101
|
Abstract
Cdc25 phosphatases propel cell cycle progression by activating cyclin-dependent kinases (Cdk). DNA damage is generally thought to inhibit Cdc25 functionality by inducing proteasomal degradation of Cdc25A and phosphorylation-mediated sequestration of Cdc25B and Cdc25C to the cytoplasm. More recently, a critical role for Cdc25B in the resumption of cell cycle progression through mitosis after DNA damage has been identified. In this study, the fate of Cdc25B after mechanistically distinct DNA-damaging agents (etoposide, cisplatin, bleomycin, ionizing irradiation, or UV irradiation) was examined, and surprisingly a rapid increase in cellular Cdc25B levels was observed after DNA damage. Using UV irradiation as the prototypic damaging agent, we found that the increase in Cdc25B levels was checkpoint dependent and was controlled by a p53-independent mechanism. Cdc25B levels controlled the number of cells progressing into mitosis after UV, but they did not affect G(2)-M checkpoint engagement immediately after DNA damage. Increased Cdc25B reduced the time required for cell cycle resumption. These data support a model in which Cdc25B accumulation is an important anticipatory event for cell cycle resumption after DNA damage.
Collapse
Affiliation(s)
- Pallavi Bansal
- Department of Pharmacology, University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
102
|
Zhou T, Chou J, Mullen TE, Elkon R, Zhou Y, Simpson DA, Bushel PR, Paules RS, Lobenhofer EK, Hurban P, Kaufmann WK. Identification of primary transcriptional regulation of cell cycle-regulated genes upon DNA damage. Cell Cycle 2007; 6:972-81. [PMID: 17404513 PMCID: PMC2117899 DOI: 10.4161/cc.6.8.4106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Jeff Chou
- Department of Health and Human Services; National Institute of Environmental Health Sciences; Research Triangle Park, North Carolina USA
| | - Thomas E. Mullen
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Rani Elkon
- Department of Human Genetics; Sackler School of Medicine; Tel Aviv University, Tel Aviv, Israel
| | - Yingchun Zhou
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Dennis A. Simpson
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| | - Pierre R. Bushel
- Department of Health and Human Services; National Institute of Environmental Health Sciences; Research Triangle Park, North Carolina USA
| | - Richard S. Paules
- Department of Health and Human Services; National Institute of Environmental Health Sciences; Research Triangle Park, North Carolina USA
| | | | - Patrick Hurban
- Cogenics, a Division of Clinical Data; Morrisville, North Carolina USA
| | - William K. Kaufmann
- Department of Pathology and Laboratory Medicine; Center for Environmental Health and Susceptibility, and Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, North Carolina USA
| |
Collapse
|
103
|
Giono LE, Manfredi JJ. Mdm2 is required for inhibition of Cdk2 activity by p21, thereby contributing to p53-dependent cell cycle arrest. Mol Cell Biol 2007; 27:4166-78. [PMID: 17371838 PMCID: PMC1900019 DOI: 10.1128/mcb.01967-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
p53 is extensively posttranslationally modified in response to various types of cellular stress. Such modifications have been implicated in the regulation of p53 protein levels as well as its DNA binding and transcriptional activities. Treatment of cells with doxorubicin causes phosphorylation and acetylation of p53, transcriptional upregulation of p21 and other target genes, and growth arrest. In contrast, downregulation of Mdm2 by a small interfering RNA (siRNA) approach led to increased levels of p53 lacking phosphorylation at serine 15 and acetylation at lysine 382. Levels of binding of p53 to the p21 promoter were comparable following treatment with doxorubicin or Mdm2 siRNA. Moreover, p53 was transcriptionally active and capable of inducing or repressing a variety of its target genes. Surprisingly, p53 upregulated by Mdm2 siRNA had no effect on cell cycle progression. Although comparable in level to that achieved by treatment with the p53 activators actinomycin D and nutlin-3, the increases in p53 and p21 after downregulation of Mdm2 were not sufficient to trigger cell cycle arrest. This version of p21 was capable of interacting with cyclin-dependent kinase 2 (Cdk2) but failed to inhibit its activity. Taken together, these results argue that Mdm2 is needed for full inhibition of Cdk2 activity by p21, thereby positively contributing to p53-dependent cell cycle arrest.
