101
|
Ginkgolic acid improves bleomycin-induced pulmonary fibrosis by inhibiting SMAD4 SUMOylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8002566. [PMID: 35707278 PMCID: PMC9192210 DOI: 10.1155/2022/8002566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a refractory chronic respiratory disease with progressively exacerbating symptoms and a high mortality rate. There are currently only two effective drugs for IPF; thus, there is an urgent need to develop new therapeutics. Previous experiments have shown that ginkgolic acid (GA), as a SUMO-1 inhibitor, exerted an inhibitory effect on cardiac fibrosis induced by myocardial infarction. Regarding the pathogenesis of PF, previous studies have concluded that small ubiquitin-like modifier (SUMO) polypeptides bind multiple target proteins and participate in fibrosis of multiple organs, including PF. In this study, we found altered expression of SUMO family members in lung tissues from IPF patients. GA mediated the reduced expression of SUMO1/2/3 and the overexpression of SENP1 in a PF mouse model, which improved PF phenotypes. At the same time, the protective effect of GA on PF was also confirmed in the SENP1-KO transgenic mice model. Subsequent experiments showed that SUMOylation of SMAD4 was involved in PF. It was inhibited by TGF-β1, but GA could reverse the effects of TGF-β1. SENP1 also inhibited the SUMOylation of SMAD4 and then participated in epithelial-mesenchymal transition (EMT) downstream of TGF-β1. We also found that SENP1 regulation of SMAD4 SUMOylation affected reactive oxygen species (ROS) production during TGF-β1-induced EMT and that GA prevented this oxidative stress through SENP1. Therefore, GA may inhibit the SUMOylation of SMAD4 through SENP1 and participate in TGF-β1-mediated pulmonary EMT, all of which reduce the degree of PF. This study provided potential novel targets and a new alternative for the future clinical testing in PF.
Collapse
|
102
|
Bregnard T, Ahmed A, Semenova IV, Weller SK, Bezsonova I. The B-box1 domain of PML mediates SUMO E2-E3 complex formation through an atypical interaction with UBC9. Biophys Chem 2022; 287:106827. [DOI: 10.1016/j.bpc.2022.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022]
|
103
|
Siperstein A, Marzec S, Fritz ML, Holzapfel CM, Bradshaw WE, Armbruster PA, Meuti ME. Conserved molecular pathways underlying biting in two divergent mosquito genera. Evol Appl 2022; 15:878-890. [PMID: 35603026 PMCID: PMC9108309 DOI: 10.1111/eva.13379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mosquitoes transmit a wide variety of devastating pathogens when they bite vertebrate hosts and feed on their blood. However, three entire mosquito genera and many individual species in other genera have evolved a nonbiting life history in which blood is not required to produce eggs. Our long-term goal is to develop novel interventions that reduce or eliminate the biting behavior in vector mosquitoes. A previous study used biting and nonbiting populations of a nonvector mosquito, Wyeomyia smithii, as a model to uncover the transcriptional basis of the evolutionary transition from a biting to a nonbiting life history. Herein, we ask whether the molecular pathways that were differentially expressed due to differences in biting behavior in W. smithii are also differentially expressed between subspecies of Culex pipiens that are obligate biting (Culex pipiens pipiens) and facultatively nonbiting (Culex pipiens molestus). Results from RNAseq of adult heads show dramatic upregulation of transcripts in the ribosomal protein pathway in biting C. pipiens, recapitulating the results in W. smithii, and implicating the ancient and highly conserved ribosome as the intersection to understanding the evolutionary and physiological basis of blood feeding in mosquitoes. Biting Culex also strongly upregulate energy production pathways, including oxidative phosphorylation and the citric acid (TCA) cycle relative to nonbiters, a distinction that was not observed in W. smithii. Amino acid metabolism pathways were enriched for differentially expressed genes in biting versus nonbiting Culex. Relative to biters, nonbiting Culex upregulated sugar metabolism and transcripts contributing to reproductive allocation (vitellogenin and cathepsins). These results provide a foundation for developing strategies to determine the natural evolutionary transition between a biting and nonbiting life history in vector mosquitoes.
Collapse
Affiliation(s)
- Alden Siperstein
- Department of EntomologyThe Ohio State UniversityColumbusOhioUSA
| | - Sarah Marzec
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Megan L. Fritz
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Christina M. Holzapfel
- Laboratory of Evolutionary GeneticsInstitute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - William E. Bradshaw
- Laboratory of Evolutionary GeneticsInstitute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | | | - Megan E. Meuti
- Department of EntomologyThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
104
|
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene 2022; 41:3039-3050. [PMID: 35487975 PMCID: PMC9149126 DOI: 10.1038/s41388-022-02331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Although it is well established that p53-mediated tumor suppression mainly acts through its ability in transcriptional regulation, the molecular mechanisms of this regulation are not completely understood. Among a number of regulatory modes, acetylation of p53 attracts great interests. p53 was one of the first non-histone proteins found to be functionally regulated by acetylation and deacetylation, and subsequent work has established that reversible acetylation is a general mechanism for regulation of non-histone proteins. Unlike other types of post-translational modifications occurred during stress responses, the role of p53 acetylation has been recently validated in vivo by using the knockin mice with both acetylation-defective and acetylation-mimicking p53 mutants. Here, we review the role of acetylation in p53-mediated activities, with a focus on which specific acetylation sites are critical for p53-dependent transcription regulation during tumor suppression and how acetylation of p53 recruits specific “readers” to execute its promoter-specific regulation of different targets. We also discuss the role of p53 acetylation in differentially regulating its classic activities in cell cycle arrest, senescence and apoptosis as well as newly identified unconventional functions such as cell metabolism and ferroptosis.
Collapse
|
105
|
Gomarasca M, Lombardi G, Maroni P. SUMOylation and NEDDylation in Primary and Metastatic Cancers to Bone. Front Cell Dev Biol 2022; 10:889002. [PMID: 35465332 PMCID: PMC9020829 DOI: 10.3389/fcell.2022.889002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications comprise series of enzymatically-driven chemical modifications, virtually involving the entire cell proteome, that affect the fate of a target protein and, in turn, cell activity. Different classes of modifications can be established ranging from phosphorylation, glycosylation, ubiquitination, acetylation, methylation, lipidation and their inverse reactions. Among these, SUMOylation and NEDDylation are ubiquitin-like multi-enzymatic processes that determine the bound of SUMOs and NEDD8 labels, respectively, on defined amino acidic residues of a specific protein and regulate protein function. As fate-determinants of several effectors and mediators, SUMOylation and NEDDylation play relevant roles in many aspects of tumor cell biology. Bone represents a preferential site of metastasis for solid tumors (e.g., breast and prostate cancers) and the primary site of primitive tumors (e.g., osteosarcoma, chondrosarcoma). Deregulation of SUMOylation and NEDDylation affects different aspects of neoplastic transformation and evolution such as epithelial-mesenchymal transition, adaptation to hypoxia, expression and action of tumor suppressors and oncogenic mediators, and drug resistance. Thereby, they represent potential therapeutic targets. This narrative review aims at describing the involvement and regulation of SUMOylation and NEDDylation in tumor biology, with a specific focus on primary and secondary bone tumors, and to summarize and highlight their potentiality in diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Polska
- *Correspondence: Giovanni Lombardi,
| | - Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
106
|
Liu Q, Huang Q, Liu H, He FJ, Liu JH, Zhou YY, Zeng MT, Pei Q, Zhu H. SUMOylation of methyltransferase-like 3 facilitates colorectal cancer progression by promoting circ_0000677 in an m 6 A-dependent manner. J Gastroenterol Hepatol 2022; 37:700-713. [PMID: 35030640 DOI: 10.1111/jgh.15775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Colorectal cancer (CRC) is one of the major health issues in the world. Circ_0000677 has been shown to be upregulated in CRC with unclarified function and mechanism. Methyltransferase-like 3 (METTL3) acts as a regulator for gene expression via the mechanism of RNA N6 -methyladenosine (m6 A) in different types of cancer, which is under the control of SUMO1-based SUMOylation. We aim to investigate their roles in CRC progression. METHODS Quantitative real-time polymerase chain reaction and Western blot were used to detect the expressions of METTL3, circ_0000677, and ATP binding cassette subfamily c member 1(ABCC1) in CRC patients' tissues and cell lines. The functions of ABCC1 and circ_0000677 in CRC were studied by manipulating their level via knocking down or overexpression. RNA pull-down and RNA immunoprecipitation assays were performed to identify the specific binding of target genes. The biological function of SUMOylation of METTL3 was investigated in vivo by xenograft mice tumor model. RESULTS METTL3, circ_0000677, and ABCC1 were upregulated in CRC patients' samples and cell lines. Circ_0000677 positively regulates CRC cell proliferation and drug resistance via affecting ABCC1 expression. METTL3 facilitated circ_0000677 level via m6 A modification. METTL3 was regulated by SUMO1-mediated SUMOylation in CRC. Mutation of METTL3-K459 could suppress tumor growth in vivo via regulating circ_0000677/ABCC1 axis. CONCLUSIONS Overall, our study revealed that circ_0000677 and its downstream target ABCC1 were upregulated in CRC cells, induced by the METTL3-mediated m6 A modification of circ_0000677 and SUMO1-mediated SUMOylation of METTL3. This work provided a new strategy for the therapeutic treatment of CRC.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng-Jiao He
- Department of Radiation Oncology, Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, Hunan, China
| | - Jun-Hao Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang-Ying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Man-Ting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
107
|
Du L, Liu W, Pichiorri F, Rosen ST. SUMOylation inhibition enhances multiple myeloma sensitivity to lenalidomide. Cancer Gene Ther 2022; 30:567-574. [PMID: 35338347 PMCID: PMC10104776 DOI: 10.1038/s41417-022-00450-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Despite the potent effect of lenalidomide (Len) in multiple myeloma (MM) treatment, patients develop Len resistance leading to progressive disease, demanding an urgent need to investigate the mechanisms mediating Len resistance. Our study identified SUMOylation as a potential mechanism regulating Len resistance in MM. Len-resistant MM cell line MMR10R presented much higher SUMO E1 (SAE2) expression and more global SUMOylation than Len-sensitive MM1S cell line. SUMOylation inhibition by using TAK-981, a novel and specific SUMO E1 inhibitor, significantly enhances myeloma sensitivity to Len in MM cell lines. Moreover, the enhanced anti-MM activity by TAK-981 and Len combination has been validated using primary relapsing MM patient samples. Overexpression of IRF4 and c-Myc is a major mechanism of Len resistance. Len showed limited effect on IRF4 and c-Myc level in Len-resistance cell line, but TAK-981 treatment reduced IRF4 and c-Myc expression in Len-resistant line and caused further decrease when combined with Len. We found SUMOylation inhibition decreases IRF4 at transcriptional and post-translational level. SUMOylation inhibition reduced DOT1L with decreased methylation of histone H3 lysine 79, to suppress IRF4 gene transcription. SUMOylation inhibition also reduced IRF4 protein level by enhancing degradation. Overall, our data revealed SUMOylation inhibition enhances Len sensitivity through downregulating IRF4.
