101
|
Ratanayotha A, Kawai T, Okamura Y. Real-time functional analysis of Hv1 channel in neutrophils: a new approach from zebrafish model. Am J Physiol Regul Integr Comp Physiol 2019; 316:R819-R831. [PMID: 30943046 DOI: 10.1152/ajpregu.00326.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Voltage-gated proton channel (Hv1) has been studied in various immune cells, including neutrophils. However, most studies have taken an in vitro approach using isolated cells or primary cultured cells of mammals; therefore, limited evidence is available on the function of Hv1 in a physiological context. In this study, we have developed the in vivo system that enables real-time functional analysis of Hv1 using zebrafish embryos (Danio rerio). Hvcn1-deficiency (hvcn1-/-) in zebrafish completely abolished voltage-gated proton current, which is typically observed in wild-type neutrophils. Importantly, hvcn1-deficiency significantly reduced reactive oxygen species production and calcium response of zebrafish neutrophils, comparable to the results observed in mammalian models. These findings verify zebrafish Hv1 (DrHv1) as the primary contributor for native Hv1-derived proton current in neutrophils and suggest the conserved function of Hv1 in the immune cells across vertebrate animals. Taking advantage of Hv1 zebrafish model, we compared real-time behaviors of neutrophils between wild-type and hvcn1-/- zebrafish in response to tissue injury and acute bacterial infection. Notably, we observed a significant increase in the number of phagosomes in hvcn1-/- neutrophils, raising a possible link between Hv1 and phagosomal maturation. Furthermore, survival analysis of zebrafish larvae potentially supports a protective role of Hv1 in the innate immune response against systemic bacterial infection. This study represents the influence of Hv1 on neutrophil behaviors and highlights the benefits of in vivo approach toward the understanding of Hv1 in a physiological context.
Collapse
Affiliation(s)
- Adisorn Ratanayotha
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University , Suita, Osaka , Japan
| |
Collapse
|
102
|
Moonen CGJ, Hirschfeld J, Cheng L, Chapple ILC, Loos BG, Nicu EA. Oral Neutrophils Characterized: Chemotactic, Phagocytic, and Neutrophil Extracellular Trap (NET) Formation Properties. Front Immunol 2019; 10:635. [PMID: 30984197 PMCID: PMC6449731 DOI: 10.3389/fimmu.2019.00635] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
Maintenance of oral health is in part managed by the immune-surveillance and antimicrobial functions of polymorphonuclear leukocytes (PMNs), which migrate from the circulatory system through the oral mucosal tissues as oral PMNs (oPMNs). In any microorganism-rich ecosystem, such as the oral cavity, PMNs migrate toward various exogenous chemoattractants, phagocytose bacteria, and produce neutrophil extracellular traps (NETs) to immobilize and eliminate pathogens. PMNs obtained from the circulation through venipuncture (hereafter called cPMNs) have been widely studied using various functional assays. We aimed to study the potential of oPMNs in maintaining oral health and therefore compared their chemotactic and antimicrobial functions with cPMNs. To establish chemotactic, phagocytic, and NET forming capacities, oPMNs and cPMNs were isolated from healthy subjects without obvious oral inflammation. Directional chemotaxis toward the chemoattractant fMLP was analyzed using an Insall chamber and video microscopy. fMLP expression was assessed by flow cytometry. Phagocytosis was analyzed by flow cytometry, following PMN incubation with heat-inactivated FITC-labeled micro-organisms. Furthermore, agar plate-based killing assays were performed with Escherichia coli (Ec). NET formation by oPMNs and cPMNs was quantified fluorimetrically using SYTOX™ Green, following stimulation with either PMA or RPMI medium (unstimulated control). In contrast to cPMNs, the chemotactic responses of oPMNs to fMLP did not differ from controls (mean velocity ± SEM of cPMNs: 0.79 ± 0.24; of oPMNs; 0.10 ± 0.07 micrometer/min). The impaired directional movement toward fMLP by oPMNs was explained by significantly lower fMLP receptor expression. Increased adhesion and internalization of various micro-organisms by oPMNs was observed. oPMNs formed 13 times more NETs than stimulated cPMNs, in both unstimulated and stimulated conditions. Compared to cPMNs, oPMNs showed a limited ability for intracellular killing of Ec. In conclusion, oPMNs showed exhausted capacity for efficient chemotaxis toward fMLP which may be the result of migration through the oral tissues into the oral cavity, being a highly “hostile” ecosystem. Overall, oPMNs' behavior is consistent with hyperactivity and frustrated killing. Nevertheless, oPMNs most likely contribute to maintaining a balanced oral ecosystem, as their ability to internalize microbes in conjunction with their abundant NET production remains after entering the oral cavity.
Collapse
Affiliation(s)
- Carolyn G J Moonen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Josefine Hirschfeld
- Periodontal Research Group, Birmingham Dental School and Hospital, The University of Birmingham and Birmingham Community Health NHS Trust, Birmingham, United Kingdom
| | - Lili Cheng
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Iain L C Chapple
- Periodontal Research Group, Birmingham Dental School and Hospital, The University of Birmingham and Birmingham Community Health NHS Trust, Birmingham, United Kingdom
| | - Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,CMI Dr. Opris M.I., Sibiu, Romania
| |
Collapse
|
103
|
Díaz-Godínez C, Carrero JC. The state of art of neutrophil extracellular traps in protozoan and helminthic infections. Biosci Rep 2019; 39:BSR20180916. [PMID: 30498092 PMCID: PMC6328873 DOI: 10.1042/bsr20180916] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are DNA fibers associated with histones, enzymes from neutrophil granules and anti-microbial peptides. NETs are released in a process denominated NETosis, which involves sequential steps that culminate with the DNA extrusion. NETosis has been described as a new mechanism of innate immunity related to defense against different pathogens. The initial studies of NETs were carried out with bacteria and fungi, but currently a large variety of microorganisms capable of inducing NETs have been described including protozoan and helminth parasites. Nevertheless, we have little knowledge about how NETosis process is carried out in response to the parasites, and about its implication in the resolution of this kind of disease. In the best case, the NETs entrap and kill parasites in vitro, but in others, immobilize the parasites without affecting their viability. Moreover, insufficient studies on the NETs in animal models of infections that would help to define their role, and the association of NETs with chronic inflammatory pathologies such as those occurring in several parasitic infections have left open the possibility of NETs contributing to pathology instead of protection. In this review, we focus on the reported mechanisms that lead to NET release by protozoan and helminth parasites and the evidence that support the role of NETosis in the resolution or pathogenesis of parasitic diseases.
Collapse
Affiliation(s)
- César Díaz-Godínez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Julio C Carrero
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
| |
Collapse
|
104
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1583] [Impact Index Per Article: 263.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
105
|
Rane D, Patil T, More V, Patra SS, Bodhale N, Dandapat J, Sarkar A. Neutrophils: Interplay between host defense, cellular metabolism and intracellular infection. Cytokine 2018; 112:44-51. [DOI: 10.1016/j.cyto.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
|
106
|
Mechanism of drug extrusion by brain endothelial cells via lysosomal drug trapping and disposal by neutrophils. Proc Natl Acad Sci U S A 2018; 115:E9590-E9599. [PMID: 30254169 PMCID: PMC6187170 DOI: 10.1073/pnas.1719642115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Located at the apical (blood-facing) site of brain capillary endothelial cells that form the blood–brain barrier (BBB), the efflux transporter P-glycoprotein (Pgp) restricts the brain entry of various lipophilic xenobiotics, which contributes to BBB function. Pgp may become saturated if exposed to too-high drug concentrations. Here, we demonstrate a second-line defense mechanism in human brain capillary endothelial cells—that is, Pgp-mediated intracellular lysosomal drug trapping. Furthermore, we describe a mechanism of drug disposal at the BBB, which is shedding of lysosomal Pgp/substrate complexes at the apical membrane of human and porcine BBB endothelial cells and subsequent phagocytosis by neutrophils. Thus, we have discovered a fascinating mechanism of how Pgp might contribute to brain protection. The blood–brain barrier protects the brain against a variety of potentially toxic compounds. Barrier function results from tight junctions between brain capillary endothelial cells and high expression of active efflux transporters, including P-glycoprotein (Pgp), at the apical membrane of these cells. In addition to actively transporting drugs out of the cell, Pgp mediates lysosomal sequestration of chemotherapeutic drugs in cancer cells, thus contributing to drug resistance. Here, we describe that lysosomal sequestration of Pgp substrates, including doxorubicin, also occurs in human and porcine brain endothelial cells that form the blood–brain barrier. This is followed by shedding of drug-sequestering vesicular structures, which stay attached to the apical side of the plasma membrane and form aggregates (“barrier bodies”) that ultimately undergo phagocytosis by neutrophils, thus constituting an as-yet-undescribed mechanism of drug disposal. These findings introduce a mechanism that might contribute to brain protection against potentially toxic xenobiotics, including therapeutically important chemotherapeutic drugs.