Collapse
Affiliation(s)
- Luciana E Giono
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
104
|
Shu KX, Li B, Wu LX. The p53 network: p53 and its downstream genes. Colloids Surf B Biointerfaces 2007; 55:10-8. [PMID: 17188467 DOI: 10.1016/j.colsurfb.2006.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/17/2006] [Accepted: 11/03/2006] [Indexed: 12/13/2022]
Abstract
The tumor-suppressor gene p53 and its downstream genes consist of a complicated gene network. p53 is a key molecular node in the network, which is activated in response to several cellular signals resulting in the maintenance of genetic stability. Several cellular signals may activate the p53 network. When the expression of P53 is elevated, P53-MDM2 module and the ubiquitin system can accurately regulate the expression level of P53. P53 can bind to specific DNA sequence, activate its downstream genes expression, and control cell-cycle arrest, DNA repair, and apoptosis. Elucidating the function of p53 gene network will help understand the interaction mechanisms of p53 and its downstream genes.
Collapse
Affiliation(s)
- Kun-Xian Shu
- College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | | | | |
Collapse
|
105
|
Barton MC, Akli S, Keyomarsi K. Deregulation of cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 2007; 209:686-94. [PMID: 17001684 DOI: 10.1002/jcp.20818] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this review, we focus on pathways intersecting through p53 and cyclin E, highlighting how oncogenic effects of cyclin E deregulation, especially overexpression of shortened or low molecular weight (LMW) forms of cyclin E protein, are amplified by loss of regulatory control through p53 to promote tumor development. Expression of cyclin E protein promotes progression into S-phase, an activity opposed by p53-regulated activation of checkpoint controls or apoptosis. Loss of p53 function is an escape hatch by which tumor cells, initiated by a number of means including cyclin E deregulation, can avoid cell cycle arrest or cell death and progress through further stages of unchecked deregulation and growth. To determine how this escape hatch is opened and, ultimately, how to close it, we must understand the networks of normal signaling and processing in a cell and where they intersect.
Collapse
Affiliation(s)
- Michelle Craig Barton
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
106
|
Celik HA, Kircelli F, Saydam G, Aydin HH. Potential involvement of serine/threonine protein phosphatases in apoptosis of HepG2 cells during selenite treatment. Biol Trace Elem Res 2007; 117:65-75. [PMID: 17873393 DOI: 10.1007/bf02698084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/05/2006] [Accepted: 10/23/2006] [Indexed: 11/25/2022]
Abstract
Selenium, an essential biological trace element present in both prokaryotic and eukaryotic cells, exerts its regulatory effect in a variety of cellular events, including cell growth, survival, and death. Selenium compounds have been shown in different cell lines to inhibit apoptosis by several mechanisms. Serine/threonine phosphatases (STPs) are potentially important in selenite-induced apoptosis because of their role in regulation of diverse set of cellular processes. In this study, the regulatory role of STPs in selenite-induced apoptosis has been implied by the use of two specific inhibitors: ocadaic acid and calyculin A. Our results show a decrease in cell density in HepG2 cells under selenite treatment. Resulting specific enzyme activities showed a concentration-dependent increase in all three phosphatase activities after 24 h in cells treated with 5 microM selenite and these activities decreased at 48 and 72 h. However, in cells treated with 10 microM selenite, PP2A and PP2B decreased at 48 h, whereas PP2C activity did not change at this dose. In cells treated with 25 microM, there was not a significant change in PP2C activity. These data suggest that the most specific response to selenite treatment was in PP2A and PP2B activities in a dose-dependent manner. Our results with OA and Cal-A further support the view that PP1 and PP2A might act as negative regulators of growth. With these data, we have first demonstrated the role of serine/threonine protein phosphatases in the signaling pathway of selenite-induced apoptosis and resulting cytotoxicity.
Collapse
Affiliation(s)
- Handan Ak Celik
- Department of Biochemistry, School of Medicine, Bornova, Izmir, TR-35100, Turkey
| | | | | | | |
Collapse
|
107
|
Osterloh L, von Eyss B, Schmit F, Rein L, Hübner D, Samans B, Hauser S, Gaubatz S. The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J 2006; 26:144-57. [PMID: 17159899 PMCID: PMC1782375 DOI: 10.1038/sj.emboj.7601478] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/16/2006] [Indexed: 01/06/2023] Open
Abstract
Regulated gene expression is critical for the proper timing of cell cycle transitions. Here we report that human LIN-9 has an important function in transcriptional regulation of G2/M genes. Depletion of LIN-9 by RNAi in human fibroblasts strongly impairs proliferation and delays progression from G2 to M. We identify a cluster of G2/M genes as direct targets of LIN-9. Activation of these genes is linked to an association between LIN-9 and B-MYB. Chromatin immunoprecipitation assays revealed binding of both LIN-9 and B-MYB to the promoters of G2/M regulated genes. Depletion of B-MYB recapitulated the biological outcome of LIN-9 knockdown, including impaired proliferation and reduced expression of G2/M genes. These data suggest a critical role for human LIN-9, together with B-MYB, in the activation of genes that are essential for progression into mitosis.