Collapse
Affiliation(s)
- Li Du
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Wei Liu
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,City of Hope Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
108
|
Wang G, Yuan J, Luo J, Ocansey DKW, Zhang X, Qian H, Xu W, Mao F. Emerging role of protein modification in inflammatory bowel disease. J Zhejiang Univ Sci B 2022; 23:173-188. [PMID: 35261214 PMCID: PMC8913920 DOI: 10.1631/jzus.b2100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/17/2021] [Indexed: 11/11/2022]
Abstract
The onset of inflammatory bowel disease (IBD) involves many factors, including environmental parameters, microorganisms, and the immune system. Although research on IBD continues to expand, the specific pathogenesis mechanism is still unclear. Protein modification refers to chemical modification after protein biosynthesis, also known as post-translational modification (PTM), which causes changes in the properties and functions of proteins. Since proteins can be modified in different ways, such as acetylation, methylation, and phosphorylation, the functions of proteins in different modified states will also be different. Transitions between different states of protein or changes in modification sites can regulate protein properties and functions. Such modifications like neddylation, sumoylation, glycosylation, and acetylation can activate or inhibit various signaling pathways (e.g., nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT)) by changing the intestinal flora, regulating immune cells, modulating the release of cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), and ultimately leading to the maintenance of the stability of the intestinal epithelial barrier. In this review, we focus on the current understanding of PTM and describe its regulatory role in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Gaoying Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Clinical Laboratory, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jintao Yuan
- Clinical Laboratory, the People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China
| | - Ji Luo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast 02630, Ghana
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
109
|
Nandi T, Koti Ainavarapu SR. Reconstruction of the Free Energy Profile for SUMO1 from Nonequilibrium Single-Molecule Pulling Experiments. J Phys Chem B 2022; 126:2168-2172. [PMID: 35271281 DOI: 10.1021/acs.jpcb.1c08596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Free energy profiles form the cornerstone in the study of protein folding and function. In this study, the free energy profile of SUMO1 protein is directly reconstructed using an extension of the Jarzynski equality from atomic force microscope (AFM) based single-molecule force spectroscopy (SMFS) experiments. SUMO1 is a ubiquitin-like posttranslational modifier protein having a β clamp motif in its structure, imparting it with mechanical stability. We use the Jarzynski equality to obtain the equilibrium free energy profile from repeated nonequilibrium single-molecule pulling experiments. Indeed, the free energy values determined by the Jarzynski equality are lesser than the normal work average at all extensions. The free energy profiles constructed for the two velocities (100 and 400 nm/s) overlap with each other. The unfolding free energy barrier is estimated to be ∼7.5 kcal/mol. We anticipate that the Jarzynski equality can be applied in a similar manner to other ubiquitin-like proteins to extract their differences in the free energy profile, and hence, the effect of sequence diversity of structurally homologous proteins on the free energy landscape can be studied.
Collapse
Affiliation(s)
- Tathagata Nandi
- Department of Chemical Sciences, Tata Institute of Fundamental Research Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
110
|
Soory A, Ratnaparkhi GS. SUMOylation of Jun fine-tunes the Drosophila gut immune response. PLoS Pathog 2022; 18:e1010356. [PMID: 35255103 PMCID: PMC8929699 DOI: 10.1371/journal.ppat.1010356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/17/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Post-translational modification by the small ubiquitin-like modifier, SUMO can modulate the activity of its conjugated proteins in a plethora of cellular contexts. The effect of SUMO conjugation of proteins during an immune response is poorly understood in Drosophila. We have previously identified that the transcription factor Jra, the Drosophila Jun ortholog and a member of the AP-1 complex is one such SUMO target. Here, we find that Jra is a regulator of the Pseudomonas entomophila induced gut immune gene regulatory network, modulating the expression of a few thousand genes, as measured by quantitative RNA sequencing. Decrease in Jra in gut enterocytes is protective, suggesting that reduction of Jra signaling favors the host over the pathogen. In Jra, lysines 29 and 190 are SUMO conjugation targets, with the JraK29R+K190R double mutant being SUMO conjugation resistant (SCR). Interestingly, a JraSCR fly line, generated by CRISPR/Cas9 based genome editing, is more sensitive to infection, with adults showing a weakened host response and increased proliferation of Pseudomonas. Transcriptome analysis of the guts of JraSCR and JraWT flies suggests that lack of SUMOylation of Jra significantly changes core elements of the immune gene regulatory network, which include antimicrobial agents, secreted ligands, feedback regulators, and transcription factors. Mechanistically, SUMOylation attenuates Jra activity, with the TFs, forkhead, anterior open, activating transcription factor 3 and the master immune regulator Relish being important transcriptional targets. Our study implicates Jra as a major immune regulator, with dynamic SUMO conjugation/deconjugation of Jra modulating the kinetics of the gut immune response. The intestine has a resident population of commensal microorganisms against which the immune machinery is tuned to show low or no reactivity. In contrast, when pathogenic microorganisms are ingested, the gut responds by activating signaling cascades that lead to the killing and clearance of the pathogen. In this study, we examine the role played by the well-known transcription factor Jun in regulating the immune response in the Drosophila gut. We find that loss of Jun leads to the change in intensity and kinetics of the gut immune transcriptome. The transcriptional profile indicates a stronger response when Jun activity is reduced. Also, animals infected with Pseudomonas entomophila live longer when Jun signaling is reduced. Further, we find that Jun is post-translationally modified on Lys29 and Lys190 by SUMO. To understand the effect of SUMO-conjugation of Jun, we create by state-of-the-art CRISPR/Cas9 genome editing a Drosophila line where Jun is resistant to SUMOylation. This line is more sensitive to infection, with a weaker host-defense response. Our data suggest that Jun Signaling favors the pathogen by dampening the immune response. SUMO conjugation of Jun reverses the dampening and strengthens the immune response in favor of the host. Dynamic SUMOylation of Jun thus fine-tunes the gut immune response to pathogens.
Collapse
Affiliation(s)
- Amarendranath Soory
- Department of Biology, Indian Institute of Science Education & Research, Pune, india
- * E-mail: (AS); (GR)
| | - Girish S. Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, india
- * E-mail: (AS); (GR)
| |
Collapse
|
111
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
112
|
Mete B, Pekbilir E, Bilge BN, Georgiadou P, Çelik E, Sutlu T, Tabak F, Sahin U. Human immunodeficiency virus type 1 impairs sumoylation. Life Sci Alliance 2022; 5:5/6/e202101103. [PMID: 35181598 PMCID: PMC8860096 DOI: 10.26508/lsa.202101103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/18/2022] Open
Abstract
The HIV type 1 dampens host cell sumoylation in vitro and reduces the expression of UBA2 protein, a subunit of the SUMO E1–activating enzyme. In vivo, infection in patients is associated with diminished global leukocyte sumoylation activity. During infection, the human immunodeficiency virus type 1 (HIV-1) manipulates host cell mechanisms to its advantage, thereby controlling its replication or latency, and evading immune responses. Sumoylation is an essential post-translational modification that controls vital cellular activities including proliferation, stemness, or anti-viral immunity. SUMO peptides oppose pathogen replication and mediate interferon-dependent anti-viral activities. In turn, several viruses and bacteria attack sumoylation to disarm host immune responses. Here, we show that HIV-1 impairs cellular sumoylation and targets the host SUMO E1–activating enzyme. HIV-1 expression in cultured HEK293 cells or in CD4+ Jurkat T lymphocytes diminishes sumoylation by both SUMO paralogs, SUMO1 and SUMO2/3. HIV-1 causes a sharp and specific decline in UBA2 protein levels, a subunit of the heterodimeric SUMO E1 enzyme, which likely serves to reduce the efficiency of global protein sumoylation. Furthermore, HIV-1–infected individuals display a significant reduction in total leukocyte sumoylation that is uncoupled from HIV-induced cytopenia. Because sumoylation is vital for immune function, T-cell expansion and activity, loss of sumoylation during HIV disease may contribute to immune system deterioration in patients.
