101
|
Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S, Suzuki E, Tanabe M, Zhao Y, Kimura S, Fujiyama S, Ueda T, Umetsu D, Ito T, Takeyama KI, Kato S. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev 2010; 24:159-70. [PMID: 20040570 PMCID: PMC2807351 DOI: 10.1101/gad.1857410] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/30/2009] [Indexed: 11/25/2022]
Abstract
Chromatin reorganization is essential for transcriptional control by sequence-specific transcription factors. However, the molecular link between transcriptional control and chromatin reconfiguration remains unclear. By colocalization of the nuclear ecdysone receptor (EcR) on the ecdysone-induced puff in the salivary gland, Drosophila DEK (dDEK) was genetically identified as a coactivator of EcR in both insect cells and intact flies. Biochemical purification and characterization of the complexes containing fly and human DEKs revealed that DEKs serve as histone chaperones via phosphorylation by forming complexes with casein kinase 2. Consistent with the preferential association of the DEK complex with histones enriched in active epigenetic marks, dDEK facilitated H3.3 assembly during puff formation. In some human myeloid leukemia patients, DEK was fused to CAN by chromosomal translocation. This mutation significantly reduced formation of the DEK complex, which is required for histone chaperone activity. Thus, the present study suggests that at least one histone chaperone can be categorized as a type of transcriptional coactivator for nuclear receptors.
Collapse
Affiliation(s)
- Shun Sawatsubashi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Takuya Murata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Jinseon Lim
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Ryoji Fujiki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Saya Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Eriko Suzuki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiko Tanabe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yue Zhao
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Shuhei Kimura
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Sally Fujiyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Takashi Ueda
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Daiki Umetsu
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Ken-ichi Takeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
102
|
Tong EHY, Guo JJ, Xu SX, Mak K, Chung SK, Chung SSM, Huang AL, Ko BCB. Inducible nucleosome depletion at OREBP-binding-sites by hypertonic stress. PLoS One 2009; 4:e8435. [PMID: 20041176 PMCID: PMC2793017 DOI: 10.1371/journal.pone.0008435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/22/2009] [Indexed: 01/01/2023] Open
Abstract
Background Osmotic Response Element-Binding Protein (OREBP), also known as TonEBP or NFAT5, is a unique transcription factor. It is hitherto the only known mammalian transcription factor that regulates hypertonic stress-induced gene transcription. In addition, unlike other monomeric members of the NFAT family, OREBP exists as a homodimer and it is the only transcription factor known to bind naked DNA targets by complete encirclement in vitro. Nevertheless, how OREBP interacts with target DNA, also known as ORE/TonE, and how it elicits gene transcription in vivo, remains unknown. Methodology Using hypertonic induction of the aldose reductase (AR) gene activation as a model, we showed that OREs contained dynamic nucleosomes. Hypertonic stress induced a rapid and reversible loss of nucleosome(s) around the OREs. The loss of nucleosome(s) was found to be initiated by an OREBP-independent mechanism, but was significantly potentiated in the presence of OREBP. Furthermore, hypertonic induction of AR gene was associated with an OREBP-dependent hyperacetylation of histones that spanned the 5′ upstream sequences and at least some exons of the gene. Nevertheless, nucleosome loss was not regulated by the acetylation status of histone. Significance Our findings offer novel insights into the mechanism of OREBP-dependent transcriptional regulation and provide a basis for understanding how histone eviction and transcription factor recruitment are coupled.
Collapse
Affiliation(s)
- Edith H. Y. Tong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | - Jin-Jun Guo
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute of Viral Hepatitis, Chongqing University of Medical Sciences, Chong Qing, China
| | - Song-Xiao Xu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
| | - Keri Mak
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Sookja K. Chung
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | | | - Ali-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Institute of Viral Hepatitis, Chongqing University of Medical Sciences, Chong Qing, China
| | - Ben C. B. Ko
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
103
|
Abstract
In the eukaryotic genome, the thousands of genes that encode messenger RNA are transcribed by a molecular machine called RNA polymerase II. Analysing the distribution and status of RNA polymerase II across a genome has provided crucial insights into the long-standing mysteries of transcription and its regulation. These studies identify points in the transcription cycle where RNA polymerase II accumulates after encountering a rate-limiting step. When coupled with genome-wide mapping of transcription factors, these approaches identify key regulatory steps and factors and, importantly, provide an understanding of the mechanistic generalities, as well as the rich diversities, of gene regulation.
Collapse
|
104
|
Abstract
The regulation of gene transcription involves a dynamic balance between packaging regulatory sequences into chromatin and allowing transcriptional regulators access to these sequences. Access is restricted by the nucleosomes, but these can be repositioned or ejected by enzymes known as nucleosome remodellers. In addition, the DNA sequence can impart stiffness or curvature to the DNA, thereby affecting the position of nucleosomes on the DNA, influencing particular promoter 'architectures'. Recent genome-wide studies in yeast suggest that constitutive and regulated genes have architectures that differ in terms of nucleosome position, turnover, remodelling requirements and transcriptional noise.
Collapse
Affiliation(s)
- Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
105
|
Kwon CS, Lee D, Choi G, Chung WI. Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:112-21. [PMID: 19500304 DOI: 10.1111/j.1365-313x.2009.03938.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Trimethylation of histone H3 at lysine 27 (H3K27me3) is a histone marker that is present in inactive gene loci in both plants and animals. Transcription of some of the genes with H3K27me3 should be induced by internal or external cues, yet the dynamic fate of H3K27me3 in these genes during transcriptional regulation is poorly understood in plants. Here we show that H3K27me3 in two cold-responsive genes, COR15A and ATGOLS3, decreases gradually in Arabidopsis during exposure to cold temperatures. We found that removal of H3K27me3 can occur by both histone occupancy-dependent and -independent mechanisms. Upon cold exposure, histone H3 levels decreased in the promoter regions of COR15A and ATGOLS3 but not in their transcribed regions. When we returned cold-exposed plants to normal growth conditions, transcription of COR15A and ATGOLS3 was completely repressed to the initial level before cold exposure in 1 day. In contrast, plants still maintained the cold-triggered decrease in H3K27me3 at COR15A and ATGOLS3, but this decrease did not enhance transcriptional induction of the two genes upon re-exposure to cold. Taken together, these results indicate that gene activation is not inhibited by H3K27me3 itself but rather leads to removal of H3K27me3, and that H3K27me3 can be inherited at a quantitative level, thereby serving as a memory marker for recent transcriptional activity in Arabidopsis.
Collapse
Affiliation(s)
- Chang Seob Kwon
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.
| | | | | | | |
Collapse
|
106
|
Ohsawa R, Adkins M, Tyler JK. Epigenetic inheritance of an inducibly nucleosome-depleted promoter and its associated transcriptional state in the apparent absence of transcriptional activators. Epigenetics Chromatin 2009; 2:11. [PMID: 19747370 PMCID: PMC2749832 DOI: 10.1186/1756-8935-2-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/11/2009] [Indexed: 11/26/2022] Open
Abstract
Background Dynamic changes to the chromatin structure play a critical role in transcriptional regulation. This is exemplified by the Spt6-mediated histone deposition on to histone-depleted promoters that results in displacement of the general transcriptional machinery during transcriptional repression. Results Using the yeast PHO5 promoter as a model, we have previously shown that blocking Spt6-mediated histone deposition on to the promoter leads to persistent transcription in the apparent absence of transcriptional activators in vivo. We now show that the nucleosome-depleted PHO5 promoter and its associated transcriptionally active state can be inherited through DNA replication even in the absence of transcriptional activators. Transcriptional reinitiation from the nucleosome-depleted PHO5 promoter in the apparent absence of activators in vivo does not require Mediator. Notably, the epigenetic inheritance of the nucleosome-depleted PHO5 promoter through DNA replication does not require ongoing transcription. Conclusion Our results suggest that there may be a memory or an epigenetic mark on the nucleosome-depleted PHO5 promoter that is independent of the transcription apparatus and maintains the promoter in a nucleosome-depleted state through DNA replication.
