101
|
Abstract
In budding yeast, the protein phosphatase Cdc14 is a key regulator of late mitotic events. Research over the last decade has revealed many of its functions and today we know that this protein phosphatase orchestrates several aspects of chromosome segregation and is the key trigger of exit from mitosis. Elucidation of the mechanisms controlling Cdc14 activity through nucleolar sequestration now serves as a paradigm for how regulation of the subcellular localization of proteins regulates protein function. Here I review these findings focusing on how discoveries in my laboratory helped elucidate the function and regulation of Cdc14.
Collapse
Affiliation(s)
- Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
102
|
Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 2008; 20:661-8. [PMID: 18845253 PMCID: PMC2605245 DOI: 10.1016/j.ceb.2008.09.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 12/03/2022]
Abstract
Entry into mitosis of the eukaryotic cell cycle is driven by rising cyclin-dependent kinase (Cdk) activity. During exit from mitosis, Cdk activity must again decline. Cdk downregulation by itself, however, is not able to guide mitotic exit, if not a phosphatase reverses mitotic Cdk phosphorylation events. In budding yeast, this role is played by the Cdc14 phosphatase. We are gaining an increasingly detailed picture of its regulation during anaphase, and of the way it orchestrates ordered progression through mitosis. Much less is known about protein dephosphorylation during mitotic exit in organisms other than budding yeast, but evidence is now mounting for crucial contributions of regulated phosphatases also in metazoan cells.
Collapse
|
103
|
Abstract
Exit from mitosis in Saccharomyces cerevisiae is triggered by activation of the phosphatase Cdc14. Throughout interphase and early mitosis, Cdc14 is sequestered in the nucleolus by its inhibitor Cfi1/Net1. In anaphase, the Cdc Fourteen Early Anaphase Release (FEAR) network and the Mitotic Exit Network (MEN) coordinately trigger the release of Cdc14 from the nucleolus. Here we show that the FEAR network component Cdc5 physically associates with two other members of the pathway, the Separase Esp1 and the Esp1-binding protein Slk19. Furthermore, we find that Cdc5 physically interacts with Cdc14 and that this association is mediated by Cdc5's Polo-box domain, a phospho-serine/phosphothreonine binding domain. Finally, we present evidence that the Cdc5-Cdc14 association is direct, further supporting the central role of Cdc5 in Cdc14 localization.
Collapse
Affiliation(s)
- Rami Rahal
- David H. Koch Institute for Integrative Cancer Research; Howard Hughes Medical Institute; Massachusetts Institute of Technology; Cambridge, Massachusetts USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research; Howard Hughes Medical Institute; Massachusetts Institute of Technology; Cambridge, Massachusetts USA
| |
Collapse
|
104
|
Kim J, Jang SS, Song K. Different levels of Bfa1/Bub2 GAP activity are required to prevent mitotic exit of budding yeast depending on the type of perturbations. Mol Biol Cell 2008; 19:4328-40. [PMID: 18667533 DOI: 10.1091/mbc.e08-02-0149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In budding yeast, Tem1 is a key regulator of mitotic exit. Bfa1/Bub2 stimulates Tem1 GTPase activity as a GTPase-activating protein (GAP). Lte1 possesses a guanine-nucleotide exchange factor (GEF) domain likely for Tem1. However, recent observations showed that cells may control mitotic exit without either Lte1 or Bfa1/Bub2 GAP activity, obscuring how Tem1 is regulated. Here, we assayed BFA1 mutants with varying GAP activities for Tem1, showing for the first time that Bfa1/Bub2 GAP activity inhibits Tem1 in vivo. A decrease in GAP activity allowed cells to bypass mitotic exit defects. Interestingly, different levels of GAP activity were required to prevent mitotic exit depending on the type of perturbation. Although essential, more Bfa1/Bub2 GAP activity was needed for spindle damage than for DNA damage to fully activate the checkpoint. Conversely, Bfa1/Bub2 GAP activity was insufficient to delay mitotic exit in cells with misoriented spindles. Instead, decreased interaction of Bfa1 with Kin4 was observed in BFA1 mutant cells with a defective spindle position checkpoint. These findings demonstrate that there is a GAP-independent surveillance mechanism of Bfa1/Bub2, which, together with the GTP/GDP switch of Tem1, may be required for the genomic stability of cells with misaligned spindles.