Collapse
|
107
|
Septama AW, Jantan I, Panichayupakaranant P. Flavonoids of Artocarpus heterophyllus Lam. heartwood inhibit the innate immune responses of human phagocytes. J Pharm Pharmacol 2018; 70:1242-1252. [PMID: 29943393 DOI: 10.1111/jphp.12952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/28/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the effects of flavonoids isolated from Artocarpus heterophyllus. heartwood on chemotaxis, phagocytosis, reactive oxygen species (ROS) production and myeloperoxidase (MPO) activity of human phagocytes. METHODS Chemotaxis was evaluated using a modified Boyden chamber and phagocytosis was determined by flowcytometer. Respiratory burst was investigated by luminol-based chemiluminescence assay while MPO activity was determined by colorimetric assay. KEY FINDINGS Artocarpanone and artocarpin strongly inhibited all steps of phagocytosis. Artocarpanone and artocarpin showed strong chemotactic activity with IC50 values of 6.96 and 6.10 μm, respectively, which were lower than that of ibuprofen (7.37 μm). Artocarpanone was the most potent compound in inhibiting ROS production of polymorphonuclear leucocytes and monocytes with IC50 values comparable to those of aspirin. Artocarpin at 100 μg/ml inhibited phagocytosis of opsonized bacteria (28.3%). It also strongly inhibited MPO release with an IC50 value (23.3 μm) lower than that of indomethacin (69 μm). Structure-activity analysis indicated that the number of hydroxyl group, the presence of prenyl group and variation of C-2 and C-3 bonds might contribute towards their phagocytosis. CONCLUSIONS Artocarpanone and artocarpin were able to suppress strongly the phagocytosis of human phagocytes at different steps and have potential to be developed into potent anti-inflammatory agents.
Collapse
Affiliation(s)
| | - Ibrahim Jantan
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| |
Collapse
|
108
|
Butler A, Walton GM, Sapey E. Neutrophilic Inflammation in the Pathogenesis of Chronic Obstructive Pulmonary Disease. COPD 2018; 15:392-404. [DOI: 10.1080/15412555.2018.1476475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aidan Butler
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgia May Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
109
|
Chen YC, Chou WY, Fu TC, Wang JS. Effects of normoxic and hypoxic exercise training on the bactericidal capacity and subsequent apoptosis of neutrophils in sedentary men. Eur J Appl Physiol 2018; 118:1985-1995. [PMID: 29987365 DOI: 10.1007/s00421-018-3935-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
Phagocytosis and oxidative burst are essential mechanisms of innate immunity by which neutrophils eliminate invading pathogens. Afterwards, phagocytic neutrophils are dissipated by facilitating apoptosis to control inflammation. This study investigates how exercise training with or without hypoxic exposure affects the bactericidal activity and subsequent apoptosis of neutrophils following strenuous exercise. A total of 60 healthy, sedentary men were randomly divided into four groups (n = 15 in each group), who were exposed to 21% O2 [normoxic control (NC)] or 15% O2 [hypoxic control (HC)] at rest or were trained at 50% of peak work rate at 21% O2 [normoxic training (NT)] or 15% O2 [hypoxic training (HT)] for 30 min/day, 5 days/week for 4 weeks. Before the intervention, acute strenuous exercise (SE) enhanced the phagocytosis of Escherichia coli (E. coli) by neutrophils and the release of neutrophil oxidant products in response to E. coli, accompanied by increases in the expression of adhesion molecules (CD62L, CD11b, and CD11a), an opsonic receptor (FcγIIIBR), and complement receptors (C1qRp and CD5aR) on neutrophils. Subsequently, the SE facilitated caspase-3 activation and phosphatidylserine exposure in E. coli-stimulated neutrophils. Furthermore, 4 weeks of HT promoted the expressions of adhesion molecules and opsonic/complement receptors on neutrophils, and it also augmented the bactericidal and apoptotic activities of neutrophils at rest or after SE. However, NT, HC, and NC did not influence these neutrophil-related immune responses to strenuous exercise. Therefore, we conclude that the HT regimen effectively promotes the bactericidal capacity of neutrophils, and facilitates their subsequent apoptosis both at rest and following SE.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Rehabilitation Science, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wan-Yu Chou
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical Collage, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333, Taiwan
| | - Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical Collage, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 333, Taiwan. .,Department of Physical Medicine and Rehabilitation, Heart Failure Center, Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
110
|
Le Page A, Lamoureux J, Bourgade K, Frost EH, Pawelec G, Witkowski JM, Larbi A, Dupuis G, Fülöp T. Polymorphonuclear Neutrophil Functions are Differentially Altered in Amnestic Mild Cognitive Impairment and Mild Alzheimer's Disease Patients. J Alzheimers Dis 2018; 60:23-42. [PMID: 28777750 DOI: 10.3233/jad-170124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms of neurodegeneration in Alzheimer's disease (AD) remain under investigation. Alterations in the blood-brain barrier facilitate exchange of inflammatory mediators and immune cells between the brain and the periphery in AD. Here, we report analysis of phenotype and functions of polymorphonuclear neutrophils (PMN) in peripheral blood from patients with amnestic mild cognitive impairment (aMCI, n = 13), patients with mild AD (mAD, n = 15), and healthy elderly controls (n = 13). Results showed an increased expression of CD177 in mAD but not in healthy or aMCI patients. IL-8 stimulated increased expression of the CD11b integrin in PMN of healthy subjects in vitro but PMN of aMCI and mAD patients failed to respond. CD14 and CD16 expression was lower in PMN of mAD but not in aMCI individuals relative to controls. Only PMN of aMCI subjects expressed lower levels of CD88. Phagocytosis toward opsonized E. coli was differentially impaired in PMN of aMCI and mAD subjects whereas the capacity to ingest Dextran particles was absent only in mAD subjects. Killing activity was severely impaired in aMCI and mAD subjects whereas free radical production was only impaired in mAD patients. Inflammatory cytokine (TNFα, IL-6, IL-1β, IL-12p70) and chemokine (MIP-1α, MIP-1β, IL-8) production in response to LPS stimulation was very low in aMCI and nearly absent in mAD subjects. TLR2 expression was low only in aMCI. Our data showed a differentially altered capacity of PMN of aMCI and mAD subjects to respond to pathological aggression that may impact impaired responses associated with AD development.
Collapse
Affiliation(s)
- Aurélie Le Page
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Lamoureux
- Graduate Program in Physiology-Biophysics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
111
|
Inflammation and neutrophil immunosenescence in health and disease: Targeted treatments to improve clinical outcomes in the elderly. Exp Gerontol 2018; 105:70-77. [DOI: 10.1016/j.exger.2017.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
|
112
|
The function of TRP channels in neutrophil granulocytes. Pflugers Arch 2018; 470:1017-1033. [PMID: 29717355 DOI: 10.1007/s00424-018-2146-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil granulocytes are exposed to widely varying microenvironmental conditions when pursuing their physiological or pathophysiological functions such as fighting invading bacteria or infiltrating cancer tissue. Examples for harsh environmental challenges include among others mechanical shear stress during the recruitment from the vasculature or the hypoxic and acidotic conditions within the tumor microenvironment. Chemokine gradients, reactive oxygen species, pressure, matrix elasticity, and temperature can be added to the list of potential challenges. Transient receptor potential (TRP) channels serve as cellular sensors since they respond to many of the abovementioned environmental stimuli. The present review investigates the role of TRP channels in neutrophil granulocytes and their role in regulating and adapting neutrophil function to microenvironmental cues. Following a brief description of neutrophil functions, we provide an overview of the electrophysiological characterization of neutrophilic ion channels. We then summarize the function of individual TRP channels in neutrophil granulocytes with a focus on TRPC6 and TRPM2 channels. We close the review by discussing the impact of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on neutrophil granulocytes. Since neutrophil infiltration into PDAC tissue contributes to disease progression, we propose neutrophilic TRP channel blockade as a potential therapeutic option.
Collapse
|
113
|
Kim HM, Ahn C, Kang BT, Kang JH, Jeung EB, Yang MP. Fucoidan suppresses excessive phagocytic capacity of porcine peripheral blood polymorphonuclear cells by modulating production of tumor necrosis factor-alpha by lipopolysaccharide-stimulated peripheral blood mononuclear cells. Res Vet Sci 2018; 118:413-418. [PMID: 29698903 DOI: 10.1016/j.rvsc.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/05/2018] [Accepted: 04/13/2018] [Indexed: 11/30/2022]
Abstract
We examined the effect of fucoidan, an immune modulator, on the phagocytic capacity of porcine peripheral blood polymorphonuclear cells (PMNs) exposed to culture supernatant from lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs). For this purpose, we evaluated the phagocytic capacity of porcine PMNs by flow cytometry and measured levels of tumor necrosis factor-alpha (TNF-α) protein and mRNA in porcine PBMCs by enzyme-linked immunosorbent assay (ELISA) and real time-polymerase chain reaction (PCR), respectively. Fucoidan or LPS alone did not affect the phagocytic capacity of PMNs, but phagocytosis by these cells was increased by exposure to culture supernatant from PBMCs treated with fucoidan or LPS. In particular, the culture supernatant from PBMCs treated with LPS revealed excessive phagocytosis of PMNs. This excessive phagocytic capacity was diminished by co-treatment LPS with fucoidan. Production of TNF-α mRNA and protein increased upon treatment of PBMCs with either fucoidan or LPS, but this effect was also diminished by co-treatment LPS with fucoidan. The ability of culture supernatant from PBMCs treated with LPS and/or fucoidan to increase the phagocytic capacity of PMNs was inhibited by anti-recombinant porcine TNF-α polyclonal antibody. These results suggested that fucoidan suppresses the phagocytic capacity of PMNs by modulating TNF-α production by LPS-stimulated PBMCs.