Collapse
Affiliation(s)
- Ryosuke Ohsawa
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA.
| | | | | |
Collapse
|
107
|
The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. EMBO J 2009; 28:3378-89. [PMID: 19745812 DOI: 10.1038/emboj.2009.270] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022] Open
Abstract
Regulation of the CLN1 and CLN2 G1 cyclin genes controls cell cycle progression. The SBF activator binds to these promoters but is kept inactive by the Whi5 and Stb1 inhibitors. The Cdc28 cyclin-dependent kinase phosphorylates Whi5, ending the inhibition. Our chromatin immunoprecipitation (ChIP) experiments show that SBF, Whi5 and Stb1 recruit both Cdc28 and the Rpd3(L) histone deacetylase to CLN promoters, extending the analogy with mammalian G1 cyclin promoters in which Rb recruits histone deacetylases. Finally, we show that the SBF subunit Swi6 recruits the FACT chromatin reorganizer to SBF- and MBF-regulated genes. Mutations affecting FACT reduce the transient nucleosome eviction seen at these promoters during a normal cell cycle and also reduce expression. Temperature-sensitive mutations affecting FACT and Cdc28 can be suppressed by disruption of STB1 and WHI5, suggesting that one critical function of FACT and Cdc28 is overcoming chromatin repression at G1 cyclin promoters. Thus, SBF recruits complexes to promoters that either enhance (FACT) or repress (Rpd3L) accessibility to chromatin, and also recruits the kinase that activates START.
Collapse
|
108
|
Li C, Wu K, Fu G, Li Y, Zhong Y, Lin X, Zhou Y, Tian L, Huang S. Regulation of oleosin expression in developing peanut (Arachis hypogaea L.) embryos through nucleosome loss and histone modifications. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4371-4382. [PMID: 19737778 DOI: 10.1093/jxb/erp275] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleosome loss and histone modifications are important mechanisms for transcriptional regulation. Concomitant changes in chromatin structures of two peanut (Arachis hypogaea L.) oleosin genes, AhOleo17.8 and AhOleo18.5, were examined in relation to transcriptional activity. Spatial and temporal expression analyses showed that both AhOleo17.8 and AhOleo18.5 promoters can adopt three conformational states, an inactive state (in vegetative tissues), a basal activated state (in early maturation embryos), and a fully activated state (in late maturation embryos). Chromatin immunoprecipitation assays revealed an increase of histone H3 acetylation levels at the proximal promoters and coding regions of AhOleo17.8 and AhOleo18.5 associated with basal transcription in early maturation embryos. Meanwhile, a decrease of histone H3K9 dimethylation levels at coding regions of oleosins was observed in early maturation embryos. However, a dramatic decrease in the histone acetylation signal was observed at the core promoters and the coding regions of the two oleosins in the fully activated condition in late maturation embryos. Although a small decrease of histone H3 levels of oleosins chromatin was detected in early maturation embryos, a significant loss of histone H3 levels occurred in late maturation embryos. These analyses indicate that the histone eviction from the proximal promoters and coding regions is associated with the high expression of oleosin genes during late embryos maturation. Moreover, the basal expression of oleosins in early maturation embryos is accompanied by the increase of histone H3 acetylation and decrease of histone H3K9me2.
Collapse
Affiliation(s)
- Chenlong Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Manohar M, Mooney AM, North JA, Nakkula RJ, Picking JW, Edon A, Fishel R, Poirier MG, Ottesen JJ. Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 2009; 284:23312-21. [PMID: 19520870 PMCID: PMC2749105 DOI: 10.1074/jbc.m109.003202] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/13/2009] [Indexed: 11/06/2022] Open
Abstract
Histone post-translational modifications are essential for regulating and facilitating biological processes such as RNA transcription and DNA repair. Fifteen modifications are located in the DNA-histone dyad interface and include the acetylation of H3-K115 (H3-K115Ac) and H3-K122 (H3-K122Ac), but the functional consequences of these modifications are unknown. We have prepared semisynthetic histone H3 acetylated at Lys-115 and/or Lys-122 by expressed protein ligation and incorporated them into single nucleosomes. Competitive reconstitution analysis demonstrated that the acetylation of H3-K115 and H3-K122 reduces the free energy of histone octamer binding. Restriction enzyme kinetic analysis suggests that these histone modifications do not alter DNA accessibility near the sites of modification. However, acetylation of H3-K122 increases the rate of thermal repositioning. Remarkably, Lys --> Gln substitution mutations, which are used to mimic Lys acetylation, do not fully duplicate the effects of the H3-K115Ac or H3-K122Ac modifications. Our results are consistent with the conclusion that acetylation in the dyad interface reduces DNA-histone interaction(s), which may facilitate nucleosome repositioning and/or assembly/disassembly.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard Fishel
- Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio 43210
| | | | | |
Collapse
|
110
|
The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol Cell Biol 2009; 29:5226-37. [PMID: 19635810 DOI: 10.1128/mcb.00894-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Asf1 and Rad6 pathways have been implicated in a number of common processes such as suppression of gross chromosomal rearrangements (GCRs), DNA repair, modification of chromatin, and proper checkpoint functions. We examined the relationship between Asf1 and different gene products implicated in postreplication repair (PRR) pathways in the suppression of GCRs, checkpoint function, sensitivity to hydroxyurea (HU) and methyl methanesulfonate (MMS), and ubiquitination of proliferating cell nuclear antigen (PCNA). We found that defects in Rad6 PRR pathway and Siz1/Srs2 homologous recombination suppression (HRS) pathway genes suppressed the increased GCR rates seen in asf1 mutants, which was independent of translesion bypass polymerases but showed an increased dependency on Dun1. Combining an asf1 deletion with different PRR mutations resulted in a synergistic increase in sensitivity to chronic HU and MMS treatment; however, these double mutants were not checkpoint defective, since they were capable of recovering from acute treatment with HU. Interestingly, we found that Asf1 and Rad6 cooperate in ubiquitination of PCNA, indicating that Rad6 and Asf1 function in parallel pathways that ubiquitinate PCNA. Our results show that ASF1 probably contributes to the maintenance of genome stability through multiple mechanisms, some of which involve the PRR and HRS pathways.