Collapse
Affiliation(s)
- Junwon Kim
- Department of Biochemistry and Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
105
|
Fraschini R, Venturetti M, Chiroli E, Piatti S. The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast. Biochem Soc Trans 2008; 36:416-20. [PMID: 18481971 DOI: 10.1042/bst0360416] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During asymmetric cell division, spindle positioning is critical to ensure the unequal segregation of polarity factors and generate daughter cells with different sizes or fates. In budding yeast the boundary between mother and daughter cell resides at the bud neck, where cytokinesis takes place at the end of the cell cycle. Since budding and bud neck formation occur much earlier than bipolar spindle formation, spindle positioning is a finely regulated process. A surveillance device called the SPOC (spindle position checkpoint) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability.
Collapse
Affiliation(s)
- Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | | | | | | |
Collapse
|
106
|
Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 2008; 68:1348-65. [PMID: 18433453 DOI: 10.1111/j.1365-2958.2008.06242.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed an RNA-silencing vector, pSilent-Dual1 (pSD1), with a convergent dual promoter system that provides a high-throughput platform for functional genomics research in filamentous fungi. In the pSD1 system, the target gene was designed to be transcribed as a chimeric RNA with enhanced green fluorescent protein (eGFP) RNA. This enabled us to efficiently screen the resulting transformants using GFP fluorescence as an indicator of gene silencing. A model study with the eGFP gene showed that pSD1-based vectors induced gene silencing via the RNAi pathway with slightly lower efficiency than did hairpin eGFP RNA-expressing vectors. To demonstrate the applicability of the pSD1 system for elucidating gene function in the rice-blast fungus Magnaporthe oryzae, 37 calcium signalling-related genes that include almost all known calcium-signalling proteins in the genome were targeted for gene silencing by the vector. Phenotypic analyses of the silenced transformants showed that at least 26, 35 and 15 of the 37 genes examined were involved in hyphal growth, sporulation and pathogenicity, respectively, in M. oryzae. These included several novel findings such as that Pmc1-, Spf1- and Neo1-like Ca(2+) pumps, calreticulin and calpactin heavy chain were essential for fungal pathogenicity.
Collapse
Affiliation(s)
- Quoc Bao Nguyen
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
107
|
Chesneau L, Prigent M, Boy-Marcotte E, Daraspe J, Fortier G, Jacquet M, Verbavatz JM, Cuif MH. Interdependence of the Ypt/RabGAP Gyp5p and Gyl1p for Recruitment to the Sites of Polarized Growth. Traffic 2008; 9:608-22. [DOI: 10.1111/j.1600-0854.2007.00699.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
108
|
Maekawa H, Priest C, Lechner J, Pereira G, Schiebel E. The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal. ACTA ACUST UNITED AC 2007; 179:423-36. [PMID: 17967947 PMCID: PMC2064790 DOI: 10.1083/jcb.200705197] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The spindle orientation checkpoint (SPOC) of budding yeast delays mitotic exit when cytoplasmic microtubules (MTs) are defective, causing the spindle to become misaligned. Delay is achieved by maintaining the activity of the Bfa1-Bub2 guanosine triphosphatase-activating protein complex, an inhibitor of mitotic exit. In this study, we show that the spindle pole body (SPB) component Spc72, a transforming acidic coiled coil-like molecule that interacts with the gamma-tubulin complex, recruits Kin4 kinase to both SPBs when cytoplasmic MTs are defective. This allows Kin4 to phosphorylate the SPB-associated Bfa1, rendering it resistant to inactivation by Cdc5 polo kinase. Consistently, forced targeting of Kin4 to both SPBs delays mitotic exit even when the anaphase spindle is correctly aligned. Moreover, we present evidence that Spc72 has an additional function in SPOC regulation that is independent of the recruitment of Kin4. Thus, Spc72 provides a missing link between cytoplasmic MT function and components of the SPOC.