Collapse
Affiliation(s)
- Bilgül Mete
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Emre Pekbilir
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Bilge Nur Bilge
- Department of Medical Biology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Panagiota Georgiadou
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Elif Çelik
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Tolga Sutlu
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Fehmi Tabak
- Department of Infectious Diseases and Clinical Microbiology, Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Umut Sahin
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| |
Collapse
|
113
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
114
|
Laget J, Duranton F, Argilés À, Gayrard N. Renal insufficiency and chronic kidney disease – Promotor or consequence of pathological post-translational modifications. Mol Aspects Med 2022; 86:101082. [DOI: 10.1016/j.mam.2022.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
115
|
Nizam A, Meera SP, Kumar A. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 2022; 25:103547. [PMID: 34988398 PMCID: PMC8693430 DOI: 10.1016/j.isci.2021.103547] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangroves are halophytic plants belonging to diverse angiosperm families that are adapted to highly stressful intertidal zones between land and sea. They are special, unique, and one of the most productive ecosystems that play enormous ecological roles and provide a large number of benefits to the coastal communities. To thrive under highly stressful conditions, mangroves have innovated several key morphological, anatomical, and physio-biochemical adaptations. The evolution of the unique adaptive modifications might have resulted from a host of genetic and molecular changes and to date we know little about the nature of these genetic and molecular changes. Although slow, new information has accumulated over the last few decades on the genetic and molecular regulation of the mangrove adaptations, a comprehensive review on it is not yet available. This review provides up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits.
Collapse
Affiliation(s)
- Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Suraj Prasannakumari Meera
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Palayad, Kerala 670661, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| |
Collapse
|
116
|
Ergünay T, Ayhan Ö, Celen AB, Georgiadou P, Pekbilir E, Abaci YT, Yesildag D, Rettel M, Sobhiafshar U, Ogmen A, Emre NT, Sahin U. Sumoylation of Cas9 at lysine 848 regulates protein stability and DNA binding. Life Sci Alliance 2022; 5:5/4/e202101078. [PMID: 35022246 PMCID: PMC8761495 DOI: 10.26508/lsa.202101078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cas9 is sumoylated and ubiquitylated in human cells. K848 is the major SUMO2/3 modification site, but multiple lysines are ubiquitylated, precipitating proteasomal degradation. Preventing Cas9 sumoylation by K848 ablation or by pharmacologic means reduces Cas9 half-life and DNA binding ability. CRISPR/Cas9 is a popular genome editing technology. Although widely used, little is known about how this prokaryotic system behaves in humans. An unwanted consequence of eukaryotic Cas9 expression is off-target DNA binding leading to mutagenesis. Safer clinical implementation of CRISPR/Cas9 necessitates a finer understanding of the regulatory mechanisms governing Cas9 behavior in humans. Here, we report our discovery of Cas9 sumoylation and ubiquitylation, the first post-translational modifications to be described on this enzyme. We found that the major SUMO2/3 conjugation site on Cas9 is K848, a key positively charged residue in the HNH nuclease domain that is known to interact with target DNA and contribute to off-target DNA binding. Our results suggest that Cas9 ubiquitylation leads to decreased stability via proteasomal degradation. Preventing Cas9 sumoylation through conversion of K848 into arginine or pharmacologic inhibition of cellular sumoylation enhances the enzyme’s turnover and diminishes guide RNA-directed DNA binding efficacy, suggesting that sumoylation at this site regulates Cas9 stability and DNA binding. More research is needed to fully understand the implications of these modifications for Cas9 specificity.
Collapse
Affiliation(s)
- Tunahan Ergünay
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Özgecan Ayhan
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Arda B Celen
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Panagiota Georgiadou
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Emre Pekbilir
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Yusuf T Abaci
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Duygu Yesildag
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Mandy Rettel
- European Molecular Biology Laboratory, Proteomics Core Facility, Heidelberg, Germany
| | - Ulduz Sobhiafshar
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Anna Ogmen
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Nc Tolga Emre
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| | - Umut Sahin
- Department of Molecular Biology and Genetics, Bogazici University, Center for Life Sciences and Technologies, Istanbul, Turkey
| |
Collapse
|
117
|
Du L, Liu W, Aldana-Masangkay G, Pozhitkov A, Pichiorri F, Chen Y, Rosen ST. SUMOylation inhibition enhances dexamethasone sensitivity in multiple myeloma. J Exp Clin Cancer Res 2022; 41:8. [PMID: 34983615 PMCID: PMC8725350 DOI: 10.1186/s13046-021-02226-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable plasma cell malignancy. Although Dexamethasone (Dex) is the most widely used therapeutic drug in MM treatment, patients develop Dex resistance leading to progressive disease, demanding an urgent need to investigate the mechanisms driving Dex resistance and develop new reagents to address this problem. We propose SUMOylation as a potential mechanism regulating Dex resistance and SUMOylation inhibition can enhance Dex sensitivity in MM. METHODS Using MM cell lines and primary MM samples from relapsing MM patients, we evaluated the effects of knockdown of SUMO E1 (SAE2) or using TAK-981, a novel and specific SUMO E1 inhibitor, on Dex sensitivity. Xenograft mouse models were generated to determine the in vivo anti-MM effects of TAK-981 as a single agent and in combination with Dex. miRNA-seq, RNA-seq and GSEA analysis were utilized for evaluating key factors mediating Dex resistance. Chromatin immunoprecipitation (ChIP) assay was performed to determine the binding occupancy of c-Myc on promoter region of miRs. RESULTS We observed a significant negative correlation between SUMO E1 (SAE2) expression and Dex sensitivity in primary MM samples. Knockdown of SAE2 or using TAK-981 significantly enhances myeloma sensitivity to Dex in MM cell lines. Moreover, the enhanced anti-MM activity by TAK-981 and Dex combination has been validated using primary relapsing MM patient samples and xenograft mouse models. SUMOylation inhibition increased glucocorticoid receptor (GR) expression via downregulation miR-130b. Using RNA and microRNA sequencing, we identified miR-551b and miR-25 as important miRs mediating Dex resistance in MM. Overexpression of miR-551b and miR-25 caused resistance to Dex, however, knockdown of miR-551b and miR-25 significantly enhanced Dex sensitivity in MM. SAE2 knockdown or TAK-981 treatment downregulated the expression of miR-551b and miR-25, leading to induction of miR targets ZFP36, ULK1 and p27, resulting in apoptosis and autophagy. We demonstrated c-Myc as a major transcriptional activator of miR-130b, miR-551b and miR-25 and SUMOylation inhibition downregulates these miRs level by decreasing c-Myc level. CONCLUSION Our study proves SUMOylation plays a crucial role in Dex resistance in MM and SUMOylation inhibition appears to be an attractive strategy to advance to the clinic for MM patients.
Collapse
Affiliation(s)
- Li Du
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Wei Liu
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Grace Aldana-Masangkay
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Present address: Fulgent Genetics, City, Temple City, CA, 91780, USA
| | - Alex Pozhitkov
- Department of Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, San Diego, CA, USA
| | - Steven T Rosen
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
118
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
119
|
Ibrahim EI, Attia KA, Ghazy AI, Itoh K, Almajhdi FN, Al-Doss AA. Molecular Characterization and Functional Localization of a Novel SUMOylation Gene in Oryza sativa. BIOLOGY 2021; 11:biology11010053. [PMID: 35053052 PMCID: PMC8772976 DOI: 10.3390/biology11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The small ubiquitin-related modifier genes regulate the function of the cellular proteins, which are associated with cell stress-tolerance. Identification and understanding the functional localization of these genes are very important to mitigate the stresses. In this study, we identified a novel small ubiquitin-related modifier gene and studied its functional localization in the cell. This new finding will be very valuable in increasing our understanding of the mechanism of stress-tolerance. Abstract Small ubiquitin-related modifier (SUMO) regulates the cellular function of diverse proteins through post-translational modifications. The current study defined a new homolog of SUMO genes in the rice genome and named it OsSUMO7. Putative protein analysis of OsSUMO7 detected SUMOylation features, including di-glycine (GG) and consensus motifs (ΨKXE/D) for the SUMOylation site. Phylogenetic analysis demonstrated the high homology of OsSUMO7 with identified rice SUMO genes, which indicates that the OsSUMO7 gene is an evolutionarily conserved SUMO member. RT-PCR analysis revealed that OsSUMO7 was constitutively expressed in all plant organs. Bioinformatic analysis defined the physicochemical properties and structural model prediction of OsSUMO7 proteins. A red fluorescent protein (DsRed), fused with the OsSUMO7 protein, was expressed and localized mainly in the nucleus and formed nuclear subdomain structures. The fusion proteins of SUMO-conjugating enzymes with the OsSUMO7 protein were co-expressed and co-localized in the nucleus and formed nuclear subdomains. This indicated that the OsSUMO7 precursor is processed, activated, and transported to the nucleus through the SUMOylation system of the plant cell.
Collapse
Affiliation(s)
- Eid I. Ibrahim
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
- Correspondence: (E.I.I.); (K.A.A.)
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, Riyadh 11451, Saudi Arabia
- Rice Biotechnology Lab., Rice Research Department, Field Crops Research Institute, ARC, Sakha, Kafr, EL-Sheikh 33717, Egypt
- Correspondence: (E.I.I.); (K.A.A.)
| | - Abdelhalim I. Ghazy
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
| | - Kimiko Itoh
- Institute of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Fahad N. Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Abdullah A. Al-Doss
- Biotechnology Lab., Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.I.G.); (A.A.A.-D.)
| |
Collapse
|
120
|
Luxenburger A, Bougen-Zhukov N, Fraser MG, Beetham H, Harris LD, Schmidt D, Cameron SA, Guilford PJ, Evans GB. Discovery of AL-GDa62 as a Potential Synthetic Lethal Lead for the Treatment of Gastric Cancer. J Med Chem 2021; 64:18114-18142. [PMID: 34878770 DOI: 10.1021/acs.jmedchem.1c01609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diffuse gastric cancer and lobular breast cancer are aggressive malignancies that are frequently associated with inactivating mutations in the tumor suppressor gene CDH1. Synthetic lethal (SL) vulnerabilities arising from CDH1 dysfunction represent attractive targets for drug development. Recently, SLEC-11 (1) emerged as a SL lead in E-cadherin-deficient cells. Here, we describe our efforts to optimize 1. Overall, 63 analogues were synthesized and tested for their SL activity toward isogenic mammary epithelial CDH1-deficient cells (MCF10A-CDH1-/-). Among the 26 compounds with greater cytotoxicity, AL-GDa62 (3) was four-times more potent and more selective than 1 with an EC50 ratio of 1.6. Furthermore, 3 preferentially induced apoptosis in CDH1-/- cells, and Cdh1-/- mammary and gastric organoids were significantly more sensitive to 3 at low micromolar concentrations. Thermal proteome profiling of treated MCF10A-CDH1-/- cell protein lysates revealed that 3 specifically inhibits TCOF1, ARPC5, and UBC9. In vitro, 3 inhibited SUMOylation at low micromolar concentrations.
