101
|
Abstract
An analysis of mRNA expression in T47D breast cancer cells treated with the synthetic progestin R5020 revealed a subset of progesterone receptor (PR) target genes that are enriched for E2F binding sites. Following up on this observation, we determined that PR-B acts in both direct and indirect manners to positively upregulate E2F1 expression in T47D cells. The direct effects of PR on E2F1 expression were confirmed by chromatin immunoprecipitation (ChIP) analysis, which indicated that the agonist-bound receptor was recruited to several enhancer elements proximal to the E2F1 transcript. However, we also noted that cycloheximide partially inhibits R5020 induction of E2F1 expression, indicating that the ligand-dependent actions of PR on this gene may involve additional indirect regulatory pathways. In support of this hypothesis, we demonstrated that treatment with R5020 significantly increases both hyperphosphorylation of Rb and recruitment of E2F1 to its own promoter, thus activating a positive feedback loop that further amplifies its transcription. Furthermore, we established that PR-mediated induction of Krüppel-like factor 15 (KLF15), which can bind to GC-rich DNA within the E2F1 promoter, is required for maximal induction of E2F1 expression by progestins. Taken together, these results suggest a new paradigm for multimodal regulation of target gene expression by PR.
Collapse
|
102
|
Hernández-Hernández OT, Rodríguez-Dorantes M, González-Arenas A, Camacho-Arroyo I. Progesterone and estradiol effects on SRC-1 and SRC-3 expression in human astrocytoma cell lines. Endocrine 2010; 37:194-200. [PMID: 20963570 DOI: 10.1007/s12020-009-9288-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/16/2009] [Indexed: 01/09/2023]
Abstract
Progesterone (P(4)) and estradiol (E(2)) regulate many cell functions through their interaction with specific intracellular receptors, which require the participation of coactivators such as SRC-1 and SRC-3 for enhancing their transcriptional activity. Coactivator expression is altered in many cancers and in some of them their expression is regulated by P(4) and E(2). In this study, we determined progesterone and estrogen receptor isoform expression in two human astrocytoma cell lines with different evolution grade (U373, grade III; and D54, grade IV) by Western Blot. We studied the role of P(4) and E(2) on SRC-1 and SRC-3 expression in U373 and D54 cell lines by RT-PCR and Western blot. In U373 cells, P(4) did not modify SRC-1 expression, but in D54 cells it increased SRC-1 mRNA expression after 12 h of treatment without significant changes after 24 h. P(4) also increased SRC-1 protein content after 24 h, but reduced it after 48 h. E(2) did not change SRC-1 expression in any cell line. SRC-3 expression was not regulated by either E(2) or P(4). Our data suggest that SRC-1 and SRC-3 expression is differentially regulated by sex steroid hormones in astrocytomas and that P(4) regulates SRC-1 expression depending on the evolution grade of human astrocytoma cells.
Collapse
Affiliation(s)
- Olivia Tania Hernández-Hernández
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Coyoacán, Mexico DF, Mexico
| | | | | | | |
Collapse
|
103
|
Gojis O, Rudraraju B, Gudi M, Hogben K, Sousha S, Coombes CR, Cleator S, Palmieri C. The role of SRC-3 in human breast cancer. Nat Rev Clin Oncol 2009; 7:83-9. [DOI: 10.1038/nrclinonc.2009.219] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
104
|
Charlier TD. Importance of steroid receptor coactivators in the modulation of steroid action on brain and behavior. Psychoneuroendocrinology 2009; 34 Suppl 1:S20-9. [PMID: 19524371 DOI: 10.1016/j.psyneuen.2009.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/01/2009] [Accepted: 05/10/2009] [Indexed: 11/30/2022]
Abstract
Steroid receptors such as estrogen and androgen receptors are nuclear receptors involved in the transcriptional regulation of a large number of target genes. Steroid-dependent protein expression in the brain controls a large array of biological processes including spatial cognition, copulatory behavior and neuroprotection. The discovery of a competition, or squelching, between two different nuclear receptors introduced the notion that common cofactors may be involved in the modulation of transcriptional activity of nuclear receptors. These cofactors or coregulatory proteins are functionally divided into coactivators and corepressors and are involved in chromatin remodeling and stabilization of the general transcription machinery. Although a large amount of information has been collected about the in vitro function of these coregulatory proteins, relatively little is known regarding their physiological role in vivo, particularly in the brain. Our laboratory and others have demonstrated the importance of SRC-1 in the differentiation and activation of steroid-dependent sexual behaviors and the related neural genes. For example, we report that the inhibition of SRC-1 expression blocks the activating effects of exogenous testosterone on male sexual behaviors and increases the volume of the median preoptic area. Other coactivators are likely to be involved in the modulation in vivo of steroid receptor activity and it seems that the presence of a precise subset of coactivators could help define the phenotype of the cell by modulating a specific downstream pathway after steroid receptor activation. The very large number of coactivators and their association into preformed complexes potentially allows the determination of hundreds of different phenotypes. The study of the expression of the coactivator and their function in vivo is required to fully understand steroid action and specificity in the brain.
Collapse
Affiliation(s)
- Thierry D Charlier
- University of Liege, GIGA Neuroscience, 1 Avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium.
| |
Collapse
|
105
|
Lonard DM, Kumar R, O'Malley BW. Minireview: the SRC family of coactivators: an entrée to understanding a subset of polygenic diseases? Mol Endocrinol 2009; 24:279-85. [PMID: 19846539 DOI: 10.1210/me.2009-0276] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this perspective, we present the idea that SRC family coactivators are likely agents in human polygenic disease states based upon a number of interlocking aspects of their biology. We argue that their role as key integrators of environmental signals and their ability to regulate the expression of myriad downstream genes makes them likely candidates for strong positive evolutionary selection pressures. Based on the fact that they work as part of multiprotein coactivator complexes, we predict that individual coactivator alleles exist as weakly penetrant disease alleles, each contributing only a fraction of transcriptional activity to the whole coactivator complex. In this way, individual coactivator alleles are free to evolve in the absence of strong negative selection. Emerging genomic and proteomic approaches promise to advance the characterization of coactivator proteins and their physiological functions, allowing us to have a greater appreciation of their roles as master regulators at the nexus between genetics, reproduction, metabolism, cancer, other human diseases, and our environment.
Collapse
Affiliation(s)
- David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030.
| | | | | |
Collapse
|
106
|
Abstract
Coregulators (coactivators and corepressors) occupy the driving seat for actions of all nuclear receptors, and consequently, selective receptor modulator drugs. The potency and selectivity for subreactions of transcription reside in the coactivators, and thus, they are critically important for tissue-selective gene function. Each tissue has a "quantitative finger print" of coactivators based on its relative inherited concentrations of these molecules. When the cellular concentration of a coactivator is altered, genetic dysfunction usually leads to a pathologic outcome. For example, many cancers overexpress "growth coactivators." In this way, the cancer cell can hijack these coactivator molecules to drive proliferation and metastasis. The present review contains summaries of selective coactivators and corepressors that have been demonstrated to play important roles in the malignant process and emphasizes their importance for future therapeutic interventions.
Collapse
Affiliation(s)
- Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
107
|
Emerging roles of the ubiquitin proteasome system in nuclear hormone receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:117-35. [PMID: 20374703 DOI: 10.1016/s1877-1173(09)87004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor (NR)-mediated transcription is intimately tied to the ubiquitin proteasome system (UPS). The UPS targets numerous NR and coregulator proteins, regulating their stability and altering their transcriptional activities through the posttranslational placement of ubiquitin marks on them. Differences in the manner in which ubiquitin is attached to target proteins or itself have distinct regulatory consequences. Protein monoubiquitination, polyubiquitination, the site of ubiquitin attachment to a target protein, and the type of polyubiquitin chain linkage all lead to different biological outcomes and have an important regulatory function in NR-mediated transcription. Consistent with its role in protein degradation, the UPS is able to limit the biological actions of both NRs and coregulators by reducing their protein concentrations in the cell. However, in spite of its destructive capabilities, the UPS can play a positive role in facilitating NR-mediated transcription as well. In addition, ubiquitin-like modifications such as SUMOylation also modify and regulate NRs and coregulators. The UPS forms a key biological system that underlies a sophisticated postranslational regulatory scheme from which complex and dynamic regulation of NR-mediated transcription can occur.