Collapse
|
111
|
DNA polymerase epsilon, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator. EMBO J 2009; 28:2583-600. [PMID: 19629037 DOI: 10.1038/emboj.2009.198] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 06/22/2009] [Indexed: 11/08/2022] Open
Abstract
Insulators bind transcription factors and use chromatin remodellers and modifiers to mediate insulation. In this report, we identified proteins required for the efficient formation and maintenance of a specialized chromatin structure at the yeast tRNA insulator. The histone acetylases, SAS-I and NuA4, functioned in insulation, independently of tRNA and did not participate in the formation of the hypersensitive site at the tRNA. In contrast, DNA polymerase epsilon, functioned with the chromatin remodeller, Rsc, and the histone acetylase, Rtt109, to generate a histone-depleted region at the tRNA insulator. Rsc and Rtt109 were required for efficient binding of TFIIIB to the tRNA insulator, and the bound transcription factor and Rtt109 in turn were required for the binding of Rsc to tRNA. Robust insulation during growth and cell division involves the formation of a hypersensitive site at the insulator during chromatin maturation together with competition between acetylases and deacetylases.
Collapse
|
112
|
Ransom M, Williams SK, Dechassa ML, Das C, Linger J, Adkins M, Liu C, Bartholomew B, Tyler JK. FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation. J Biol Chem 2009; 284:23461-71. [PMID: 19574230 DOI: 10.1074/jbc.m109.019562] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The packaging of the eukaryotic genome into chromatin represses gene expression by blocking access of the general transcription machinery to the underlying DNA sequences. Accordingly, eukaryotes have developed a variety of mechanisms to disrupt, alter, or disassemble nucleosomes from promoter regions and open reading frames to allow transcription to occur. Although we know that chromatin disassembly from the yeast PHO5 promoter is triggered by the Pho4 activator, the mechanism is far from clear. Here we show that the Pho4 activator can occupy its nucleosome-bound DNA binding site within the PHO5 promoter. In contrast to the role of Saccharomyces cerevisiae FACT (facilitates chromatin transcription) complex in assembling chromatin within open reading frames, we find that FACT is involved in the disassembly of histones H2A/H2B from the PHO5 promoter during transcriptional induction. We have also discovered that the proteasome is required for efficient chromatin disassembly and transcriptional induction from the PHO5 promoter. Mutants of the degradation function of the proteasome have a defect in recruitment of the Pho4 activator, whereas mutants of the ATPase cap of the proteasome do recruit Pho4 but are still delayed for chromatin assembly. Finally, we rule out the possibility that the proteasome or ATPase cap is driving chromatin disassembly via a potential ATP-dependent chromatin remodeling activity.
Collapse
Affiliation(s)
- Monica Ransom
- Department of Biochemistry, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
An rtt109-independent role for vps75 in transcription-associated nucleosome dynamics. Mol Cell Biol 2009; 29:4220-34. [PMID: 19470761 DOI: 10.1128/mcb.01882-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The histone chaperone Vps75 forms a complex with, and stimulates the activity of, the histone acetyltransferase Rtt109. However, Vps75 can also be isolated on its own and might therefore possess Rtt109-independent functions. Analysis of epistatic miniarray profiles showed that VPS75 genetically interacts with factors involved in transcription regulation whereas RTT109 clusters with genes linked to DNA replication/repair. Additional genetic and biochemical experiments revealed a close relationship between Vps75 and RNA polymerase II. Furthermore, Vps75 is recruited to activated genes in an Rtt109-independent manner, and its genome-wide association with genes correlates with transcription rate. Expression microarray analysis identified a number of genes whose normal expression depends on VPS75. Interestingly, histone H2B dynamics at some of these genes are consistent with a role for Vps75 in histone H2A/H2B eviction/deposition during transcription. Indeed, reconstitution of nucleosome disassembly using the ATP-dependent chromatin remodeler Rsc and Vps75 revealed that these proteins can cooperate to remove H2A/H2B dimers from nucleosomes. These results indicate a role for Vps75 in nucleosome dynamics during transcription, and importantly, this function appears to be largely independent of Rtt109.
Collapse
|
114
|
SWI/SNF and Asf1p cooperate to displace histones during induction of the saccharomyces cerevisiae HO promoter. Mol Cell Biol 2009; 29:4057-66. [PMID: 19470759 DOI: 10.1128/mcb.00400-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Regulation of the Saccharomyces cerevisiae HO promoter has been shown to require the recruitment of chromatin-modifying and -remodeling enzymes. Despite this, relatively little is known about what changes to chromatin structure occur during the course of regulation at HO. Here, we used indirect end labeling in synchronized cultures to show that the chromatin structure is disrupted in a region that spans bp -600 to -1800 relative to the transcriptional start site. Across this region, there is a loss of canonical nucleosomes and a reduction in histone DNA cross-linking, as monitored by chromatin immunoprecipitation. The ATPase Snf2 is required for these alterations, but the histone acetyltransferase Gcn5 is not. This suggests that the SWI/SNF complex is directly involved in nucleosome removal at HO. We also present evidence indicating that the histone chaperone Asf1 assists in this. These observations suggest that SWI/SNF-related complexes in concert with histone chaperones act to remove histone octamers from DNA during the course of gene regulation.
Collapse
|
115
|
Takahata S, Yu Y, Stillman DJ. FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter. Mol Cell 2009; 34:405-15. [PMID: 19481521 PMCID: PMC2767235 DOI: 10.1016/j.molcel.2009.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/10/2009] [Accepted: 04/09/2009] [Indexed: 11/23/2022]
Abstract
Transcriptional activators and coactivators overcome repression by chromatin, but regulation of chromatin disassembly and coactivator binding to promoters is poorly understood. Activation of the yeast HO gene follows the sequential binding of both sequence-specific DNA-binding proteins and coactivators during the cell cycle. Here, we show that the nucleosome disassembly occurs in waves both along the length of the promoter and during the cell cycle. Different chromatin modifiers are required for chromatin disassembly at different regions of the promoter, with Swi/Snf, the FACT chromatin reorganizer, and the Asf1 histone chaperone each required for nucleosome eviction at distinct promoter regions. FACT and Asf1 both bind to upstream elements of the HO promoter well before the gene is transcribed. The Swi/Snf, SAGA, and Mediator coactivators bind first to the far upstream promoter region and subsequently to a promoter proximal region, and FACT and Asf1 are both required for this coactivator re-recruitment.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112
| | - Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112
| | - David J. Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112
| |
Collapse
|
116
|
Abstract
Activated transcription in eukaryotes requires the aid of numerous co-factors to overcome the physical barriers chromatin poses to activation, bridge the gap between activators and polymerase, and ensure appropriate regulation. S. cerevisiae has long been a model organism for studying the role of co-activators in the steps leading up to gene activation. Detailed studies on the recruitment of these co-activators have been carried out for more than a dozen promoters. Taking a step back to survey these results, however, suggests that there are few generalizations that could be used to guide future studies of uncharacterized promoters.
Collapse
Affiliation(s)
- Rhiannon Biddick
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
117
|
Padmanabhan B, Kataoka K, Umehara T, Adachi N, Yokoyama S, Horikoshi M. Structural similarity between histone chaperone Cia1p/Asf1p and DNA-binding protein NF-kappaB. J Biochem 2009; 138:821-9. [PMID: 16428312 DOI: 10.1093/jb/mvi182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural relationships between histone-binding proteins and DNA-binding proteins are important, since nucleosome-interacting factors possess histone-binding and/or DNA-binding components. S. cerevisiae (Sc) Cia1p/Asf1p, a homologue of human CIA (CCG1-interacting factor A), is the most evolutionarily conserved histone chaperone, which facilitates nucleosome assembly by interacting with the nucleosome entry site of the core histones H3/H4. The crystal structure of the evolutionarily conserved domain (residues 1-169) of Cia1p (ScCia1p-DeltaC2) was determined at 2.95 A resolution. The refined model contains 166 residues in the asymmetric unit. The overall tertiary structure resembles a beta-sandwich fold, and belongs to the "switched" immunoglobulin class of proteins. The crystal structure suggests that ScCia1p-DeltaC2 is structurally related to the DNA-binding proteins, such as NF-kappaB and its family members. This is the first examination of the structural similarities between a histone chaperone and DNA-binding proteins. We discuss the possibilities that the strands beta3 and beta4, which possess highly electronegative surface potentials, are the important regions for the interaction with core histones, and that the histone chaperone ScCia1p/Asf1p and the DNA-binding protein NF-kappaB may have evolved from the same prototypal protein class.
