101
|
Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, Guo P, Qi S. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology 2018; 135:11-21. [PMID: 29510185 DOI: 10.1016/j.neuropharm.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
It is well known that Wnt5a activation plays a pivotal role in brain injury and β-arrestin2 induces c-Jun N-terminal kinase (JNK3) activation is involved in neuronal cell death. Nonetheless, the relationship between Wnt5a and JNK3 remains unexplored during cerebral ischemia/reperfusion (I/R). In the present study, we tested the hypothesis that Wnt5a-mediated JNK3 activation via the Wnt5a-Dvl-1-β-arrestin2-JNK3 signaling pathway was correlated with I/R brain injury. We found that cerebral I/R could enhance the assembly of the Dvl-1-β-arrestin2-JNK3 signaling module, Dvl-1 phosphorylation and JNK3 activation. Activated JNK3 could phosphorylate the transcription factor c-Jun, prompt caspase-3 activation and ultimately lead to neuronal cell death. To further explore specifically Wnt5a mediated JNK3 pathway activation in neuronal injury, we used Foxy-5 (a peptide that mimics the effects of Wnt5a) and Box5 (a Wnt5a antagonist) both in vitro and in vivo. AS-β-arrestin2 (an antisense oligonucleotide against β-arrestin2) and RRSLHL (a small peptide that competes with β-arrestin2 for binding to JNK3) were applied to confirm the positive signal transduction effect of the Dvl-1-β-arrestin2-JNK3 signaling module during cerebral I/R. Furthermore, Box5 and the RRSLHL peptide were found to play protective roles in neuronal death both in vivo global and focal cerebral I/R rat models and in vitro oxygen glucose deprivation (OGD) neural cells. In summary, our results indicate that Wnt5a-mediated JNK3 activation participates in I/R brain injury by targeting the Dvl-1-β-arrestin2/JNK3 interaction. Our results also point to the possibility that disrupting Wnt5a-JNK3 signaling pathway may provide a new approach for stroke therapy.
Collapse
Affiliation(s)
- Xuewen Wei
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - JuanJuan Gong
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Juyun Ma
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Taiyu Zhang
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Yihang Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China.
| |
Collapse
|
102
|
Garner B, Ooi L. Wnt is here! Could Wnt signalling be promoted to protect against Alzheimer disease?: An Editorial for 'Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20- APP transgenic and wild-type mice' on doi:10.1111/jnc.14278. J Neurochem 2018; 144:356-359. [PMID: 29372570 DOI: 10.1111/jnc.14276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023]
Abstract
This Editorial highlights an article in the current issue by Tapia-Rojas and Inestrosa suggesting that attenuation of Wnt signalling may be a triggering factor for the pathogenesis of Alzheimer disease (AD) in the J20 mouse model of AD. Their study utilises Wnt signalling inhibitors that operate at different points in the signalling pathway. The molecular changes of several key Wnt signaling components are examined, along with a thorough analysis of both the amyloid and tau based pathologies in the mouse brain. Studies focusing on inhibition of Wnt signalling in AD mice have the potential to provide much needed information regarding the pathological mechanisms by which attenuated Wnt signalling impacts on AD.
Collapse
Affiliation(s)
- Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
103
|
Mu F, Rong E, Jing Y, Yang H, Ma G, Yan X, Wang Z, Li Y, Li H, Wang N. Structural Characterization and Association of Ovine Dickkopf-1 Gene with Wool Production and Quality Traits in Chinese Merino. Genes (Basel) 2017; 8:E400. [PMID: 29261127 PMCID: PMC5748718 DOI: 10.3390/genes8120400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
Dickkopf-1 (DKK1) is an inhibitor of canonical Wnt signaling pathway and regulates hair follicle morphogenesis and cycling. To investigate the potential involvement of DKK1 in wool production and quality traits, we characterized the genomic structure of ovine DKK1, performed polymorphism detection and association analysis of ovine DKK1 with wool production and quality traits in Chinese Merino. Our results showed that ovine DKK1 consists of four exons and three introns, which encodes a protein of 262 amino acids. The coding sequence of ovine DKK1 and its deduced amino acid sequence were highly conserved in mammals. Eleven single nucleotide polymorphisms (SNPs) were identified within the ovine DKK1 genomic region. Gene-wide association analysis showed that SNP5 was significantly associated with mean fiber diameter (MFD) in the B (selected for long wool fiber and high-quality wool), PW (selected for high reproductive capacity, high clean wool yield and high-quality wool) and U (selected for long wool fiber with good uniformity, high wool yield and lower fiber diameter) strains (p < 4.55 × 10-3 = 0.05/11). Single Nucleotide Polymorphisms wide association analysis showed that SNP8 was significantly associated with MFD in A strain and fleece weight in A (selected for large body size), PM (selected for large body size, high reproductive capacity and high meat yield) and SF (selected for mean fiber diameter less than 18 μm and wool fiber length between 5 and 9 cm) strains (p < 0.05), SNP9 was significantly associated with curvature in B and U strains (p < 0.05) and SNP10 was significantly associated with coefficient of variation of fiber diameter in A, PW and PM strains and standard deviation of fiber diameter in A and PM strains (p < 0.05). The haplotypes derived from these 11 identified SNPs were significantly associated with MFD (p < 0.05). In conclusion, our results suggest that DKK1 may be a major gene controlling wool production and quality traits, also the identified SNPs (SNPs5, 8, 9 and 10) might be used as potential molecular markers for improving sheep wool production and quality in sheep breeding.