Collapse
Affiliation(s)
- Lisa Osterloh
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Björn von Eyss
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Fabienne Schmit
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Lena Rein
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Denise Hübner
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Birgit Samans
- Institute for Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Hauser
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Stefan Gaubatz
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany. Tel.: +49 931 888 4138; Fax: +49 931 888 4150; E-mail:
| |
Collapse
|
108
|
Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 2006; 209:13-20. [PMID: 16741928 DOI: 10.1002/jcp.20689] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The process of cell division is highly ordered and regulated. Checkpoints exist to delay progression into the next cell cycle phase only when the previous step is fully completed. The ultimate goal is to guarantee that the two daughter cells inherit a complete and faithful copy of the genome. Checkpoints can become activated due to DNA damage, exogenous stress signals, defects during the replication of DNA, or failure of chromosomes to attach to the mitotic spindle. Abrogation of cell cycle checkpoints can result in death for a unicellular organism or uncontrolled proliferation and tumorigenesis in metazoans (Nyberg et al., 2002). The tumor suppressor p53 plays a critical role in each of these cell cycle checkpoints and is reviewed here.
Collapse
Affiliation(s)
- Luciana E Giono
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
109
|
Bartosová J, Kuzelová K, Pluskalová M, Marinov I, Halada P, Gasová Z. UVA-activated 8-methoxypsoralen (PUVA) causes G2/M cell cycle arrest in Karpas 299 T-lymphoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 85:39-48. [PMID: 16735125 DOI: 10.1016/j.jphotobiol.2006.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 11/20/2022]
Abstract
We investigated the effect of UVA-activated 8-methoxypsoralen (PUVA) on the cell line Karpas 299 derived from anaplastic large-cell lymphoma (ALCL) expressing chimeric fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM/ALK). NPM/ALK activates phosphatidylinositol 3 kinase (PI3K)/Akt pathway responsible for the cell protection from apoptosis. We found that PUVA treatment first induced G2/M cell cycle arrest resulting in a decrease in the cell proliferation rate. The mitochondrial apoptosis was triggered immediately following PUVA treatment, as we judged from the unmasking of mitochondrial membrane antigen 7A6. However, the mitochondrial membrane depolarization was not observed and caspase-3 was only slightly activated. The late apoptotic events were lacking: neither translocation of phosphatidylserine to the outer side of plasma membrane nor DNA fragmentation occurred. We revealed that PUVA enhanced the expression of peroxiredoxin, stress protein endoplasmin and galectin-3. Galectin-3 has been shown to protect mitochondrial membrane integrity and prevent cytochrome c release thereby blocking the effector stage of apoptosis. We suggest that the elevated level of this protein following PUVA treatment acts in synergy with the constitutively expressed chimeric kinase NPM/ALK to block the apoptosis.
Collapse
Affiliation(s)
- Jitka Bartosová
- Department of Cellular Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| | | | | | | | | | | |
Collapse
|
110
|
Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G, Piaggio G. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006; 10:191-202. [PMID: 16959611 DOI: 10.1016/j.ccr.2006.08.013] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 07/11/2006] [Accepted: 08/14/2006] [Indexed: 01/04/2023]
Abstract
This article investigates the mechanistic aspects of mutant p53 "gain of function" in response to DNA damage. We show that mutant forms of p53 protein interact with NF-Y. The expression of cyclin A, cyclin B1, cdk1, and cdc25C, as well as the cdk1-associated kinase activities, is upregulated after DNA damage, provoking a mutant p53/NF-Y-dependent increase in DNA synthesis. Mutant p53 binds NF-Y target promoters and, upon DNA damage, recruits p300, leading to histone acetylation. The recruitment of mutant p53 to the CCAAT sites is severely impaired upon abrogation of NF-YA expression. Endogenous NF-Y, mutant p53, and p300 proteins form a triple complex upon DNA damage. We demonstrate that aberrant transcriptional regulation underlies the ability of mutant p53 proteins to act as oncogenic factors.