Collapse
Affiliation(s)
- Andreas Luxenburger
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Nicola Bougen-Zhukov
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Michael G Fraser
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Henry Beetham
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Dorian Schmidt
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, D-24116 Kiel, Germany
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Parry J Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Gary B Evans
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| |
Collapse
|
121
|
Lund J, Krapf SA, Sistek M, Bakke HG, Bartesaghi S, Peng XR, Rustan AC, Thoresen GH, Kase ET. SENP2 is vital for optimal insulin signaling and insulin-stimulated glycogen synthesis in human skeletal muscle cells. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100061. [PMID: 34909683 PMCID: PMC8663970 DOI: 10.1016/j.crphar.2021.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Sentrin-specific protease (SENP) 2 has been suggested as a possible novel drug target for the treatment of obesity and type 2 diabetes mellitus after observations of a palmitate-induced increase in SENP2 that lead to increased fatty acid oxidation and improved insulin sensitivity in skeletal muscle cells from mice. However, no precedent research has examined the role of SENP2 in human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism as well as insulin sensitivity in human skeletal muscle using cultured primary human myotubes. Acute (4 h) oleic acid oxidation was reduced in SENP2-knockdown (SENP2-KD) cells compared to control cells, with no difference in uptake. After prelabeling (24 h) with oleic acid, total lipid content and incorporation into triacylglycerol was decreased, while incorporation into other lipids, as well as complete oxidation and β-oxidation was increased in SENP2-KD cells. Basal glucose uptake (i.e., not under insulin-stimulated conditions) was higher in SENP2-KD cells, whereas oxidation was similar to control myotubes. Further, basal glycogen synthesis was not different in SENP2-KD myotubes, but both insulin-stimulated glycogen synthesis and AktSer473 phosphorylation was completely blunted in SENP2-KD cells. In conclusion, SENP2 plays an important role in fatty acid and glucose metabolism in human myotubes. Interestingly, it also appears to have a pivotal role in regulating myotube insulin sensitivity. Future studies should examine the role of SENP2 in regulation of insulin sensitivity in other tissues and in vivo, defining the potential for SENP2 as a drug target.
Collapse
Affiliation(s)
- Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Corresponding author. Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Solveig A. Krapf
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Medina Sistek
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Norway
| | - Eili T. Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| |
Collapse
|
122
|
Aroankins TS, Murali SK, Fenton RA, Wu Q. The Hydrogen-Coupled Oligopeptide Membrane Cotransporter Pept2 is SUMOylated in Kidney Distal Convoluted Tubule Cells. Front Mol Biosci 2021; 8:790606. [PMID: 34881291 PMCID: PMC8646034 DOI: 10.3389/fmolb.2021.790606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Protein post-translational modification by the Small Ubiquitin-like MOdifier (SUMO) on lysine residues is a reversible process highly important for transcription and protein stability. In the kidney, SUMOylation appears to be important for the cellular response to aldosterone. Therefore, in this study, we generated a SUMOylation profile of the aldosterone-sensitive kidney distal convoluted tubule (DCT) as a basis for understanding SUMOylation events in this cell type. Using mass spectrometry-based proteomics, 1037 SUMO1 and 552 SUMO2 sites, corresponding to 546 SUMO1 and 356 SUMO2 proteins, were identified from a modified mouse kidney DCT cell line (mpkDCT). SUMOylation of the renal hydrogen-coupled oligopeptide and drug co-transporter (Pept2) at one site (K139) was found to be highly regulated by aldosterone. Using immunolabelling of mouse kidney sections Pept2 was localized to DCT cells in vivo. Aldosterone stimulation of mpkDCT cell lines expressing wild-type Pept2 or mutant K139R-Pept2, post-transcriptionally increased Pept2 expression up to four-fold. Aldosterone decreased wild-type Pept2 abundance in the apical membrane domain of mpkDCT cells, but this response was absent in K139R-Pept2 expressing cells. In summary, we have generated a SUMOylation landscape of the mouse DCT and determined that SUMOylation plays an important role in the physiological regulation of Pept2 trafficking by aldosterone.
Collapse
Affiliation(s)
- Takwa S Aroankins
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
123
|
Ellis N, Zhu J, Yagle MK, Yang WC, Huang J, Kwako A, Seidman MM, Matunis MJ. RNF4 Regulates the BLM Helicase in Recovery From Replication Fork Collapse. Front Genet 2021; 12:753535. [PMID: 34868226 PMCID: PMC8633118 DOI: 10.3389/fgene.2021.753535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
Sumoylation is an important enhancer of responses to DNA replication stress and the SUMO-targeted ubiquitin E3 ligase RNF4 regulates these responses by ubiquitylation of sumoylated DNA damage response factors. The specific targets and functional consequences of RNF4 regulation in response to replication stress, however, have not been fully characterized. Here we demonstrated that RNF4 is required for the restart of DNA replication following prolonged hydroxyurea (HU)-induced replication stress. Contrary to its role in repair of γ-irradiation-induced DNA double-strand breaks (DSBs), our analysis revealed that RNF4 does not significantly impact recognition or repair of replication stress-associated DSBs. Rather, using DNA fiber assays, we found that the firing of new DNA replication origins, which is required for replication restart following prolonged stress, was inhibited in cells depleted of RNF4. We also provided evidence that RNF4 recognizes and ubiquitylates sumoylated Bloom syndrome DNA helicase BLM and thereby promotes its proteosome-mediated turnover at damaged DNA replication forks. Consistent with it being a functionally important RNF4 substrate, co-depletion of BLM rescued defects in the firing of new replication origins observed in cells depleted of RNF4 alone. We concluded that RNF4 acts to remove sumoylated BLM from collapsed DNA replication forks, which is required to facilitate normal resumption of DNA synthesis after prolonged replication fork stalling and collapse.
Collapse
Affiliation(s)
- Nathan Ellis
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Jianmei Zhu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Mary K Yagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Wei-Chih Yang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jing Huang
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, United States
| | - Alexander Kwako
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, United States
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
124
|
RNF166 plays a dual role for Lys63-linked ubiquitination and sumoylation of its target proteins. J Neural Transm (Vienna) 2021; 129:463-475. [PMID: 34837535 DOI: 10.1007/s00702-021-02442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Ubiquitination and sumoylation are two important posttranslational modifications in cells. RING (Really Interesting New Gene)-type E3 ligases play essential roles in regulating a plethora of biological processes such as cell survival and death. In our previous study, we performed a microarray using inputs from MN9D dopaminergic neuronal cells treated with 6-hydroxydopamine and identified a novel RING-type E3 ligase, RNF166. We showed that RNF166 exerts proapoptotic effects via ubiquitin-dependent degradation of X-linked inhibitor of apoptosis and subsequent overactivation of caspase-dependent neuronal death following 6-hydroxydopamine treatment. In the present study, we further expanded the list of RNF166's binding substrates using mass spectral analyses of immunoprecipitates obtained from RNF166-overexpressing HEK293 cells. Poly (ADP-ribose) polymerase 1, ATPase WRNIP1, X-ray repair cross-complementing protein 5 (Ku80), and replication protein A 70 were identified as potential binding partners of RNF166. Additionally, we confirmed that RNF166 interacts with and forms lysine 63-linked polyubiquitin chains in Ku80. Consequently, these events promoted the increased stability of Ku80. Intriguingly, we found that RNF166 also contains distinct consensus sequences termed SUMO-interacting motifs and interacts with apoptosis signal-regulating kinase 1 (ASK1). We determined that RNF166 induces the sumoylation of ASK1. Overall, our data provide novel evidence that RNF166 has a dual function of Lys63-linked ubiquitination and sumoylation of its cellular targets.
Collapse
|
125
|
Conserved E1B-55K SUMOylation in different human adenovirus species is a potent regulator of intracellular localization. J Virol 2021; 96:e0083821. [PMID: 34787461 DOI: 10.1128/jvi.00838-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past decades, studies on the biology of human adenoviruses (HAdVs) mainly focused on the HAdV prototype species C type 5 (HAdV-C5) and revealed fundamental molecular insights into mechanisms of viral replication and viral cell transformation. Recently, other HAdV species are gaining more and more attention in the field. Reports on large E1B proteins (E1B-55K) from different HAdV species showed that these multifactorial proteins possess strikingly different features along with highly conserved functions. In this work, we identified potential SUMO-conjugation motifs (SCMs) in E1B-55K proteins from HAdV species A to F. Mutational inactivation of these SCMs demonstrated that HAdV E1B-55K proteins are SUMOylated at a single lysine residue that is highly conserved among HAdV species B to E. Moreover, we provide evidence that E1B-55K SUMOylation is a potent regulator of intracellular localization and p53-mediated transcription in most HAdV species. We also identified a lysine residue at position 101 (K101), which is unique to HAdV-C5 E1B-55K and specifically regulates its SUMOylation and nucleo-cytoplasmic shuttling. Our findings reveal important new aspects on HAdV E1B-55K proteins and suggest that different E1B-55K species possess conserved SCMs while their SUMOylation has divergent cellular effects during infection. Importance E1B-55K is a multifunctional adenoviral protein and its functions are highly regulated by SUMOylation. Although functional consequences of SUMOylated HAdV-C5 E1B-55K are well studied, we lack information on the effects of SUMOylation on homologous E1B-55K proteins from other HAdV species. Here, we show that SUMOylation is a conserved post-translational modification in most of the E1B-55K proteins, similar to what we know about HAdV-C5 E1B-55K. Moreover, we identify subcellular localization and regulation of p53-dependent transcription as highly conserved SUMOylation-regulated E1B-55K functions. Thus, our results highlight how HAdV proteins might have evolved in different HAdV species with conserved domains involved in virus replication and differing alternative functions and interactions with the host cell machinery. Future research will link these differences and similarities to the diverse pathogenicity and organ tropism of the different HAdV species.