Collapse
|
108
|
Thomson M, Gunawardena J. The rational parameterization theorem for multisite post-translational modification systems. J Theor Biol 2009; 261:626-36. [PMID: 19765594 DOI: 10.1016/j.jtbi.2009.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 09/03/2009] [Indexed: 11/28/2022]
Abstract
Post-translational modification of proteins plays a central role in cellular regulation but its study has been hampered by the exponential increase in substrate modification forms ("modforms") with increasing numbers of sites. We consider here biochemical networks arising from post-translational modification under mass-action kinetics, allowing for multiple substrates, having different types of modification (phosphorylation, methylation, acetylation, etc.) on multiple sites, acted upon by multiple forward and reverse enzymes (in total number L), using general enzymatic mechanisms. These assumptions are substantially more general than in previous studies. We show that the steady-state modform concentrations constitute an algebraic variety that can be parameterized by rational functions of the L free enzyme concentrations, with coefficients which are rational functions of the rate constants. The parameterization allows steady states to be calculated by solving L algebraic equations, a dramatic reduction compared to simulating an exponentially large number of differential equations. This complexity collapse enables analysis in contexts that were previously intractable and leads to biological predictions that we review. Our results lay a foundation for the systems biology of post-translational modification and suggest deeper connections between biochemical networks and algebraic geometry.
Collapse
Affiliation(s)
- Matthew Thomson
- Biophysics Program, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
109
|
Wu SC, Zhang Y. Minireview: role of protein methylation and demethylation in nuclear hormone signaling. Mol Endocrinol 2009; 23:1323-34. [PMID: 19407220 PMCID: PMC2737564 DOI: 10.1210/me.2009-0131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 04/24/2009] [Indexed: 11/19/2022] Open
Abstract
Nuclear hormone receptors (NRs) are transcription factors responsible for mediating the biological effects of hormones during development, metabolism, and homeostasis. Induction of NR target genes is accomplished through the assembly of hormone-bound NR complexes at target promoters and coincides with changes in histone modifications that promote transcription. Some coactivators and corepressors of NR can enhance or inhibit NR function by covalently modifying histones. One such modification is methylation, which plays important roles in transcriptional regulation. Histone methylation is catalyzed by histone methyltransferases and reversed by histone demethylases. Recent studies have uncovered the importance of these enzymes in the regulation of NR target genes. In addition to histones, these enzymes have nonhistone substrates and can methylate and demethylate NRs and coregulatory proteins in order to modulate their function. This review discusses recent progress in our understanding of the role of methylation and demethylation of histones, NRs, and their coregulators in NR-mediated transcription.
Collapse
Affiliation(s)
- Susan C Wu
- Howard Hughes Medical Institute, Department of Biochemistry, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | |
Collapse
|
110
|
Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 2009; 9:615-30. [PMID: 19701241 PMCID: PMC2908510 DOI: 10.1038/nrc2695] [Citation(s) in RCA: 389] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three homologous members of the p160 SRC family (SRC1, SRC2 and SRC3) mediate the transcriptional functions of nuclear receptors and other transcription factors, and are the most studied of all the transcriptional co-activators. Recent work has indicated that the SRCgenes are subject to amplification and overexpression in various human cancers. Some of the molecular mechanisms responsible for SRC overexpression, along with the mechanisms by which SRCs promote breast and prostate cancer cell proliferation and survival, have been identified, as have the specific contributions of individual SRC family members to spontaneous breast and prostate carcinogenesis in genetically manipulated mouse models. These studies have identified new challenges for cancer research and therapy.
Collapse
Affiliation(s)
- Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
- Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Ray-Chang Wu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
111
|
Gojis O, Rudraraju B, Alifrangis C, Krell J, Libalova P, Palmieri C. The role of steroid receptor coactivator-3 (SRC-3) in human malignant disease. Eur J Surg Oncol 2009; 36:224-9. [PMID: 19716257 DOI: 10.1016/j.ejso.2009.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The p160 steroid receptor coactivator (SRC) family is critical to the transcriptional activation function of nuclear hormone receptors. A key member of this family is SRC-3, initially found to be amplified and expressed in breast cancer it has subsequent been shown to be expressed in malignant disease arising from a wide range of other organs. An understanding of the potential role of SRC-3 in the pathogenesis and its possible prognostic role in a broad range of tumours will improve our general understanding of carcinogenesis as well as potentially leading to a new prognostic marker as well as new therapeutic targets. METHODS Relevant papers were identified by searching the PubMed and MEDLINE databases for article published until 28th February 2009. Only articles published in English were considered. The search terms included "SRC-3", "AIB1" in association with the following terms: "human", "cancer" and "malignant disease". The search focused on malignant disease arising outside of the mammary gland. Full articles were obtained and references were checked for additional material when appropriate. RESULTS SRC-3 is amplified and expressed in a wide spectrum of human malignant diseases and appears to be a potential prognostic marker in a number of different tumours. CONCLUSION SRC-3 appears to be implicated in the possible risk of developing prostate and ovarian cancer. Its presence appears to be a marker of aggressive disease. Further research is required to determine its predictive and prognostic utility given the relative paucity of studies for each specific malignant disease.
Collapse
Affiliation(s)
- O Gojis
- Department of Gynaecology and Obstetrics, Third Faculty of Medicine, Charles University, Ruska 87, Prague 10, 100 00, Czech Republic
| | | | | | | | | | | |
Collapse
|
112
|
Tetel MJ, Auger AP, Charlier TD. Who's in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol 2009; 30:328-42. [PMID: 19401208 PMCID: PMC2720417 DOI: 10.1016/j.yfrne.2009.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
Abstract
Steroid hormones act in brain and throughout the body to regulate a variety of functions, including development, reproduction, stress and behavior. Many of these effects of steroid hormones are mediated by their respective receptors, which are members of the steroid/nuclear receptor superfamily of transcriptional activators. A variety of studies in cell lines reveal that nuclear receptor coregulators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coregulators are essential for efficient steroid-dependent transactivation of genes. This review will highlight the importance of nuclear receptor coregulators in modulating steroid-dependent gene expression in brain and the regulation of behavior.
Collapse
Affiliation(s)
- Marc J Tetel
- Neuroscience Program, Wellesley College, 106 Central St., Wellesley, MA 02481, USA.
| | | | | |
Collapse
|
113
|
Thomson M, Gunawardena J. Unlimited multistability in multisite phosphorylation systems. Nature 2009; 460:274-7. [PMID: 19536158 PMCID: PMC2859978 DOI: 10.1038/nature08102] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 04/24/2009] [Indexed: 11/08/2022]
Abstract
Reversible phosphorylation on serine, threonine and tyrosine is the most widely studied posttranslational modification of proteins. The number of phosphorylated sites on a protein (n) shows a significant increase from prokaryotes, with n = 7 sites, to eukaryotes, with examples having n >/= 150 sites. Multisite phosphorylation has many roles and site conservation indicates that increasing numbers of sites cannot be due merely to promiscuous phosphorylation. A substrate with n sites has an exponential number (2(n)) of phospho-forms and individual phospho-forms may have distinct biological effects. The distribution of these phospho-forms and how this distribution is regulated have remained unknown. Here we show that, when kinase and phosphatase act in opposition on a multisite substrate, the system can exhibit distinct stable phospho-form distributions at steady state and that the maximum number of such distributions increases with n. Whereas some stable distributions are focused on a single phospho-form, others are more diffuse, giving the phospho-proteome the potential to behave as a fluid regulatory network able to encode information and flexibly respond to varying demands. Such plasticity may underlie complex information processing in eukaryotic cells and suggests a functional advantage in having many sites. Our results follow from the unusual geometry of the steady-state phospho-form concentrations, which we show to constitute a rational algebraic curve, irrespective of n. We thereby reduce the complexity of calculating steady states from simulating 3 x 2(n) differential equations to solving two algebraic equations, while treating parameters symbolically. We anticipate that these methods can be extended to systems with multiple substrates and multiple enzymes catalysing different modifications, as found in posttranslational modification 'codes' such as the histone code. Whereas simulations struggle with exponentially increasing molecular complexity, mathematical methods of the kind developed here can provide a new language in which to articulate the principles of cellular information processing.