Collapse
Affiliation(s)
- Balasundaram Padmanabhan
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 5-9-6 Tokodai, Tsukuba 300-2635
| | | | | | | | | | | |
Collapse
|
118
|
Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability. Mol Cell Biol 2009; 29:2960-81. [PMID: 19307305 DOI: 10.1128/mcb.01054-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We showed previously that the strong PHO5 promoter is less dependent on chromatin cofactors than the weaker coregulated PHO8 promoter. In this study we asked if chromatin remodeling at the even stronger PHO84 promoter was correspondingly less cofactor dependent. The repressed PHO84 promoter showed a short hypersensitive region that was flanked upstream and downstream by a positioned nucleosome and contained two transactivator Pho4 sites. Promoter induction generated an extensive hypersensitive and histone-depleted region, yielding two more Pho4 sites accessible. This remodeling was strictly Pho4 dependent, strongly dependent on the remodelers Snf2 and Ino80 and on the histone acetyltransferase Gcn5, and more weakly on the acetyltransferase Rtt109. Importantly, remodeling of each of the two positioned nucleosomes required Snf2 and Ino80 to different degrees. Only remodeling of the upstream nucleosome was strictly dependent on Snf2. Further, remodeling of the upstream nucleosome was more dependent on Ino80 than remodeling of the downstream nucleosome. Both nucleosomes differed in their intrinsic stabilities as predicted in silico and measured in vitro. The causal relationship between the different nucleosome stabilities and the different cofactor requirements was shown by introducing destabilizing mutations in vivo. Therefore, chromatin cofactor requirements were determined by intrinsic nucleosome stabilities rather than correlated to promoter strength.
Collapse
|
119
|
Leimgruber E, Seguín-Estévez Q, Dunand-Sauthier I, Rybtsova N, Schmid CD, Ambrosini G, Bucher P, Reith W. Nucleosome eviction from MHC class II promoters controls positioning of the transcription start site. Nucleic Acids Res 2009; 37:2514-28. [PMID: 19264803 PMCID: PMC2677874 DOI: 10.1093/nar/gkp116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequence.
Collapse
Affiliation(s)
- Elisa Leimgruber
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, CH-1211, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Knowing the precise locations of nucleosomes in a genome is key to understanding how genes are regulated. Recent 'next generation' ChIP-chip and ChIP-Seq technologies have accelerated our understanding of the basic principles of chromatin organization. Here we discuss what high-resolution genome-wide maps of nucleosome positions have taught us about how nucleosome positioning demarcates promoter regions and transcriptional start sites, and how the composition and structure of promoter nucleosomes facilitate or inhibit transcription. A detailed picture is starting to emerge of how diverse factors, including underlying DNA sequences and chromatin remodelling complexes, influence nucleosome positioning.
Collapse
Affiliation(s)
- Cizhong Jiang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
121
|
Grigsby IF, Rutledge EM, Morton CA, Finger FP. Functional redundancy of two C. elegans homologs of the histone chaperone Asf1 in germline DNA replication. Dev Biol 2009; 329:64-79. [PMID: 19233156 DOI: 10.1016/j.ydbio.2009.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/30/2009] [Accepted: 02/11/2009] [Indexed: 11/20/2022]
Abstract
Eukaryotic genomes contain either one or two genes encoding homologs of the highly conserved histone chaperone Asf1, however, little is known of their in vivo roles in animal development. UNC-85 is one of the two Caenorhabditis elegans Asf1 homologs and functions in post-embryonic replication in neuroblasts. Although UNC-85 is broadly expressed in replicating cells, the specificity of the mutant phenotype suggested possible redundancy with the second C. elegans Asf1 homolog, ASFL-1. The asfl-1 mRNA is expressed in the meiotic region of the germline, and mutants in either Asf1 genes have reduced brood sizes and low penetrance defects in gametogenesis. The asfl-1, unc-85 double mutants are sterile, displaying defects in oogenesis and spermatogenesis, and analysis of DNA synthesis revealed that DNA replication in the germline is blocked. Analysis of somatic phenotypes previously observed in unc-85 mutants revealed that they are neither observed in asfl-1 mutants, nor enhanced in the double mutants, with the exception of enhanced male tail abnormalities in the double mutants. These results suggest that the two Asf1 homologs have partially overlapping functions in the germline, while UNC-85 is primarily responsible for several Asf1 functions in somatic cells, and is more generally involved in replication throughout development.
Collapse
Affiliation(s)
- Iwen F Grigsby
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Biotech-BCHM-2, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
122
|
Groth A. Replicating chromatin: a tale of histonesThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:51-63. [DOI: 10.1139/o08-102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures reassembly on nascent DNA strands. The aim of this review is to discuss how histones — new and old — are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms.
Collapse
Affiliation(s)
- Anja Groth
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark (e-mail: )
| |
Collapse
|
123
|
Henikoff S. Epigenetic Profiling of Histone Variants. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
124
|
Kim HD, O'Shea EK. A quantitative model of transcription factor-activated gene expression. Nat Struct Mol Biol 2008; 15:1192-8. [PMID: 18849996 PMCID: PMC2696132 DOI: 10.1038/nsmb.1500] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/23/2008] [Indexed: 12/12/2022]
Abstract
A challenge facing biology is to develop quantitative, predictive models of gene regulation. Eukaryotic promoters contain transcription factor binding sites of differing affinity and accessibility, but we understand little about how these variables combine to generate a fine-tuned, quantitative transcriptional response. Here we used the PHO5 promoter in budding yeast to quantify the relationship between transcription factor input and gene expression output, termed the gene-regulation function (GRF). A model that captures variable interactions between transcription factors, nucleosomes and the promoter faithfully reproduced the observed quantitative changes in the GRF that occur upon altering the affinity of transcription factor binding sites, and implicates nucleosome-modulated accessibility of transcription factor binding sites in increasing the diversity of gene expression profiles. This work establishes a quantitative framework that can be applied to predict GRFs of other eukaryotic genes.