Collapse
Affiliation(s)
- Hyeong-Mok Kim
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Changhwan Ahn
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Byeong-Teck Kang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Houn Kang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Bae Jeung
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Mhan-Pyo Yang
- Department of Veterinary Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
114
|
Chen Y, Meng F, Wang B, He L, Liu Y, Liu Z. Dock2 in the development of inflammation and cancer. Eur J Immunol 2018; 48:915-922. [PMID: 29509960 DOI: 10.1002/eji.201747157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 01/21/2023]
Abstract
An atypical guanine exchange factor, Dock2 is specifically expressed in hematopoietic cells and regulates activation and migration of immune cells through activating Ras-related C3 botulinum toxin substrate (Rac). Dock2 was shown to be critical in the development of various inflammatory diseases, including allergic diseases, HIV infection, and graft rejection in organ transplantation. DOCK2 mutation in infants was recently identified to be associated with T and B cell combined immunodeficiency. Furthermore, Dock2 is involved in host protection during enteric bacterial infection and is also associated with the proliferation of cancer cells. It was also shown that patients with digestive tract cancer had high frequency mutation of DOCK2. This review summarizes the latest research progresses on the role of Dock2 for the development of various inflammatory diseases and cancers, and discusses the potential application of Dock2 modulators for patient treatment.
Collapse
Affiliation(s)
- Yayun Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fan Meng
- Southern Medical University, Guangzhou, Guangdong, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bingyu Wang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yangbin Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.,Ganzhou Cancer Precision Medicine Engineering Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
115
|
Li WT, Chang HW, Yang WC, Lo C, Wang LY, Pang VF, Chen MH, Jeng CR. Immunotoxicity of Silver Nanoparticles (AgNPs) on the Leukocytes of Common Bottlenose Dolphins (Tursiops truncatus). Sci Rep 2018; 8:5593. [PMID: 29618730 PMCID: PMC5884781 DOI: 10.1038/s41598-018-23737-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been extensively used and are considered as an emerging contaminant in the ocean. The environmental contamination of AgNPs is expected to increase greatly over time, and cetaceans, as the top ocean predators, will suffer the negative impacts of AgNPs. In the present study, we investigate the immunotoxicity of AgNPs on the leukocytes of cetaceans using several methods, including cytomorphology, cytotoxicity, and functional activity assays. The results reveal that 20 nm Citrate-AgNPs (C-AgNP20) induce different cytomorphological alterations and intracellular distributions in cetacean polymorphonuclear cells (cPMNs) and peripheral blood mononuclear cells (cPBMCs). At high concentrations of C-AgNP20 (10 and 50 μg/ml), the time- and dose-dependent cytotoxicity in cPMNs and cPBMCs involving apoptosis is demonstrated. C-AgNP20 at sub-lethal doses (0.1 and 1 μg/ml) negatively affect the functional activities of cPMNs (phagocytosis and respiratory burst) and cPBMCs (proliferative activity). The current study presents the first evidence of the cytotoxicity and immunotoxicity of AgNPs on the leukocytes of cetaceans and improves our understanding of environmental safety concerning AgNPs. The dose-response data of AgNPs on the leukocytes of cetaceans are invaluable for evaluating the adverse health effects in cetaceans and for proposing a conservation plan for marine mammals.
Collapse
Affiliation(s)
- Wen-Ta Li
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wei-Cheng Yang
- College of Veterinary Medicine, National Chiayi University, Chiayi, 60004, Taiwan
| | - Chieh Lo
- Farglory Ocean Park, Hualien, 97449, Taiwan
| | - Lei-Ya Wang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Hsien Chen
- Department of Oceanography and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
116
|
GB F. The functional status of neutrophils in patients with bronchial asthma, chronic obstructive pulmonary disease, bronchial asthma with chronic obstructive pulmonary disease, and community-acquired pneumonia. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/jlprr.2018.05.00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
117
|
Boff D, Crijns H, Teixeira MM, Amaral FA, Proost P. Neutrophils: Beneficial and Harmful Cells in Septic Arthritis. Int J Mol Sci 2018; 19:E468. [PMID: 29401737 PMCID: PMC5855690 DOI: 10.3390/ijms19020468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis.
Collapse
Affiliation(s)
- Daiane Boff
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Helena Crijns
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Mauro M Teixeira
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Flavio A Amaral
- Imunofarmacologia, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil.
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
118
|
Ushijima Y, Ohniwa RL, Morikawa K. Identification of nucleoid associated proteins (NAPs) under oxidative stress in Staphylococcus aureus. BMC Microbiol 2017; 17:207. [PMID: 28969590 PMCID: PMC5625760 DOI: 10.1186/s12866-017-1114-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background Bacterial nucleoid consists of genome DNA, RNA, and hundreds of nucleoid-associated proteins (NAPs). Escherichia coli nucleoid is compacted towards the stationary phase, replacing most log-phase NAPs with the major stationary-phase nucleoid protein, Dps. In contrast, Staphylococcus aureus nucleoid sustains the fiber structures throughout the growth. Instead, the Dps homologue, MrgA, expresses under oxidative stress conditions to clump the nucleoid, but the composition of the clumped nucleoid was elusive. Results The staphylococcal nucleoid under oxidative stress was isolated by sucrose gradient centrifugation, and the proteins were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). We identified 299 proteins in the nucleoid under oxidative stress, including 113 csNAPs (contaminant-subtracted NAPs). Comparison with the previously identified csNAPs in log- and stationary phase indicated that one fifth of the csNAPs under oxidative stress were the constitutive nucleoid components; importantly, several factors including HU, SarA, FabZ, and ribosomes were sustained under oxidative stress. Some factors (e.g. SA1663 and SA0092/SA0093) with unknown functions were included in the csNAPs list specifically under oxidative stress condition. Conclusion Nucleoid constitutively holds Hu, SarA, FabG, and ribosomal proteins even under the oxidative stress, reflecting the active functions of the clumped nucleoid, unlikely to the dormant E. coli nucleoid compacted in the stationary phase or starvation. Electronic supplementary material The online version of this article (10.1186/s12866-017-1114-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuri Ushijima
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan. .,Present address: Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan. .,Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | - Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| |
Collapse
|
119
|
Gomez-Lopez N, Romero R, Garcia-Flores V, Xu Y, Leng Y, Alhousseini A, Hassan SS, Panaitescu B. Amniotic fluid neutrophils can phagocytize bacteria: A mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol 2017; 78:10.1111/aji.12723. [PMID: 28703488 PMCID: PMC5623137 DOI: 10.1111/aji.12723] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022] Open
Abstract
PROBLEM Neutrophils are capable of performing phagocytosis, a primary mechanism for microbial killing. Intra-amniotic infection is characterized by an influx of neutrophils into the amniotic cavity. Herein, we investigated whether amniotic fluid neutrophils could phagocytize bacteria found in the amniotic cavity of women with intra-amniotic infection. METHODS Amniotic fluid neutrophils from women with intra-amniotic infection were visualized by transmission electron microscopy (n=6). The phagocytic activity of amniotic fluid neutrophils from women with intra-amniotic infection and/or inflammation (n=10) or peripheral neutrophils from healthy individuals (controls, n=3) was tested using ex vivo phagocytosis assays coupled with live imaging. Phagocytosis by amniotic fluid neutrophils was also visualized by confocal microscopy (n=10) as well as scanning and transmission electron microscopy (n=5). RESULTS (i) Intra-amniotic infection-related bacteria including cocci (eg Streptococcus agalactiae), bacilli (eg Bacteriodes fragilis and Prevotella spp.), and small bacteria without a cell wall (eg Ureaplasma urealyticum) were found inside of amniotic fluid neutrophils; (ii) peripheral neutrophils (controls) rapidly phagocytized S. agalactiae, U. urealyticum, Gardnerella vaginalis, and Escherichia coli; (iii) amniotic fluid neutrophils rapidly phagocytized S. agalactiae and G. vaginalis; and (iv) amniotic fluid neutrophils slowly phagocytized U. urealyticum and E. coli; yet, the process of phagocytosis of the genital mycoplasma was lengthier. CONCLUSION Amniotic fluid neutrophils can phagocytize bacteria found in the amniotic cavity of women with intra-amniotic infection, namely S. agalactiae, U. urealyticum, G. vaginalis, and E. coli. Yet, differences in the rapidity of phagocytosis were observed among the studied microorganisms. These findings provide a host defense mechanism whereby amniotic fluid neutrophils can kill microbes invading the amniotic cavity.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, & Detroit, MI, USA
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, & Detroit, MI, USA
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine & Genetics, Wayne State University, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, & Detroit, MI, USA
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, & Detroit, MI, USA
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yaozhu Leng
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, & Detroit, MI, USA
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ali Alhousseini
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, & Detroit, MI, USA
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, & Detroit, MI, USA
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
120
|
Dong G, Song L, Tian C, Wang Y, Miao F, Zheng J, Lu C, Alsadun S, Graves DT. FOXO1 Regulates Bacteria-Induced Neutrophil Activity. Front Immunol 2017; 8:1088. [PMID: 28928749 PMCID: PMC5591501 DOI: 10.3389/fimmu.2017.01088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023] Open
Abstract
Neutrophils play an essential role in the innate immune response to microbial infection and are particularly important in clearing bacterial infection. We investigated the role of the transcription factor FOXO1 in the response of neutrophils to bacterial challenge with Porphyromonas gingivalis in vivo and in vitro. In these experiments, the effect of lineage-specific FOXO1 deletion in LyzM.Cre+FOXO1L/L mice was compared with matched littermate controls. FOXO1 deletion negatively affected several critical aspects of neutrophil function in vivo including mobilization of neutrophils from the bone marrow (BM) to the vasculature, recruitment of neutrophils to sites of bacterial inoculation, and clearance of bacteria. In vitro FOXO1 regulated neutrophil chemotaxis and bacterial killing. Moreover, bacteria-induced expression of CXCR2 and CD11b, which are essential for several aspects of neutrophil function, was dependent on FOXO1 in vivo and in vitro. Furthermore, FOXO1 directly interacted with the promoter regions of CXCR2 and CD11b. Bacteria-induced nuclear localization of FOXO1 was dependent upon toll-like receptor (TLR) 2 and/or TLR4 and was significantly reduced by inhibitors of reactive oxygen species (ROS and nitric oxide synthase) and deacetylases (Sirt1 and histone deacetylases). These studies show for the first time that FOXO1 activation by bacterial challenge is needed to mobilize neutrophils to transit from the BM to peripheral tissues in response to infection as well as for bacterial clearance in vivo. Moreover, FOXO1 regulates neutrophil function that facilitates chemotaxis, phagocytosis, and bacterial killing.