Collapse
|
126
|
Yuan H, Lu Y, Chan YT, Zhang C, Wang N, Feng Y. The Role of Protein SUMOylation in Human Hepatocellular Carcinoma: A Potential Target of New Drug Discovery and Development. Cancers (Basel) 2021; 13:5700. [PMID: 34830854 PMCID: PMC8616375 DOI: 10.3390/cancers13225700] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a highly conserved post-translational modification protein, mainly found in eukaryotes. They are widely expressed in different tissues, including the liver. As an essential post-translational modification, SUMOylation is involved in many necessary regulations in cells. It plays a vital role in DNA repair, transcription regulation, protein stability and cell cycle progression. Increasing shreds of evidence show that SUMOylation is closely related to Hepatocellular carcinoma (HCC). The high expression of SUMOs in the inflammatory hepatic tissue may lead to the carcinogenesis of HCC. At the same time, SUMOs will upregulate the proliferation and survival of HCC, migration, invasion and metastasis of HCC, tumour microenvironment as well as drug resistance. This study reviewed the role of SUMOylation in liver cancer. In addition, it also discussed natural compounds that modulate SUMO and target SUMO drugs in clinical trials. Considering the critical role of SUMO protein in the occurrence of HCC, the drug regulation of SUMOylation may become a potential target for treatment, prognostic monitoring and adjuvant chemotherapy of HCC.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (H.Y.); (Y.L.); (Y.-T.C.); (C.Z.)
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; (H.Y.); (Y.L.); (Y.-T.C.); (C.Z.)
| |
Collapse
|
127
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
128
|
Lai S, Xu M, Wang Y, Li R, Xia C, Xia S, Chen J. Site-specific SUMOylation of viral polymerase processivity factor: a way of localizingtoND10 subnuclear domains for restricted and self-controlled reproduction of herpesvirus. Virulence 2021; 12:2883-2901. [PMID: 34747321 PMCID: PMC8923073 DOI: 10.1080/21505594.2021.2000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lytic replication of human cytomegalovirus (HCMV), a member of β-herpesvirus, is a highly complicated and organized process that requires its DNA polymerase processivity factor, UL44, the first-reported HCMV replication protein subjected to SUMO post-translational modification (PTM). SUMOylation plays a pleiotropic role in protein functions of host cells and infecting viruses. Particularly, formation of herpesviral replication compartments (RCs) upon infection is induced in proximity to ND10 subnuclear domains, the host cell’s intrinsic antiviral immune devices and hot SUMOylation spots, relying just on SUMOylation of their protein components to become mature and functional in restriction of the viral replication. In this study, to unveil the exact role of SUMO PTM on UL44 involved in HCMV replication, we screened and identified PIAS3, an annotated E3 SUMO ligase, as a novel UL44-interacting protein engaged in cellular SUMOylation pathway. Co-existence of PIAS3 could enhance the UBC9-based SUMO modification of UL44 specifically at its conserved 410lysine residue lying within the single canonical ψKxE SUMO Conjugation Motif (SCM). Intriguingly, we found this SCM-specific SUMOylation contributes to UL44 co-localization and interaction with subnuclear ND10 domains during infection, which in turn exerts an inhibitory effect on HCMV replication and growth. Together, these results highlight the importance of SUMOylation in regulating viral protein subnuclear localization, representing a novel way of utilizing ND10-based restriction to achieve the self-controlled slower replication and reproduction of herpesviruses.
Collapse
Affiliation(s)
- Shuyan Lai
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Mengqiong Xu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaohao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ruilin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Chuan Xia
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Sisi Xia
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
| |
Collapse
|
129
|
Wang X, Liu T, Huang Y, Dai Y, Lin H. Regulation of transforming growth factor-β signalling by SUMOylation and its role in fibrosis. Open Biol 2021; 11:210043. [PMID: 34753319 PMCID: PMC8580444 DOI: 10.1098/rsob.210043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is an abnormal healing process that only repairs the structure of an organ after injury and does not address damaged functions. The pathogenesis of fibrosis is multifactorial and highly complex; numerous signalling pathways are involved in this process, with the transforming growth factor-β (TGF-β) signalling pathway playing a central role. TGF-β regulates the generation of myofibroblasts and the epithelial-mesenchymal transition by regulating transcription and translation of downstream genes and precisely regulating fibrogenesis. The TGF-β signalling pathway can be modulated by various post-translational modifications, of which SUMOylation has been shown to play a key role. In this review, we focus on the function of SUMOylation in canonical and non-canonical TGF-β signalling and its role in fibrosis, providing promising therapeutic strategies for fibrosis.
Collapse
Affiliation(s)
- Xinyi Wang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Ting Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifei Huang
- First Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Yifeng Dai
- Second Clinical Medical School, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
130
|
Qian Y, Li Y, Li R, Yang T, Jia R, Ge YZ. circ-ZNF609: A potent circRNA in human cancers. J Cell Mol Med 2021; 25:10349-10361. [PMID: 34697887 PMCID: PMC8581316 DOI: 10.1111/jcmm.16996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/22/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel group of endogenous RNAs with a circular structure. Growing evidence indicates that circRNAs are involved in a variety of human diseases including malignancies. CircRNA ZNF609 (circ‐ZNF609), derived from the ZNF609 gene sequence, has been demonstrated to be involved in the development and progression of many diseases. circ‐ZNF609 is thought to be a viable diagnostic and prognostic biomarker for several diseases and might be a new therapeutic target, but further research is needed to accelerate clinical application. Here, we review the biogenesis and function of circRNAs and the functional roles and molecular mechanism related to circ‐ZNF609 in neoplasms and other diseases.
Collapse
Affiliation(s)
- Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rongfei Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
131
|
Wang Q, Xu C, Fan Q, Yuan H, Zhang X, Chen B, Cai R, Zhang Y, Lin M, Xu M. Positive feedback between ROS and cis-axis of PIASxα/p38α-SUMOylation/MK2 facilitates gastric cancer metastasis. Cell Death Dis 2021; 12:986. [PMID: 34686655 PMCID: PMC8536665 DOI: 10.1038/s41419-021-04302-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022]
Abstract
MAPK/p38 is an important mammalian signaling cascade that responds to a variety of intracellular or extracellular stimuli, such as reactive oxygen species (ROS), and participates in numerous physiological and pathological processes. However, the biological function of p38 in different tumors, and even at different stages of the same tumor, remains elusive. To further understand the regulatory mechanism of p38 and oxidative stress in the occurrence and development of gastric cancer, we report SUMOylation as a novel post-translational modification occurring on lysine 152 of MAPK14/p38α through immunoprecipitation and series of pull-down assays in vitro and in vivo. Importantly, we determine that p38α-SUMOylation functions as an authentic sensor and accelerator of reactive oxygen species generation via interaction with and activation of MK2 in the nucleus, and the ROS accumulation, in turn, promotes the SUMOylation of p38α by stabilizing the PIASxα protein. This precise regulatory mechanism is exploited by gastric cancer cells to create an internal environment for survival and, ultimately, metastasis. This study reveals novel insights into p38α-SUMOylation and its association with the intracellular oxidative stress response, which is closely related to the processes of gastric cancer. Furthermore, the PIASxα/p38α-SUMOylation/MK2 cis-axis may serve as a desirable therapeutic target in gastric cancer as targeting PIASxα, MK2, or a specific peptide region of p38α may reconcile the aberrant oxidative stress response in gastric cancer cells.
Collapse
Affiliation(s)
- Qian Wang
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999 China
| | - Ci Xu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999 China
| | - Qiang Fan
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999 China
| | - Haihua Yuan
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999 China
| | - Xin Zhang
- grid.24516.340000000123704535Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, 16 Boyang Road, Shanghai, 200090 China
| | - Biying Chen
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999 China
| | - Renjie Cai
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999 China
| | - Yanjie Zhang
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999 China ,grid.16821.3c0000 0004 0368 8293Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125 China
| | - Moubin Lin
- grid.24516.340000000123704535Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, 16 Boyang Road, Shanghai, 200090 China
| | - Ming Xu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999 China
| |
Collapse
|
132
|
Nayak P, Kejriwal A, Ratnaparkhi GS. SUMOylation of Arginyl tRNA Synthetase Modulates the Drosophila Innate Immune Response. Front Cell Dev Biol 2021; 9:695630. [PMID: 34660574 PMCID: PMC8514731 DOI: 10.3389/fcell.2021.695630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
SUMO conjugation of a substrate protein can modify its activity, localization, interaction or function. A large number of SUMO targets in cells have been identified by Proteomics, but biological roles for SUMO conjugation for most targets remains elusive. The multi-aminoacyl tRNA synthetase complex (MARS) is a sensor and regulator of immune signaling. The proteins of this 1.2 MDa complex are targets of SUMO conjugation, in response to infection. Arginyl tRNA Synthetase (RRS), a member of the sub-complex II of MARS, is one such SUMO conjugation target. The sites for SUMO conjugation are Lys 147 and 383. Replacement of these residues by Arg (RRS K147R,K383R ), creates a SUMO conjugation resistant variant (RRS SCR ). Transgenic Drosophila lines for RRS WT and RRS SCR were generated by expressing these variants in a RRS loss of function (lof) animal, using the UAS-Gal4 system. The RRS-lof line was itself generated using CRISPR/Cas9 genome editing. Expression of both RRS WT and RRS SCR rescue the RRS-lof lethality. Adult animals expressing RRS WT and RRS SCR are compared and contrasted for their response to bacterial infection by gram positive M. luteus and gram negative Ecc15. We find that RRS SCR , when compared to RRS WT , shows modulation of the transcriptional response, as measured by quantitative 3' mRNA sequencing. Our study uncovers a possible non-canonical role for SUMOylation of RRS, a member of the MARS complex, in host-defense.