Collapse
Affiliation(s)
- Silvia Di Agostino
- Experimental Oncology Department, Istituto Regina Elena, Via delle Messi D'Oro 156, 00158 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Le Gac G, Estève PO, Ferec C, Pradhan S. DNA damage-induced down-regulation of human Cdc25C and Cdc2 is mediated by cooperation between p53 and maintenance DNA (cytosine-5) methyltransferase 1. J Biol Chem 2006; 281:24161-70. [PMID: 16807237 DOI: 10.1074/jbc.m603724200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cdc25C phosphatase mediates cellular entry into mitosis in mammalian cells. Cdc25C activates Cdc2 for entry into mitosis by dephosphorylating Thr and Tyr at the site of inhibitory phosphorylation. The Cdc25C gene contains tumor suppressor p53 binding sites and is demonstrated to contribute to the p53-dependent cell cycle arrest upon DNA damage. Here we show that both Cdc25C and Cdc2 were down-regulated in wild-type HCT116 cells but not in p53-null, DNMT1-null or DNMT1and DNMT3b-null cells, upon p53 stabilization following doxorubicin-mediated DNA damage. Furthermore, zebularine, a drug that selectively traps and depletes nuclear DNMT1 and DNMT3b, relieved p53-mediated repression of endogenous Cdc25C and Cdc2. Methylation analysis of the Cdc25C and Cdc2 promoter displayed internal CG methylation proximal to the p53 binding site upon DNA damage in a p53-dependent manner. Chromatin immunoprecipitation of doxorubicin treated wild-type HCT116 cells showed the presence of DNMT1, p53, H3K9me2, and the transcriptional repressor HDAC1 on the Cdc25C and Cdc2 promoters, suggesting their involvement as repressive complexes in Cdc25C and Cdc2 gene silencing. Thus, the general mechanism of p53-mediated gene repression may involve recruitment of other repressive factors.
Collapse
Affiliation(s)
- Gerald Le Gac
- New England Biolabs, Ipswich, Massachusetts 01938, USA
| | | | | | | |
Collapse
|
112
|
Spurgers KB, Gold DL, Coombes KR, Bohnenstiehl NL, Mullins B, Meyn RE, Logothetis CJ, McDonnell TJ. Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 2006; 281:25134-42. [PMID: 16798743 DOI: 10.1074/jbc.m513901200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Historically, most studies attribute p53 function to the transactivation of target genes. That p53 can selectively repress genes to affect a cellular response is less widely appreciated. Available evidence suggests that repression is important for p53-induced apoptosis and cell cycle arrest. To better establish the scope of p53-repressed target genes and the cellular processes they may affect, a global expression profiling strategy was used to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes, 0.77% of the 14,500 genes represented on the Affymetrix U133A microarray, were repressed more than 2-fold (p < or = 0.05). Validation of the array data, using reverse transcription-PCR of 20 randomly selected genes, yielded a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis revealed that cell cycle regulatory genes exhibited a highly significant enrichment (p < or = 5 x 10(-28)) within the transrepressed targets. 41% of the repressed targets are cell cycle regulators. A subset of these genes exhibited repression following DNA damage, preceding cell cycle arrest, in LNCaP cells. The use of a p53 small interfering RNA strategy in LNCaP cells and the use of p53-null cell lines demonstrated that this repression is p53-dependent. These findings identify a set of genes not known previously to be down-regulated by p53 and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g. p21) but also the repression of targets that regulate proliferation at several distinct phases of the cell cycle.