Collapse
Affiliation(s)
- Guangyu Dong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Liang Song
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Stomatology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Chen Tian
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Miao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Shanxi Province People's Hospital, Taiyuan, China
| | - Jiabao Zheng
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chanyi Lu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah Alsadun
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
121
|
Alarcón P, Manosalva C, Conejeros I, Carretta MD, Muñoz-Caro T, Silva LMR, Taubert A, Hermosilla C, Hidalgo MA, Burgos RA. d(-) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression. Front Immunol 2017; 8:975. [PMID: 28861083 PMCID: PMC5559443 DOI: 10.3389/fimmu.2017.00975] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023] Open
Abstract
Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(−) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(−) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(−) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(−) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(−) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(−) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(−) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.
Collapse
Affiliation(s)
- Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.,Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Ivan Conejeros
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - María D Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Tamara Muñoz-Caro
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Liliana M R Silva
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - María A Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
122
|
Platonia insignis Mart., a Brazilian Amazonian Plant: The Stem Barks Extract and Its Main Constituent Lupeol Exert Antileishmanial Effects Involving Macrophages Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3126458. [PMID: 28852412 PMCID: PMC5567447 DOI: 10.1155/2017/3126458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/14/2017] [Accepted: 07/10/2017] [Indexed: 12/04/2022]
Abstract
Platonia insignis Mart., popularly known as “bacurizeiro,” is used in traditional medical practices based on its diverse biological properties. This study was aimed at evaluating the antileishmanial effects of the ethanol extract (EtOH-Ext), hexane fraction (Hex-F), and its main isolated Lupeol obtained from stem barks of P. insignis against Leishmania (Leishmania) amazonensis, as well as their cytotoxicity and possible mechanisms of action. The EtOH-Ext, Hex-F, and Lupeol inhibited the growth of L. amazonensis promastigote forms at IC50 of 174.24, 45.23, and 39.06 µg/mL, respectively, as well as L. amazonensis axenic amastigote forms at IC50 of 40.58, 35.87, and 44.10 µg/mL, respectively. The mean cytotoxic concentrations for macrophages (CC50) were higher than those for amastigotes (341.95, 71.65, and 144.0 µg/mL, resp.), indicating a selective cytotoxicity towards the parasite rather than the macrophages. Interestingly, all treatments promoted antileishmanial effect against macrophage-internalized amastigotes at concentrations lower than CC50. Furthermore, increases of lysosomal volume of macrophages treated with EtOH-Ext, Hex-F, and Lupeol were observed. On the other hand, only Lupeol stimulated increase of phagocytic capability of macrophages, suggesting this compound might be characterized as the biomarker for the antileishmanial effect of P. insignis stem bark, as well as the involvement of immunomodulatory mechanisms in this effect.
Collapse
|
123
|
Dayam RM, Sun CX, Choy CH, Mancuso G, Glogauer M, Botelho RJ. The Lipid Kinase PIKfyve Coordinates the Neutrophil Immune Response through the Activation of the Rac GTPase. THE JOURNAL OF IMMUNOLOGY 2017; 199:2096-2105. [DOI: 10.4049/jimmunol.1601466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
|
124
|
Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev 2017; 273:156-79. [PMID: 27558334 DOI: 10.1111/imr.12439] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis, the regulated uptake of large particles (>0.5 μm in diameter), is essential for tissue homeostasis and is also an early, critical component of the innate immune response. Phagocytosis can be conceptually divided into three stages: phagosome, formation, maturation, and resolution. Each of these involves multiple reactions that require exquisite spatial and temporal orchestration. The molecular events underlying these stages are being unraveled and the current state of knowledge is briefly summarized in this article.
Collapse
Affiliation(s)
- Roni Levin
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Johnathan Canton
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
125
|
Gallic and ellagic acids: two natural immunomodulator compounds solve infection of macrophages by Leishmania major. Naunyn Schmiedebergs Arch Pharmacol 2017. [DOI: 10.1007/s00210-017-1387-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
126
|
Moraes JG, Mendonça LG, Silva PR, Scanavez AA, Galvão KN, Ballou MA, Worku M, Chebel RC. Effects of intrauterine infusion of Escherichia coli lipopolysaccharide on uterine mRNA gene expression and peripheral polymorphonuclear leukocytes in Jersey cows diagnosed with purulent vaginal discharge. J Dairy Sci 2017; 100:4784-4796. [DOI: 10.3168/jds.2016-11643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/02/2017] [Indexed: 12/23/2022]
|
127
|
Cova E, Inghilleri S, Pandolfi L, Morosini M, Magni S, Colombo M, Piloni D, Finetti C, Ceccarelli G, Benedetti L, Cusella MG, Agozzino M, Corsi F, Allevi R, Mrakic-Sposta S, Moretti S, De Gregori S, Prosperi D, Meloni F. Bioengineered gold nanoparticles targeted to mesenchymal cells from patients with bronchiolitis obliterans syndrome does not rise the inflammatory response and can be safely inhaled by rodents. Nanotoxicology 2017; 11:534-545. [PMID: 28415888 DOI: 10.1080/17435390.2017.1317862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The use of gold nanoparticles (GNPs) as drug delivery system represents a promising issue for diseases without effective pharmacological treatment due to insufficient local drug accumulation and excessive systemic toxicity. Bronchiolitis obliterans syndrome (BOS) represents about 70% of cases of chronic lung allograft dysfunction, the main challenge to long-term lung transplantation. It is believed that due to repeated insults to epithelial bronchiolar cells local inflammatory response creates a milieu that favors epithelial-mesenchymal transition and activation of local mesenchymal cells (MCs) leading to airway fibro-obliteration. In a previous work, we engineered GNPs loaded with the mammalian target of rapamycin inhibitor everolimus, specifically decorated with an antibody against CD44, a surface receptor expressed by primary MCs isolated from bronchoalveolar lavage of BOS patients. We proved in vitro that these GNPs (GNP-HCe) were able to specifically inhibit primary MCs without affecting the bronchial epithelial cell. In the present work, we investigated the effect of these bioengineered nanoconstructs on inflammatory cells, given that a stimulating effect on macrophages, neutrophils or lymphocytes is strongly unwanted in graft airways since it would foster fibrogenesis. In addition, we administered GNP-HCe by the inhalatory route to normal mice for a preliminary assessment of their pulmonary and peripheral (liver, spleen and kidney) uptake. By these experiments, an evaluation of tissue toxicity was also performed. The present study proves that our bioengineered nanotools do not rise an inflammatory response and, under the tested inhalatory conditions that were used, are non-toxic.