Collapse
Affiliation(s)
- Harold D Kim
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Northwest Laboratories, 52 Oxford Street, Room 445.40, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
125
|
Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol 2008; 83:200-9. [PMID: 18971269 DOI: 10.1128/jvi.00645-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Varicella-zoster virus (VZV) immediate-early 63 protein (IE63) is abundantly expressed during both acute infection in vitro and latent infection in human ganglia. Using the yeast two-hybrid system, we found that VZV IE63 interacts with human antisilencing function 1 protein (ASF1). ASF1 is a nucleosome assembly factor which is a member of the H3/H4 family of histone chaperones. IE63 coimmunoprecipitated and colocalized with ASF1 in transfected cells expressing IE63 and in VZV-infected cells. IE63 also colocalized with ASF1 in both lytic and latently VZV-infected enteric neurons. ASF1 exists in two isoforms, ASF1a and ASF1b, in mammalian cells. IE63 preferentially bound to ASF1a, and the amino-terminal 30 amino acids of ASF1a were critical for its interaction with IE63. VZV IE63 amino acids 171 to 208 and putative phosphorylation sites of IE63, both of which are critical for virus replication and latency in rodents, were important for the interaction of IE63 with ASF1. Finally, we found that IE63 increased the binding of ASF1 to histone H3.1 and H3.3, which suggests that IE63 may help to regulate levels of histones in virus-infected cells. Since ASF1 mediates eviction and deposition of histones during transcription, the interaction of VZV IE63 with ASF1 may help to regulate transcription of viral or cellular genes during lytic and/or latent infection.
Collapse
|
126
|
Downs JA. Histone H3 K56 acetylation, chromatin assembly, and the DNA damage checkpoint. DNA Repair (Amst) 2008; 7:2020-4. [PMID: 18848648 DOI: 10.1016/j.dnarep.2008.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 01/12/2023]
Abstract
The role of chromatin and its modulation during DNA repair has become increasingly understood in recent years. A number of histone modifications that contribute towards the cellular response to DNA damage have been identified, including the acetylation of histone H3 at lysine 56. H3 K56 acetylation occurs normally during S phase, but persists in the presence of DNA damage. In the absence of this modification, cellular survival following DNA damage is impaired. Two recent reports provide additional insights into how H3 K56 acetylation functions in DNA damage responses. In particular, this modification appears to be important for both normal replication-coupled nucleosome assembly as well as nucleosome assembly at sites of DNA damage following repair.
Collapse
Affiliation(s)
- Jessica A Downs
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, United Kingdom.
| |
Collapse
|
127
|
Pondugula S, Kladde MP. Single-molecule analysis of chromatin: changing the view of genomes one molecule at a time. J Cell Biochem 2008; 105:330-7. [PMID: 18615586 PMCID: PMC2930150 DOI: 10.1002/jcb.21849] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Wrapping DNA into chromatin provides a wealth of regulatory mechanisms that ensure normal growth and development in eukaryotes. Our understanding of chromatin structure, including nucleosomes and non-histone protein-DNA interactions, has benefited immensely from nuclease and chemical digestion techniques. DNA-bound proteins, such as histones or site-specific factors, protect DNA against nuclease cleavage and generate large nucleosomal or small regulatory factor footprints. Chromatin subject to distinct modes of regulation often coincides with sites of nuclease hypersensitivity or nucleosome positioning. An inherent limitation of cleavage-based analyses has been the inability to reliably analyze regions of interest when levels of digestion depart from single-hit kinetics. Moreover, cleavage-based techniques provide views that are averaged over all the molecules in a sample population. Therefore, in cases of occupancy of multiple regulatory elements by factors, one cannot define whether the factors are bound to the same or different molecules in the population. The recent development of DNA methyltransferase-based, single-molecule MAP-IT technology overcomes limitations of ensemble approaches and has opened numerous new avenues in chromatin research. Here, we review the strengths, limitations, applications and future prospects of MAP-IT ranging from structural issues to mechanistic questions in eukaryotic chromatin regulation.
Collapse
Affiliation(s)
- Santhi Pondugula
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, 1376 Mowry Road, Box 103633, Gainesville, Florida 32610-3633
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, 1376 Mowry Road, Box 103633, Gainesville, Florida 32610-3633
| |
Collapse
|
128
|
Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler JK. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 2008; 134:231-43. [PMID: 18662539 PMCID: PMC2610811 DOI: 10.1016/j.cell.2008.06.035] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 05/02/2008] [Accepted: 06/16/2008] [Indexed: 11/28/2022]
Abstract
DNA damage causes checkpoint activation leading to cell cycle arrest and repair, during which the chromatin structure is disrupted. The mechanisms whereby chromatin structure and cell cycle progression are restored after DNA repair are largely unknown. We show that chromatin reassembly following double-strand break (DSB) repair requires the histone chaperone Asf1 and that absence of Asf1 causes cell death, as cells are unable to recover from the DNA damage checkpoint. We find that Asf1 contributes toward chromatin assembly after DSB repair by promoting acetylation of free histone H3 on lysine 56 (K56) via the histone acetyl transferase Rtt109. Mimicking acetylation of K56 bypasses the requirement for Asf1 for chromatin reassembly and checkpoint recovery, whereas mutations that prevent K56 acetylation block chromatin reassembly after repair. These results indicate that restoration of the chromatin following DSB repair is driven by acetylated H3 K56 and that this is a signal for the completion of repair.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Joshua J. Carson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Jason Feser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Beth Tamburini
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Susan Zabaronick
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Jeffrey Linger
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| | - Jessica K. Tyler
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine
| |
Collapse
|
129
|
Chikhirzhina GI, Al-Shekhadat RI, Chikhirzhina EV. Transcription factors of the NF1 family: Role in chromatin remodeling. Mol Biol 2008. [DOI: 10.1134/s0026893308030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
130
|
Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci U S A 2008; 105:9000-5. [PMID: 18577595 DOI: 10.1073/pnas.0800057105] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Promoter chromatin disassembly is a widely used mechanism to regulate eukaryotic transcriptional induction. Delaying histone H3/H4 removal from the yeast PHO5 promoter also leads to delayed removal of histones H2A/H2B, suggesting a constant equilibrium of assembly and disassembly of H2A/H2B, whereas H3/H4 disassembly is the highly regulated step. Toward understanding how H3/H4 disassembly is regulated, we observe a drastic increase in the levels of histone H3 acetylated on lysine-56 (K56ac) during promoter chromatin disassembly. Indeed, promoter chromatin disassembly is driven by Rtt109 and Asf1-dependent acetylation of H3 K56. Conversely, promoter chromatin reassembly during transcriptional repression is accompanied by decreased levels of histone H3 acetylated on lysine-56, and a mutation that prevents K56 acetylation increases the rate of transcriptional repression. As such, H3 K56 acetylation drives chromatin toward the disassembled state during transcriptional activation, whereas loss of H3 K56 acetylation drives the chromatin toward the assembled state.