Collapse
Affiliation(s)
- Prajna Nayak
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Aarti Kejriwal
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | |
Collapse
|
133
|
Mojsa B, Tatham MH, Davidson L, Liczmanska M, Branigan E, Hay RT. Identification of SUMO Targets Associated With the Pluripotent State in Human Stem Cells. Mol Cell Proteomics 2021; 20:100164. [PMID: 34673284 PMCID: PMC8604812 DOI: 10.1016/j.mcpro.2021.100164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022] Open
Abstract
To investigate the role of SUMO modification in the maintenance of pluripotent stem cells, we used ML792, a potent and selective inhibitor of SUMO Activating Enzyme. Treatment of human induced pluripotent stem cells with ML792 resulted in the loss of key pluripotency markers. To identify putative effector proteins and establish sites of SUMO modification, cells were engineered to stably express either SUMO1 or SUMO2 with C-terminal TGG to KGG mutations that facilitate GlyGly-K peptide immunoprecipitation and identification. A total of 976 SUMO sites were identified in 427 proteins. STRING enrichment created three networks of proteins with functions in regulation of gene expression, ribosome biogenesis, and RNA splicing, although the latter two categories represented only 5% of the total GGK peptide intensity. The rest have roles in transcription and the regulation of chromatin structure. Many of the most heavily SUMOylated proteins form a network of zinc-finger transcription factors centered on TRIM28 and associated with silencing of retroviral elements. At the level of whole proteins, there was only limited evidence for SUMO paralogue-specific modification, although at the site level there appears to be a preference for SUMO2 modification over SUMO1 in acidic domains. We show that SUMO influences the pluripotent state in hiPSCs and identify many chromatin-associated proteins as bona fide SUMO substrates in human induced pluripotent stem cells.
Collapse
Affiliation(s)
- Barbara Mojsa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael H Tatham
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lindsay Davidson
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Magda Liczmanska
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emma Branigan
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ronald T Hay
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
134
|
Dodat F, Mader S, Lévesque D. Minireview: What is Known about SUMOylation Among NR4A Family Members? J Mol Biol 2021; 433:167212. [PMID: 34437889 DOI: 10.1016/j.jmb.2021.167212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
NR4A receptors, including NUR77 (NR4A1), NURR1 (NR4A2) and NOR-1 (NR4A3), form a family of nuclear receptors that act as transcription factors to regulate many physiological and pathological processes such as cell cycle and apoptosis, lipid metabolism, inflammation, carcinogenesis, vascular and neuronal functions. In the absence of known endogenous ligand modulating their physiological functions, the NR4A family remains a class of orphan receptors. However, several post-translational modifications (PTMs), including SUMOylation, have been shown to regulate the expression and/or activity of these receptors. Addition of Small Ubiquitin-like MOdifier (SUMO) proteins is a dynamic and reversible enzymatic process that regulates multiple essential functions of proteins, including nuclear receptors. This review aims at summarizing what is known about the impact of SUMOylation on NR4A family member transcriptional activities and physiological functions.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Cycle/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Eukaryotic Cells/cytology
- Eukaryotic Cells/metabolism
- Humans
- Inflammation
- Lipid Metabolism/genetics
- Multigene Family
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Protein Processing, Post-Translational
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Small Ubiquitin-Related Modifier Proteins/genetics
- Small Ubiquitin-Related Modifier Proteins/metabolism
- Sumoylation
- Transcription, Genetic
Collapse
Affiliation(s)
- Fatéma Dodat
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada; Institut de Recherche en Immunologie et Cancérologie (IRIC) and Département de biochimie et de médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC, Canada.
| | - Sylvie Mader
- Institut de Recherche en Immunologie et Cancérologie (IRIC) and Département de biochimie et de médecine moléculaire, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Daniel Lévesque
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
135
|
Altered Protein Abundance and Localization Inferred from Sites of Alternative Modification by Ubiquitin and SUMO. J Mol Biol 2021; 433:167219. [PMID: 34464654 DOI: 10.1016/j.jmb.2021.167219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Protein modification by ubiquitin or SUMO can alter the function, stability or activity of target proteins. Previous studies have identified thousands of substrates that were modified by ubiquitin or SUMO on the same lysine residue. However, it remains unclear whether such overlap could result from a mere higher solvent accessibility, whether proteins containing those sites are associated with specific functional traits, and whether selectively perturbing their modification by ubiquitin or SUMO could result in different phenotypic outcomes. Here, we mapped reported lysine modification sites across the human proteome and found an enrichment of sites reported to be modified by both ubiquitin and SUMO. Our analysis uncovered thousands of proteins containing such sites, which we term Sites of Alternative Modification (SAMs). Among more than 36,000 sites reported to be modified by SUMO, 51.8% have also been reported to be modified by ubiquitin. SAM-containing proteins are associated with diverse biological functions including cell cycle, DNA damage, and transcriptional regulation. As such, our analysis highlights numerous proteins and pathways as putative targets for further elucidating the crosstalk between ubiquitin and SUMO. Comparing the biological and biochemical properties of SAMs versus other non-overlapping modification sites revealed that these sites were associated with altered cellular localization or abundance of their host proteins. Lastly, using S. cerevisiae as model, we show that mutating the SAM motif in a protein can influence its ubiquitination as well as its localization and abundance.
Collapse
|
136
|
Bellail AC, Jin HR, Lo HY, Jung SH, Hamdouchi C, Kim D, Higgins RK, Blanck M, le Sage C, Cross BCS, Li J, Mosley AL, Wijeratne AB, Jiang W, Ghosh M, Zhao YQ, Hauck PM, Shekhar A, Hao C. Ubiquitination and degradation of SUMO1 by small-molecule degraders extends survival of mice with patient-derived tumors. Sci Transl Med 2021; 13:eabh1486. [PMID: 34644148 DOI: 10.1126/scitranslmed.abh1486] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anita C Bellail
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.,HB Therapeutics Inc., Indianapolis, IN 46202, USA
| | - Hong Ri Jin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ho-Yin Lo
- Synovel Laboratory LLC, Danbury, CT 06811, USA
| | - Sung Han Jung
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chafiq Hamdouchi
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daeho Kim
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan K Higgins
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | - Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Amber L Mosley
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Manali Ghosh
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Yin Quan Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paula M Hauck
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Department of Psychiatry and Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
137
|
Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2421-2431. [PMID: 34744375 PMCID: PMC8526628 DOI: 10.1007/s12298-021-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Plants face numerous challenges such as biotic and abiotic stresses during their whole lifecycle. As they are sessile in nature, they ought to develop multiple ways to act during stressed conditions to maintain cellular homeostasis. Among various defense mechanisms, the small ubiquitin-like modifiers (SUMO) pathway is considered as the most important because several nuclear proteins regulated by this pathway are involved in several cellular functions such as response to stress, transcription, translation, metabolism of RNA, energy metabolism, repairing damaged DNA, ensuring genome stability and nuclear trafficking. In general, the SUMO pathway has its own particular set of enzymes E1, E2, and E3. The SUMO conjugating enzyme [SCE (E2)] is a very crucial member of the pathway which can transfer SUMO to its target protein even without the involvement of E3. More than just a middle player, it has shown its involvement in effective triggered immunity in crops like tomato and various abiotic stresses like drought and salinity in maize, rice, and Arabidopsis. This review tries to explore the importance of the SUMOylation process, focusing on the E2 enzyme and its regulatory role in the abiotic stress response, plant immunity, and DNA damage repair.
Collapse
Affiliation(s)
- Shantwana Ghimire
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Xue Fu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huanhuan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
138
|
Du C, Chen X, Su Q, Lu W, Wang Q, Yuan H, Zhang Z, Wang X, Wu H, Qi Y. The Function of SUMOylation and Its Critical Roles in Cardiovascular Diseases and Potential Clinical Implications. Int J Mol Sci 2021; 22:10618. [PMID: 34638970 PMCID: PMC8509021 DOI: 10.3390/ijms221910618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease caused by many factors, including atherosclerosis, congenital heart disease, heart failure, and ischemic cardiomyopathy. CVD has been regarded as one of the most common diseases and has a severe impact on the life quality of patients. The main features of CVD include high morbidity and mortality, which seriously threaten human health. SUMO proteins covalently conjugate lysine residues with a large number of substrate proteins, and SUMOylation regulates the function of target proteins and participates in cellular activities. Under certain pathological conditions, SUMOylation of proteins related to cardiovascular development and function are greatly changed. Numerous studies have suggested that SUMOylation of substrates plays critical roles in normal cardiovascular development and function. We reviewed the research progress of SUMOylation in cardiovascular development and function, and the regulation of protein SUMOylation may be applied as a potential therapeutic strategy for CVD treatment.
