 and 1.12 μg/L, respectively. Maternal urinary vanadium was inversely associated with the percentage of CD3+CD4+ cells [-5.53 % (-10.38 %, -0.41 %)] and absolute counts of CD3+ cells [-2.43 % (-5.05 %, 0.25 %)], and we only observed significant negative associations in males when stratifying by fetal gender. Children plasma vanadium was also associated with reduced absolute counts of CD3+ cells [-5.25 % (-9.57 %, -0.73 %)], but gender-specific effects were not observed. No significant associations of vanadium exposure with cytokines were found. CONCLUSIONS Prenatal and postnatal exposure to vanadium had suppressive impacts on childhood cellular immune. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Huan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
108
|
Hao L, He Y, Shi C, Hao X. Performance and mechanisms for V(v) bio-reduction by straw: key influencing factors. RSC Adv 2021; 11:27246-27256. [PMID: 35480689 PMCID: PMC9037681 DOI: 10.1039/d1ra03201a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
A high concentration of vanadium [V(v)] in groundwater is extremely harmful for humans. Weak movability and low toxicity after microbial V(v) reduction have attracted remarkable attention, especially for using solid carbon sources. However, the influencing factors remain unclear. In this study, the initial V(v) concentration, inocula amount and straw dosage were examined to ascertain the mechanisms behind them. Increasing the initial V(v) concentration led to the decrease of the V(v) removal efficiency, which was also positively correlated with the straw dosage within a certain range. The initial sludge amount was not a main factor affecting microbial V(v) removal in this study. With the initial amount of 10 mg L-1 V(v), 25 mL initial inocula and 5 g straw, 88.2% of V(v) was removed. According to the dissolved organic matter (DOM) analysis results, microbial activity prevailed in groups with higher V(v) removal efficiency, indicating that the V(v) bio-reduction was attributed to the microbial activity, which was considered a major factor. Functional species as unclassified_f_Enterobacteriaceae presumably contributed to the V(v) bioreduction, with upregulated ABC transporter genes and enzymes.
Collapse
Affiliation(s)
- Liting Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Yuanyuan He
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Chen Shi
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture Beijing 100044 China
| |
Collapse
|
109
|
Ring G, Sheehan A, Lehane M, Furey A. Development, Validation and Application of an ICP-SFMS Method for the Determination of Metals in Protein Powder Samples, Sourced in Ireland, with Risk Assessment for Irish Consumers. Molecules 2021; 26:4347. [PMID: 34299622 PMCID: PMC8308007 DOI: 10.3390/molecules26144347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
A method has been developed, optimised and validated to analyse protein powder supplements on an inductively coupled plasma-sector field mass spectrometer (ICP-SFMS), with reference to ICH Guideline Q2 Validation of Analytical Procedures: Text and Methodology. This method was used in the assessment of twenty-one (n = 21) elements (Al, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Pb, Pt, Sn, Ti, Tl, V) to evaluate the safety of thirty-six (n = 36) protein powder samples that were commercially available in the Irish marketplace in 2016/2017. Using the determined concentrations of elements in samples (µg·kg-1), a human health risk assessment was carried out to evaluate the potential carcinogenic and other risks to consumers of these products. While the concentrations of potentially toxic elements were found to be at acceptable levels, the results suggest that excessive and prolonged use of some of these products may place consumers at a slightly elevated risk for developing cancer or other negative health impacts throughout their lifetimes. Thus, the excessive use of these products is to be cautioned, and consumers are encouraged to follow manufacturer serving recommendations.
Collapse
Affiliation(s)
- Gavin Ring
- Mass Spectrometry Group (MSG), Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland; (G.R.); (A.S.); (M.L.)
| | - Aisling Sheehan
- Mass Spectrometry Group (MSG), Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland; (G.R.); (A.S.); (M.L.)
| | - Mary Lehane
- Mass Spectrometry Group (MSG), Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland; (G.R.); (A.S.); (M.L.)
| | - Ambrose Furey
- Mass Spectrometry Group (MSG), Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland; (G.R.); (A.S.); (M.L.)