Collapse
|
131
|
Schnitzler GR. Control of Nucleosome Positions by DNA Sequence and Remodeling Machines. Cell Biochem Biophys 2008; 51:67-80. [DOI: 10.1007/s12013-008-9015-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2008] [Indexed: 12/24/2022]
|
132
|
Sharma N, Nyborg JK. The coactivators CBP/p300 and the histone chaperone NAP1 promote transcription-independent nucleosome eviction at the HTLV-1 promoter. Proc Natl Acad Sci U S A 2008; 105:7959-63. [PMID: 18523016 PMCID: PMC2430344 DOI: 10.1073/pnas.0800534105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Indexed: 01/05/2023] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma. The multifunctional virally encoded oncoprotein Tax is responsible for malignant transformation and potent activation of HTLV-1 transcription. Tax, in complex with phosphorylated cAMP response element binding protein (pCREB), strongly recruits the cellular coactivators CREB binding protein (CBP)/p300 to the viral promoter concomitant with transcriptional activation. Although the mechanism of activator/coactivator-mediated transcriptional activation is poorly understood, the recruitment of CBP/p300 by regulatory factors appears to function, in part, by promoting changes in chromatin architecture that are permissive to transcriptional activation. Here, we show that CBP/p300 recruitment promotes histone acetylation and eviction of the histone octamer from the chromatin-assembled HTLV-1 promoter template in vitro. Nucleosome disassembly is strictly acetyl-CoA dependent and is not linked to ATP utilization. We find that the histone chaperone, nucleosome assembly protein 1 (NAP1), cooperates with CBP/p300 in eviction of the acetylated histones from the chromatin template. These findings reveal a unique mechanism in which the DNA-bound Tax/pCREB complex recruits CBP/p300, and together with NAP1, the coactivators cooperate to dramatically reduce nucleosome occupancy at the viral promoter in an acetylation-dependent and transcription-independent fashion.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523
| | - Jennifer K. Nyborg
- Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
133
|
Boeger H, Griesenbeck J, Kornberg RD. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 2008; 133:716-26. [PMID: 18485878 PMCID: PMC2409070 DOI: 10.1016/j.cell.2008.02.051] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/13/2008] [Accepted: 02/29/2008] [Indexed: 11/24/2022]
Abstract
The rate-limiting step of transcriptional activation in eukaryotes, and thus the critical point for gene regulation, is unknown. Combining biochemical analyses of the chromatin transition at the transcriptionally induced PHO5 promoter in yeast with modeling based on a small number of simple assumptions, we demonstrate that random removal and reformation of promoter nucleosomes can account for stochastic and kinetic properties of PHO5 expression. Our analysis suggests that the disassembly of promoter nucleosomes is rate limiting for PHO5 expression, and supports a model for the underlying mechanism of promoter chromatin remodeling, which appears to conserve a single nucleosome on the promoter at all times.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | |
Collapse
|
134
|
Riefler GM, Dent SYR, Schumacher JM. Tousled-mediated activation of Aurora B kinase does not require Tousled kinase activity in vivo. J Biol Chem 2008; 283:12763-8. [PMID: 18334486 PMCID: PMC2442327 DOI: 10.1074/jbc.m709034200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 03/06/2008] [Indexed: 01/11/2023] Open
Abstract
The Aurora kinases comprise an evolutionarily conserved protein family that is required for a variety of cell division events, including spindle assembly, chromosome segregation, and cytokinesis. Emerging evidence suggests that once phosphorylated, a subset of Aurora substrates can enhance Aurora kinase activity. Our previous work revealed that the Caenorhabditis elegans Tousled-like kinase TLK-1 is a substrate and activator of the AIR-2 Aurora B kinase in vitro and that partial loss of TLK-1 enhances the mitotic defects of an air-2 mutant. However, given that these experiments were performed in vitro and with partial loss of function alleles in vivo, a necessary step forward in our understanding of the relationship between the Aurora B and Tousled kinases is to prove that TLK-1 expression is sufficient for Aurora B activation in vivo. Here, we report that heterologous expression of wild-type and kinase-inactive forms of TLK-1 suppresses the lethality of temperature-sensitive mutants of the yeast Aurora B kinase Ipl1. Moreover, kinase-dead TLK-1 associates with and augments the activity of Ipl1 in vivo. Together, these results provide critical and compelling evidence that Tousled has a bona fide kinase-independent role in the activation of Aurora B kinases in vivo.
Collapse
Affiliation(s)
- Gary M Riefler
- Department of Molecular Genetics, M.D Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | | | |
Collapse
|
135
|
Lam FH, Steger DJ, O'Shea EK. Chromatin decouples promoter threshold from dynamic range. Nature 2008; 453:246-50. [PMID: 18418379 PMCID: PMC2435410 DOI: 10.1038/nature06867] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/22/2008] [Indexed: 11/08/2022]
Abstract
Chromatin influences gene expression by restricting access of DNA binding proteins to their cognate sites in the genome. Large-scale characterization of nucleosome positioning in Saccharomyces cerevisiae has revealed a stereotyped promoter organization in which a nucleosome-free region (NFR) is present within several hundred base pairs upstream of the translation start site. Many transcription factors bind within NFRs and nucleate chromatin remodelling events which then expose other cis-regulatory elements. However, it is not clear how transcription-factor binding and chromatin influence quantitative attributes of gene expression. Here we show that nucleosomes function largely to decouple the threshold of induction from dynamic range. With a series of variants of one promoter, we establish that the affinity of exposed binding sites is a primary determinant of the level of physiological stimulus necessary for substantial gene activation, and sites located within nucleosomal regions serve to scale expression once chromatin is remodelled. Furthermore, we find that the S. cerevisiae phosphate response (PHO) pathway exploits these promoter designs to tailor gene expression to different environmental phosphate levels. Our results suggest that the interplay of chromatin and binding-site affinity provides a mechanism for fine-tuning responses to the same cellular state. Moreover, these findings may be a starting point for more detailed models of eukaryotic transcriptional control.
Collapse
Affiliation(s)
- Felix H Lam
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer 307, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
136
|
Grigsby IF, Finger FP. UNC-85, a C. elegans homolog of the histone chaperone Asf1, functions in post-embryonic neuroblast replication. Dev Biol 2008; 319:100-9. [PMID: 18490010 DOI: 10.1016/j.ydbio.2008.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/08/2008] [Accepted: 04/08/2008] [Indexed: 11/28/2022]
Abstract
Normal animal development requires accurate cell divisions, not only in the early stages of rapid embryonic cleavages, but also in later developmental stages. The Caenorhabditis elegans unc-85 gene is implicated only in cell divisions that occur post-embryonically, primarily in terminal neuronal lineages. Variable post-embryonic cell division failures in ventral cord motoneuron precursors result in uncoordinated locomotion of unc-85 mutant larvae by the second larval stage. These neuroblast cell division failures often result in unequally sized daughter nuclei, and sometimes in nuclear fusions. Using a combination of conventional mapping techniques and microarray analysis, we cloned the unc-85 gene, and find that it encodes one of two C. elegans homologs of the yeast Anti-silencing function 1 (Asf1) histone chaperone. The unc-85 gene is expressed in replicating cells throughout development, and the protein is localized in nuclei. Examination of null mutants confirms that embryonic neuroblast cell divisions occur normally, but post-embryonic neuroblast cell divisions fail. Analysis of the DNA content of the mutant neurons indicates that defective replication in post-embryonic neuroblasts gives rise to ventral cord neurons with an average DNA content of approximately 2.5 n. We conclude that UNC-85 functions in post-embryonic DNA replication in ventral cord motor neuron precursors.