Collapse
Affiliation(s)
- Kevin B Spurgers
- Department of Molecular Pathology, University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Hammond EM, Mandell DJ, Salim A, Krieg AJ, Johnson TM, Shirazi HA, Attardi LD, Giaccia AJ. Genome-wide analysis of p53 under hypoxic conditions. Mol Cell Biol 2006; 26:3492-504. [PMID: 16611991 PMCID: PMC1447427 DOI: 10.1128/mcb.26.9.3492-3504.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypoxia is an important nongenotoxic stress that modulates the tumor suppressor activity of p53 during malignant progression. In this study, we investigated how genotoxic and nongenotoxic stresses regulate p53 association with chromatin, p53 transcriptional activity, and p53-dependent apoptosis. We found that genotoxic and nongenotoxic stresses result in the accumulation and binding of the p53 tumor suppressor protein to the same cognate binding sites in chromatin. However, it is the stress that determines whether downstream signaling is mediated by association with transcriptional coactivators. In contrast to p53 induced by DNA-damaging agents, hypoxia-induced p53 has primarily transrepression activity. Using extensive microarray analysis, we identified families of repressed targets of p53 that are involved in cell signaling, DNA repair, cell cycle control, and differentiation. Following our previous study on the contribution of residues 25 and 26 to p53-dependent hypoxia-induced apoptosis, we found that residues 25-26 and 53-54 and the polyproline- and DNA-binding regions are also required for both gene repression and the induction of apoptosis by p53 during hypoxia. This study defines a new role for residues 53 and 54 of p53 in regulating transrepression and demonstrates that 25-26 and 53-54 work in the same pathway to induce apoptosis through gene repression.
Collapse
Affiliation(s)
- Ester M Hammond
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA 94303-5152, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Bhonde MR, Hanski ML, Budczies J, Cao M, Gillissen B, Moorthy D, Simonetta F, Scherübl H, Truss M, Hagemeier C, Mewes HW, Daniel PT, Zeitz M, Hanski C. DNA Damage-induced Expression of p53 Suppresses Mitotic Checkpoint Kinase hMps1. J Biol Chem 2006; 281:8675-85. [PMID: 16446370 DOI: 10.1074/jbc.m511333200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage induced by the topoisomerase I inhibitor irinotecan (CPT-11) triggers in p53(WT) colorectal carcinoma cells a long term cell cycle arrest and in p53MUT cells a transient arrest followed by apoptosis (Magrini, R., Bhonde, M. R., Hanski, M. L., Notter, M., Scherübl, H., Boland, C. R., Zeitz, M., and Hanski, C. (2002) Int. J. Cancer 101, 23-31; Bhonde, M. R., Hanski, M. L., Notter, M., Gillissen, B. F., Daniel, P. T., Zeitz, M., and Hanski, C. (2006) Oncogene 25, 165-175). The mechanism of the p53-independent apoptosis still remains largely unclear. Here we used five p53WT and five p53MUT established colon carcinoma cell lines to identify gene expression alterations associated with apoptosis in p53MUT cells after treatment with SN-38, the irinotecan metabolite. After treatment, 16 mitosis-related genes were found to be expressed at least 2-fold stronger in the apoptosis-executing p53MUT cells than in the cell cycle-arrested p53WT cells by oligonucleotide microarray analysis. One of the genes whose strong post-treatment expression was associated with apoptosis was the mitotic checkpoint kinase hMps1 (human ortholog of the yeast monopolar spindle 1 kinase). hMps1 mRNA and protein expression were suppressed by the treatment-induced and by the exogenous adenovirus-coded p53 protein. The direct suppression of hMps1 on RNA level or inhibition of its activity by a dominant-negative hMps1 partly suppressed apoptosis. Together, these data indicate that the high expression of mitotic genes in p53MUT cells after SN-38 treatment contributes to DNA damage-induced apoptosis, whereas their suppression in p53WT cells acts as a safeguard mechanism preventing mitosis initiation and the subsequent apoptosis. hMps1 kinase is one of the mitotic checkpoint proteins whose expression after DNA damage in p53MUT cells activates the checkpoint and contributes to apoptosis.
Collapse
Affiliation(s)
- Mandar R Bhonde
- Department of Gastroenterology, University Medical Center Charité, Campus Benjamin Franklin, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Shin YC, Nakamura H, Liang X, Feng P, Chang H, Kowalik TF, Jung JU. Inhibition of the ATM/p53 signal transduction pathway by Kaposi's sarcoma-associated herpesvirus interferon regulatory factor 1. J Virol 2006; 80:2257-66. [PMID: 16474133 PMCID: PMC1395370 DOI: 10.1128/jvi.80.5.2257-2266.2006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 12/05/2005] [Indexed: 12/21/2022] Open
Abstract
Infected cells recognize viral replication as a DNA damage stress and elicit the ataxia telangiectasia-mutated (ATM)/p53-mediated DNA damage response signal transduction pathway as part of the host surveillance mechanisms, which ultimately induces the irreversible cell cycle arrest and apoptosis. Viruses have evolved a variety of mechanisms to counteract this host intracellular innate immunity. Kaposi's sarcoma-associated herpesvirus (KSHV) viral interferon regulatory factor 1 (vIRF1) interacts with the cellular p53 tumor suppressor through its central DNA binding domain, and this interaction inhibits transcriptional activation of p53. Here, we further demonstrate that KSHV vIRF1 downregulates the total p53 protein level by facilitating its proteasome-mediated degradation. Detailed biochemical study showed that vIRF1 interacted with cellular ATM kinase through its carboxyl-terminal transactivation domain and that this interaction blocked the activation of ATM kinase activity induced by DNA damage stress. As a consequence, vIRF1 expression greatly reduced the level of serine 15 phosphorylation of p53, resulting in an increase of p53 ubiquitination and thereby a decrease of its protein stability. These results indicate that KSHV vIRF1 comprehensively compromises an ATM/p53-mediated DNA damage response checkpoint by targeting both upstream ATM kinase and downstream p53 tumor suppressor, which might circumvent host growth surveillance and facilitate viral replication in infected cells.