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
110
|
Xi WS, Li JB, Liu YY, Wu H, Cao A, Wang H. Cytotoxicity and genotoxicity of low-dose vanadium dioxide nanoparticles to lung cells following long-term exposure. Toxicology 2021; 459:152859. [PMID: 34273449 DOI: 10.1016/j.tox.2021.152859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Vanadium dioxide nanoparticles (VO2 NPs) have been massively produced and widely applied due to their excellent metal-insulator transition property, making it extremely urgent to evaluate their safety, especially for low-dose long-term respiratory occupational exposure. Here, we report a comprehensive cytotoxicity and genotoxicity study on VO2 NPs to lung cell lines A549 and BEAS-2B following a long-term exposure. A commercial VO2 NP, S-VO2, was used to treat BEAS-2B (0.15-0.6 μg/mL) and A549 (0.3-1.2 μg/mL) cells for four exposure cycles, and each exposure cycle lasted for 4 consecutive days; then various bioassays were performed after each cycle. Significant proliferation inhibition was observed in both cell lines after long-term exposure of S-VO2 at low doses that did not cause apparent acute cytotoxicity; however, the genotoxicity of S-VO2, characterized by DNA damage and micronuclei, was only observed in A549 cells. These adverse effects of S-VO2 were exposure time-, dose- and cell-dependent, and closely related to the solubility of S-VO2. The oxidative stress in cells, i.e., enhanced reactive oxygen species (ROS) generation and suppressed reduced glutathione, was the main toxicity mechanism of S-VO2. The ROS-associated mitochondrial damage and DNA damage led to the genotoxicity, and cell proliferation retard, resulting in the cellular viability loss. Our results highlight the importance and urgent necessity of the investigation on the long-term toxicity of VO2 NPs.
Collapse
Affiliation(s)
- Wen-Song Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
111
|
He Z, Song J, Li X, Li X, Zhu H, Wu C, Xiao W, Du X, Ni J, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) alleviates neuronal apoptosis through regulating peroxisome proliferator-activated receptor γ in a triple transgenic animal model of Alzheimer's disease. J Biol Inorg Chem 2021; 26:551-568. [PMID: 34240269 DOI: 10.1007/s00775-021-01874-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/16/2021] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum stress (ER stress) plays a critical role in neuronal apoptosis along with the aggravation of Alzheimer's disease (AD). Nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that is involved in regulating ER stress in Alzheimer's disease (AD), therefore, this protein could be a promising therapeutic target for AD. Vanadium compounds, such as vanadyl acetylacetonate, sodium metavanadate and bis(maltolato)oxovanadium, are well-known as puissant PPARγ modulators. Thus, we are curious whether bis(ethylmaltolato)oxidovanadium (IV) (BEOV) can ameliorate ER stress and subsequent neuronal apoptosis by regulating PPARγ in AD models. To this end, we determined the effect of BEOV on behavioral performance, ER stress and neuronal apoptosis in the triple transgenic mouse AD model (3×Tg-AD). Our results showed that BEOV improved cognitive abilities and reduced the ER stress- and apoptosis-associated proteins in the brains of 3×Tg-AD mice. In vitro administration of BEOV in primary hippocampal neurons and N2asw cells achieved similar results in repressing ER stress. In addition, cotreatment with GW9662 (an antagonist of PPARγ) effectively blocked these neuroprotective effects of BEOV, which provided strong evidence that PPARγ-dependent signaling plays a key role in protecting against ER stress and neuronal apoptosis in AD. In conclusion, our data demonstrated that BEOV alleviated neuronal apoptosis triggered by ER stress by regulating PPARγ in a 3×Tg-AD model.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianxi Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huazhang Zhu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Chong Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wen Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518033, China.