Collapse
Affiliation(s)
- Iwen F Grigsby
- Biology Department and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Biotech-BCHM-2, Troy, NY 12180, USA
| | | |
Collapse
|
137
|
Transcriptional repression by the Pho4 transcription factor controls the timing of SNZ1 expression. EUKARYOTIC CELL 2008; 7:949-57. [PMID: 18408055 DOI: 10.1128/ec.00366-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nutrient-sensing kinases play important roles for the yeast Saccharomyces cerevisiae to adapt to new nutrient conditions when the nutrient status changes. Our previous global gene expression analysis revealed that the Pho85 kinase, one of the yeast nutrient-sensing kinases, is involved in the changes in gene expression profiles when yeast cells undergo a diauxic shift. We also found that the stationary phase-specific genes SNZ1 and SNO1, which share a common promoter, are not properly induced when Pho85 is absent. To examine the role of the kinase in SNZ1/SNO1 regulation, we analyzed their expression during the growth of various yeast mutants, including those affecting Pho85 function or lacking the Pho4 transcription factor, an in vivo substrate of Pho85, and tested Pho4 binding by chromatin immunoprecipitation. Pho4 exhibits temporal binding to the SNZ1/SNO1 promoter to down-regulate the promoter activity, and a Deltapho4 mutation advances the timing of SNZ1/SNO1 expression. SNZ2, another member of the SNZ/SNO family, is expressed at an earlier growth stage than SNZ1, and Pho4 does not affect this timing, although Pho85 is required for SNZ2 expression. Thus, Pho4 appears to regulate the different timing of the expression of the SNZ/SNO family members. Pho4 binding to the SNZ1/SNO1 promoter is accompanied by alterations in chromatin structure, and Rpd3 histone deacetylase is required for the proper timing of SNZ1/SNO1 expression, while Asf1 histone chaperone is indispensable for their expression. These results imply that Pho4 plays positive and negative roles in transcriptional regulation, with both cases involving structural changes in its target chromatin.
Collapse
|
138
|
Malay AD, Umehara T, Matsubara-Malay K, Padmanabhan B, Yokoyama S. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus. J Biol Chem 2008; 283:14022-31. [PMID: 18334479 DOI: 10.1074/jbc.m800594200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of core histones onto eukaryotic DNA is modulated by several histone chaperone complexes, including Asf1, CAF-1, and HIRA. Asf1 is a unique histone chaperone that participates in both the replication-dependent and replication-independent pathways. Here we report the crystal structures of the apo-form of fission yeast Asf1/Cia1 (SpAsf1N; residues 1-161) as well as its complexes with the B-domain of the fission yeast HIRA orthologue Hip1 (Hip1B) and the C-terminal region of the Cac2 subunit of CAF-1 (Cac2C). The mode of the fission yeast Asf1N-Hip1B recognition is similar to that of the human Asf1-HIRA recognition, suggesting that Asf1N recognition of Hip1B/HIRA is conserved from yeast to mammals. Interestingly, Hip1B and Cac2C show remarkably similar interaction modes with Asf1. The binding between Asf1N and Hip1B was almost completely abolished by the D37A and L60A/V62A mutations in Asf1N, indicating the critical role of salt bridge and van der Waals contacts in the complex formation. Consistently, both of the aforementioned Asf1 mutations also drastically reduced the binding to Cac2C. These results provide a structural basis for a mutually exclusive Asf1-binding model of CAF-1 and HIRA/Hip1, in which Asf1 and CAF-1 assemble histones H3/H4 (H3.1/H4 in vertebrates) in a replication-dependent pathway, whereas Asf1 and HIRA/Hip1 assemble histones H3/H4 (H3.3/H4 in vertebrates) in a replication-independent pathway.
Collapse
Affiliation(s)
- Ali D Malay
- Yokohama Institute, RIKEN, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | |
Collapse
|
139
|
HSP90/70 chaperones are required for rapid nucleosome removal upon induction of the GAL genes of yeast. Proc Natl Acad Sci U S A 2008; 105:2975-80. [PMID: 18287040 DOI: 10.1073/pnas.0800053105] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Induction of transcription of the GAL genes of yeast by galactose is a multistep process: Galactose frees the activator Gal4 of its inhibitor, Gal80, allowing Gal4 to recruit proteins required to transcribe the GAL genes. Here, we show that deletion of components of either the HSP90 or the HSP70 chaperone machinery delays this induction. This delay remains when the galactose-signaling pathway is bypassed, and it cannot be explained by a chaperone requirement for DNA binding by Gal4. Removal of promoter-bound nucleosomes is delayed in a chaperone mutant, and our findings suggest an involvement of HSP90 and HSP70 in this early step in gene induction.
Collapse
|
140
|
W-K Ng D, Hall TC. PvALF and FUS3 activate expression from the phaseolin promoter by different mechanisms. PLANT MOLECULAR BIOLOGY 2008; 66:233-44. [PMID: 18038114 DOI: 10.1007/s11103-007-9265-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/08/2007] [Indexed: 05/22/2023]
Abstract
Transcription from the phaseolin (phas) promoter requires two major events: chromatin remodeling, mediated by PvALF, a B3 domain factor, and activation by an ABA-induced signal transduction cascade. Expression from phas is normally seed-specific, but high levels of expression in leaves can be obtained by ectopic expression of PvALF. Here, the system was used to compare the ability of PvALF and Arabidopsis FUS3, another B3 domain transcription factor that lacks the N-terminal activation and B1 domain present in PvALF, to activate phas expression in vegetative tissues. When compared to PvALF-mediated phas activation in the presence of ABA, a delay in phas activation was observed in the presence of both FUS3 and ABA in vegetative tissue. Significant differences in histone modifications at the phas promoter were mediated by FUS3 and PvALF, suggesting that they function through different epigenetic mechanisms. The relationship between PvALF and ABI5, a bZIP transcription factor, in mediating phas expression was also evaluated. Interestingly, over-expression of ABI5 rendered phas expression ABA-independent in the presence of PvALF. Changes in phas activity in different regions within seed embryos were demonstrated using abi5 mutants. Our results show that (1) redundant factors, such as PvALF and FUS3, employ different mechanisms to regulate their common target gene (phas); (2) ABI5, and possibly other redundant bZIP factors, act downstream of ABA in modulating phas expression in the presence of PvALF.
Collapse
Affiliation(s)
- Danny W-K Ng
- Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University, College Station, TX 77843-3155, USA
| | | |
Collapse
|
141
|
Nap1 links transcription elongation, chromatin assembly, and messenger RNP complex biogenesis. Mol Cell Biol 2008; 28:2113-24. [PMID: 18227150 DOI: 10.1128/mcb.02136-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin remodeling is central to the regulation of transcription elongation. We demonstrate that the conserved Saccharomyces cerevisiae histone chaperone Nap1 associates with chromatin. We show that Nap1 regulates transcription of PHO5, and the increase in transcript level and the higher phosphatase activity plateau observed for Deltanap1 cells suggest that the net function of Nap1 is to facilitate nucleosome reassembly during transcription elongation. To further our understanding of histone chaperones in transcription elongation, we identified factors that regulate the function of Nap1 in this process. One factor investigated is an essential mRNA export and TREX complex component, Yra1. Nap1 interacts directly with Yra1 and genetically with other TREX complex components and the mRNA export factor Mex67. Additionally, we show that the recruitment of Nap1 to the coding region of actively transcribed genes is Yra1 dependent and that its recruitment to promoters is TREX complex independent. These observations suggest that Nap1 functions provide a new connection between transcription elongation, chromatin assembly, and messenger RNP complex biogenesis.