Collapse
Affiliation(s)
- Young C Shin
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Sugimoto M, Gromley A, Sherr CJ. Hzf, a p53-responsive gene, regulates maintenance of the G2 phase checkpoint induced by DNA damage. Mol Cell Biol 2006; 26:502-12. [PMID: 16382142 PMCID: PMC1346904 DOI: 10.1128/mcb.26.2.502-512.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The hematopoietic zinc finger protein, Hzf, is induced in response to genotoxic and oncogenic stress. The Hzf protein is encoded by a p53-responsive gene, and its overexpression, either in cells retaining or lacking functional 53, halts their proliferation. Enforced expression of Hzf led to the appearance of tetraploid cells with supernumerary centrosomes and, ultimately, to cell death. Eliminating Hzf mRNA expression by use of short hairpin (sh) RNAs had no overt effect on unstressed cells but inhibited the maintenance of G2 phase arrest following ionizing radiation (IR), thereby sensitizing cells to DNA damage. Canonical p53-responsive gene products such as p21Cip1 and Mdm2 were induced by IR in cells treated with Hzf shRNA. However, the reduction in the level of Hzf protein was accompanied by increased polyubiquitination and turnover of p21Cip1, an inhibitor of cyclin-dependent kinases whose expression contributes to maintaining the duration of the G2 checkpoint in cells that have sustained DNA damage. Thus, two p53-inducible gene products, Hzf and p21Cip1, act concomitantly to enforce the G(2) checkpoint.
Collapse
Affiliation(s)
- Masataka Sugimoto
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
117
|
Testoni B, Mantovani R. Mechanisms of transcriptional repression of cell-cycle G2/M promoters by p63. Nucleic Acids Res 2006; 34:928-38. [PMID: 16473849 PMCID: PMC1363772 DOI: 10.1093/nar/gkj477] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/30/2005] [Accepted: 01/12/2006] [Indexed: 01/17/2023] Open
Abstract
p63 is a developmentally regulated transcription factor related to p53, which activates and represses specific genes. The human AEC (Ankyloblepharon-Ectodermal dysplasia-Clefting) and EEC (Ectrodactyly-Ectodermal dysplasia-Cleft lip/palate) syndromes are caused by missense mutations of p63, within the DNA-binding domain (EEC) or in the C-terminal sterile alpha motif domain (AEC). We show here that p63 represses transcription of cell-cycle G(2)/M genes by binding to multiple CCAAT core promoters in immortalized and primary keratinocytes. The CCAAT-activator NF-Y and DeltaNp63alpha are associated in vivo and a conserved alpha-helix of the NF-YC histone fold is required. p63 AEC mutants, but not an EEC mutant, are incapable to bind NF-Y. DeltaNp63alpha, but not the AEC mutants repress CCAAT-dependent transcription of G(2)/M genes. Chromatin immunoprecipitation recruitment assays establish that the AEC mutants are not recruited to G(2)/M promoters, while normally present on 14-3-3sigma, which contains a sequence-specific binding site. Surprisingly, the EEC C306R mutant activates transcription. Upon keratinocytes differentiation, NF-Y and p63 remain bound to G(2)/M promoters, while HDACs are recruited, histones deacetylated, Pol II displaced and transcription repressed. Our data indicate that NF-Y is a molecular target of p63 and that inhibition of growth activating genes upon differentiation is compromised by AEC missense mutations.