Collapse
Affiliation(s)
- Fang Mu
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Enguang Rong
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Yang Jing
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China.
| | - Guangwei Ma
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Xiaohong Yan
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Zhipeng Wang
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding at Ministry of Agriculture, Key Laboratory of Animal Genetics, Breeding and Reproduction at Education Department of Heilongjiang Province, Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Harbin 150030, China.
| |
Collapse
|
104
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
105
|
Reprogramming energetic metabolism in Alzheimer's disease. Life Sci 2017; 193:141-152. [PMID: 29079469 DOI: 10.1016/j.lfs.2017.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022]
Abstract
Entropy rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Changes in Gibbs energy, heat production, ionic conductance or intracellular acidity are irreversibles processes which driven modifications of the entropy rate. The present review focusses on the thermodynamic implications in the reprogramming of cellular energy metabolism enabling in Alzheimer's disease (AD) through the opposite interplay of the molecular signaling pathways WNT/β-catenin and PPARγ. In AD, WNT/β-catenin pathway is downregulated while PPARγ is upregulated. Thermodynamics behaviors of metabolic enzymes are modified by dysregulation of the canonical WNT/β-catenin pathway. Downregulation of WNT/β-catenin pathway leads to oxidative stress and cell death through inactivation of glycolytic enzymes such as Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPARγ is dysregulated whereas it contributes to the regulation of several key circadian genes. AD is considered as a dissipative structure that exchanges energy or matter with its environment far from the thermodynamic equilibrium. Far-from-equilibrium thermodynamics are notions driven by circadian rhythms. Circadian rhythms directly participate in regulating the molecular pathways WNT/β-catenin and PPARγ involved in the reprogramming of cellular energy metabolism enabling AD processes.
Collapse
|
106
|
Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M. Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 2017; 16:4379-4392. [PMID: 28791401 PMCID: PMC5646997 DOI: 10.3892/mmr.2017.7186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal‑glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early‑onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing‑remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS.
Collapse
Affiliation(s)
- Ting Zhou
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Tina Khorshid Ahmad
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Kiana Gozda
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jessica Truong
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Michael Namaka
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- College of Pharmacy, Third Military Medical University, Chongqing 400038, P.R. China
- Department of Medical Rehabilitation, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Department of Internal Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 1R9, Canada
| |
Collapse
|
107
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer's disease. Acta Biochim Biophys Sin (Shanghai) 2017; 49:853-866. [PMID: 28981597 DOI: 10.1093/abbs/gmx073] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, in which the primary etiology remains unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD shows oxidative stress and chronic inflammation. In AD, canonical Wingless-Int (Wnt)/β-catenin pathway is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased. Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ, and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12 cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-catenin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein. CBD attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a potential new candidate for AD therapy.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | | | - Rémy Guillevin
- Université de Poitiers et CHU de Poitiers, DACTIM, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Futuroscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
108
|
Zhou L, Chen D, Huang XM, Long F, Cai H, Yao WX, Chen ZC, Liao ZJ, Deng ZZ, Tan S, Shan YL, Cai W, Wang YG, Yang RH, Jiang N, Peng T, Hong MF, Lu ZQ. Wnt5a Promotes Cortical Neuron Survival by Inhibiting Cell-Cycle Activation. Front Cell Neurosci 2017; 11:281. [PMID: 29033786 PMCID: PMC5626855 DOI: 10.3389/fncel.2017.00281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/30/2017] [Indexed: 01/11/2023] Open
Abstract
β-Amyloid protein (Aβ) is thought to cause neuronal loss in Alzheimer’s disease (AD). Aβ treatment promotes the re-activation of a mitotic cycle and induces rapid apoptotic death of neurons. However, the signaling pathways mediating cell-cycle activation during neuron apoptosis have not been determined. We find that Wnt5a acts as a mediator of cortical neuron survival, and Aβ42 promotes cortical neuron apoptosis by downregulating the expression of Wnt5a. Cell-cycle activation is mediated by the reduced inhibitory effect of Wnt5a in Aβ42 treated cortical neurons. Furthermore, Wnt5a signals through the non-canonical Wnt/Ca2+ pathway to suppress cyclin D1 expression and negatively regulate neuronal cell-cycle activation in a cell-autonomous manner. Together, aberrant downregulation of Wnt5a signaling is a crucial step during Aβ42 induced cortical neuron apoptosis and might contribute to AD-related neurodegeneration.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Di Chen
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xu-Ming Huang
- Department of Rehabilitation, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Fei Long
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Hua Cai
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Wen-Xia Yao
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhong-Cheng Chen
- Department of Laboratory, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Zhe-Zhi Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sha Tan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi-Long Shan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Ge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ri-Hong Yang