Collapse
Affiliation(s)
- Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 246011, China;
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| |
Collapse
|
139
|
Chen X, Liang W, Wang S, Lv Y, Han Y, Xu D, Jin Y. Evaluation of ubiquitination and sumoylation of acrosin inhibitor during in vitro capacitation of porcine sperm. Anim Biotechnol 2021; 32:646-655. [PMID: 34554078 DOI: 10.1080/10495398.2021.1979568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The main objective of this study was to investigate the expression of acrosin inhibitor (AI), ubiquitin (Ub), and small ubiquitin-related modifier 1 (SUMO1) proteins during in vitro capacitation of pig sperm. Duroc pig sperm was divided into fresh sperm and capacitation treatment groups. Protein expression was evaluated using computer-assisted sperm analysis (CASA) systems, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting, and immunofluorescence. The results showed that the expression of AI (30 kDa) incapacitated sperm was significantly lower than that in fresh sperm (P < 0.05), and that the levels of ubiquitinated and SUMO1-ylated proteins in capacitated sperm were significantly higher than those in fresh sperm (P < 0.05). Immunofluorescence results showed that AI, Ub, and SUMO1 were located in the acrosome region of the fresh and capacitated sperm heads. After capacitation, the fluorescence intensity of AI and SUMO1 decreased, while that of Ub increased. The protein band at 30 kDa represented the AI-Ub-SUMO1 complex, indicating that this complex was involved in sperm capacitation. Furthermore, SUMO1 increased the stability of AI at 30 kDa, preventing its complete decomposition, while at 46 kDa, in the absence of SUMO1, AI is bound to ubiquitin, and was completely degraded.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Wanfeng Liang
- Department of Animal Medicine, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Shi Wang
- Jilin Zhongke Biological Engineering Co. Ltd, Jilin, Jilin Province, China
| | - Yanqiu Lv
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yue Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Da Xu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yi Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
140
|
Hu Y, Chen C, Tong X, Chen S, Hu X, Pan B, Sun X, Chen Z, Shi X, Hu Y, Shen X, Xue X, Lu M. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis 2021; 12:842. [PMID: 34504059 PMCID: PMC8429414 DOI: 10.1038/s41419-021-04127-3] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/08/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
The 5-methylcytosine (m5C) RNA methyltransferase NSUN2 is involved in the regulation of cell proliferation and metastasis formation and is upregulated in multiple cancers. However, the biological significance of NSUN2 in gastric cancer (GC) and the modification of NSUN2 itself have not been fully investigated. Here, we analyzed the expression level of NSUN2 in tissue microarrays containing 403 GC tissues by immunohistochemistry. NSUN2 was upregulated in GC, and that it was a predictor of poor prognosis. NSUN2 promotes the proliferation, migration, and invasion of GC cells in vitro. We also demonstrated that small ubiquitin-like modifier (SUMO)-2/3 interacts directly with NSUN2 by stabilizing it and mediating its nuclear transport. This facilitates the carcinogenic activity of NSUN2. Furthermore, m5C bisulfite sequencing (Bis-seq) in NSUN2-deficient GC cells showed that m5C-methylated genes are involved in multiple cancer-related signaling pathways. PIK3R1 and PCYT1A may be the target genes that participate in GC progression. Our findings revealed a novel mechanism by which NSUN2 functions in GC progression. This may provide new treatment options for GC patients.
Collapse
Affiliation(s)
- Yuanbo Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Sian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xianjing Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Bujian Pan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xiangwei Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Wenzhou Medical University, Wenzhou, China.
| | - Mingdong Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
141
|
Abstract
PURPOSE OF REVIEW In the article, we focus on the role of SUMOylation in tumorigenesis and cancer-related processes, including Epithelial-mesenchymal transition (EMT), metastasis, resistance to cancer therapies, and antitumor immunity. Clinical perspective on small ubiquitin-like modifier (SUMO) inhibitors will be discussed. RECENT FINDINGS SUMOylation regulates multiple important biologic functions including gene transcription, DNA damage repair, cell cycle, and innate immunity. The SUMO pathway enzymes are usually elevated in various cancers and linked with cancer progression and poor clinical outcomes for patients. Recent studies have revealed the role of SUMOylation in EMT and metastasis through regulating E-Cadherin and Snail expression. Multiple studies demonstrate SUMOylation is involved with chemoresistance and hormone treatment resistance. Oncogene Myc and SUMOylation machinery regulation has been revealed in pancreatic cancer. SUMOylation is involved in regulating antitumor immune response through dendritic cells and T cells. A breakthrough has been made in targeting SUMOylation in cancer as first-in-class SUMO E1 inhibitor TAK-981 enters clinical trials. SUMMARY SUMOylation plays an important role in tumor EMT, metastasis, therapy resistance, and antitumor immune response. Pharmaceutical inhibition of SUMOylation has become promising clinical therapy to improve the outcome of the existing chemo and immune therapies.
Collapse
Affiliation(s)
- Li Du
- Toni Stephenson Lymphoma Center
| | - Wei Liu
- Toni Stephenson Lymphoma Center
| | - Steven T Rosen
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute and Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
142
|
Mei L, Qv M, Bao H, He Q, Xu Y, Zhang Q, Shi W, Ren Q, Yan Z, Xu C, Tang C, Hussain M, Zeng LH, Wu X. SUMOylation activates large tumour suppressor 1 to maintain the tissue homeostasis during Hippo signalling. Oncogene 2021; 40:5357-5366. [PMID: 34267330 DOI: 10.1038/s41388-021-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Large tumour suppressor (LATS) 1/2, the core kinases of Hippo signalling, are critical for maintaining tissue homeostasis. Here, we investigate the role of SUMOylation in the regulation of LATS activation. High cell density induces the expression of components of the SUMOylation machinery and enhances the SUMOylation and activation of Lats1 but not Lats2, whereas genetic deletion of the SUMOylation E2 ligase, Ubc9, abolishes this Lats1 activation. Moreover, SUMOylation occurs at the K830 (mouse K829) residue to activate LATS1 and depends on the PIAS1/2 E3 ligase. Whereas the K830 deSUMOylation mutation of LATS1 found in the human metastatic prostate cancers eliminates the kinase activity by attenuating the formation of the phospho-MOB1/phospho-LATS1 complex. As a result, the LATS1(K830R) transgene phenocopies Yap transgene to cause the oversized livers in mice, whereas Lats1(K829R) knock-in phenocopies the deletion of Lats1 in causing the reproductive and endocrine defects and ovary tumours in mice. Thus, SUMOylation-mediated LATS1 activation is an integral component of Hippo signalling in the regulation of tissues homeostasis.
Collapse
Affiliation(s)
- Liu Mei
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangyang Bao
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shi
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biology and Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Qianlei Ren
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China
| | - Ziyi Yan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Tang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Musaddique Hussain
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
143
|
Peng XF, Huang SF, Chen LJ, Xu L, Ye WC. Targeting epigenetics and lncRNAs in liver disease: From mechanisms to therapeutics. Pharmacol Res 2021; 172:105846. [PMID: 34438063 DOI: 10.1016/j.phrs.2021.105846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Early onset and progression of liver diseases can be driven by aberrant transcriptional regulation. Different transcriptional regulation processes, such as RNA/DNA methylation, histone modification, and ncRNA-mediated targeting, can regulate biological processes in healthy cells, as well also under various pathological conditions, especially liver disease. Numerous studies over the past decades have demonstrated that liver disease has a strong epigenetic component. Therefore, the epigenetic basis of liver disease has challenged our knowledge of epigenetics, and epigenetics field has undergone an important transformation: from a biological phenomenon to an emerging focus of disease research. Furthermore, inhibitors of different epigenetic regulators, such as m6A-related factors, are being explored as potential candidates for preventing and treating liver diseases. In the present review, we summarize and discuss the current knowledge of five distinct but interconnected and interdependent epigenetic processes in the context of hepatic diseases: RNA methylation, DNA methylation, histone methylation, miRNAs, and lncRNAs. Finally, we discuss the potential therapeutic implications and future challenges and ongoing research in the field. Our review also provides a perspective for identifying therapeutic targets and new hepatic biomarkers of liver disease, bringing precision research and disease therapy to the modern era of epigenetics.
Collapse
Affiliation(s)
- Xiao-Fei Peng
- Department of General Surgery, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Shi-Feng Huang
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Ling-Juan Chen
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Lingqing Xu
- Department of Clinical Laboratory, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China
| | - Wen-Chu Ye
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangdong Province, China.
| |
Collapse
|
144
|
Khan YD, Khan NS, Naseer S, Butt AH. iSUMOK-PseAAC: prediction of lysine sumoylation sites using statistical moments and Chou's PseAAC. PeerJ 2021; 9:e11581. [PMID: 34430072 PMCID: PMC8349168 DOI: 10.7717/peerj.11581] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 01/25/2023] Open
Abstract
Sumoylation is the post-translational modification that is involved in the adaption of the cells and the functional properties of a large number of proteins. Sumoylation has key importance in subcellular concentration, transcriptional synchronization, chromatin remodeling, response to stress, and regulation of mitosis. Sumoylation is associated with developmental defects in many human diseases such as cancer, Huntington's, Alzheimer's, Parkinson's, Spin cerebellar ataxia 1, and amyotrophic lateral sclerosis. The covalent bonding of Sumoylation is essential to inheriting part of the operative characteristics of some other proteins. For that reason, the prediction of the Sumoylation site has significance in the scientific community. A novel and efficient technique is proposed to predict the Sumoylation sites in proteins by incorporating Chou's Pseudo Amino Acid Composition (PseAAC) with statistical moments-based features. The outcomes from the proposed system using 10 fold cross-validation testing are 94.51%, 94.24%, 94.79% and 0.8903% accuracy, sensitivity, specificity and MCC, respectively. The performance of the proposed system is so far the best in comparison to the other state-of-the-art methods. The codes for the current study are available on the GitHub repository using the link: https://github.com/csbioinfopk/iSumoK-PseAAC.