Collapse
Affiliation(s)
- Barbara Testoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di MilanoVia Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di MilanoVia Celoria 26, 20133 Milano, Italy
| |
Collapse
|
118
|
Arias-Lopez C, Lazaro-Trueba I, Kerr P, Lord CJ, Dexter T, Iravani M, Ashworth A, Silva A. p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. EMBO Rep 2006; 7:219-24. [PMID: 16322760 PMCID: PMC1369244 DOI: 10.1038/sj.embor.7400587] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 10/17/2005] [Accepted: 10/21/2005] [Indexed: 01/08/2023] Open
Abstract
DNA repair by homologous recombination is involved in maintaining genome stability. Previous data report that wild-type p53 suppresses homologous recombination and physically interacts with Rad51. Here, we show the in vivo binding of wild-type p53 to a p53 response element in the promoter of Rad51 and the downregulation of Rad51 messenger RNA and protein by wild-type p53, favoured by DNA damage. Moreover, wild-type p53 inhibits Rad51 foci formation in response to double-strand breaks, whereas p53 contact mutant R280K fails to repress Rad51 mRNA and protein expression and Rad51 foci formation. We propose that transcriptional repression of Rad51 by p53 participates in regulating homologous recombination, and impaired Rad51 repression by p53 mutants may contribute to malignant transformation.
Collapse
Affiliation(s)
- Carmen Arias-Lopez
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Iciar Lazaro-Trueba
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Peter Kerr
- the Breakthrough Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher J Lord
- the Breakthrough Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Tim Dexter
- the Breakthrough Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Marjan Iravani
- the Breakthrough Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Alan Ashworth
- the Breakthrough Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Augusto Silva
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
119
|
Racek T, Mise N, Li Z, Stoll A, Pützer BM. C-terminal p73 Isoforms Repress Transcriptional Activity of the Human Telomerase Reverse Transcriptase (hTERT) Promoter. J Biol Chem 2005; 280:40402-5. [PMID: 16234237 DOI: 10.1074/jbc.c500193200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of telomerase is linked to tumorigenesis and has been observed in a variety of human tumors. Previous reports demonstrated that p53 represses human telomerase reverse transcriptase (hTERT), a key component for telomerase activity. The p73 protein displays a tumor suppressor activity similar to p53. In the present study, we examined the effect of transactivation competent p73 isoforms on hTERT expression in p53-negative human H1299 cells. Overexpression of C-terminal p73 isoforms (alpha, beta, gamma, delta) resulted in a clear down-regulation of hTERT promoter activity. The strongest inhibitory effect, comparable with p53, was observed for p73beta. Moreover, suppression of hTERT expression was also mediated by endogenous p73 after activation of E2F1 in H1299ER-E2F1 cells. Mutations in the Sp1 transcription factor-binding sites of the proximal core promoter region significantly abolished p73-induced repression, suggesting that the effect is mediated by Sp1. Finally, we demonstrate that p73 directly interacts with Sp1, suggesting that formation of a p73-Sp1 complex is the underlying mechanism for p73-triggered inhibition of hTERT expression. Our findings provide additional evidence that p73 mimics p53 in many aspects in cells lacking functional p53, thereby contributing to tumor surveillance.