Collapse
Affiliation(s)
- Matthew Thomson
- Biophysics Program, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
114
|
Lahusen T, Henke RT, Kagan BL, Wellstein A, Riegel AT. The role and regulation of the nuclear receptor co-activator AIB1 in breast cancer. Breast Cancer Res Treat 2009; 116:225-37. [PMID: 19418218 PMCID: PMC2975452 DOI: 10.1007/s10549-009-0405-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/11/2009] [Indexed: 01/08/2023]
Abstract
AIB1 (amplified in breast cancer 1), also called SRC-3 and NCoA-3, is a member of the p160 nuclear receptor co-activator family and is considered an important oncogene in breast cancer. Increased AIB1 levels in human breast cancer have been correlated with poor clinical prognosis. Overexpression of AIB1 in conjunction with members of the epidermal growth factor receptor (EGF/HER) tyrosine kinase family, such as HER2, is associated with resistance to tamoxifen therapy and decreased disease-free survival. A number of functional studies in cell culture and in rodents indicate that AIB1 has a pleiotropic role in breast cancer. Initially AIB1 was shown to have a role in the estrogen-dependent proliferation of breast epithelial cells. However, AIB1 also affects the growth of hormone-independent breast cancer and AIB1 levels are limiting for IGF-1-, EGF- and heregulin-stimulated biological responses in breast cancer cells and consequently the PI3 K/Akt/mTOR and other EGFR/HER2 signaling pathways are controlled by changes in AIB1 protein levels. The cellular levels and activity of AIB1 are in turn regulated at the levels of transcription, mRNA stability, post-translational modification, and by a complex control of protein half life. In particular, AIB1 activity as well as its half-life is modulated through a number of post-translational modifications including serine, threonine and tyrosine phosphorylation via kinases that are components of multiple signal transduction pathways. This review summarizes the possible mechanisms of how dysregulation of AIB1 at multiple levels can lead to the initiation and progression of breast cancer as well as its role as a predictor of response to breast cancer therapy, and as a possible therapeutic target.
Collapse
Affiliation(s)
- Tyler Lahusen
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Ralf T. Henke
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Benjamin L. Kagan
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Anton Wellstein
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Anna T. Riegel
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
115
|
McCafferty MPJ, McNeill RE, Miller N, Kerin MJ. Interactions between the estrogen receptor, its cofactors and microRNAs in breast cancer. Breast Cancer Res Treat 2009; 116:425-32. [PMID: 19507020 DOI: 10.1007/s10549-009-0429-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 05/23/2009] [Indexed: 01/08/2023]
Abstract
The activity of selective estrogen receptor modulators (SERMs) is not fully explained by an estrogen receptor (ER) switch model that simply turns estrogen activity on or off. A better understanding of the mechanisms involved in estrogen signaling and the development of drug resistance could help stratify patients into more coherent treatment groups and identify novel therapeutic candidates. This review describes how interactions between two novel factors known to influence estrogenic activity: nuclear receptor cofactors--protein partners which modulate estrogen action, and microRNAs--a class of recently discovered regulatory elements, may impact hormone-sensitive breast cancer. The role of nuclear receptor cofactors in estrogen signaling and the associations between ER cofactors and breast cancer are described. We outline the activity of microRNAs (miRNAs) and their associations with breast cancer and detail recent evidence of interactions between the ER and its cofactors and miRNA and provide an overview of the emerging field of miRNA-based therapeutics. We propose that previously unrecognised interactions between these two species of regulatory molecules may underlie at least some of the heterogeneity of breast cancer in terms of its clinical course and response to treatment. The exploitation of such associations will have important implications for drug development.
Collapse
Affiliation(s)
- Marc P J McCafferty
- Department of Surgery, Clinical Science Institute, National University of Ireland, Galway, Galway, Ireland.
| | | | | | | |
Collapse
|
116
|
An overview of nuclear receptor coregulators involved in cerebellar development. THE CEREBELLUM 2009; 7:48-59. [PMID: 18418685 DOI: 10.1007/s12311-008-0018-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nuclear receptors (NRs) precisely control the gene regulation throughout the development of the central nervous system, including the cerebellum. Functionally, the full activity of NRs requires their cognate coregulators to be recruited by NRs and modulate the activation or repression of target gene expression. Recent progress of in vitro studies of NR coregulators has revealed that NR coregulators form large complexes in a cyclic manner and subsequently exert genetic and epigenetic influence via various intrinsic enzyme activities. Moreover, NR coregulators physiologically provide a combinatorial code for time- and gene-specific responses depending on their expression levels, relative affinities for individual receptors, and posttranslational modification. Since expression of many cerebellar genes is known to be regulated by NRs critical in a specific period for cerebellar development, their partnership with cognate coregulators may be an important factor for normal cerebellar development. This review summarizes current findings regarding the molecular structures, molecular mechanisms, temporal and spatial expression patterns, and possible biological functions of NR coregulators related to cerebellar development.
Collapse
|
117
|
Chai Z, Yang L, Yu B, He Q, Li WI, Zhou R, Zhang T, Zheng X, Xie J. p38 Mitogen-activated protein kinase-dependent regulation of SRC-3 and involvement in retinoic acid receptor α signaling in embryonic cortical neurons. IUBMB Life 2009; 61:670-8. [DOI: 10.1002/iub.212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
118
|
Spears M, Bartlett J. The potential role of estrogen receptors and the SRC family as targets for the treatment of breast cancer. Expert Opin Ther Targets 2009; 13:665-74. [DOI: 10.1517/14728220902911509] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
119
|
Rochette-Egly C, Germain P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). NUCLEAR RECEPTOR SIGNALING 2009; 7:e005. [PMID: 19471584 PMCID: PMC2686084 DOI: 10.1621/nrs.07005] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/17/2009] [Indexed: 12/12/2022]
Abstract
Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, INSERM U596, CNRS UMR7104, Université Louis Pasteur de Strasbourg, Strasbourg, France.
| | | |
Collapse
|
120
|
Abstract
Androgen signaling is critical for proliferation of prostate cancer cells but cannot be fully inhibited by current androgen deprivation therapies. A study by Xu et al. in this issue of Cancer Cell provides insights into the complexities of androgen signaling in prostate cancer and suggests avenues to target a subset of androgen-sensitive genes.
Collapse
Affiliation(s)
| | - Donald J. Tindall
- Department of Urology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
121
|
Giamas G, Castellano L, Feng Q, Knippschild U, Jacob J, Thomas RS, Coombes RC, Smith CL, Jiao LR, Stebbing J. CK1delta modulates the transcriptional activity of ERalpha via AIB1 in an estrogen-dependent manner and regulates ERalpha-AIB1 interactions. Nucleic Acids Res 2009; 37:3110-23. [PMID: 19339517 PMCID: PMC2685087 DOI: 10.1093/nar/gkp136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oncogenesis in breast cancer often requires the overexpression of the nuclear receptor coactivator AIB1/SRC-3 acting in conjunction with estrogen receptor-α (ERα). Phosphorylation of both ERα and AIB1 has been shown to have profound effects on their functions. In addition, proteasome-mediated degradation plays a major role by regulating their stability and activity. CK1δ, a member of the ubiquitous casein kinase-1 family, is implicated in the progression of breast cancer. In this study, we show that both ERα and AIB1 are substrates for CK1δ in vitro, and identify a novel AIB1 phosphorylation site (S601) targeted by CK1δ, significant for the co-activator function of AIB1. CK1δ is able to interact with ERα and AIB1 in vivo, while overexpression of CK1δ in breast cancer cells results in an increased association of ERα with AIB1 as confirmed by co-immunoprecipitation assays from cell lysates. Using an siRNA-based approach, luciferase reporter assays and qRT-PCR, we observe that silencing of CK1δ leads to reduced ERα transcriptional activity, despite increased ERα levels, similarly to proteasome inhibition. We provide evidence that AIB1 protein levels are reduced by CK1δ silencing, in an estradiol-dependent manner; such destabilization can be inhibited by pre-treatment with the proteasome inhibitor MG132. We propose that differing activities adopted by ERα and AIB1 as a consequence of their interactions with and phosphorylation by CK1δ, particularly AIB1 stabilization, influence the transcriptional activity of ERα, and therefore have a role in breast cancer development.