| |
Collapse
|
112
|
He Z, Li X, Han S, Ren B, Hu X, Li N, Du X, Ni J, Yang X, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) attenuates amyloid-beta-mediated neuroinflammation by inhibiting NF-κB signaling pathway via a PPARγ-dependent mechanism. Metallomics 2021; 13:6298233. [PMID: 34124763 DOI: 10.1093/mtomcs/mfab036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
Neuroinflammation plays a pivotal role in the pathophysiology of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. During brain neuroinflammation, activated microglial cells resulting from amyloid-beta (Aβ) overload trigger toxic proinflammatory responses. Bis(ethylmaltolato)oxidovanadium (BEOV) (IV), an important vanadium compound, has been reported to have anti-diabetic, anti-cancer, and neuroprotective effects, but its anti-inflammatory property has rarely been investigated. In the present study, the inhibitory effects of BEOV on neuroinflammation were revealed in both Aβ-stimulated BV2 microglial cell line and APPswe/PS1E9 transgenic mouse brain. BEOV administration significantly decreased the levels of tumor necrosis factor-α, interleukin-6, interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase-2 both in the hippocampus of APPswe/PS1E9 mice and in the Aβ-stimulated BV2 microglia. Furthermore, BEOV suppressed the Aβ-induced activation of nuclear factor-κB (NF-κB) signaling and upregulated the protein expression level of peroxisome proliferator-activated receptor gamma (PPARγ) in a dose-dependent manner. PPARγ inhibitor GW9662 could eliminate the effect of BEOV on Aβ-induced NF-κB activation and proinflammatory mediator production. Taken altogether, these findings suggested that BEOV ameliorates Aβ-stimulated neuroinflammation by inhibiting NF-κB signaling pathway through a PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuangxue Han
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xia Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430073, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaogai Yang
- State Key Laboratories of Natural and Biomimetic Drugs, Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| |
Collapse
|
113
|
Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this review study was to assess the past significant events on diabetes mellitus, transformations that took place over the years in the medical records of treatment, countries involved, and the researchers who brought about the revolutions. This study used the content analysis to report the existence of diabetes mellitus and the treatments provided by researchers to control it. The focus was mainly on three main types of diabetes (type 1, type 2, and type 3 diabetes). Ethical consideration has also helped to boost diabetic studies globally. The research has a history path from pharmaceuticals of organic-based drugs to metal-based drugs with their nanoparticles in addition to the impacts of nanomedicine, biosensors, and telemedicine. Ongoing and future studies in alternative medicine such as vanadium nanoparticles (metal nanoparticles) are promising.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , Eastern Cape , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| |
Collapse
|
114
|
Abstract
The vanadium(V) complexes have been investigated as potential anticancer agents which makes it essential to evaluate their toxicity for safe use in the clinic. The large-scale synthesis and the acute oral toxicity in mice of the oxidovanadium(V) Schiff base catecholate complex, abbreviated as [VO(HSHED)dtb] containing a redox-active ligand with tridentate Schiff base (HSHED = N-(salicylideneaminato)-N’-(2-hydroxyethyl)-1,2-ethylenediamine) and dtb = 3,5-di-(t-butyl)catechol ligands were carried out. The body weight, food consumption, water intake as well biomarkers of liver and kidney toxicity of the [VO(HSHED)dtb] were compared to the precursors, sodium orthovanadate, and free ligand. The 10-fold scale-up synthesis of the oxidovanadium(V) complex resulting in the preparation of material in improved yield leading to 2–3 g (79%) material suitable for investigating the toxicity of vanadium complex. No evidence of toxicity was observed in animals when acutely exposed to a single dose of 300 mg/kg for 14 days. The toxicological results obtained with biochemical and hematological analyses did not show significant changes in kidney and liver parameters when compared with reference values. The low oral acute toxicity of the [VO(HSHED)dtb] is attributed to redox chemistry taking place under biological conditions combined with the hydrolytic stability of the oxidovanadium(V) complex. These results document the design of oxidovanadium(V) complexes that have low toxicity but still are antioxidant and anticancer agents.
Collapse
|
115
|
Amante C, De Sousa-Coelho AL, Aureliano M. Vanadium and Melanoma: A Systematic Review. METALS 2021; 11:828. [DOI: 10.3390/met11050828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of metals in biological systems has been a rapidly growing branch of science. Vanadium has been investigated and reported as an anticancer agent. Melanoma is the most aggressive type of skin cancer, the incidence of which has been increasing annually worldwide. It is of paramount importance to identify novel pharmacological agents for melanoma treatment. Herein, a systematic review of publications including “Melanoma and Vanadium” was performed. Nine vanadium articles in several melanoma cells lines such as human A375, human CN-mel and murine B16F10, as well as in vivo studies, are described. Vanadium-based compounds with anticancer activity against melanoma include: (1) oxidovanadium(IV); (2) XMenes; (3) vanadium pentoxide, (4) oxidovanadium(IV) pyridinonate compounds; (5) vanadate; (6) polysaccharides vanadium(IV/V) complexes; (7) mixed-metal binuclear ruthenium(II)–vanadium(IV) complexes; (8) pyridoxal-based oxidovanadium(IV) complexes and (9) functionalized nanoparticles of yttrium vanadate doped with europium. Vanadium compounds and/or vanadium materials show potential anticancer activities that may be used as a useful approach to treat melanoma.