Collapse
|
142
|
Armstrong JA. Negotiating the nucleosome: factors that allow RNA polymerase II to elongate through chromatin. Biochem Cell Biol 2008; 85:426-34. [PMID: 17713578 DOI: 10.1139/o07-054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Initiation by RNA polymerase II (Pol II) involves a host of enzymes, and the process of elongation appears similarly complex. Transcriptional elongation through chromatin requires the coordinated efforts of Pol II and its associated transcription factors: C-terminal domain kinases, elongation complexes, chromatin-modifying enzymes, chromatin remodeling factors, histone chaperones (nucleosome assembly factors), and histone variants. This review examines the following: (i) the consequences of the encounter between elongating Pol II and a nucleosome, and (ii) chromatin remodeling factors and nucleosome assembly factors that have recently been identified as important for the elongation stage of transcription.
Collapse
Affiliation(s)
- Jennifer A Armstrong
- Joint Science Department, The Claremont Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA.
| |
Collapse
|
143
|
Abstract
In eukaryotes, transcription factors, including both gene-specific activators and general transcription factors (GTFs), operate in a chromatin milieu. Here, we review evidence from gene-specific and genome-wide studies indicating that chromatin presents an environment that is typically permissive for activator binding, conditional for pre-initiation complex (PIC) formation, and inhibitory for productive PIC assembly within coding sequences. We also discuss the role of nucleosome dynamics in facilitating access to transcription factors (TFs) in vivo and indicate some of the principal questions raised by recent findings.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA.
| |
Collapse
|
144
|
Parnell TJ, Huff JT, Cairns BR. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J 2008; 27:100-10. [PMID: 18059476 PMCID: PMC2206128 DOI: 10.1038/sj.emboj.7601946] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 11/07/2007] [Indexed: 12/21/2022] Open
Abstract
Nucleosomes can restrict the access of transcription factors to chromatin. RSC is a SWI/SNF-family chromatin-remodeling complex from yeast that repositions and ejects nucleosomes in vitro. Here, we examined these activities and their importance in vivo. We utilized array-based methods to examine nucleosome occupancy and positioning at more than 200 locations in the genome following the controlled destruction of the catalytic subunit of RSC, Sth1. Loss of RSC function caused pronounced and general reductions in new transcription from Pol I, II, and III genes. At Pol III genes, Sth1 loss conferred a general reduction in RNA Pol III occupancy and a gain in nucleosome density. Notably at the one Pol III gene examined, histone restoration was partly replication-dependent. In contrast, at Pol II promoters we observed primarily single nucleosome changes, including movement. Importantly, alterations near the transcription start site were more common at RSC-occupied promoters than at non-occupied promoters. Thus, RSC action affects both nucleosome density and positioning in vivo, but applies these remodeling modes differently at Pol II and Pol III genes.
Collapse
Affiliation(s)
- Timothy J Parnell
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jason T Huff
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
145
|
Henikoff S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 2008; 9:15-26. [DOI: 10.1038/nrg2206] [Citation(s) in RCA: 341] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
146
|
Morohashi N, Nakajima K, Kurihara D, Mukai Y, Mitchell AP, Shimizu M. A nucleosome positioned by alpha2/Mcm1 prevents Hap1 activator binding in vivo. Biochem Biophys Res Commun 2007; 364:583-8. [PMID: 17959145 PMCID: PMC2131697 DOI: 10.1016/j.bbrc.2007.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Accepted: 10/09/2007] [Indexed: 11/24/2022]
Abstract
Nucleosome positioning has been proposed as a mechanism of transcriptional repression. Here, we examined whether nucleosome positioning affects activator binding in living yeast cells. We introduced the cognate Hap1 binding site (UAS1) at a location 24-43 bp, 29-48 bp, or 61-80 bp interior to the edge of a nucleosome positioned by alpha2/Mcm1 in yeast minichromosomes. Hap1 binding to the UAS1 was severely inhibited, not only at the pseudo-dyad but also in the peripheral region of the positioned nucleosome in alpha cells, while it was detectable in a cells, in which the nucleosomes were not positioned. Hap1 binding was restored in alpha cells with tup1 or isw2 mutations, which caused the loss of nucleosome positioning. These results support the mechanism in which alpha2/Mcm1-dependent nucleosome positioning has a regulatory function to limit the access of transcription factors.
Collapse
Affiliation(s)
| | - Kumiko Nakajima
- Department of Chemistry, Meisei University, Hino, Tokyo 191-8506, Japan
| | - Daichi Kurihara
- Department of Chemistry, Meisei University, Hino, Tokyo 191-8506, Japan
| | - Yukio Mukai
- Department of Bio-Sciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Aaron P. Mitchell
- Department of Microbiology, Columbia University, New York, NY 10032, USA
| | - Mitsuhiro Shimizu
- Department of Chemistry, Meisei University, Hino, Tokyo 191-8506, Japan
| |
Collapse
|
147
|
Ramirez-Parra E, Gutierrez C. The many faces of chromatin assembly factor 1. TRENDS IN PLANT SCIENCE 2007; 12:570-6. [PMID: 17997123 DOI: 10.1016/j.tplants.2007.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/04/2007] [Accepted: 10/10/2007] [Indexed: 05/06/2023]
Abstract
Chromatin organization requires that histones associate with DNA in the form of nucleosomes the position and composition of which is crucial for chromatin dynamics. Histone chaperones help to deliver specific histone proteins to the sites where chromatin is being newly formed or remodeled. Association of H3-H4 during DNA replication depends on the chromatin assembly factor 1. The study of Arabidopsis plants carrying loss-of-function alleles in each of the three chromatin assembly factor 1 subunits has highlighted the links between chromatin assembly in proliferating cells and other cellular processes. These are the G2 DNA damage checkpoint, homologous recombination, endoreplication control and transcriptional regulation of specific gene sets, all contributing to the plasticity of plants in dealing with alterations in DNA replication-associated chromatin assembly.
Collapse
Affiliation(s)
- Elena Ramirez-Parra
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
148
|
Promoter region-specific histone incorporation by the novel histone chaperone ANP32B and DNA-binding factor KLF5. Mol Cell Biol 2007; 28:1171-81. [PMID: 18039846 DOI: 10.1128/mcb.01396-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of chromatin in eukaryotic transcription requires histone-modifying enzymes, nucleosome remodeling complexes, and histone chaperones. Specific regulation of histone incorporation/eviction by histone chaperones on the promoter (e.g., region specific) is still poorly understood. In the present study, we show that direct and functional interaction of histone chaperone and DNA-binding transcription factor leads to promoter region-specific histone incorporation and inhibition of histone acetylation. We report here that the DNA-binding transcription factor Krüppel-like factor 5 (KLF5) interacts with the novel histone chaperone acidic nuclear phosphoprotein 32B (ANP32B), leading to transcriptional repression of a KLF5-downstream gene. We further show that recruitment of ANP32B onto the promoter region requires KLF5 and results in promoter region-specific histone incorporation and inhibition of histone acetylation by ANP32B. Extracellular stimulus (e.g., phorbol ester) regulates this mechanism in the cell. Collectively, we have identified a novel histone chaperone, ANP32B, and through analysis of the actions of this factor show a new mechanism of promoter region-specific transcriptional regulation at the chromatin level as mediated by the functional interaction between histone chaperone and DNA-binding transcription factor.
Collapse
|
149
|
|
150
|
Song Y, He F, Xie G, Guo X, Xu Y, Chen Y, Liang X, Stagljar I, Egli D, Ma J, Jiao R. CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev Biol 2007; 311:213-22. [DOI: 10.1016/j.ydbio.2007.08.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 08/14/2007] [Accepted: 08/21/2007] [Indexed: 02/01/2023]
|