Collapse
Affiliation(s)
- Emanuela Cova
- a Clinica di Malattie dell'Apparato Respiratorio , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Simona Inghilleri
- a Clinica di Malattie dell'Apparato Respiratorio , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Laura Pandolfi
- b Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Milano , Italy
| | - Monica Morosini
- a Clinica di Malattie dell'Apparato Respiratorio , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Sara Magni
- a Clinica di Malattie dell'Apparato Respiratorio , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Miriam Colombo
- b Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Milano , Italy
| | - Davide Piloni
- c Dipartimento di Medicina Interna, Unità di Pneumologia , Università degli Studi di Pavia , Pavia , Italy
| | - Chiara Finetti
- b Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Milano , Italy
| | - Gabriele Ceccarelli
- d Istituto di Anatomia Umana, Dipartimento di Salute Pubblica, Medicina Sperimentale e Forense , Università degli Studi di Pavia , Pavia , Italy
| | - Laura Benedetti
- d Istituto di Anatomia Umana, Dipartimento di Salute Pubblica, Medicina Sperimentale e Forense , Università degli Studi di Pavia , Pavia , Italy
| | - Maria Gabriella Cusella
- d Istituto di Anatomia Umana, Dipartimento di Salute Pubblica, Medicina Sperimentale e Forense , Università degli Studi di Pavia , Pavia , Italy
| | - Manuela Agozzino
- e Centro per le Malattie Cardiovascolari Ereditarie , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Fabio Corsi
- f Dipartimento di Scienze Biomediche e Cliniche L. Sacco , Università degli Studi di Milano , Pavia , Italy.,g Chirurgia Senologica , ICS Maugeri S.p.A. SB , Pavia , Italy
| | - Raffaele Allevi
- f Dipartimento di Scienze Biomediche e Cliniche L. Sacco , Università degli Studi di Milano , Pavia , Italy
| | - Simona Mrakic-Sposta
- h Istituto di Bioimmagini e Fisiologia Molecolare , Consiglio Nazionale delle Ricerche (CNR) , Segrate , Milano , Italia
| | - Sarah Moretti
- h Istituto di Bioimmagini e Fisiologia Molecolare , Consiglio Nazionale delle Ricerche (CNR) , Segrate , Milano , Italia
| | - Simona De Gregori
- i S.S.di Farmacocinetica Clinica e Sperimentale , IRCCS Fondazione Policlinico San Matteo , Pavia , Italy
| | - Davide Prosperi
- b Dipartimento di Biotecnologie e Bioscienze , Università di Milano-Bicocca , Milano , Italy
| | - Federica Meloni
- c Dipartimento di Medicina Interna, Unità di Pneumologia , Università degli Studi di Pavia , Pavia , Italy
| |
Collapse
|
128
|
Khanam A, Trehanpati N, Riese P, Rastogi A, Guzman CA, Sarin SK. Blockade of Neutrophil's Chemokine Receptors CXCR1/2 Abrogate Liver Damage in Acute-on-Chronic Liver Failure. Front Immunol 2017; 8:464. [PMID: 28484461 PMCID: PMC5401894 DOI: 10.3389/fimmu.2017.00464] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Background Neutrophils serve as critical players in the pathogenesis of liver diseases. Chemokine receptors CXCR1 and CXCR2 are required for neutrophil chemotaxis to the site of inflammation/injury and are crucial in hepatic inflammatory response. However, key mechanism of neutrophil-mediated liver injury in acute-on-chronic liver failure (ACLF) remains highly elusive; which could be targeted for the development of new therapeutic interventions. Methods To demonstrate the role of CXCR1/CXCR2-expressing neutrophils in hepatic injury, we investigated CXCR1/CXCR2 receptor expression in 17 hepatitis B virus-related ACLF patients in comparison to 42 chronic hepatitis B and 18 healthy controls. Mechanism of neutrophil-mediated cell death was analyzed by in vitro coculture assays and correlated with the patient data. In addition, to find out any etiological-based variations in ACLF, 19 alcohol-related ACLF patients were also included. Results In ACLF, neutrophils have high expression of CXCR1/CXCR2 receptors, which potentially participate in hepatocyte death through early apoptosis and necrosis in contact-dependent and -independent mechanisms. Importantly, blockade of CXCR1/CXCR2 with SCH 527123 antagonist significantly reduced cell death by targeting both the mechanisms. No etiology-based differences were seen between ACLF groups. Importantly, absolute neutrophil count was particularly higher in clinically severe ACLF patients and non-survivors (p < 0.0001). Multivariate analysis demonstrated ANC and CXCL8/IL-8 as a predictor of mortality. Further, receiver operating characteristics curve confirmed the cutoff of ANC >73.5% (sensitivity: 76.5% and specificity: 76.5%) and CXCL8/IL-8 >27% (sensitivity: 70% and specificity: 73%) in prediction of mortality. Conclusion Blockade of CXCR1/CXCR2 diminished the production of inflammatory mediators and reduced cell death; therefore, pharmacological neutralization of CXCR1/CXCR2 could provide novel therapeutic target in the management of ACLF.
Collapse
Affiliation(s)
- Arshi Khanam
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Archana Rastogi
- Department of Histopathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Carlos Alberto Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shiv Kumar Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
129
|
Minasyan H. Sepsis and septic shock: Pathogenesis and treatment perspectives. J Crit Care 2017; 40:229-242. [PMID: 28448952 DOI: 10.1016/j.jcrc.2017.04.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/12/2022]
Abstract
The majority of bacteremias do not develop to sepsis: bacteria are cleared from the bloodstream. Oxygen released from erythrocytes and humoral immunity kill bacteria in the bloodstream. Sepsis develops if bacteria are resistant to oxidation and proliferate in erythrocytes. Bacteria provoke oxygen release from erythrocytes to arterial blood. Abundant release of oxygen to the plasma triggers a cascade of events that cause: 1. oxygen delivery failure to cells; 2. oxidation of plasma components that impairs humoral regulation and inactivates immune complexes; 3. disseminated intravascular coagulation and multiple organs' failure. Bacterial reservoir inside erythrocytes provides the long-term survival of bacteria and is the cause of ineffectiveness of antibiotics and host immune reactions. Treatment perspectives that include different aspects of sepsis development are discussed.
Collapse
|
130
|
Affiliation(s)
- Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India 560012
| |
Collapse
|
131
|
Bank RA, Zandstra J, Room H, Petersen AH, van Putten SM. Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction During Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice<sup/>. Tissue Eng Part A 2017; 23:1078-1087. [PMID: 28090808 DOI: 10.1089/ten.tea.2016.0499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Macrophages are pivotal cells during the foreign body reaction (FBR), as they orchestrate the proinflammatory microenvironment inside and around biomaterials by secretion of inflammatory mediators. Furthermore, they are responsible for the degradation of biomaterials and are thought to instruct the fibroblasts that generate a fibrous capsule around implanted biomaterials. In this study, we investigated the events during the FBR when macrophages are not present. Hexamethylenediisocyanate crosslinked collagen scaffolds were implanted in "Macrophage Fas-Induced Apoptosis" mice, which allow "on demand" macrophage depletion. We observed that macrophage depletion completely inhibited inflammatory ingrowth into the scaffolds and resulted in an increased capsule size. Quantitative polymerase chain reaction analysis revealed decreased expression levels of proinflammatory mediators such as TNFα and IL1β, and increased expression levels of collagens and fibroblast-stimulating growth factors such as EGF, FGF1, FGF2, and TGFα. Our results indicate that macrophages are indeed crucial for the generation of a proinflammatory microenvironment inside implanted biomaterials, leading to inflammatory ingrowth. In contrast, macrophages do not appear to be important for the generation of a fibrous capsule around implanted biomaterials. In fact, our data suggest that the macrophages present in the capsule might instruct the surrounding fibroblasts to produce less fibroblast-stimulating factors and less collagens.