Collapse
Affiliation(s)
- Georgios Giamas
- Department of Medical Oncology, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Huq MDM, Ha SG, Barcelona H, Wei LN. Lysine methylation of nuclear co-repressor receptor interacting protein 140. J Proteome Res 2009; 8:1156-67. [PMID: 19216533 PMCID: PMC2732397 DOI: 10.1021/pr800569c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Receptor interacting protein 140 (RIP140) undergoes extensive post-translational modifications (PTMs), including phosphorylation, acetylation, arginine methylation, and pyridoxylation. PTMs affect its subcellular distribution, protein-protein interaction, and biological activity in adipocyte differentiation. Arginine methylation on Arg(240), Arg(650), and Arg(948) suppresses the repressive activity of RIP140. Here, we find that endogenous RIP140 in differentiated 3T3-L1 cells is also modified by lysine methylation. Three lysine residues, Lys(591), Lys(653), and Lys(757), are mapped as potential methylation sites by mass spectrometry. Site-directed mutagenesis study shows that lysine methylation enhances its gene repressive activity. Mutation of lysine methylation sites enhances arginine methylation, while mutation on arginine methylation sites has little effect on its lysine methylation, suggesting a relationship between lysine methylation and arginine methylation. Kinetic analysis of PTMs of endogenous RIP140 in differentiated 3T3-L1 cells demonstrates sequential modifications on RIP140, initiated from constitutive lysine methylation, followed by increased arginine methylation later in differentiation. This study reveals a potential hierarchy of modifications, at least for lysine and arginine methylation, which bidirectionally regulate the functionality of a nonhistone protein.
Collapse
Affiliation(s)
- MD Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sung Gil Ha
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Helene Barcelona
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
123
|
Gupta P, Ho PC, Ha SG, Lin YW, Wei LN. HDAC3 as a molecular chaperone for shuttling phosphorylated TR2 to PML: a novel deacetylase activity-independent function of HDAC3. PLoS One 2009; 4:e4363. [PMID: 19204783 PMCID: PMC2634961 DOI: 10.1371/journal.pone.0004363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/23/2008] [Indexed: 11/30/2022] Open
Abstract
TR2 is an orphan nuclear receptor specifically expressed in early embryos (Wei and Hsu, 1994), and a transcription factor for transcriptional regulation of important genes in stem cells including the gate keeper Oct4 (Park et al. 2007). TR2 is known to function as an activator (Wei et al. 2000), or a repressor (Chinpaisal et al., 1998, Gupta et al. 2007). Due to the lack of specific ligands, mechanisms triggering its activator or repressor function have remained puzzling for decades. Recently, we found that all-trans retinoic acid (atRA) triggers the activation of extracellular-signal-regulated kinase 2 (ERK2), which phosphorylates TR2 and stimulates its partitioning to promyelocytic leukemia (PML) nuclear bodies, thereby converting the activator function of TR2 into repression (Gupta et al. 2008; Park et al. 2007). Recruitment of TR2 to PML is a crucial step in the conversion of TR2 from an activator to a repressor. However, it is unclear how phosphorylated TR2 is recruited to PML, an essential step in converting TR2 from an activator to a repressor. In the present study, we use both in vitro and in vivo systems to address the problem of recruiting TR2 to PML nuclear bodies. First, we identify histone deacetylase 3 (HDAC3) as an effector molecule. HDAC3 is known to interact with TR2 (Franco et al. 2001) and this interaction is enhanced by the atRA-stimulated phosphorylation of TR2 at Thr-210 (Gupta et al. 2008). Secondly, in this study, we also find that the carrier function of HDAC3 is independent of its deacetylase activity. Thirdly, we find another novel activity of atRA that stimulates nuclear enrichment of HDAC3 to form nuclear complex with PML, which is ERK2 independent. This is the first report identifying a deacetylase-independent function for HDAC3, which serves as a specific carrier molecule that targets a specifically phosphorylated protein to PML NBs. This is also the first study delineating how protein recruitment to PML nuclear bodies occurs, which can be stimulated by atRA in an ERK2-independent manner. These findings could provide new insights into the development of potential therapeutics and in understanding how orphan nuclear receptor activities can be regulated without ligands.
Collapse
Affiliation(s)
- Pawan Gupta
- Institute of Microbial Technology, Chandigarh, India
| | - Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Sung Gil Ha
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
124
|
Kajiro M, Hirota R, Nakajima Y, Kawanowa K, So-ma K, Ito I, Yamaguchi Y, Ohie SH, Kobayashi Y, Seino Y, Kawano M, Kawabe YI, Takei H, Hayashi SI, Kurosumi M, Murayama A, Kimura K, Yanagisawa J. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol 2009; 11:312-9. [DOI: 10.1038/ncb1839] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/25/2008] [Indexed: 01/26/2023]
|
125
|
Heemers HV, Regan KM, Schmidt LJ, Anderson SK, Ballman KV, Tindall DJ. Androgen modulation of coregulator expression in prostate cancer cells. Mol Endocrinol 2009; 23:572-83. [PMID: 19164447 DOI: 10.1210/me.2008-0363] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aberrant coregulator expression that occurs during prostate cancer (PCa) progression correlates with poor prognosis and aggressive disease. This has been attributed to the ability to regulate androgen receptor-mediated transcription. We have shown previously that the androgenic milieu regulates the expression of the coactivators p300 and FHL2, with severe consequences for PCa cell proliferation and androgen receptor transcriptional activity. To determine the extent of androgen dependency of coregulator genes, we designed a cDNA-mediated annealing, selection, extension, and ligation RNA profiling array that probes the expression of 186 coregulators. Using this assay, we demonstrated androgen control over approximately 30% of coregulator genes in PCa cells. For a subset of 15 functionally diverse coregulators, androgen regulation was confirmed using real-time RT-PCR and immunoblotting. The extent, dose dependency, and kinetics by which androgens affect coregulator expression differed widely, indicating diverse molecular mechanisms underlying these effects. Moreover, differences in coregulator expression were observed between isogenic androgen-dependent and castration-recurrent PCa cells. Small interfering RNA-mediated changes in coregulator expression had profound effects on cell proliferation, which were most pronounced in castration-recurrent cells. Taken together, our integrated approach combining expression profiling, characterization of androgen-dependent coregulator expression, and validation of the importance of altered coregulator expression for cell proliferation identified several potential novel therapeutic targets for PCa treatment.
Collapse
Affiliation(s)
- Hannelore V Heemers
- Departments of Urology Research/Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905.
| | | | | | | | | | | |
Collapse
|
126
|
Affiliation(s)
- Ellis R Levin
- Division of Endocrinology and Metabolism, University of California, Irvine and the Long Beach VA Medical Center, Long Beach, CA, USA,
| |
Collapse
|
127
|
Tzelepi V, Grivas P, Kefalopoulou Z, Kalofonos H, Varakis JN, Sotiropoulou-Bonikou G. Expression of estrogen receptor co-regulators NCoR and PELP1 in epithelial cells and myofibroblasts of colorectal carcinomas: cytoplasmic translocation of NCoR in epithelial cells correlates with worse prognosis. Virchows Arch 2008; 454:41-53. [DOI: 10.1007/s00428-008-0708-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 11/16/2008] [Accepted: 11/18/2008] [Indexed: 02/03/2023]
|
128
|
Agoulnik IU, Bingman WE, Nakka M, Li W, Wang Q, Liu XS, Brown M, Weigel NL. Target gene-specific regulation of androgen receptor activity by p42/p44 mitogen-activated protein kinase. Mol Endocrinol 2008; 22:2420-32. [PMID: 18787043 PMCID: PMC2582542 DOI: 10.1210/me.2007-0481] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 09/04/2008] [Indexed: 11/19/2022] Open
Abstract
Evidence that the androgen receptor (AR) is not only important in androgen-dependent prostate cancer, but also continues to play a role in tumors that become resistant to androgen deprivation therapies, highlights the need to find alternate means to block AR activity. AR, a hormone-activated transcription factor, and its coactivators are phosphoproteins. Thus, we sought to determine whether inhibition of specific cell signaling pathways would reduce AR function. We found that short-term inhibition of p42/p44 MAPK activity either by a MAPK kinase inhibitor, U0126, or by depletion of kinase with small interfering RNA caused target gene-specific reductions in AR activity. AR enhances histone H3 acetylation of target genes that are sensitive to U0126 including prostate-specific antigen and TMPRSS2, but does not increase histone H3 acetylation of the U0126-resistant PMEPA1 gene. Thus, although AR induces transcription of many target genes, the molecular changes induced by AR at the chromatin level are target gene specific. Long-term treatment (24-48 h) with U0126 causes a G1 cell cycle arrest and reduces AR expression both through a decrease in AR mRNA and a reduction in AR protein stability. Thus, treatments that reduce p42/p44 MAPK activity in prostate cancer have the potential to reduce AR activity through a reduction in expression levels as well as by target gene-selective inhibition of AR function.