Collapse
Affiliation(s)
- Tomás Racek
- Department of Vectorology and Experimental Gene Therapy, University of Rostock Medical School, Schillingallee 70, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
120
|
Tabach Y, Milyavsky M, Shats I, Brosh R, Zuk O, Yitzhaky A, Mantovani R, Domany E, Rotter V, Pilpel Y. The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Mol Syst Biol 2005; 1:2005.0022. [PMID: 16729057 PMCID: PMC1681464 DOI: 10.1038/msb4100030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/22/2005] [Indexed: 12/28/2022] Open
Abstract
Deciphering regulatory events that drive malignant transformation represents a major challenge for systems biology. Here, we analyzed genome-wide transcription profiling of an in vitro cancerous transformation process. We focused on a cluster of genes whose expression levels increased as a function of p53 and p16(INK4A) tumor suppressors inactivation. This cluster predominantly consists of cell cycle genes and constitutes a signature of a diversity of cancers. By linking expression profiles of the genes in the cluster with the dynamic behavior of p53 and p16(INK4A), we identified a promoter architecture that integrates signals from the two tumor suppressive channels and that maps their activity onto distinct levels of expression of the cell cycle genes, which, in turn, correspond to different cellular proliferation rates. Taking components of the mitotic spindle as an example, we experimentally verified our predictions that p53-mediated transcriptional repression of several of these novel targets is dependent on the activities of p21, NFY, and E2F. Our study demonstrates how a well-controlled transformation process allows linking between gene expression, promoter architecture, and activity of upstream signaling molecules.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/physiology
- Cell Division
- Cell Line, Transformed/metabolism
- Cell Line, Transformed/transplantation
- Cell Transformation, Neoplastic/genetics
- Computational Biology
- Cyclin-Dependent Kinase Inhibitor p16/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Profiling
- Gene Expression Regulation
- Genes, Tumor Suppressor
- Genes, cdc
- Genes, p16
- Genes, p53
- Humans
- Mice
- Mice, Nude
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/physiology
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Spindle Apparatus/metabolism
- Telomerase/genetics
- Telomerase/physiology
- Transcription, Genetic
- Transplantation, Heterologous
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Yuval Tabach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Milyavsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Shats
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ran Brosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Or Zuk
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolare e Biotecnologie, Universita di Milano, Milan, Italy
| | - Eytan Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel. Tel.: +972 8 934 4501; Fax: +972 8 946 5265; E-mail:
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. Tel.: +972 8 934 6058; Fax: +972 8 934 4108; E-mail:
| |
Collapse
|
121
|
Liang H, Lunec J. Characterisation of a novel p53 down-regulated promoter in intron 3 of the human MDM2 oncogene. Gene 2005; 361:112-8. [PMID: 16202543 DOI: 10.1016/j.gene.2005.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Revised: 06/30/2005] [Accepted: 07/08/2005] [Indexed: 11/30/2022]
Abstract
The MDM2 oncogene exhibits a complex expression pattern partly due to the usage of multiple promoters. Two MDM2 promoters (P1 and P2) have been identified. P1 is located upstream of exon 1 and is modulated by PTEN. P2 sits in intron 1 and is activated by p53. Here we report the discovery of a third promoter (designated P3) in intron 3 of this gene, which contains a TATA-box element and p53-DNA-binding sequences. DNA-protein binding assays indicated that p53 bound to this region specifically. This region also demonstrated promoter activity in a reporter gene system, which was down-regulated by p53. Furthermore, experiments combining P2 and P3 in the same reporter construct indicated that P3 had a suppressive effect on P2 at high levels of p53. These results suggest that one of the P3 functions is to dampen the expression of MDM2 at high levels of p53, adding an additional element to the feedback loop between p53 and MDM2.
Collapse
Affiliation(s)
- Huiling Liang
- Northern Institute for Cancer Research, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
122
|
Ho JSL, Ma W, Mao DYL, Benchimol S. p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 2005; 25:7423-31. [PMID: 16107691 PMCID: PMC1190302 DOI: 10.1128/mcb.25.17.7423-7431.2005] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of p53 to promote apoptosis and cell cycle arrest is believed to be important for its tumor suppression function. Besides activating the expression of cell cycle arrest and proapoptotic genes, p53 also represses a number of genes. Previous studies have shown an association between p53 activation and down-regulation of c-myc expression. However, the mechanism and physiological significance of p53-mediated c-myc repression remain unclear. Here, we show that c-myc is repressed in a p53-dependent manner in various mouse and human cell lines and mouse tissues. Furthermore, c-myc repression is not dependent on the expression of p21(WAF1). Abrogating the repression of c-myc by ectopic c-myc expression interferes with the ability of p53 to induce G(1) cell cycle arrest and differentiation but enhances the ability of p53 to promote apoptosis. We propose that p53-dependent cell cycle arrest is dependent not only on the transactivation of cell cycle arrest genes but also on the transrepression of c-myc. Chromatin immunoprecipitation assays indicate that p53 is bound to the c-myc promoter in vivo. We report that trichostatin A, an inhibitor of histone deacetylases, abrogates the ability of p53 to repress c-myc transcription. We also show that p53-mediated transcriptional repression of c-myc is accompanied by a decrease in the level of acetylated histone H4 at the c-myc promoter and by recruitment of the corepressor mSin3a. These data suggest that p53 represses c-myc transcription through a mechanism that involves histone deacetylation.
Collapse
Affiliation(s)
- Jenny S L Ho
- Ontario Cancer Institute, Prince Margaret Hospital, Toronto, Canada
| | | | | | | |
Collapse
|