Collapse
Affiliation(s)
- Cristina Amante
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- CCMAR, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
116
|
Mukhamedov N, Wubulikasimu A, Rustamova N, Nuerxiati R, Mirzaakhmedov S, Ishimov U, Ziyavitdinov J, Yili A, Aisa HA. Synthesis and Characterization of Novel Chickpea Protein Hydrolysate-Vanadium Complexes Having Cell Inhibitory Effects on Lung Cancer A549 Cells Lines. Protein J 2021; 40:721-730. [PMID: 33993411 DOI: 10.1007/s10930-021-09979-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Designing new types of drugs with preferred properties against cancer is a great issue for scientists dealing with synthesis and study of biological activity. Several organometallic compounds used in chemotherapy reveal side effects. Peptides from edible sources having no side effects may play a transport role in the delivery of anticancer metal ions into targeted tumor cells. For the last two decades, peptide-metal complexes have been considered as potential anticancer agents. In this work, oxovanadium complexes of peptides from Chickpea (Cicer arietinum L.) seeds' protein hydrolysate were investigated. The albumin fraction of Chickpea seeds protein was hydrolyzed with a combination of enzymes papain, trypsin, and alcalase. The hydrolysate was combined with vanadyl ions and obtained oxovanadium complexes were studied by FTIR, SEM-EDX, and TG-DSC analyses, and cell inhibition activity against A549 cells was detected by MTT Assay. In a result, activity of the complexes (IC50 = 14.39 µg/mL) increased 1.7-fold compared to the activity of inorganic salt of vanadium (IC50 = 24.75 µg/mL) against A549 cells. The complexes (CPH-V) were fractionated through Sephadex G-15, and the second active fraction, named CPH-V G15-II was studied by nano-Q-TOF LC/MS. Nine peptides with a molecular mass range of 437-1864 Da were identified. Seven of them were theoretically considered as cell-penetrating peptides. These results could serve first steps for deeper fundamental research on food-derived peptide-vanadium complexes.
Collapse
Affiliation(s)
- Nurkhodja Mukhamedov
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Atikan Wubulikasimu
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Nigora Rustamova
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Rehebati Nuerxiati
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | | | - Uchqun Ishimov
- Institute of Bioorganic Chemistry, Tashkent Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | | | - Abulimiti Yili
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China. .,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Haji Akber Aisa
- Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| |
Collapse
|
117
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
118
|
Sánchez-González C, Rivas-García L, Rodríguez-Nogales A, Algieri F, Gálvez J, Aranda P, Montes-Bayón M, Llopis J. Vanadium Decreases Hepcidin mRNA Gene Expression in STZ-Induced Diabetic Rats, Improving the Anemic State. Nutrients 2021; 13:nu13041256. [PMID: 33920401 PMCID: PMC8069891 DOI: 10.3390/nu13041256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes is a disease with an inflammatory component that courses with an anemic state. Vanadium (V) is an antidiabetic agent that acts by stimulating insulin signaling. Hepcidin blocks the intestinal absorption of iron and the release of iron from its deposits. We aim to investigate the effect of V on hepcidin mRNA expression and its consequences on the hematological parameters in streptozotocin-induced diabetic Wistar rats. Control healthy rats, diabetic rats, and diabetic rats treated with 1 mgV/day were examined for five weeks. The mineral levels were measured in diet and serum samples. Hepcidin expression was quantified in liver samples. Inflammatory and hematological parameters were determined in serum or whole blood samples. The inflammatory status was higher in diabetic than in control rats, whereas the hematological parameters were lower in the diabetic rats than in the control rats. Hepcidin mRNA expression was significantly lower in the V-treated diabetic rats than in control and untreated diabetic rats. The inflammatory status remained at a similar level as the untreated diabetic group. However, the hematological profile improved after the V-treatment, reaching similar levels to those found in the control group. Serum iron level was higher in V-treated than in untreated diabetic rats. We conclude that V reduces gene expression of hepcidin in diabetic rats, improving the anemic state caused by diabetes.