Collapse
MESH Headings
- Acetylation
- Base Sequence
- Binding Sites/genetics
- Butadienes/pharmacology
- Cell Line, Tumor
- Enhancer Elements, Genetic
- Histones/chemistry
- Histones/metabolism
- Humans
- MAP Kinase Signaling System
- Male
- Mitogen-Activated Protein Kinase 1/adverse effects
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Nitriles/pharmacology
- Promoter Regions, Genetic
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
Collapse
Affiliation(s)
- Irina U Agoulnik
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Qin L, Liao L, Redmond A, Young L, Yuan Y, Chen H, O'Malley BW, Xu J. The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol Cell Biol 2008; 28:5937-50. [PMID: 18644862 PMCID: PMC2547002 DOI: 10.1128/mcb.00579-08] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/22/2008] [Accepted: 07/10/2008] [Indexed: 11/20/2022] Open
Abstract
Amplified-in-breast cancer 1 (AIB1) is an overexpressed transcriptional coactivator in breast cancer. Although overproduced AIB1 is oncogenic, its role and underlying mechanisms in metastasis remain unclear. Here, mammary tumorigenesis and lung metastasis were investigated in wild-type (WT) and AIB1(-/-) mice harboring the mouse mammary tumor virus-polyomavirus middle T (PyMT) transgene. All WT/PyMT mice developed massive lung metastasis, but AIB1(-/-)/PyMT mice with comparable mammary tumors had significantly less lung metastasis. The recipient mice with transplanted AIB1(-/-)/PyMT tumors also had much less lung metastasis than the recipient mice with transplanted WT/PyMT tumors. WT/PyMT tumor cells expressed mesenchymal markers such as vimentin and N-cadherin, migrated and invaded rapidly, and formed disorganized cellular masses in three-dimensional cultures. In contrast, AIB1(-/-)/PyMT tumor cells maintained epithelial markers such as E-cadherin and ZO-1, migrated and invaded slowly, and still formed polarized acinar structures in three-dimensional cultures. Molecular analyses revealed that AIB1 served as a PEA3 coactivator and formed complexes with PEA3 on matrix metalloproteinase 2 (MMP2) and MMP9 promoters to enhance their expression in both mouse and human breast cancer cells. In 560 human breast tumors, AIB1 expression was found to be positively associated with PEA3, MMP2, and MMP9. These findings suggest a new alternative strategy for controlling the deleterious roles of these MMPs in breast cancer by inhibiting their upstream coregulator AIB1.
Collapse
Affiliation(s)
- Li Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ, O’Malley BW. Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol Cell 2008; 31:835-49. [PMID: 18922467 PMCID: PMC2597059 DOI: 10.1016/j.molcel.2008.07.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/30/2008] [Accepted: 07/18/2008] [Indexed: 11/26/2022]
Abstract
SRC-3/AIB1 is a master growth coactivator and oncogene, and phosphorylation activates it into a powerful coregulator. Dephosphorylation is a potential regulatory mechanism for SRC-3 function, but the identity of such phosphatases remains unexplored. Herein, we report that, using functional genomic screening of human Ser/Thr phosphatases targeting SRC-3's known phosphorylation sites, the phosphatases PDXP, PP1, and PP2A were identified to be key negative regulators of SRC-3 transcriptional coregulatory activity in steroid receptor signalings. PDXP and PP2A dephosphorylate SRC-3 and inhibit its ligand-dependent association with estrogen receptor. PP1 stabilizes SRC-3 protein by blocking its proteasome-dependent turnover through dephosphorylation of two previously unidentified phosphorylation sites (Ser101 and S102) required for activity. These two sites are located within a degron of SRC-3 and are primary determinants of SRC-3 turnover. Moreover, PP1 regulates the oncogenic cell proliferation and invasion functions of SRC-3 in breast cancer cells.
Collapse
Affiliation(s)
- Chao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Yao-Yun Liang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
131
|
Narayanan R, Coss CC, Yepuru M, Kearbey JD, Miller DD, Dalton JT. Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways. Mol Endocrinol 2008; 22:2448-65. [PMID: 18801930 DOI: 10.1210/me.2008-0160] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Androgen receptor (AR) ligands are important for the development and function of several tissues and organs. However, the poor oral bioavailability, pharmacokinetic properties, and receptor cross-reactivity of testosterone, coupled with side effects, place limits on its clinical use. Selective AR modulators (SARMs) elicit anabolic effects in muscle and bone, sparing reproductive organs like the prostate. However, molecular mechanisms underlying the tissue selectivity remain ambiguous. We performed a variety of in vitro studies to compare and define the molecular mechanisms of an aryl propionamide SARM, S-22, as compared with dihydrotestosterone (DHT). Studies indicated that S-22 increased levator ani muscle weight but decreased the size of prostate in rats. Analysis of the upstream intracellular signaling events indicated that S-22 and DHT mediated their actions through distinct pathways. Modulation of these pathways altered the recruitment of AR and its cofactors to the PSA enhancer in a ligand-dependent fashion. In addition, S-22 induced Xenopus laevis oocyte maturation and rapid phosphorylation of several kinases, through pathways distinct from steroids. These studies reveal novel differences in the molecular mechanisms by which S-22, a nonsteroidal SARM, and DHT mediate their pharmacological effects.
Collapse
Affiliation(s)
- Ramesh Narayanan
- Preclinical Research and Development, GTx, Inc., 3 North Dunlap Street, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
132
|
Huq MDM, Ha SG, Wei LN. Modulation of Retinoic Acid Receptor Alpha Activity by Lysine Methylation in the DNA Binding Domain. J Proteome Res 2008; 7:4538-45. [DOI: 10.1021/pr800375z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. D. Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Sung Gil Ha
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
133
|
Tyrosine phosphorylation of the nuclear receptor coactivator AIB1/SRC-3 is enhanced by Abl kinase and is required for its activity in cancer cells. Mol Cell Biol 2008; 28:6580-93. [PMID: 18765637 DOI: 10.1128/mcb.00118-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression and activation of the steroid receptor coactivator amplified in breast cancer 1 (AIB1)/steroid receptor coactivator-3 (SRC-3) have been shown to have a critical role in oncogenesis and are required for both steroid and growth factor signaling in epithelial tumors. Here, we report a new mechanism for activation of SRC coactivators. We demonstrate regulated tyrosine phosphorylation of AIB1/SRC-3 at a C-terminal tyrosine residue (Y1357) that is phosphorylated after insulin-like growth factor 1, epidermal growth factor, or estrogen treatment of breast cancer cells. Phosphorylated Y1357 is increased in HER2/neu (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2) mammary tumor epithelia and is required to modulate AIB1/SRC-3 coactivation of estrogen receptor alpha (ERalpha), progesterone receptor B, NF-kappaB, and AP-1-dependent promoters. c-Abl (v-Abl Abelson murine leukemia viral oncogene homolog 1) tyrosine kinase directly phosphorylates AIB1/SRC-3 at Y1357 and modulates the association of AIB1 with c-Abl, ERalpha, the transcriptional cofactor p300, and the methyltransferase coactivator-associated arginine methyltransferase 1, CARM1. AIB1/SRC-3-dependent transcription and phenotypic changes, such as cell growth and focus formation, can be reversed by an Abl kinase inhibitor, imatinib. Thus, the phosphorylation state of Y1357 can function as a molecular on/off switch and facilitates the cross talk between hormone, growth factor, and intracellular kinase signaling pathways in cancer.