Collapse
Affiliation(s)
- Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Nabeel Sabir Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Sheraz Naseer
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Ahmad Hassan Butt
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Punjab, Pakistan
| |
Collapse
|
145
|
Wang T, Wu J, Dong W, Wang M, Zhong X, Zhang W, Dai L, Xie Y, Liu Y, He X, Liu W, Madhusudhan T, Zeng H, Wang H. The MEK inhibitor U0126 ameliorates diabetic cardiomyopathy by restricting XBP1's phosphorylation dependent SUMOylation. Int J Biol Sci 2021; 17:2984-2999. [PMID: 34421344 PMCID: PMC8375222 DOI: 10.7150/ijbs.60459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Chronic diabetes accelerates vascular dysfunction often resulting in cardiomyopathy but underlying mechanisms remain unclear. Recent studies have shown that the deregulated unfolded protein response (UPR) dependent on highly conserved IRE1α-spliced X-box- binding protein (XBP1s) and the resulting endoplasmic reticulum stress (ER-Stress) plays a crucial role in the occurrence and development of diabetic cardiomyopathy (DCM). In the present study, we determined whether targeting MAPK/ERK pathway using MEK inhibitor U0126 could ameliorate DCM by regulating IRE1α-XBP1s pathway. Method: Three groups of 8-week-old C57/BL6J mice were studied: one group received saline injection as control (n=8) and two groups were made diabetic by streptozotocin (STZ) (n=10 each). 18 weeks after STZ injection and stable hyperglycemia, one group had saline treatment while the second group was treated with U0126 (1mg/kg/day), 8 weeks later, all groups were sacrificed. Cardiac function/histopathological changes were determined by echocardiogram examination, Millar catheter system, hematoxylin-eosin staining and western blot analysis. H9C2 cardiomyocytes were employed for in vitro studies. Results: Echocardiographic, hemodynamic and histological data showed overt myocardial hypertrophy and worsened cardiac function in diabetic mice. Chronic diabetic milieu enhanced SUMOylation and impaired nuclear translocation of XBP1s. Intriguingly, U0126 treatment significantly ameliorated progression of DCM, and this protective effect was achieved through enriching XBP1s' nuclear accumulation. Mechanistically, U0126 inhibited XBP1s' phosphorylation on S348 and SUMOylation on K276 promoting XBP1s' nuclear translocation. Collectively, these results identify that MEK inhibition restores XBP1s-dependent UPR and protects against diabetes-induced cardiac remodeling. Conclusion: The current study identifies previously unknown function of MEK/ERK pathway in regulation of ER-stress in DCM. U0126 could be a therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Tao Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China.,Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Jinhua Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China.,Departments of Respiratory and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangzhou, 510000, PR China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, PR China.,Hubei Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, 430030, PR China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, PR China
| | - Mengwen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Xiaodan Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Yang Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Yujian Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Xingwei He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Wanjun Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| |
Collapse
|
146
|
Moriuchi T, Hirose F. SUMOylation of RepoMan during late telophase regulates dephosphorylation of lamin A. J Cell Sci 2021; 134:271831. [PMID: 34387316 PMCID: PMC8445599 DOI: 10.1242/jcs.247171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/23/2021] [Indexed: 11/20/2022] Open
Abstract
Dephosphorylation of lamin A, which triggers nuclear lamina reconstitution, is crucial for the completion of mitosis. However, the specific phosphatase and regulatory mechanism that allow timely lamin A dephosphorylation remain unclear. Here, we report that RepoMan (also known as CDCA2), a regulatory subunit of protein phosphatase 1γ (PP1γ) is transiently modified with SUMO-2 at K762 during late telophase. SUMOylation of RepoMan markedly enhanced its binding affinity with lamin A. Moreover, SUMOylated RepoMan contributes to lamin A recruitment to telophase chromosomes and dephosphorylation of the mitotic lamin A phosphorylation. Expression of a SUMO-2 mutant that has a defective interaction with the SUMO-interacting motif (SIM) resulted in failure of the lamin A and RepoMan association, along with abrogation of lamin A dephosphorylation and subsequent nuclear lamina formation. These findings strongly suggest that RepoMan recruits lamin A through SUMO–SIM interaction. Thus, transient SUMOylation of RepoMan plays an important role in the spatiotemporal regulation of lamin A dephosphorylation and the subsequent nuclear lamina formation at the end of mitosis. Summary: Transient SUMOylation of RepoMan controls the recruitment of lamin A to telophase chromosomes, lamin A dephosphorylation and nuclear lamina formation.
Collapse
Affiliation(s)
- Takanobu Moriuchi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo, 678-1297, Japan
| | - Fumiko Hirose
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo, 678-1297, Japan
| |
Collapse
|
147
|
Abstract
SUMOylation is a reversible posttranslational modification involved in the regulation of diverse biological processes. Growing evidence suggests that virus infection can interfere with the SUMOylation system. In the present study, we discovered that apoptosis inhibitor 5 (API5) is a SUMOylated protein. Amino acid substitution further identified that Lys404 of API5 was the critical residue for SUMO3 conjugation. Moreover, we found that Avibirnavirus infectious bursal disease virus (IBDV) infection significantly decreased SUMOylation of API5. In addition, our results further revealed that viral protein VP3 inhibited the SUMOylation of API5 by targeting API5 and promoting UBC9 proteasome-dependent degradation through binding to the ubiquitin E3 ligase TRAF3. Furthermore, we revealed that wild-type but not K404R mutant API5 inhibited IBDV replication by enhancing MDA5-dependent IFN-β production. Taken together, our data demonstrate that API5 is a UBC9-dependent SUMOylated protein and deSUMOylation of API5 by viral protein VP3 aids in viral replication.
Collapse
|
148
|
Hu X, Liu Z, Duan X, Han X, Yuan M, Liu L, Xia X, Li N, Qin J, Wang Y. Blocking MCT4 SUMOylation inhibits the growth of breast cancer cells. Mol Carcinog 2021; 60:702-714. [PMID: 34347919 DOI: 10.1002/mc.23336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
Monocarboxylate transporter 4 (MCT4) is highly expressed in various types of solid neoplasms including breast cancer (BC); however, the pro-tumor functions underlying its increased expression have not been explained. Here, we examined the roles of posttranslational modifications to MCT4 in BC, particularly SUMOylation. Our findings revealed that SUMOylation of MCT4 inhibited its degradation and stabilized MCT4 protein levels, while ubiquitination facilitated MCT4 degradation. The E3 ubiquitin ligases β-TRCP and FBW7 interacted with MCT4 at the DSG-box and TPETS sequences, respectively, and Lys448 (K448) of MCT4 could be modified by SUMO chains. Our key finding was that K448 was crucial for MCT4 SUMOylation. Moreover, mutations of K448 abolished MCT4 expression, delaying the growth of BC. This study suggested that SUMOylation of K448 increased MCT4 levels, and mutations of K448 in MCT4 could have therapeutic significance in BC.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhanzhao Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Xianxian Duan
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Xiao Han
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Mengci Yuan
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Lingyan Liu
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Xiaojun Xia
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, China
| | - Ning Li
- Institue of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
| | - Junfang Qin
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,Department of Immunology, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| |
Collapse
|
149
|
Zhao W, Zhang X, Rong J. SUMOylation as a Therapeutic Target for Myocardial Infarction. Front Cardiovasc Med 2021; 8:701583. [PMID: 34395563 PMCID: PMC8355363 DOI: 10.3389/fcvm.2021.701583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Myocardial infarction is a prevalent and life-threatening cardiovascular disease. The main goal of existing interventional therapies is to restore coronary reperfusion while few are designed to ameliorate the pathology of heart diseases via targeting the post-translational modifications of those critical proteins. Small ubiquitin-like modifier (SUMO) proteins are recently discovered to form a new type of protein post-translational modifications (PTM), known as SUMOylation. SUMOylation and deSUMOylation are dynamically balanced in the maintenance of various biological processes including cell division, DNA repair, epigenetic transcriptional regulation, and cellular metabolism. Importantly, SUMOylation plays a critical role in the regulation of cardiac functions and the pathology of cardiovascular diseases, especially in heart failure and myocardial infarction. This review summarizes the current understanding on the effects of SUMOylation and SUMOylated proteins in the pathophysiology of myocardial infarction and identifies the potential treatments against myocardial injury via targeting SUMO. Ultimately, this review recommends SUMOylation as a key therapeutic target for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Wei Zhao
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuying Zhang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Jianhui Rong
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
150
|
Lv X, Liu X, Zhao M, Wu H, Zhang W, Lu Q, Chen X. RNA Methylation in Systemic Lupus Erythematosus. Front Cell Dev Biol 2021; 9:696559. [PMID: 34307373 PMCID: PMC8292951 DOI: 10.3389/fcell.2021.696559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with complicated clinical manifestations. Although our understanding of the pathogenesis of SLE has greatly improved, the understanding of the pathogenic mechanisms of SLE is still limited by disease heterogeneity, and targeted therapy is still unavailable. Substantial evidence shows that RNA methylation plays a vital role in the mechanisms of the immune response, prompting speculation that it might also be related to the occurrence and development of SLE. RNA methylation has been a hot topic in the field of epigenetics in recent years. In addition to revealing the modification process, relevant studies have tried to explore the relationship between RNA methylation and the occurrence and development of various diseases. At present, some studies have provided evidence of a relationship between RNA methylation and SLE pathogenesis, but in-depth research and analysis are lacking. This review will start by describing the specific mechanism of RNA methylation and its relationship with the immune response to propose an association between RNA methylation and SLE pathogenesis based on existing studies and then discuss the future direction of this field.
Collapse
Affiliation(s)
- Xinyi Lv
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wuiguang Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|