- Department of Pathology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nan Jiang
- Department of Hepatic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Peng
- Laboratory of Viral Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Sino-French Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ming-Fan Hong
- Department of Neurology, The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zheng-Qi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
109
|
Krishnamoorthy A, Witkowski A, Tran JJ, Weers PMM, Ryan RO. Characterization of secondary structure and lipid binding behavior of N-terminal saposin like subdomain of human Wnt3a. Arch Biochem Biophys 2017; 630:38-46. [PMID: 28754322 DOI: 10.1016/j.abb.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Wnt signaling is essential for embryonic development and adult homeostasis in multicellular organisms. A conserved feature among Wnt family proteins is the presence of two structural domains. Within the N-terminal (NT) domain there exists a motif that is superimposable upon saposin-like protein (SAPLIP) family members. SAPLIPs are found in plants, microbes and animals and possess lipid surface seeking activity. To investigate the function of the Wnt3a saposin-like subdomain (SLD), recombinant SLD was studied in isolation. Bacterial expression of this Wnt fragment was achieved only when the core SLD included 82 NT residues of Wnt3a (NT-SLD). Unlike SAPLIPs, NT-SLD required the presence of detergent to achieve solubility at neutral pH. Deletion of two hairpin loop extensions present in NT-SLD, but not other SAPLIPs, had no effect on the solubility properties of NT-SLD. Far UV circular dichroism spectroscopy of NT-SLD yielded 50-60% α-helix secondary structure. Limited proteolysis of isolated NT-SLD in buffer and detergent micelles showed no differences in cleavage kinetics. Unlike prototypical saposins, NT-SLD exhibited weak membrane-binding affinity and lacked cell lytic activity. In cell-based canonical Wnt signaling assays, NT-SLD was unable to induce stabilization of β-catenin or modulate the extent of β-catenin stabilization induced by full-length Wnt3a. Taken together, the results indicate neighboring structural elements within full-length Wnt3a affect SLD conformational stability. Moreover, SLD function(s) in Wnt proteins appear to have evolved away from those commonly attributed to SAPLIP family members.
Collapse
Affiliation(s)
- Aparna Krishnamoorthy
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Andrzej Witkowski
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Jesse J Tran
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA
| | - Robert O Ryan
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| |
Collapse
|
110
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. PPARγ agonists: Potential treatments for exudative age-related macular degeneration. Life Sci 2017; 188:123-130. [PMID: 28887057 DOI: 10.1016/j.lfs.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
Abstract
Choroidal neovascularization (CNV) characterizes the progression of exudative age-related macular degeneration (AMD) with the deterioration in the central vision. Vascular inflammation, and overproduction of inflammatory cytokines, growth factors and aberrant endothelial cell migration, initiate defective blood vessel proliferation in exudative AMD. CNV formation is initiated by the interplay between inflammation, the hallmark of exudative AMD, and the activation of WNT/β-catenin pathway. Upregulation of WNT/β-catenin pathway involves activation of PI3K/Akt pathway and then the Warburg effect to produce lactate. Lactate production generates VEGF expression and then participates to the initiation of CNV in exudative AMD. WNT/β-catenin pathway and PPARγ act in an opposite manner in several diseases. We focus this review on the interplay between PPARγ and canonical WNT/β-catenin pathway and the anti-inflammatory role of PPARγ in exudative AMD. In exudative AMD, PPARγ agonists downregulate inflammation and the WNT/β-catenin pathway. PPARγ agonists can appear as promising treatment against the initiation and the progression of CNV in exudative AMD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- Université de Poitiers et CHU de Poitiers, DACTIM, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Futuroscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, France; CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
111
|
Wang R, Tian S, Yang X, Liu J, Wang Y, Sun K. Celecoxib-induced inhibition of neurogenesis in fetal frontal cortex is attenuated by curcumin via Wnt/β-catenin pathway. Life Sci 2017; 185:95-102. [DOI: 10.1016/j.lfs.2017.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
|
112
|
Trigiani LJ, Hamel E. An endothelial link between the benefits of physical exercise in dementia. J Cereb Blood Flow Metab 2017; 37:2649-2664. [PMID: 28617071 PMCID: PMC5536816 DOI: 10.1177/0271678x17714655] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/25/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
The current absence of a disease-modifying treatment for Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID) highlights the necessity for investigating the benefits of non-pharmacological approaches such as physical exercise (PE). Although evidence exists to support an association between regular PE and higher scores on cognitive function tests, and a slower rate of cognitive decline, there is no clear consensus on the underlying molecular mechanisms of the advantages of PE. This review seeks to summarize the positive effects of PE in human and animal studies while highlighting the vascular link between these benefits. Lifestyle factors such as cardiovascular diseases, metabolic syndrome, and sleep apnea will be addressed in relation to the risk they pose in developing AD and VCID, as will molecular factors known to have an impact on either the initiation or the progression of AD and/or VCID. This will include amyloid-beta clearance, oxidative stress, inflammatory responses, neurogenesis, angiogenesis, glucose metabolism, and white matter integrity. Particularly, this review will address how engaging in PE can counter factors that contribute to disease pathogenesis, and how these alterations are linked to endothelial cell function.