Collapse
Affiliation(s)
- Ruud A Bank
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jurjen Zandstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Hilde Room
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Arjen H Petersen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Sander M van Putten
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| |
Collapse
|
132
|
Carvalho CES, Sobrinho-Junior EPC, Brito LM, Nicolau LAD, Carvalho TP, Moura AKS, Rodrigues KAF, Carneiro SMP, Arcanjo DDR, Citó AMGL, Carvalho FAA. Anti-Leishmania activity of essential oil of Myracrodruon urundeuva (Engl.) Fr. All.: Composition, cytotoxity and possible mechanisms of action. Exp Parasitol 2017; 175:59-67. [PMID: 28189487 DOI: 10.1016/j.exppara.2017.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 11/28/2022]
Abstract
Myracrodruon urundeuva (Engl.) Fr. All., commonly known as "aroeira-do-sertão", is a medicinal plant from Anacardiaceae family. In this study, the chemical composition of M. urundeuva essential oil (MuEO) was evaluated by gas chromatography-mass spectrometry (GC-MS), as well as its anti-Leishmania potential, cytotoxicity, and macrophage activation capability as possible antiprotozoal mechanism of action were assessed. Fourteen compounds were identified, which constituted 94.87% of total oil composition. The most abundant components were monoterpenes (80.35%), with β-myrcene (42.46%), α-myrcene (37.23%), and caryophyllene (4.28%) as the major constituents. The MuEO inhibited the growth of promastigotes (IC50 205 ± 13.4 μg mL-1), axenic amastigotes (IC50 104.5 ± 11.82 μg mL-1) and decreased percentage of macrophage infection and number of amastigotes per macrophage (IC50 of 44.5 ± 4.37 μg⋅mL-1), suggesting significant anti-Leishmania activity. The cytotoxicity of MuEO was assessed by MTT test in Balb/c murine macrophages and by human erythrocytes lysis assay and low cytotoxicity for these cells was observed. The CC50 value against macrophages were 550 ± 29.21 μg mL-1, while cytotoxicity for erythrocytes was around 20% at the highest concentration assessed, with HC50 > 800 μg mL-1. While MuEO-induced anti-Leishmania activity is not mediated by increases in both lysosomal activity and nitric oxide production in macrophages, the results suggest the antiamastigote activity is associated with an immunomodulatory activity of macrophages due to an increase of phagocytic capability induced by MuEO. Thus, MuEO presented significant activity against Leishmania amazonensis, probably modulating the activation of macrophages, with low cytotoxicity to murine macrophages and human erythrocytes.
Collapse
Affiliation(s)
- C E S Carvalho
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil.
| | - E P C Sobrinho-Junior
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - L M Brito
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - L A D Nicolau
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - T P Carvalho
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - A K S Moura
- Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - K A F Rodrigues
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - S M P Carneiro
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - D D R Arcanjo
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - A M G L Citó
- Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| | - F A A Carvalho
- Medicinal Plants Research Center, Federal University of Piauí, 64049-550, Teresina, PI, Brazil
| |
Collapse
|
133
|
Vashi N, Andrabi SBA, Ghanwat S, Suar M, Kumar D. Ca 2+-dependent Focal Exocytosis of Golgi-derived Vesicles Helps Phagocytic Uptake in Macrophages. J Biol Chem 2017; 292:5144-5165. [PMID: 28174296 DOI: 10.1074/jbc.m116.743047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/12/2017] [Indexed: 11/06/2022] Open
Abstract
The role of Golgi apparatus during phagocytic uptake by macrophages has been ruled out in the past. Notably, all such reports were limited to Fcγ receptor-mediated phagocytosis. Here, we unravel a highly devolved mechanism for recruitment of Golgi-derived secretory vesicles during phagosome biogenesis, which was important for uptake of most cargos, except the IgG-coated ones. We report recruitment of mannosidase-II-positive Golgi-derived vesicles during uptake of diverse targets, including latex beads, Escherichia coli, Salmonella typhimurium, and Mycobacterium tuberculosis in human and mouse macrophages. The recruitment of mannosidase-II vesicles was an early event mediated by focal exocytosis and coincided with the recruitment of transferrin receptor, VAMP3, and dynamin-2. Brefeldin A treatment inhibited mannosidase-II recruitment and phagocytic uptake of serum-coated or -uncoated latex beads and E. coli However, consistent with previous studies, brefeldin A treatment did not affect uptake of IgG-coated latex beads. Mechanistically, recruitment of mannosidase-II vesicles during phagocytic uptake required Ca2+ from both extra- and intracellular sources apart from PI3K, microtubules, and dynamin-2. Extracellular Ca2+ via voltage-gated Ca2+ channels established a Ca2+-dependent local phosphatidylinositol 1,4,5-trisphosphate gradient, which guides the focal movement of Golgi-derived vesicles to the site of uptake. We confirmed Golgi-derived vesicles recruited during phagocytosis were secretory vesicles as their recruitment was sensitive to depletion of VAMP2 or NCS1, whereas recruitment of the recycling endosome marker VAMP3 was unaffected. Depletion of both VAMP2 and NCS1 individually resulted in the reduced uptake by macrophages. Together, the study provides a previously unprecedented role of Golgi-derived secretory vesicles in phagocytic uptake, the key innate defense function.
Collapse
Affiliation(s)
- Nimi Vashi
- From the Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Syed Bilal Ahmad Andrabi
- From the Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Swapnil Ghanwat
- From the Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Mrutyunjay Suar
- the School of Biotechnology, KIIT University, Bhubaneswar-751024, India
| | - Dhiraj Kumar
- From the Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067 and
| |
Collapse
|
134
|
Fujimoto K, Motowaki T, Tamura N, Aratani Y. Myeloperoxidase deficiency enhances zymosan phagocytosis associated with up-regulation of surface expression of CD11b in mouse neutrophils. Free Radic Res 2016; 50:1340-1349. [DOI: 10.1080/10715762.2016.1244821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kenta Fujimoto
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Takehiro Motowaki
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Naoya Tamura
- International College of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | - Yasuaki Aratani
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- International College of Arts and Sciences, Yokohama City University, Yokohama, Japan
| |
Collapse
|
135
|
Johnson JL, Ramadass M, He J, Brown SJ, Zhang J, Abgaryan L, Biris N, Gavathiotis E, Rosen H, Catz SD. Identification of Neutrophil Exocytosis Inhibitors (Nexinhibs), Small Molecule Inhibitors of Neutrophil Exocytosis and Inflammation: DRUGGABILITY OF THE SMALL GTPase Rab27a. J Biol Chem 2016; 291:25965-25982. [PMID: 27702998 DOI: 10.1074/jbc.m116.741884] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/21/2016] [Indexed: 12/22/2022] Open
Abstract
Neutrophils constitute the first line of cellular defense in response to bacterial and fungal infections and rely on granular proteins to kill microorganisms, but uncontrolled secretion of neutrophil cargos is injurious to the host and should be closely regulated. Thus, increased plasma levels of neutrophil secretory proteins, including myeloperoxidase and elastase, are associated with tissue damage and are hallmarks of systemic inflammation. Here, we describe a novel high-throughput screening approach to identify small molecule inhibitors of the interaction between the small GTPase Rab27a and its effector JFC1, two central regulators of neutrophil exocytosis. Using this assay, we have identified small molecule inhibitors of Rab27a-JFC1 binding that were also active in cell-based neutrophil-specific exocytosis assays, demonstrating the druggability of Rab GTPases and their effectors. These compounds, named Nexinhibs (neutrophil exocytosis inhibitors), inhibit exocytosis of azurophilic granules in human neutrophils without affecting other important innate immune responses, including phagocytosis and neutrophil extracellular trap production. Furthermore, the compounds are reversible and potent inhibitors of the extracellular production of superoxide anion by preventing the up-regulation of the granule membrane-associated subunit of the NADPH oxidase at the plasma membrane. Nexinhibs also inhibit the up-regulation of activation signature molecules, including the adhesion molecules CD11b and CD66b. Importantly, by using a mouse model of endotoxin-induced systemic inflammation, we show that these inhibitors have significant activity in vivo manifested by decreased plasma levels of neutrophil secretory proteins and significantly decreased tissue infiltration by inflammatory neutrophils. Altogether, our data present the first neutrophil exocytosis-specific inhibitor with in vivo anti-inflammatory activity, supporting its potential use as an inhibitor of systemic inflammation.