Collapse
Affiliation(s)
- Cristina Sánchez-González
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
- Correspondence: ; Tel.: +34-958241000 (ext. 20320)
| | - Lorenzo Rivas-García
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| | - Alba Rodríguez-Nogales
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Francesca Algieri
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Julio Gálvez
- CIBERehd, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Department of Pharmacology, CIBM, University of Granada, E-18071 Granada, Spain; (A.R.-N.); (F.A.); (J.G.)
| | - Pilar Aranda
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33007 Oviedo, Spain;
| | - Juan Llopis
- Biomedical Research Centre (CIBM), Sport and Health Research Centre (IMUDs), Institute of Nutrition and Food Technology, Department of Physiology, University of Granada, E-18071 Granada, Spain; (L.R.-G.); (P.A.); (J.L.)
| |
Collapse
|
119
|
Postal K, Santana FS, Hughes DL, Rüdiger AL, Ribeiro RR, Sá EL, de Souza EM, Soares JF, Nunes GG. Stability in solution and chemoprotection by octadecavanadates(IV/V) in E. coli cultures. J Inorg Biochem 2021; 219:111438. [PMID: 33823363 DOI: 10.1016/j.jinorgbio.2021.111438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 11/25/2022]
Abstract
Two mixed-valence octadecavanadates, (NH4)2(Me4N)5[VIV12VV6O42I]·Me4NI·5H2O (V18I) and [{K6(OH2)12VIV11VV7O41(PO4)·4H2O}n] (V18P), were synthesized and characterized by single-crystal X-ray diffraction analysis and FTIR, Raman, 51V NMR, EPR and UV/Vis/NIR spectroscopies. The chemoprotective activity of V18I and V18P towards the alkylating agent diethyl sulfate was assessed in E. coli cultures. The complex V18I was nontoxic in concentrations up to 5.0 mmol L-1, while V18P presented moderate toxicity in the concentration range 0.10 - 10 mmol L-1. Conversely, a ca. 35% enhancement in culture growth as compared to cells treated only with diethyl sulfate was observed upon addition of V18I (0.10 to 2.5 mmol L-1), while the combination of diethyl sulfate with V18P increased the cytotoxicity presented by diethyl sulfate alone. 51V NMR and EPR speciation studies showed that V18I is stable in solution, while V18P suffers partial breakage to give low nuclearity oxidometalates of vanadium(V) and (IV). According to the results, the chemoprotective effect depends strongly on the direct reactivity of the polyoxidovanadates (POV) towards the alkylating agent. The reaction of diethyl sulfate with V18I apparently produces a new, rearranged POV instead of poorly-reactive breakage products, while V18P shows the formation and subsequent consumption of low-nuclearity species. The correlation of this chemistry with that of other mixed-valence polyoxidovanadates, [H6VIV2VV12O38PO4]5- (V14) and [VIV8VV7O36Cl]6- (V15), suggests a relationship between stability in solution and chemoprotective performance.
Collapse
Affiliation(s)
- Kahoana Postal
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - André L Rüdiger
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ronny R Ribeiro
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo L Sá
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Jaísa F Soares
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Giovana G Nunes
- Departamento de Química, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
120
|
Chai N, Yi X, Xiao J, Liu T, Liu Y, Deng L, Jin Z. Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143882. [PMID: 33316508 DOI: 10.1016/j.scitotenv.2020.143882] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
As the largest river in Shanxi Province, the Fen River is the main water source for regional economic and ecological development. Water deficiency and industrialization have led to serious water pollution in the Fen River. The major and trace elements of seasonal river waters were measured to determine the spatiotemporal variations and assess the water quality as well as its controlling factors in the Fen River. Trace elements are divided into high abundance elements (B, Ba, Li, and Mn) and low abundance elements (As, Cu, Fe, Ni, Rb, Se, U, and V). The spatial variation of trace elements is obvious, with low values upstream, intermediate values downstream, and very high values midstream. The average values of the trace elements showed different seasonal variations, with high values of As, B, Ba, Mn, and Rb in the wet season, high Cu, V, and Li values in the dry season, and minor seasonal variations of Fe, Ni, Se, and U concentrations. Principal component analysis (PCA) and correlation analysis (CA) showed natural origins of Ba, Mn, Ni, and U, anthropogenic input of As, B, Cu, Li, Rb, Se, and V. According to the results of absolute principal component sore-multivariate linear regression (APCS-MLR), the major pollution sources in the Fen River basin were related to human activities. The land use type significantly influenced the concentrations of trace elements, with high values in the cropland and low values in the forest. The water quality index (WQI) values were higher in the midstream and wet season. In comparison with other rivers in the world, the pollution of the Fen River is at a moderate level. Health risk assessment showed that As, Ba, Mn, Ni, V, and Se were the potential pollutants damaging in the Fen River, especially for children. This study highlights the importance of seasonal sample analysis and can provide vital data for water quality conservation in the Fen River basin.