Collapse
Affiliation(s)
- Lianne J Trigiani
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
113
|
Liu Z, Zhang H. LncRNA plasmacytoma variant translocation 1 is an oncogene in bladder urothelial carcinoma. Oncotarget 2017; 8:64273-64282. [PMID: 28969069 PMCID: PMC5610001 DOI: 10.18632/oncotarget.19604] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is the most lethal malignant cancer of the genitourinary system, and bladder urothelial carcinoma (BUC) is the most common type of BC. The long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) is overexpressed in several malignant tumors, including BC. Using a lncRNA array and quantitative real-time PCR, we detected greater expression of PVT1 in BUC tissues and cell lines resistant to doxorubicin (DOX) and cisplatin (DDP) than in DOX- and DDP-sensitive cells. PVT1 knockdown reduced proliferation and invasion by a DOX- and DDP-resistant T24/DR BUC cells, arrested cells in G1 phase, and increased apoptosis. PVT1 knockdown also sensitized T24/DR cells to DOX and DDP, and suppressed expression of multidrug resistance 1 (MDR1) and multidrug resistance associated protein 1 (MRP1). Wnt/β-catenin pathway activation in T24/DR cells reversed the effects of PVT1 knockdown on metastasis-associated behavior and chemoresistance. In sum, lncRNA PVT1 is overexpressed in multidrug resistant BUC tissues and cell lines, and PVT1 knockdown reduces BUC cell proliferation, invasiveness, and chemoresistance by modulating Wnt/β-catenin signaling. These results provide new insight into BUC chemoresistance mechanisms and suggest potential therapeutic targets for anti-BUC therapeutics.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Urinary Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Hui Zhang
- Department of Urinary Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
114
|
Yang HF, Yu M, Jin HD, Yao JQ, Lu ZL, Yabasin IB, Yan Q, Wen QP. Fentanyl Promotes Breast Cancer Cell Stemness and Epithelial-Mesenchymal Transition by Upregulating α1, 6-Fucosylation via Wnt/β-Catenin Signaling Pathway. Front Physiol 2017; 8:510. [PMID: 28798691 PMCID: PMC5526971 DOI: 10.3389/fphys.2017.00510] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/04/2017] [Indexed: 01/14/2023] Open
Abstract
Cancer pain is a common and severe complication of human breast cancer, and relieving pain is fundamental strategy in the treatment. Fentanyl, as an opioid analgesic, is widely used in breast cancer patients. However, little is known about its effects on stemness and epithelial-mesenchymal transition (EMT) of breast cancer cells. Aberrant protein glycosylation is involved in cancer malignancy. The α1, 6-fucosylation is an important type of glycosylation, and the elevated α1, 6-fucosylation catalyzed by fucosyltransferase VIII (FUT8) is found in many tumors. However, whether 1, 6-fucosylation is involved in regulating stemness and EMT, and stimulated by fentanyl is not clear. In this study, we found that fentanyl induced stemness and EMT in MCF-7 and MDA-MB-231 breast cancer cells by analysis of sphere formation, expression of stemness markers (Sox2, Oct4) and EMT markers (N-cadherin, E-cadherin and Vimentin). Results also showed that fentanyl upregulated FUT8 gene and protein expression by qPCR, Western blot and immunofluorescent staining, as well as α1, 6-fucosylation level by Lectin blot and Lectin fluorescent staining. Furthermore, decreased or blocked α1, 6-fucosylation by FUT8 siRNA transfection or LCA Lectin blockage reduced stemness and EMT. Additionally, fentanyl activated the key molecules and target genes in Wnt/β-catenin signaling pathway. LGK-974 (an inhibitor of Wnt ligands) suppressed fentanyl-mediated upregulation of α1, 6-fucosylation, stemness and EMT. The results of tumor xenograft demonstrated that fentanyl enhanced tumor growth, α1, 6-fucosylation, stemness and EMT. Taken together, our study reveals that fentanyl upregulated FUT8 expression, which increased α1, 6-fucosylation level through activation of Wnt/β-catenin signaling pathway, thereby, induce stemness and EMT of breast cancer cells. This study suggest a potential side effect of fentanyl in the treatment of cancer, which may guide the safety of fentanyl in the clinical application.