Collapse
|
134
|
Gupta P, Ho PC, Huq MDM, Ha SG, Park SW, Khan AA, Tsai NP, Wei LN. Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proc Natl Acad Sci U S A 2008; 105:11424-9. [PMID: 18682553 PMCID: PMC2516243 DOI: 10.1073/pnas.0710561105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Indexed: 11/18/2022] Open
Abstract
We previously reported an intricate mechanism underlying the homeostasis of Oct4 expression in normally proliferating stem cell culture of P19, mediated by SUMOylation of orphan nuclear receptor TR2. In the present study, we identify a signaling pathway initiated from the nongenomic activity of all-trans retinoic acid (atRA) to stimulate complex formation of extracellular signal-regulated kinase 2 (ERK2) with its upstream kinase, mitogen-activated protein kinase kinase (MEK). The activated ERK2 phosphorylates threonine-210 (Thr-210) of TR2, stimulating its subsequent SUMOylation. Dephosphorylated TR2 recruits coactivator PCAF and functions as an activator for its target gene Oct4. Upon phosphorylation at Thr-210, TR2 increasingly associates with promyelocytic leukemia (PML) nuclear bodies, becomes SUMOylated, and recruits corepressor RIP140 to act as a repressor for its target, Oct4. To normally proliferating P19 stem cell culture, exposure to a physiological concentration of atRA triggers a rapid nongenomic signaling cascade to suppress Oct4 gene and regulate cell proliferation.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - MD Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Sung Gil Ha
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Amjad Ali Khan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Nien-Pei Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
135
|
Wolf IM, Heitzer MD, Grubisha M, DeFranco DB. Coactivators and nuclear receptor transactivation. J Cell Biochem 2008; 104:1580-6. [DOI: 10.1002/jcb.21755] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
136
|
Gupta P, Ho PC, Huq MDM, Khan AA, Tsai NP, Wei LN. PKCepsilon stimulated arginine methylation of RIP140 for its nuclear-cytoplasmic export in adipocyte differentiation. PLoS One 2008; 3:e2658. [PMID: 18628823 PMCID: PMC2440817 DOI: 10.1371/journal.pone.0002658] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 06/02/2008] [Indexed: 02/06/2023] Open
Abstract
Background Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it was unclear what triggered RIP140 arginine methylation. Methodology/Principal Findings In this study, we determined the activated PKCε as the specific trigger for RIP140 arginine methylation and its subsequent export. We identified two PKCε–phosphorylated residues of RIP140, Ser-102 and Ser-1003, which synergistically stimulated direct binding of RIP140 by 14-3-3 that recruited protein arginine methyl transferase 1 to methylate RIP140. The methylated RIP140 then preferentially recruited exportin 1 for nuclear export. As a result, the nuclear gene-repressive activity of RIP140 was reduced. In RIP140 null adipocyte cultures, the defect in fat accumulation was effectively rescued by the phosphoylation-deficient mutant RIP140 that resided predominantly in the nucleus, but less so by the phospho-mimetic RIP140 that was exported to the cytoplasm. Conclusions/Significance This study uncovers a novel means, via a cascade of protein modifications, to inactivate, or suppress, the nuclear action of an important transcription coregulator RIP140, and delineates the first specific phosphorylation-arginine methylation cascade that could alter protein subcellular distribution and biological activity.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - M. D. Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Amjad Ali Khan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Nien-Pei Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
137
|
Serine 28 phosphorylation of NRIF3 confers its co-activator function for estrogen receptor-alpha transactivation. Oncogene 2008; 27:5233-42. [PMID: 18521086 DOI: 10.1038/onc.2008.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NRIF3 is an estrogen-inducible nuclear receptor coregulator that stimulates estrogen receptor-alpha (ERalpha) transactivation functions and associates with the endogenous ER and its target gene promoter. p21-activated protein kinase 1 (Pak1) phosphorylates ERalpha at Ser305 and this modification is important in ERalpha transactivation function. Although ERalpha transactivation functions are regulated by co-activator activity of NRIF3, it remains unclear whether Pak1 could impact ER functions via a posttranslational modification of NRIF3. Here, we report that Pak1 phosphorylates NRIF3 at Serine28 and that NRIF3 binds to Pak1 in vitro and in vivo. We found that NRIF3 phosphorylation, co-activator activity and association with ERalpha increased following Pak1 phosphorylation of NRIF3's Ser28 and that activated ERalpha-Ser305 and NRIF3-Ser28 cooperatively support transactivation of ERalpha. NRIF3 expression increased significantly in cells with inducible Pak1 expression. We found that NRIF3 and ERalpha interaction, subcellular localization and ERalpha transactivation activity all increased in cells expressing the Pak1 phosphorylation-mimicking mutant NRIF3-Ser28Glu. Consistently, the NRIF3-Ser28Glu mutant exhibited an enhanced recruitment to the endogenous ER target genes and increased expression following estrogen stimulation. Finally, breast cancer cells with stable overexpression of NRIF3 showed increased proliferation and enhanced anchorage-independent growth. These findings suggest that NRIF3-Ser28 is a physiologic target of Pak1 signaling and contributes to the enhanced NRIF3 co-activator activity, leading to coordinated potentiation of ERalpha transactivation, its target gene expression and estrogen responsiveness of breast cancer cells.
Collapse
|
138
|
O'Malley BW, Qin J, Lanz RB. Cracking the coregulator codes. Curr Opin Cell Biol 2008; 20:310-5. [PMID: 18499426 DOI: 10.1016/j.ceb.2008.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/07/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
The study of the genetic code has collectively revealed that the biochemical basis of heredity is uniform for nearly all known forms of life. Genetic approaches have generated a much better appreciation and understanding of many aspects of biological processes-and in some cases provided strategies for the treatment of human diseases. Still, the enormous and undoubtedly impressive amount of information gathered on gene sequences, their myriad expression patterns and translation into proteins is insufficient to answer seemingly simpler questions such as to what sets us humans apart from much more undemanding species while sharing almost the same sets of genes. Regulation of the proteome by post-translational modifications (PTMs) is beginning to be understood as a major contributing factor to the structural and functional diversity in biology and for defining cellular mechanisms in particular. Covalent, PTMs provide an astonishingly rich and specific basis for an ultrafast regulation of cellular processes, many of which converge to transcription units to control gene expression. With this essay we intend to share with the reader the rapid growth of our knowledge of the many conjunctions that exist between PTMs and key cellular processes that have emerged by studying the nuclear receptors (NRs) and their transcriptional coregulators.
Collapse
Affiliation(s)
- Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States.
| | | | | |
Collapse
|
139
|
Vasudevan N, Pfaff DW. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 2008; 29:238-57. [PMID: 18083219 DOI: 10.1016/j.yfrne.2007.08.003] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 08/14/2007] [Indexed: 12/16/2022]
Abstract
Ligands for the nuclear receptor superfamily have at least two mechanisms of action: (a) classical transcriptional regulation of target genes (genomic mechanisms); and (b) non-genomic actions, which are initiated at the cell membrane, which could also impact transcription. Though transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. This has led to considerable debate over the physiological relevance of membrane-initiated actions of hormones versus genomic actions of hormones, with genomic actions predominating in the endocrine field. There is good evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium and that these are linked to physiologically relevant scenarios in the brain. We show evidence in this review, that membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription in both the central nervous system and in non-neuronal cell lines. We present a theoretical scenario which can be used to understand this phenomenon. These signaling cascades may occur in parallel or in series but subsequently, converge at the modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other non-cognate hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription, though the relevance of this is less clear. The idea that coupling between membrane-initiated and genomic actions of hormones is a novel idea in neuroendocrinology and provides us with a unified view of hormone action in the central nervous system.
Collapse
Affiliation(s)
- Nandini Vasudevan
- Cell and Molecular Biology Department, Tulane University, LA 70118, USA.
| | | |
Collapse
|
140
|
Nagpal JK, Nair S, Chakravarty D, Rajhans R, Pothana S, Brann DW, Tekmal RR, Vadlamudi RK. Growth factor regulation of estrogen receptor coregulator PELP1 functions via Protein Kinase A pathway. Mol Cancer Res 2008; 6:851-61. [PMID: 18505929 PMCID: PMC2782677 DOI: 10.1158/1541-7786.mcr-07-2030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PELP1 (proline-rich, glutamic acid-rich, and leucine-rich protein-1) is a potential proto-oncogene that functions as a coregulator of estrogen receptor (ER), and its expression is deregulated during breast cancer progression. Emerging evidence suggests growth factor signaling crosstalk with ER as one possible mechanism by which breast tumors acquire resistance to therapy. In this study, we examined mechanisms by which growth factors modulate PELP1 functions, leading to activation of ER. Using in vivo labeling assays, we have found that growth factors promote phosphorylation of PELP1. Utilizing a panel of substrate-specific phosphorylated antibodies, we discovered that growth factor stimulation promotes phosphorylation of PELP1 that is recognized by a protein kinase A (PKA) substrate-specific antibody. Accordingly, growth factor-mediated PELP1 phosphorylation was effectively blocked by PKA-specific inhibitor H89. Utilizing purified PKA enzyme and in vitro kinase assays, we obtained evidence of direct PELP1 phosphorylation by PKA. Using deletion and mutational analysis, we identified PELP1 domains that are phosphorylated by PKA. Interestingly, site-directed mutagenesis of the putative PKA site in PELP1 compromised growth factor-induced activation and subnuclear localization of PELP1 and also affected PELP1-mediated transactivation function. Utilizing MCF-7 cells expressing a PELP1 mutant that cannot be phosphorylated by PKA, we provide mechanistic insights by which growth factor signaling regulates ER transactivation in a PELP1-dependent manner. Collectively, these findings suggest that growth factor signals promote phosphorylation of ER coactivator PELP1 via PKA pathway, and such modification may have functional implications in breast tumors with deregulated growth factor signaling.