Collapse
Affiliation(s)
| | | | - Jing He
- From the Departments of Molecular and Experimental Medicine and
| | - Steven J Brown
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Jinzhong Zhang
- From the Departments of Molecular and Experimental Medicine and
| | - Lusine Abgaryan
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Nikolaos Biris
- the Departments of Biochemistry and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Evripidis Gavathiotis
- the Departments of Biochemistry and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hugh Rosen
- Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Sergio D Catz
- From the Departments of Molecular and Experimental Medicine and
| |
Collapse
|
136
|
Uhlmann J, Siemens N, Kai-Larsen Y, Fiedler T, Bergman P, Johansson L, Norrby-Teglund A. Phosphoglycerate Kinase—A Novel Streptococcal Factor Involved in Neutrophil Activation and Degranulation. J Infect Dis 2016; 214:1876-1883. [DOI: 10.1093/infdis/jiw450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023] Open
|
137
|
Mohsenzadeh MS, Hedayati N, Riahi-Zanjani B, Karimi G. Immunosuppression following dietary aflatoxin B1 exposure: a review of the existing evidence. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1209523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
138
|
Canetti EFD, Keane J, McLellan CP, Gray AB. Comparison of capillary and venous blood in the analysis of concentration and function of leucocyte sub-populations. Eur J Appl Physiol 2016; 116:1583-93. [PMID: 27306382 DOI: 10.1007/s00421-016-3413-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/06/2016] [Indexed: 01/30/2023]
Abstract
PURPOSE Compare capillary and venous blood in the analysis of concentration and function of leucocyte sub-populations. This study hypothesised that capillary samples may be used in a site-specific manner as an alternative source of blood samples for assays of leucocyte concentration and neutrophilic phagocytic function and reactive oxygen species (ROS) production, allowing acquisition of multiple samples to better monitor transient but significant post-exercise immune modulation. METHODS Resting blood samples were simultaneously obtained from vein, finger and earlobe of healthy subjects (n = 10, age: 25.1 ± 3.1 years). Leucocyte concentrations were measured using a five-part differential haematological analyser. Leucocyte sub-populations (CD3, CD4, CD8, CD19, CD56, CD14) and granulocytic functional-related (CD11b, CD18, CD16b, CD66b) surface antigen markers, neutrophil phagocytosis (FITC-labelled Escherichia coli) and stimulated ROS production (DHR) were quantified utilizing flow cytometry. A MANOVA (α < 0.05 significance) analysed the effects of the different sampling sites in the concentrations of leucocyte populations, their surface antigen expression and granulocytic functions. RESULTS Leucocyte concentration and neutrophilic ROS production yielded non-significant differences between sampling sites. Expression of granulocytic surface antigens was increased in both capillary sites compared to venous site (p = 0.008), particularly for adhesion markers CD11b/CD18. The percentage of neutrophils performing phagocytosis was higher in venous samples compared to finger (p = 0.025). Increased number of E. coli ingested was observed in venous sample compared to finger (p = 0.001) and to earlobe (p = 0.006). CONCLUSION Whilst attention must be paid for varying neutrophilic surface antigen expression and further studies are needed to establish appropriate reference ranges, this study supports the use of capillary blood samples in a site-specific manner to enhance sampling capabilities field-based research.
Collapse
Affiliation(s)
- Elisa F D Canetti
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, 4226, QLD, Australia.
| | - J Keane
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, 4226, QLD, Australia
| | - C P McLellan
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, 4226, QLD, Australia
| | - A B Gray
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, 4226, QLD, Australia
| |
Collapse
|
139
|
Hasan R, Rink L, Haase H. Chelation of Free Zn²⁺ Impairs Chemotaxis, Phagocytosis, Oxidative Burst, Degranulation, and Cytokine Production by Neutrophil Granulocytes. Biol Trace Elem Res 2016; 171:79-88. [PMID: 26400651 DOI: 10.1007/s12011-015-0515-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 01/08/2023]
Abstract
Neutrophil granulocytes are the largest leukocyte population in the blood and major players in the innate immune response. Impaired neutrophil function has been reported in in vivo studies with zinc-deficient human subjects and experimental animals. Moreover, in vitro formation of neutrophil extracellular traps has been shown to depend on free intracellular Zn(2+). This study investigates the requirement of Zn(2+) for several other essential neutrophil functions, such as chemotaxis, phagocytosis, cytokine production, and degranulation. To exclude artifacts resulting from indirect effects of zinc deprivation, such as impaired hematopoietic development and influences of other immune cells, direct effects of zinc deprivation were tested in vitro using cells isolated from healthy human donors. Chelation of Zn(2+) by the membrane permeable chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) reduced granulocyte migration toward N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF) and IL-8, indicating a role of free intracellular Zn(2+) in chemotaxis. However, a direct action of Zn(2+) as a chemoattractant, as previously reported by others, was not observed. Similar to chemotaxis, phagocytosis, oxidative burst, and granule release were also impaired in TPEN-treated granulocytes. Moreover, Zn(2+) contributes to the regulatory role of neutrophil granulocytes in the inflammatory response by affecting the cytokine production by these cells. TPEN inhibited the lipopolysaccharide-induced secretion of chemotactic IL-8 and also anti-inflammatory IL-1ra. In conclusion, free intracellular Zn(2+) plays essential roles in multiple neutrophil functions, affecting extravasation to the site of the infection, uptake and killing of microorganisms, and inflammation.
Collapse
Affiliation(s)
- Rafah Hasan
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
140
|
Carroll VN, Truillet C, Shen B, Flavell RR, Shao X, Evans MJ, VanBrocklin HF, Scott PJH, Chin FT, Wilson DM. [(11)C]Ascorbic and [(11)C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun (Camb) 2016; 52:4888-90. [PMID: 26963495 PMCID: PMC4854297 DOI: 10.1039/c6cc00895j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here we report the radiosynthesis of an endogenous redox pair, [(11)C]ascorbic acid ([(11)C]VitC) and [(11)C]dehydroascorbic acid ([(11)C]DHA), the reduced and oxidized forms of vitamin C, and their application to ROS sensing. These results provide the basis for in vivo detection of ROS using positron emission tomography (PET).
Collapse
Affiliation(s)
- V. N. Carroll
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - C. Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - B. Shen
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - R. R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - X. Shao
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - M. J. Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - H. F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - P. J. H. Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - F. T. Chin
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - D. M. Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| |
Collapse
|
141
|
Maares M, Haase H. Zinc and immunity: An essential interrelation. Arch Biochem Biophys 2016; 611:58-65. [PMID: 27021581 DOI: 10.1016/j.abb.2016.03.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022]
Abstract
The significance of the essential trace element zinc for immune function has been known for several decades. Zinc deficiency affects immune cells, resulting in altered host defense, increased risk of inflammation, and even death. The micronutrient zinc is important for maintenance and development of immune cells of both the innate and adaptive immune system. A disrupted zinc homeostasis affects these cells, leading to impaired formation, activation, and maturation of lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host defense via phagocytosis and oxidative burst. This review outlines the connection between zinc and immunity by giving a survey on the major roles of zinc in immune cell function, and their potential consequences in vivo.
Collapse
Affiliation(s)
- Maria Maares
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
142
|
Thymoquinone strongly inhibits fMLF-induced neutrophil functions and exhibits anti-inflammatory properties in vivo. Biochem Pharmacol 2016; 104:62-73. [PMID: 26774451 DOI: 10.1016/j.bcp.2016.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022]
Abstract
Polymorphonuclear neutrophils are key players in host defense against pathogens through the robust production of superoxide anion by the NADPH oxidase and the release of antibacterial proteins from granules. However, inappropriate release of these agents in the extracellular environment induces severe tissue injury, thereby contributing to the physiopathology of acute and chronic inflammatory disorders. Many studies have been carried out to identify molecules capable of inhibiting phagocyte functions, in particular superoxide anion production, for therapeutic purposes. In the present study, we show that thymoquinone (TQ), the major component of the volatile oil from Nigella sativa (black cumin) seeds strongly inhibits fMLF-induced superoxide production and granules exocytosis in neutrophils. The inhibition of superoxide anion was not due to a scavenger effect, as TQ did not inhibit superoxide anion produced by the xanthine/xanthine oxidase system. Interestingly, TQ impaired the phosphorylation on Ser-304 and Ser-328 of p47(PHOX), a cytosolic subunit of the NADPH oxidase. TQ also attenuated specific and azurophilic granule exocytosis in fMLF-stimulated neutrophils as evidenced by decreased cell surface expression of gp91(PHOX) and CD11b, and release of myeloperoxidase. Furthermore, both the PKC and MAPK pathways, which are involved in p47(PHOX) phosphorylation and granules exocytosis, respectively, were inhibited by TQ in fMLF-stimulated neutrophils. Finally, in a model of pleurisy induced by λ-carrageenan in rats, TQ reduced neutrophil accumulation in the pleural space, showing that it not only inhibits PMN functions in vitro, but also exhibits anti-inflammatory properties in vivo. Thus, TQ possesses promising anti-inflammatory therapeutic potential.
Collapse
|
143
|
Mechanisms of Bacterial Colonization of Implants and Host Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 971:15-27. [DOI: 10.1007/5584_2016_173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
144
|
He J, Johnson JL, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, Zhang J, Catz SD. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell 2015; 27:572-87. [PMID: 26680738 PMCID: PMC4751605 DOI: 10.1091/mbc.e15-05-0283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/08/2015] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanisms that regulate late endosomal maturation and function are not completely elucidated, and direct evidence of a calcium sensor is lacking. Here we identify a novel mechanism of late endosomal maturation that involves a new molecular interaction between the tethering factor Munc13-4, syntaxin 7, and VAMP8. Munc13-4 binding to syntaxin 7 was significantly increased by calcium. Colocalization of Munc13-4 and syntaxin 7 at late endosomes was demonstrated by high-resolution and live-cell microscopy. Munc13-4-deficient cells show increased numbers of significantly enlarged late endosomes, a phenotype that was mimicked by the fusion inhibitor chloroquine in wild-type cells and rescued by expression of Munc13-4 but not by a syntaxin 7-binding-deficient mutant. Late endosomes from Munc13-4-KO neutrophils show decreased degradative capacity. Munc13-4-knockout neutrophils show impaired endosomal-initiated, TLR9-dependent signaling and deficient TLR9-specific CD11b up-regulation. Thus we present a novel mechanism of late endosomal maturation and propose that Munc13-4 regulates the late endocytic machinery and late endosomal-associated innate immune cellular functions.