Collapse
Affiliation(s)
- Hong-Fang Yang
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Ming Yu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Hui-Dan Jin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jia-Qi Yao
- Department of Anesthesiology, Affiliated Xinhua Hospital of Dalian UniversityDalian, China
| | - Zhi-Li Lu
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Iddrisu B Yabasin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Qing-Ping Wen
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
115
|
Li WH, Zhang NZ, Yue L, Yang Y, Li L, Yan HB, Li TT, Qu ZG, Jia WZ, Fu BQ. Transcriptomic analysis of the larva Taenia multiceps. Res Vet Sci 2017; 115:407-411. [PMID: 28735242 DOI: 10.1016/j.rvsc.2017.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/23/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
Taenia multiceps is an adult worm affiliated to Taeniidae family, Platyhelminthes phylum. The larvae of the parasite (Coenurus cerebralis) parasitic in the brain and spinal cord in domestic and wild ruminants or humans can led to a fatal central nervous system (CNS) disease. The aims of the present study were to define the transcriptome profiles of the larvae of T. multiceps by RNA-Seq approach, and to generate large functional gene datasets that could be used to predict the key molecular pathways linked to this cestode. Our results generated a total of 39,094,890 clean reads that were assembled from the sequence data in 90,833 contigs. Briefly, 70,253 unigenes with a mean length of 1492bp were formed. Based on a sequence similarity search against the databases (NR, Swissport, GO, COG, KEGG) using BLASTX with an E-value cutoff of 10-5, 40,465 of unigenes were identified as coding sequences (CDS) and 3261 were scanned by ESTScan. The present study carried out the transcriptome of the larval stage of T. multiceps, which provides a solid foundation for further studies in molecular biology and biochemistry as well as identification of candidate genes used in diagnosis and vaccine development.
Collapse
Affiliation(s)
- W H Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China.
| | - N Z Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China
| | - L Yue
- Wuhan Animal Disease Prevention and Control Center, 430012 Wuhan, China
| | - Y Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China
| | - L Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China
| | - H B Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China
| | - T T Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China
| | - Z G Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China
| | - W Z Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| | - B Q Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046 Lanzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, China
| |
Collapse
|
116
|
Abstract
Wnt signals regulate cell proliferation, migration and differentiation during development, as well as synaptic transmission and plasticity in the adult brain. Abnormal Wnt signaling is central to a number of brain pathologies. We review here, the significance of this pathway focused in the contribution of the most frequent alterations in receptors, secretable modulators and downstream targets in Alzheimer's disease (AD) and Glioblastoma (GBM). β-catenin and GSK3 levels are pivotal in the neurodegeneration associated to AD contributing to memory deficits, tau phosphorylation, increased β-amyloid production and modulation of Apolipoprotein E in the brain. In consequence, β-catenin and GSK3 are targets for potential treatments in AD. Also, Wnt pathway components and secreted molecules interfering with this signaling contribute to the progression of tumoral cells. Wnt pathway activation is a bad prognosis in brain cancer; however, mutations in WNT or Frizzled (FZD) genes do not account for the cases of GBM. Instead, recent studies indicate that epigenetic modifications contribute to the development of GBMs opening novel strategies to study GBM progression.
Collapse
|
117
|
Treatment of Bipolar Disorder in a Lifetime Perspective: Is Lithium Still the Best Choice? Clin Drug Investig 2017; 37:713-727. [DOI: 10.1007/s40261-017-0531-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
118
|
Lorenzon A, Calore M, Poloni G, De Windt LJ, Braghetta P, Rampazzo A. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 2017; 8:60640-60655. [PMID: 28948000 PMCID: PMC5601168 DOI: 10.18632/oncotarget.17457] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt/β-catenin signaling pathway plays essential roles in heart development as well as cardiac tissue homoeostasis in adults. Abnormal regulation of this signaling pathway is linked to a variety of cardiac disease conditions, including hypertrophy, fibrosis, arrhythmias, and infarction. Recent studies on genetically modified cellular and animal models document a crucial role of Wnt/β-catenin signaling in the molecular pathogenesis of arrhythmogenic cardiomyopathy (AC), an inherited disease of intercalated discs, typically characterized by ventricular arrhythmias and progressive substitution of the myocardium with fibrofatty tissue. In this review, we summarize the conflicting published data regarding the Wnt/β-catenin signaling contribution to AC pathogenesis and we report the identification of a new potential therapeutic molecule that prevents myocyte injury and cardiac dysfunction due to desmosome mutations in vitro and in vivo by interfering in this signaling pathway. Finally, we underline the potential function of microRNAs, epigenetic regulatory RNA factors reported to participate in several pathological responses in heart tissue and in the Wnt signaling network, as important modulators of Wnt/β-catenin signaling transduction in AC. Elucidation of the precise regulatory mechanism of Wnt/β-catenin signaling in AC molecular pathogenesis could provide fundamental insights for new mechanism-based therapeutic strategy to delay the onset or progression of this cardiac disease.