Collapse
Affiliation(s)
- Jatin K. Nagpal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Sujit Nair
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Dimple Chakravarty
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Rajib Rajhans
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Saikumar Pothana
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Darrell W. Brann
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, Georgia
| | - Rajeshwar Rao Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
141
|
MED1 phosphorylation promotes its association with mediator: implications for nuclear receptor signaling. Mol Cell Biol 2008; 28:3932-42. [PMID: 18391015 DOI: 10.1128/mcb.02191-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mediator is a conserved multisubunit complex that acts as a functional interface between regulatory transcription factors and the general RNA polymerase II initiation apparatus. MED1 is a pivotal component of the complex that binds to nuclear receptors and a broad array of other gene-specific activators. Paradoxically, MED1 is found in only a fraction of the total cellular Mediator complexes, and the mechanisms regulating its binding to the core complex remain unclear. Here, we report that phosphorylation of MED1 by mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) promotes its association with Mediator. We show that MED1 directly binds to the MED7 subunit and that ERK phosphorylation of MED1 enhances this interaction. Interestingly, we found that both thyroid and steroid hormones stimulate MED1 phosphorylation in vivo and that MED1 phosphorylation is required for its nuclear hormone receptor coactivator activity. Finally, we show that MED1 phosphorylation by ERK enhances thyroid hormone receptor-dependent transcription in vitro. Our findings suggest that ERK phosphorylation of MED1 is a regulatory mechanism that promotes MED1 association with Mediator and, as such, may facilitate a novel feed-forward action of nuclear hormones.
Collapse
|
142
|
Arpino G, Wiechmann L, Osborne CK, Schiff R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 2008; 29:217-33. [PMID: 18216219 PMCID: PMC2528847 DOI: 10.1210/er.2006-0045] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 11/29/2007] [Indexed: 02/07/2023]
Abstract
Breast cancer evolution and tumor progression are governed by the complex interactions between steroid receptor [estrogen receptor (ER) and progesterone receptor] and growth factor receptor signaling. In recent years, the field of cancer therapy has witnessed the emergence of multiple strategies targeting these specific cancer pathways and key molecules (ER and growth factor receptors) to arrest tumor growth and achieve tumor eradication; treatment success, however, has varied and both de novo (up front) and acquired resistance have proven a challenge. Recent studies of ER biology have revealed new insights into ER action in breast cancer and have highlighted the role of an intimate crosstalk between the ER and HER family signaling pathways as a fundamental contributor to the development of resistance to endocrine therapies against the ER pathway. The aim of this review article is to summarize the current knowledge on mechanisms of resistance of breast cancer cells to endocrine therapies due to the crosstalk between the ER and the HER growth factor receptor signaling pathways and to explore new available therapeutic strategies that could prolong duration of response and circumvent endocrine resistant tumor growth.
Collapse
Affiliation(s)
- Grazia Arpino
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
143
|
Liao L, Chen X, Wang S, Parlow AF, Xu J. Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression. Mol Cell Biol 2008; 28:2460-9. [PMID: 18212051 PMCID: PMC2268437 DOI: 10.1128/mcb.01163-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/30/2007] [Accepted: 12/18/2007] [Indexed: 02/02/2023] Open
Abstract
Steroid receptor coactivator 3 (SRC-3/AIB1/ACTR/NCoA-3) is a transcriptional coactivator for nuclear receptors including vitamin D receptor (VDR). Growth hormone (GH) regulates insulin-like growth factor I (IGF-I) expression, and IGF-I forms complexes with acid-labile subunit (ALS) and IGF-binding protein 3 (IGFBP-3) to maintain its circulating concentration and endocrine function. This study demonstrated that the circulating IGF-I was significantly reduced in SRC-3(-/-) mice with the C57BL/6J background. However, SRC-3 deficiency affected neither GH nor ALS expression. The low IGF-I level in SRC-3(-/-) mice was not due to the failure of IGF-I mRNA and protein synthesis but was a consequence of rapid degradation. The rapid IGF-I degradation was associated with drastically reduced IGFBP-3 levels. Because IGF-I and IGFBP-3 stabilize each other, SRC-3(-/-) mice were crossbred with the liver-specific transthyretin (TTR)-IGF-I transgenic mice to assess the relationship between reduced IGF-I and IGFBP-3. In SRC-3(-/-)/TTR-IGF-I mice, the IGF-I level was significantly increased over that in SRC-3(-/-) mice, but the IGFBP-3 level failed to increase proportionally, indicating that the low IGFBP-3 level is a responsible factor that limits the IGF-I level in SRC-3(-/-) mice. Furthermore, IGFBP-3 mRNA was reduced in SRC-3(-/-) mice. The IGFBP-3 promoter activity induced by vitamin D, through VDR, was diminished in SRC-3(-/-) cells, suggesting an important role of SRC-3 in VDR-mediated transactivation of the IGFBP-3 gene. In agreement with the role of SRC-3 in VDR function, the expression of several VDR target genes was also reduced in SRC-3(-/-) mice. Therefore, SRC-3 maintains IGF-I in the circulation through enhancing VDR-regulated IGFBP-3 expression.
Collapse
Affiliation(s)
- Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
144
|
Lonard DM, O'Malley BW. SRC-3 transcription-coupled activation, degradation, and the ubiquitin clock: is there enough coactivator to go around in cells? Sci Signal 2008; 1:pe16. [PMID: 18385039 DOI: 10.1126/stke.113pe16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Overexpression of nuclear receptor coactivators is a frequent event in breast cancer cells and is recognized as a key mechanism for these cells to maximize their oncogenic growth state. Steroid receptor coactivator-3 [(SRC-3), also known as amplified in breast cancer-1 or AIB1] is foremost among these overexpressed oncogenic coactivators, being overexpressed in most breast cancers. Because of its oncogenic potential, normal cells must carefully control its cellular concentration. We discuss how SRC-3 quantitatively influences estrogen-regulated gene transcription when it is at limiting concentrations in normal breast cells and at nonlimiting concentrations in breast cancer cells. Precise control of the cellular concentration of SRC-3 may thus serve as a mechanism for defining growth responses to estrogen receptors and other growth-promoting transcription factors.
Collapse
Affiliation(s)
- David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
145
|
Xu J. Preparation, culture, and immortalization of mouse embryonic fibroblasts. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2008; Chapter 28:Unit 28.1. [PMID: 18265366 DOI: 10.1002/0471142727.mb2801s70] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetically manipulated transgenic and gene-targeted mouse models are indispensible tools used in defining the role of genes in development and organ function. Similarly, cells isolated from these mice bear the same genetic alterations and therefore can be extremely useful for studying the molecular and cellular mechanisms and regulatory gene networks involving the mutated gene under well defined culture conditions. In this unit, detailed protocols regarding isolation of mouse embryonic fibroblasts (MEFs) from mouse embryos, culture of MEFs, and immortalization of MEFs are described. These protocols should be particularly useful to those investigators who intend to establish primarily cultured MEFs and to immortalize primary MEFs into stable cell cultures with a permanent growth feature from wild-type and mutant mouse embryos.