Collapse
Affiliation(s)
- Ningpan Chai
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi 710054, China
| | - Xiu Yi
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi 710054, China
| | - Jun Xiao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Ting Liu
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yujie Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Li Deng
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Zhangdong Jin
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
121
|
Lima LMA, Belian MF, Silva WE, Postal K, Kostenkova K, Crans DC, Rossiter AKFF, da Silva Júnior VA. Vanadium(IV)-diamine complex with hypoglycemic activity and a reduction in testicular atrophy. J Inorg Biochem 2020; 216:111312. [PMID: 33388704 DOI: 10.1016/j.jinorgbio.2020.111312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/23/2023]
Abstract
The insulin enhancing activity, histological analysis and, testicular degeneration by a VIVO-complex containing the 2,2'-(ethane-1,2-diylbis(azanediyl))diethanolate ligand, VOIV(C6H14N2O2-κ2N,κ2O), abbreviated VIVO(BHED), were investigated in diabetic male Wistar rats. The complex was administered by oral gavage of freshly prepared solutions of vanadium complex. Biological studies demonstrated that the vanadium complex normalized the elevated glucose levels in male Wistar rats with streptozotocin-induced diabetes and these compounds also avoided common responses in diabetic animals such as weight loss and reduction in the size of the epididymis, prostate, testis and seminal gland. The 51V NMR and EPR studies showed the formation of VIVO(BHED) and the oxidation product [VVO2BHED]- with two possible decomposition pathways. In summary, these studies demonstrate that the VIVO(BHED) complex or its decomposition products show similar effects as insulin in decreasing elevated blood glucose levels.
Collapse
Affiliation(s)
- Lidiane M A Lima
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil
| | - Mônica F Belian
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil.
| | - Wagner E Silva
- Departamento de Química, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil
| | - Kahoana Postal
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Departamento de Química, Universidade Federal do Paraná, 81.531-980 Curitiba, PR, Brazil
| | - Kateryna Kostenkova
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Ana Katharyne F F Rossiter
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil
| | - Valdemiro A da Silva Júnior
- Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, 52.171-900 Recife, PE, Brazil
| |
Collapse
|
122
|
DNA/BSA binding of a new oxovanadium (IV) complex of glycylglycine derivative Schiff base ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128664] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
123
|
Casarrubias-Tabarez B, Rivera-Fernández N, Rojas-Lemus M, López-Valdez N, Fortoul TI. Evaluation of the genotoxicity, cytotoxicity and antimalarial effect of sodium metavanadate po in a Plasmodium yoelii yoelii infected murine model. Toxicol Rep 2020; 7:1001-1007. [PMID: 32874923 PMCID: PMC7451625 DOI: 10.1016/j.toxrep.2020.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/18/2020] [Accepted: 08/05/2020] [Indexed: 01/13/2023] Open
Abstract
Oral administration of sodium metavanadate 10 mg/kg decreased parasitemia and increased survival in the Pyy mice model. Oral administration of 10 mg/kg of sodium metavanadate was neither genotoxic nor cytotoxic in the Pyy mice model. Sodium metavanadate is proposed as a potential antimalaric agent.
Malaria is a parasitic disease with the highest morbidity and mortality worldwide and antimalarial drug resistance has increased in last two decades. Chloroquine and artemisinin which were usedfor the treatment of malaria are also reported with resistances. Recently, some metallic compounds of ruthenium and iridium have been used as possible therapeutic agents against other parasites such as Leishmania and Trypanosoma cruzi. Organic and inorganic compounds of vanadium such as metavanadate, have been used lately because its therapeutic properties as antineoplastic and hypoglycemic agents. In this study we evaluated the genotoxicity and cytotoxicity of metavanadate per os and its working dose, as a previous step for the future use of metavanadate as anti-parasitic agent in a Plasmodium yoelii yoelii malarial lethal model. Our findings suggest that 10 mg/kg is a safe dose that decreases parasitemia and increases the survival of the Plasmodium yoelii yoelii infected mice with no evidence of genotoxicity, cytotoxicity with the dose selected.