Collapse
Affiliation(s)
| | - Martina Calore
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Giulia Poloni
- University of Padua, Department of Biology, Padua, Italy
| | - Leon J De Windt
- Maastricht University, Department of Cardiology, Maastricht, The Netherlands
| | - Paola Braghetta
- University of Padua, Department of Molecular Medicine, Padua, Italy
| | | |
Collapse
|
119
|
Liang H, Wu C, Deng Y, Zhu L, Zhang J, Gan W, Tang C, Xu R. Aldehyde Dehydrogenases 1A2 Expression and Distribution are Potentially Associated with Neuron Death in Spinal Cord of Tg(SOD1*G93A)1Gur Mice. Int J Biol Sci 2017; 13:574-587. [PMID: 28539831 PMCID: PMC5441175 DOI: 10.7150/ijbs.19150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS) has not been unclear yet, it might be associated with the abnormal expression and distribution of certain proteins. Aldehyde dehydrogenases 1A2 (ALDH1A2) was thought to be one of potential candidates. Therefore, in this study we observed and analyzed the alteration of the expression and distribution of ALDH1A2 in the spinal cord of wild-type (WT) and Tg(SOD1*G93A)1Gur mice. We compared the expression and distribution of ALDH1A2 in the different segments, anatomic regions and neural cells of spinal cord at the different stages of WT and Tg(SOD1*G93A)1Gur mice applied the methods of fluorescent immunohistochemistry and western blot. Results revealed that ALDH1A2 extensively expressed and distributed in the spinal cord of adult WT and Tg(SOD1*G93A)1Gur mice. The expression and distribution of ALDH1A2 in the white matter including the anterior, posterior and lateral funiculus were more than that in the gray matter including the central canal, the anterior and dorsal horn. ALDH1A2 majorly expressed and distributed in the astrocyte, microglial, oligodendrocyte and neuron cells. The ALDH1A2 expression significantly decreased and redistributed in some anatomic regions of spinal cord at the onset and progression stages of Tg(SOD1*G93A)1Gur mice. The expression decrease of ALDH1A2 followed with the increase of neuron cells death. This study suggested that the alteration of expression and distribution of ALDH1A2 was potentially associated with the pathogenesis of ALS.
Collapse
Affiliation(s)
- Huiting Liang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chengsi Wu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Youqing Deng
- Department of Neurology, Third Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jie Zhang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Weiming Gan
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chunyan Tang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
120
|
Zhang B, Li N, Zhang H. Knockdown of Homeobox B5 (HOXB5) Inhibits Cell Proliferation, Migration, and Invasion in Non-Small Cell Lung Cancer Cells Through Inactivation of the Wnt/β-Catenin Pathway. Oncol Res 2017; 26:37-44. [PMID: 28337958 PMCID: PMC7844563 DOI: 10.3727/096504017x14900530835262] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homeobox B5 (HOXB5), a member of the HOX gene family, has been shown to play an important role in tumor progression. However, the expression and functional role of HOXB5 in human non-small cell lung cancer (NSCLC) have not been defined. Thus, the purpose of this study was to elucidate the expression and functional role of HOXB5 in human NSCLC. Our results showed that HOXB5 expression was elevated in human NSCLC tissues and cell lines. The in vitro experiments demonstrated that knockdown of HOXB5 inhibited proliferation, migration, and invasion and prevented the EMT phenotype in NSCLC cells. In vivo experiments indicated that knockdown of HOXB5 attenuated the growth of NSCLC xenografts in vivo. Furthermore, knockdown of HOXB5 suppressed the protein expression levels of β-catenin and its downstream targets c-Myc and cyclin D1 in A549 cells. Taken together, for the first time we have shown that knockdown of HOXB5 significantly inhibited NSCLC cell proliferation, invasion, metastasis, and EMT, partly through the Wnt/β-catenin signaling pathway. These findings suggest that HOXB5 may be a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Respiratory Disease, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Na Li
- Department of Respiratory Disease, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Hao Zhang
- Department of Respiratory Disease, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
121
|
Tardieu C, Jung S, Niederreither K, Prasad M, Hadj-Rabia S, Philip N, Mallet A, Consolino E, Sfeir E, Noueiri B, Chassaing N, Dollfus H, Manière M, Bloch-Zupan A, Clauss F. Dental and extra-oral clinical features in 41 patients with WNT10A
gene mutations: A multicentric genotype-phenotype study. Clin Genet 2017; 92:477-486. [DOI: 10.1111/cge.12972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 11/27/2022]
Affiliation(s)
- C. Tardieu
- ADES UMR 7268, Hôpital Timone, Service Odontologie; Aix Marseille University, APHM; Marseille France
| | - S. Jung
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, O Rares; Hôpitaux Universitaires de Strasbourg; Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; Strasbourg France
| | - K. Niederreither
- CNRS UMR7104, INSERM U964; Institut de Génétique et de Biologie Moléculaire and Cellulaire, Centre Européen de Recherche en Biologie et en Médecine, Université de Strasbourg; Illkirch France
| | - M. Prasad
- Medical Genetics Laboratory, INSERM U1112, Translational Medicine federation (FMTS); Alsace Medical Genetics Institute; Strasbourg France
| | - S. Hadj-Rabia
- Reference Center for Genodermatosis; Necker Hospital, AP-HP; Paris France
| | - N. Philip
- INSERM GMGF, UMR-S910; Aix-Marseille University; Marseille France
- Department of Medical Genetics, Reference Center for Developmental Anomalies; APHM, Hôpital Timone; Marseille France
| | - A. Mallet
- Department of Medical Genetics, Reference Center for Developmental Anomalies; APHM, Hôpital Timone; Marseille France
| | - E. Consolino
- Department of Medical Genetics, Reference Center for Developmental Anomalies; APHM, Hôpital Timone; Marseille France
| | - E. Sfeir
- Department of Pediatric Dentistry; Libanese University; Beyrouth Lebanon
| | - B. Noueiri