Collapse
Affiliation(s)
- Jianming Xu
- Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
146
|
Isensee J, Ruiz Noppinger P. Sexually dimorphic gene expression in mammalian somatic tissue. ACTA ACUST UNITED AC 2008; 4 Suppl B:S75-95. [PMID: 18156105 DOI: 10.1016/s1550-8579(07)80049-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2007] [Indexed: 01/06/2023]
Abstract
BACKGROUND The sexually dimorphic differentiation of the bipotential gonad into testis or ovary initiates the sexually dimorphic development of mammals and leads to divergent hormone concentrations between the sexes throughout life. However, despite the fact that anatomic and hormonal differences between the sexes are well described, only a few studies have investigated the manifestation of these differences at the transcriptional level in mammalian somatic tissue. OBJECTIVE This review focuses on basic regulatory mechanisms of sex-specific gene expression and examines recent gene expression profiling studies to outline basic differences between the sexes at the transcriptome level in somatic tissues. METHODS To identify gene expression profiling studies addressing sexually dimorphic gene expression, the PubMed database was searched using the terms sex and dimorp and gene expression not drosophila not elegans. Abstracts of all identified publications were screened for studies explicitly using microarrays to identify sex differences in somatic tissues of rodents or humans. The search was restricted to English-language articles published in the past 5 years. Reference lists of identified articles as well as microarray databases (Gene Expression Omnibus and ArrayExpress) were also used. RESULTS The application of microarray technology has enabled the systematic assessment of sex-biased gene expression on the transcriptome level, indicating that the regulatory pathways underlying sexual differentiation give rise to extensive differences in somatic gene expression across organisms. CONCLUSION Sustainable annotation of sex-biased gene expression provides a key to understanding basic physiological differences between healthy males and females as well as those with diseases.
Collapse
Affiliation(s)
- Jörg Isensee
- Center for Cardiovascular Research, Center for Gender in Medicine, Charité Universitätsmedizin, Berlin, Germany
| | | |
Collapse
|
147
|
Yi P, Feng Q, Amazit L, Lonard DM, Tsai SY, Tsai MJ, O'Malley BW. Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol Cell 2008; 29:465-76. [PMID: 18313384 PMCID: PMC2293272 DOI: 10.1016/j.molcel.2007.12.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 10/16/2007] [Accepted: 12/15/2007] [Indexed: 11/23/2022]
Abstract
SRC-3/AIB1 is a steroid receptor coactivator with potent growth-promoting activity, and its overexpression is sufficient to induce tumorigenesis. Previous studies indicate that the cellular level of SRC-3 is tightly regulated by both ubiquitin-dependent and ubiquitin-independent proteasomal degradation pathways. Atypical protein kinase C (aPKC) is frequently overexpressed in cancers. In the present study, we show that aPKC phosphorylates and specifically stabilizes SRC-3 in a selective ER-dependent manner. We further demonstrate that an acidic residue-rich region in SRC-3 is an important determinant for aPKC-mediated phosphorylation and stabilization. The mechanism of the aPKC-mediated stabilization appears due to a decreased interaction between SRC-3 and the C8 subunit of the 20S core proteasome, thus preventing SRC-3 degradation. Our results demonstrate a potent signaling mechanism for regulating SRC-3 levels in cells by coordinate enzymatic inhibition of both ubiquitin-dependent and ubiquitin-independent proteolytic pathways.
Collapse
Affiliation(s)
- Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Larbi Amazit
- Inserm, U693, 63 rue Gabriel Péri, F-94276, Le Kremlin-Bicêtre, France
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
148
|
Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, Weiss H, Rimawi M, Schiff R. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 2008; 68:826-33. [PMID: 18245484 DOI: 10.1158/0008-5472.can-07-2707] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Not all breast cancers respond to tamoxifen, and many develop resistance despite initial benefit. We used an in vivo model of estrogen receptor (ER)-positive breast cancer (MCF-7 xenografts) to investigate mechanisms of this resistance and develop strategies to circumvent it. Epidermal growth factor receptor (EGFR) and HER2, which were barely detected in control estrogen-treated tumors, increased slightly with tamoxifen and were markedly increased when tumors became resistant. Gefitinib, which inhibits EGFR/HER2, improved the antitumor effect of tamoxifen and delayed acquired resistance, but had no effect on estrogen-stimulated growth. Phosphorylated levels of p42/44 and p38 mitogen-activated protein kinases (both downstream of EGFR/HER2) were increased in the tamoxifen-resistant tumors and were suppressed by gefitinib. There was no apparent increase in phosphorylated AKT (also downstream of EGFR/HER2) in resistant tumors, but it was nonetheless suppressed by gefitinib. Phosphorylated insulin-like growth factor-IR (IGF-IR), which can interact with both EGFR and membrane ER, was elevated in the tamoxifen-resistant tumors compared with the sensitive group. However, ER-regulated gene products, including total IGF-IR itself and progesterone receptor, remained suppressed even at the time of acquired resistance. Tamoxifen's antagonism of classic ER genomic function was retained in these resistant tumors and even in tumors that overexpress HER2 (MCF-7 HER2/18) and are de novo tamoxifen-resistant. In conclusion, EGFR/HER2 may mediate tamoxifen resistance in ER-positive breast cancer despite continued suppression of ER genomic function by tamoxifen. IGF-IR expression remains dependent on ER but is activated in the tamoxifen-resistant tumors. This study provides a rationale to combine HER inhibitors with tamoxifen in clinical studies, even in tumors that do not initially overexpress EGFR/HER2.
Collapse
Affiliation(s)
- Suleiman Massarweh
- Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Staudinger JL, Lichti K. Cell signaling and nuclear receptors: new opportunities for molecular pharmaceuticals in liver disease. Mol Pharm 2008; 5:17-34. [PMID: 18159925 PMCID: PMC2387130 DOI: 10.1021/mp700098c] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver-enriched nuclear receptors (NRs) collectively function as metabolic and toxicological "sensors" that mediate liver-specific gene-activation in mammals. NR-mediated gene-environment interaction regulates important steps in the hepatic uptake, metabolism, and excretion of glucose, fatty acids, lipoproteins, cholesterol, bile acids, and xenobiotics. Hence, liver-enriched NRs play pivotal roles in the overall control of energy homeostasis in mammals. While it is well-recognized that ligand-binding is the primary mechanism behind activation of NRs, recent research reveals that multiple signal transduction pathways modulate NR-function in liver. The interface between specific signal transduction pathways and NRs helps to determine their overall responsiveness to various environmental and physiological stimuli. In general, phosphorylation of hepatic NRs regulates multiple biological parameters including their transactivation capacity, DNA binding, subcellular location, capacity to interact with protein-cofactors, and protein stability. Certain pathological conditions including inflammation, morbid obesity, hyperlipidemia, atherosclerosis, insulin resistance, and type-2 diabetes are known to modulate selected signal transduction pathways in liver. This review will focus upon recent insights regarding the molecular mechanisms that comprise the interface between disease-mediated activation of hepatic signal transduction pathways and liver-enriched NRs. This review will also highlight the exciting opportunities presented by this new knowledge to develop novel molecular and pharmaceutical strategies for combating these increasingly prevalent human diseases.
Collapse
Affiliation(s)
- Jeff L Staudinger
- University of Kansas, Department of Pharmacology and Toxicology, 1251 Wescoe Hall Dr, 5038 Malott Hall, Lawrence, Kansas 66045, USA.
| | | |
Collapse
|
150
|
Karamouzis MV, Konstantinopoulos PA, Badra FA, Papavassiliou AG. SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 2008; 107:195-210. [PMID: 17377839 DOI: 10.1007/s10549-007-9552-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Small ubiquitin-like modifier (SUMO) is a family of proteins structurally similar to ubiquitin that have been found to be covalently attached to certain lysine residues of specific target proteins. By contrast to ubiquitination, however, SUMO proteins do not promote protein degradation but, instead, modulate important functional properties, depending on the protein substrate. These properties include--albeit not limited to--subcellular localization, protein dimerization, DNA binding and/or transactivation of transcription factors, among them estrogen receptors. Moreover, it has been suggested that SUMO proteins might affect transcriptional co-factor complexes of the estrogen receptor signalling cascade. Tissue and/or state specificity seems to be one of their intriguing features. In this regard, elucidation of their contribution to estrogen receptor-mediated transcriptional activity during breast carcinogenesis will offer new insights into the molecular mechanisms governing sensitivity/resistance in currently applied endocrine treatment and/or chemoprevention, and provide novel routes to breast carcinoma therapeutics.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|