Collapse
Affiliation(s)
- Brenda Casarrubias-Tabarez
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Mexico City, Mexico.,Posgrado en Ciencias Biologicas, UNAM, Mexico City, Mexico
| | - Norma Rivera-Fernández
- Department of Microbiology and Parasitology, School of Medicine, UNAM, Mexico City, Mexico
| | - Marcela Rojas-Lemus
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Mexico City, Mexico
| | - Nelly López-Valdez
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Mexico City, Mexico
| | - Teresa I Fortoul
- Department of Cellular and Tissular Biology, School of Medicine, UNAM, Mexico City, Mexico
| |
Collapse
|
124
|
Ścibior A, Hus I, Mańko J, Jawniak D. Evaluation of the level of selected iron-related proteins/receptors in the liver of rats during separate/combined vanadium and magnesium administration. J Trace Elem Med Biol 2020; 61:126550. [PMID: 32464446 DOI: 10.1016/j.jtemb.2020.126550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The current knowledge about the effects of vanadium (V) on iron (Fe)-related proteins and Fe homeostasis (which is regulated at the systemic, organelle, and cellular levels) is still insufficient. OBJECTIVE This fact and our earlier results prompted us to conduct studies with the aim to explain the mechanism of anemia accompanied by a rise in hepatic and splenic Fe deposition in rats receiving sodium metavanadate (SMV) separately and in combination with magnesium sulfate (MS). RESULTS We demonstrated for the first time that SMV (0.125 mg V/mL) administered to rats individually and in conjunction with MS (0.06 mg Mg/mL) for 12 weeks did not cause significant differences in the hepatic hepcidin (Hepc) and hemojuvelin (HJV) concentrations, compared to the control. In comparison with the control, there were no significant changes in the concentration of transferrin receptor 1 (TfR1) in the liver of rats treated with SMV and MS alone (in both cases only a downward trend of 14% and 15% was observed). However, a significant reduction in the hepatic TfR1 level was found in rats receiving SMV and MS simultaneously. In turn, the concentration of transferrin receptor 2 (TfR2) showed an increasing trend in the liver of rats treated with SMV and/or MS. CONCLUSIONS The experimental data suggest that the pathomechanism of the SMV-induced anemia is not associated with the effect of V on the concentration of Hepc in the liver, as confirmed by the unaltered hepatic HJV and TfR1 levels. Therefore, further studies are needed in order to check whether anemia that developed in the rats at the SMV administration (a) results from the inhibitory effect of V on erythropoietin (EPO) production, (b) is related to the effect of V on the induction of matriptase-2 (TMPRSS6) expression, or (c) is associated with the influence of this metal on haem synthesis.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Poland.
| | - Iwona Hus
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Joanna Mańko
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| | - Dariusz Jawniak
- Clinic of Haematooncology and Bone Marrow Transplantation, Medical University, Lublin, Poland.
| |
Collapse
|
125
|
Synthesis and Experimental-Computational Characterization of a Copper/Vanadium Compound with Potential Anticancer Activity. CRYSTALS 2020. [DOI: 10.3390/cryst10060492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cancer represents a major worldwide public health problem. While significant advances in different fronts are being made to combat the disease, the development of new metal-based drugs with cytotoxic capabilities is of high relevance. This work presents a heterobimetallic molecule comprising two moieties with a structure similar to Casiopeina II-gly. One of them has a cyclotetravanadate anion that functions as an inorganic bridge coordinating two Cu (II) atoms resulting in a hexanuclear [Cu(phen)(Gly)-µ2-V4O12-Cu(phen)(Gly)]2− complex, which is counterbalanced by two isolated [Cu(phen)(Gly)(H2O)]1+ cations. Ten water molecules arranged in two sets of five-member chains also play an essential role in the 3D supramolecular structure of the compound. The molecule was designed to provide Cu and V, two metals with proven anticancer capabilities in the same molecular structure. The compound was synthesized and characterized by elemental analysis; visible, FTIR, and Raman spectroscopies; 51V Nuclear Magnetic Resonance; cyclic voltammetry; and monocrystalline X-ray diffraction. The structural, spectroscopic, and electronic properties of the compound were calculated through the density functional theory (DFT) using the Minnesota functional M06-2X and the Def2TZVP/LANL2TZ(f) basis sets with an effective core potential (ECP) for metals. Noncovalent interactions were analyzed using a natural population analysis (NPA) and Hirshfeld surfaces. The compound upon dissociation provides two metals that can interact with important biological targets in a variety of cancer cell models.
Collapse
|