- Department of Pediatric Dentistry; Libanese University; Beyrouth Lebanon
| | - N. Chassaing
- Department of Medical Genetics; University Hospital; Toulouse France
| | - H. Dollfus
- Medical Genetics Laboratory, INSERM U1112, Translational Medicine federation (FMTS); Alsace Medical Genetics Institute; Strasbourg France
| | - M.C. Manière
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, O Rares; Hôpitaux Universitaires de Strasbourg; Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; Strasbourg France
- INSERM Unit UMR 1109; Osteoarticular and Dental Regenerative Nanomedicine; Strasbourg France
| | - A. Bloch-Zupan
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, O Rares; Hôpitaux Universitaires de Strasbourg; Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; Strasbourg France
- CNRS UMR7104, INSERM U964; Institut de Génétique et de Biologie Moléculaire and Cellulaire, Centre Européen de Recherche en Biologie et en Médecine, Université de Strasbourg; Illkirch France
| | - F. Clauss
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, O Rares; Hôpitaux Universitaires de Strasbourg; Strasbourg France
- Faculté de Chirurgie Dentaire; Université de Strasbourg; Strasbourg France
- CNRS UMR7104, INSERM U964; Institut de Génétique et de Biologie Moléculaire and Cellulaire, Centre Européen de Recherche en Biologie et en Médecine, Université de Strasbourg; Illkirch France
- INSERM Unit UMR 1109; Osteoarticular and Dental Regenerative Nanomedicine; Strasbourg France
| |
Collapse
|
122
|
Serafino A, Sferrazza G, Colini Baldeschi A, Nicotera G, Andreola F, Pittaluga E, Pierimarchi P. Developing drugs that target the Wnt pathway: recent approaches in cancer and neurodegenerative diseases. Expert Opin Drug Discov 2017; 12:169-186. [PMID: 27960558 DOI: 10.1080/17460441.2017.1271321] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of Wnt/β-catenin pathway has been associated with various diseases, including cancer and neurodegenerative disorders, including Parkinson's disease (PD). Several molecular components of the signaling have been proposed as innovative targets for cancer therapy, and very recently, some of them have been also evaluated as potential therapeutic targets for PD. Areas covered: This review focuses on the role of Wnt/β-catenin pathway in the pathogenensis of cancer and PD, examining some recent therapeutic approaches that are ongoing in preclinical and clinical studies. The possibilities that this signaling offers for diagnosis and prognosis of neoplastic diseases, and the concerns of targeting this pathway are also discussed. Expert opinion: Despite the stimulating results obtained in preclinical studies on cancer and other disease models, the clinical experience with Wnt modulators is still in its infancy, and is mainly restricted to anticancer therapy. Even with concerns of the safety of drugs targeting Wnt signaling, the attention of researchers worldwide is increasing to this issue in terms of their therapeutic potential for diseases such as PD, for which no cure exists.
Collapse
Affiliation(s)
- Annalucia Serafino
- a Institute of Translational Pharmacology , National Research Council (CNR) , Rome , Italy
| | - Gianluca Sferrazza
- a Institute of Translational Pharmacology , National Research Council (CNR) , Rome , Italy
| | | | - Giuseppe Nicotera
- a Institute of Translational Pharmacology , National Research Council (CNR) , Rome , Italy
| | - Federica Andreola
- a Institute of Translational Pharmacology , National Research Council (CNR) , Rome , Italy
| | - Eugenia Pittaluga
- a Institute of Translational Pharmacology , National Research Council (CNR) , Rome , Italy
| | - Pasquale Pierimarchi
- a Institute of Translational Pharmacology , National Research Council (CNR) , Rome , Italy
| |
Collapse
|
123
|
Maekawa T, Kulwattanaporn P, Hosur K, Domon H, Oda M, Terao Y, Maeda T, Hajishengallis G. Differential Expression and Roles of Secreted Frizzled-Related Protein 5 and the Wingless Homolog Wnt5a in Periodontitis. J Dent Res 2017; 96:571-577. [PMID: 28095260 DOI: 10.1177/0022034516687248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Wingless/integrase-1 (Wnt) family of protein ligands and their functional antagonists, secreted frizzled-related proteins (sFRPs), regulate various biological processes ranging from embryonic development to immunity and inflammation. Wnt5a and sFRP5 comprise a typical ligand/antagonist pair, and the former molecule was recently detected at the messenger RNA (mRNA) level in human periodontitis. The main objective of this study was to investigate the interrelationship of expression of Wnt5a and sFRP5 in human periodontitis (as compared to health) and to determine their roles in inflammation and bone loss in an animal model. We detected both Wnt5a and sFRP5 mRNA in human gingiva, with Wnt5a dominating in diseased and sFRP5 in healthy tissue. Wnt5a and sFRP5 protein colocalized in the gingival epithelium, suggesting epithelial cell expression, which was confirmed in cultured human gingival epithelial cells (HGECs). The HGEC expression of Wnt5a and sFRP5 was differentially regulated by a proinflammatory stimulus (lipopolysaccharide [LPS] from Porphyromonas gingivalis) in a manner consistent with the clinical observations (i.e., LPS upregulated Wnt5a and downregulated sFRP5). In HGECs, exogenously added Wnt5a enhanced whereas sFRP5 inhibited LPS-induced inflammation, as monitored by interleukin 8 production. Consistent with this, local treatment with sFRP5 in mice subjected to ligature-induced periodontitis inhibited inflammation and bone loss, correlating with decreased numbers of osteoclasts in bone tissue sections. As in humans, mouse periodontitis was associated with high expression of Wnt5a and low expression of sFRP5, although this profile was reversed after treatment with sFRP5. In conclusion, we demonstrated a novel reciprocal relationship between sFRP5 and Wnt5a expression in periodontal health and disease, paving the way to clinical investigation of the possibility of using the Wnt5a/sFRP5 ratio as a periodontitis biomarker. Moreover, we showed that sFRP5 blocks experimental periodontal inflammation and bone loss, suggesting a promising platform for the development of a new host modulation therapy in periodontitis.