Collapse
Affiliation(s)
- Jing He
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jennifer L Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jlenia Monfregola
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Mahalakshmi Ramadass
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Kersi Pestonjamasp
- Cancer Center Microscopy Shared Resource, University of California, San Diego, La Jolla, CA 92093
| | - Gennaro Napolitano
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Jinzhong Zhang
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
145
|
ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia. Blood 2015; 127:898-907. [PMID: 26647392 DOI: 10.1182/blood-2015-08-664995] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022] Open
Abstract
Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils in several clinical and experimental settings, but little is known about the regulation of expression or function of neutrophil ICAM-1. In this study, we report on the de novo induction of ICAM-1 on the cell surface of murine neutrophils by lipopolysaccharide (LPS), tumor necrosis factor, and zymosan particles in vitro. The induction of neutrophil ICAM-1 was associated with enhanced phagocytosis of zymosan particles and reactive oxygen species (ROS) generation. Conversely, neutrophils from ICAM-1-deficient mice were defective in these effector functions. Mechanistically, ICAM-1-mediated intracellular signaling appeared to support neutrophil ROS generation and phagocytosis. In vivo, LPS-induced inflammation in the mouse cremaster muscle and peritoneal cavity led to ICAM-1 expression on intravascular and locally transmigrated neutrophils. The use of chimeric mice deficient in ICAM-1 on myeloid cells demonstrated that neutrophil ICAM-1 was not required for local neutrophil transmigration, but supported optimal intravascular and extravascular phagocytosis of zymosan particles. Collectively, the present results shed light on regulation of expression and function of ICAM-1 on neutrophils and identify it as an additional regulator of neutrophil effector responses in host defense.
Collapse
|
146
|
Localizing the lipid products of PI3Kγ in neutrophils. Adv Biol Regul 2015; 60:36-45. [PMID: 26596865 PMCID: PMC4739120 DOI: 10.1016/j.jbior.2015.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 11/23/2022]
Abstract
Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs.
Collapse
|
147
|
Babin K, Goncalves D, Girard D. Nanoparticles enhance the ability of human neutrophils to exert phagocytosis by a Syk-dependent mechanism. Biochim Biophys Acta Gen Subj 2015; 1850:2276-82. [DOI: 10.1016/j.bbagen.2015.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022]
|
148
|
Ilangkovan M, Jantan I, Mesaik MA, Bukhari SNA. Immunosuppressive effects of the standardized extract of Phyllanthus amarus on cellular immune responses in Wistar-Kyoto rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4917-30. [PMID: 26347462 PMCID: PMC4555964 DOI: 10.2147/dddt.s88189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phyllanthus amarus (family: Euphorbiaceae) is of immense interest due to its wide spectrum of biological activities. In the present study, the standardized 80% ethanol extract of P. amarus was investigated for its modulatory activity on various cellular immune parameters, including chemotaxis of neutrophils, engulfment of Escherichia coli by neutrophils, and Mac-1 expression, in leukocytes isolated from treated/nontreated Wistar-Kyoto rats. The detailed cell-mediated activity of P. amarus was also investigated, including analysis of the effects on T- and B-cell proliferation and CD4(+) and CD8(+) T-cell subsets in splenic mononuclear cells, and estimation of serum cytokine production by activated T-cells. The main components of the extract, phyllanthin, hypophyllanthin, corilagin, geraniin, ellagic acid, and gallic acid were identified and quantitatively analyzed in the extracts, using validated reversed-phase high-performance liquid chromatography (HPLC) methods. N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced neutrophils isolated from rats administered with the extract of P. amarus, at doses ranging from 100 to 400 mg/kg for 14 days, revealed a significant dose-dependent reduction in neutrophil migration (P<0.05). Similar patterns of inhibition were also observed in phagocytic activity and in fMLP-induced changes in expression of β2 integrin polymorphonuclear neutrophils. The results in P. amarus-treated rats also demonstrated a dose-dependent inhibition of both lipopolysaccharide-stimulated B-cell proliferation and concanavalin A-stimulated T-cell proliferation as compared with sensitized control. At a dose of 400 mg/kg (P<0.01), there was a significant decrease in the (%) expression of CD4(+) and CD8(+) in splenocytes and in serum cytokines of T helper (Th1) (IL-2 and IFN-γ) and Th2 (IL-4). In conclusion, P. amarus showed effective immunosuppressive activities in cellular immune response, by various immune regulatory mechanisms, and may be useful for improvement of immune-related disorders.
Collapse
Affiliation(s)
- Menaga Ilangkovan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohamed Ahmed Mesaik
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
149
|
Similar Neutrophil-Driven Inflammatory and Antibacterial Responses in Elderly Patients with Symptomatic and Asymptomatic Bacteriuria. Infect Immun 2015; 83:4142-53. [PMID: 26238715 DOI: 10.1128/iai.00745-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022] Open
Abstract
Differential diagnosis of asymptomatic bacteriuria (ASB) and urinary tract infection (UTI) is based on the presence of diverse symptoms, including fever (≥38.5°C), rigors, malaise, lethargy, flank pain, hematuria, suprapubic discomfort, dysuria, and urgent or frequent urination. There is consensus in the medical community that ASB warrants antibiotic treatment only for patients undergoing urological procedures that lead to mucosal bleeding, catheterized individuals whose ASB persists for more than 48 h after catheter removal, and pregnant women. Pyuria is associated with UTI and implicates host immune responses via release of antibacterial effectors and phagocytosis of pathogens by neutrophils. Such responses are not sufficiently described for ASB. Metaproteomic methods were used here to identify the pathogens and evaluate molecular evidence of distinct immune responses in cases of ASB compared to UTI in elderly patients who were hospitalized upon injury. Neutrophil-driven inflammatory responses to invading bacteria were not discernible in most patients diagnosed with ASB compared to those with UTI. In contrast, proteomic urine analysis for trauma patients with no evidence of bacteriuria, including those who suffered mucosal injuries via urethral catheterization, rarely showed evidence of neutrophil infiltration. The same enzymes contributing to the synthesis of leukotrienes LTB4 and LTC4, mediators of inflammation and pain, were found in the UTI and ASB cohorts. These data support the notion that the pathways mediating inflammation and pain in most elderly patients with ASB are not quantitatively different from those seen in most elderly patients with UTI and warrant larger clinical studies to assess whether a common antibiotic treatment strategy for elderly ASB and UTI patients is justified.
Collapse
|
150
|
Petropoulos M, Karamolegkou G, Rosmaraki E, Tsakas S. Hydrogen peroxide signals E. coli phagocytosis by human polymorphonuclear cells; up-stream and down-stream pathway. Redox Biol 2015. [PMID: 26204503 PMCID: PMC4804100 DOI: 10.1016/j.redox.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hydrogen peroxide (Η2Ο2) is produced during a variety of cellular procedures. In this paper, the regulatory role of Η2Ο2, in Escherichia coli phagocytosis by the human polymorphonuclears, was investigated. White blood cells were incubated with dihydrorhodamine (DHR) in order to study H2O2 synthesis and E. coli-FITC to study phagocytosis. Flow cytometry revealed increased synthesis of H2O2 in polymorphonuclears which incorporated E. coli-FITC. The blocking of H2O2 synthesis by specific inhibitors, N-ethylmaleimide (ΝΕΜ) for NADPH oxidase and diethyldithiocarbamate (DDC) for superoxide dismutase (SOD), decreased E. coli phagocytosis, as well. Immunoblot analysis of white blood cell protein extracts revealed that the blocking of NADPH oxidase and SOD decreased ERK-1/2 phosphorylation, while it had no effect on JNK and p38. Confocal microscopy showed that phosphorylation of MAPKs and phagocytosis solely occur in the polymorphonuclear and not in mononuclear cells. The use of specific MAPKs inhibitors showed that all of them are necessary for phagocytosis, but only phospho-p38 affects H2O2 synthesis. The blocking of JNK phosphorylation, in the presence of E. coli, evoked a further decrease of cytoplasmic p47 thus increasing its translocation onto the plasma membrane for the assembly of NADPH oxidase. It appears that newly synthesised H2O2 invigorates the phosphorylation and action of ERK-1/2 in E. coli phagocytosis, while phospho-JNK and phospho-p38 appear to regulate H2O2 production. Phagocytosis by polymorphonuclears is accompanied by a targeted production of H2O2. H2O2 signals E. coli phagocytosis by invigorating ERK phosphorylation. Phosphorylation of p38, appears to be involved in H2O2 synthesis. Phospho-JNK appears to support a regulating mechanism for NADPH oxidase assembly.
Collapse
Affiliation(s)
| | | | | | - Sotiris Tsakas
- Laboratory of Biology, Department of Biology, University of Patras, Greece.
| |
Collapse
|