Collapse
Affiliation(s)
- T Maekawa
- 1 Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - P Kulwattanaporn
- 2 Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,3 Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - K Hosur
- 2 Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Domon
- 4 Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Oda
- 4 Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,5 Departmant of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Yamashina, Kyoto, Japan
| | - Y Terao
- 4 Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Maeda
- 1 Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - G Hajishengallis
- 2 Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
124
|
Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep 2017; 69:403-408. [PMID: 28273499 DOI: 10.1016/j.pharep.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
Secreted frizzled-related protein (SFRP)2, an identified member of the SFRPs family of molecules, is often methylated in human cancers and its down-regulation is closely related to Wnt signaling activity and tumor progression. Although the blocker of the Wnt signaling has not been fully used in clinical trial, interest has been further enhanced by the realization of SFRPs' potential as targets to modulate Wnt signaling and cancer cell growth. Emerging evidence showed that SFRP2 was an anti-oncogene, however, a steady flow of research has indicated that it may also have tumor promotion effects in some cancer types. Furthermore, SFRP2 methylation was shown to accelerate cancer cell invasion and growth in tumor progression. In this review, we define recent understanding of the diverse roles of SFRP2 in tumorigenesis, and it might promote the development of novel drugs for curing cancer by targeting SFRP2.
Collapse
Affiliation(s)
- Yanhui Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Qun Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Dexi Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China.
| |
Collapse
|
125
|
Stylianidis V, Hermans KCM, Blankesteijn WM. Wnt Signaling in Cardiac Remodeling and Heart Failure. Handb Exp Pharmacol 2017; 243:371-393. [PMID: 27838851 DOI: 10.1007/164_2016_56] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wnt signaling plays an essential role during development, but is also activated in diseases as diverse as neurodegeneration, osteoporosis, and cancer. Accumulating evidence demonstrates that Wnt signaling is also activated during cardiac remodeling and heart failure. In this chapter, we will provide a brief overview of Wnt signaling in all its complexity. Then we will discuss the evidence for its involvement in the development of cardiac hypertrophy, the wound healing after myocardial infarction (MI) and heart failure. Finally, we will provide an overview of the drugs that are available to target Wnt signaling at different levels of the signaling cascade and the results of these pharmacological interventions in cardiac disease.
Collapse
Affiliation(s)
- Vasili Stylianidis
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
126
|
Guo X, Zhang L, Fan Y, Zhang D, Qin L, Dong S, Li G. Oxysterol-Binding Protein-Related Protein 8 Inhibits Gastric Cancer Growth Through Induction of ER Stress, Inhibition of Wnt Signaling, and Activation of Apoptosis. Oncol Res 2016; 25:799-808. [PMID: 27983927 PMCID: PMC7841135 DOI: 10.3727/096504016x14783691306605] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide. Oxysterol-binding protein-related protein 8 (ORP8) functions as a sterol sensor that regulates a number of cellular functions. We showed that ORP8 expression was significantly lower in GC tissues and cells. Overexpression of ORP8 significantly inhibited GC cell proliferation in several GC cells. The formation of colonies in AGS cells was inhibited by the overexpression of ORP8. Moreover, overexpression of ORP8 significantly decreased implanted tumor growth in nude mice. Overexpression of ORP8 resulted in a significant increase in CHOP and GRP78 expression and the phosphorylation of PERK, indicating the occurrence of ER stress. Inhibition of ER stress by 4-PBA notably suppressed overexpression of ORP8-induced decrease of GC cell proliferation, formation of colonies, and implanted tumor growth. Overexpression of ORP8 resulted in a significant decrease in Wnt3a and β-catenin expression, and activation of Wnt signaling by HLY78 markedly blocked overexpression of ORP8-induced decrease in GC cell proliferation, formation of colonies, and implanted tumor growth. 4-PBA inhibited overexpression of ORP8-induced decrease in Wnt signaling. Furthermore, overexpression of ORP8 resulted in significant activation of mitochondrial apoptotic events and increase in apoptosis, which was inhibited by 4-PBA and HLY78. Induction of ER stress, inhibition of Wnt signaling, and apoptotic cell death were involved in ORP8-induced inhibition of GC cell proliferation. These findings indicate that downregulation of ORP8 plays a pivotal role in the progression of GC, and it may be a novel therapeutic target in the treatment of GC.
Collapse
|