Collapse
Affiliation(s)
- Hiromi Maekawa
- Zentrum für Molekulare Biologie and 2Biochemie-Zentrum, Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
109
|
Rubenstein EM, Schmidt MC. Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:571-83. [PMID: 17337635 PMCID: PMC1865659 DOI: 10.1128/ec.00026-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eric M Rubenstein
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1247 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
110
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
111
|
Gregan J, Zhang C, Rumpf C, Cipak L, Li Z, Uluocak P, Nasmyth K, Shokat KM. Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nat Protoc 2007; 2:2996-3000. [PMID: 18007635 PMCID: PMC2957860 DOI: 10.1038/nprot.2007.447] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reversible protein phosphorylation is a major regulatory mechanism in a cell. A chemical-genetic strategy to conditionally inactivate protein kinases has been developed recently. Mutating a single residue in the ATP-binding pocket confers sensitivity to small-molecule inhibitors. The inhibitor can only bind to the mutant kinase and not to any other wild-type kinase, allowing specific inactivation of the modified kinase. Here, we describe a protocol to construct conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. This protocol can be completed in about 3 weeks and should be applicable to other organisms as well.
Collapse
Affiliation(s)
- Juraj Gregan
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 1, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Fraschini R, D'Ambrosio C, Venturetti M, Lucchini G, Piatti S. Disappearance of the budding yeast Bub2-Bfa1 complex from the mother-bound spindle pole contributes to mitotic exit. ACTA ACUST UNITED AC 2006; 172:335-46. [PMID: 16449187 PMCID: PMC2063644 DOI: 10.1083/jcb.200507162] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Budding yeast spindle position checkpoint is engaged by misoriented spindles and prevents mitotic exit by inhibiting the G protein Tem1 through the GTPase-activating protein (GAP) Bub2/Bfa1. Bub2 and Bfa1 are found on both duplicated spindle pole bodies until anaphase onset, when they disappear from the mother-bound spindle pole under unperturbed conditions. In contrast, when spindles are misoriented they remain symmetrically localized at both SPBs. Thus, symmetric localization of Bub2/Bfa1 might lead to inhibition of Tem1, which is also present at SPBs. Consistent with this hypothesis, we show that a Bub2 version symmetrically localized on both SPBs throughout the cell cycle prevents mitotic exit in mutant backgrounds that partially impair it. This effect is Bfa1 dependent and can be suppressed by high Tem1 levels. Bub2 removal from the mother-bound SPB requires its GAP activity, which in contrast appears to be dispensable for Tem1 inhibition. Moreover, it correlates with the passage of one spindle pole through the bud neck because it needs septin ring formation and bud neck kinases.
Collapse
Affiliation(s)
- Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universitá di Milano-Bicocca, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
113
|
Piatti S, Venturetti M, Chiroli E, Fraschini R. The spindle position checkpoint in budding yeast: the motherly care of MEN. Cell Div 2006; 1:2. [PMID: 16759408 PMCID: PMC1459270 DOI: 10.1186/1747-1028-1-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
Mitotic exit and cytokinesis must be tightly coupled to nuclear division both in time and space in order to preserve genome stability and to ensure that daughter cells inherit the right set of chromosomes after cell division. This is achieved in budding yeast through control over a signal transduction cascade, the mitotic exit network (MEN), which is required for mitotic CDK inactivation in telophase and for cytokinesis. Current models of MEN activation emphasize on the bud as the place where most control is exerted. This review focuses on recent data that instead point to the mother cell as being the residence of key regulators of late mitotic events.
Collapse
Affiliation(s)
- Simonetta Piatti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elena Chiroli
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
114
|
Abstract
When a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are unequal in size. Asymmetric spindle positioning is driven by regulated forces that can pull or push a spindle. The physical and molecular mechanisms that can position spindles asymmetrically have been studied in several systems, and some themes have begun to emerge from recent research. Recent work in budding yeast has presented a model for how cytoskeletal motors and cortical capture molecules can function in orienting and positioning a spindle. The temporal regulation of microtubule-based pulling forces that move a spindle has been examined in one animal system. Although the spindle positioning force generators have not been identified in most animal systems, the forces have been found to be regulated by both PAR polarity proteins and G-protein signaling pathways in more than one animal system.
Collapse
Affiliation(s)
- Erin K McCarthy
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
115
|
Abstract
Cell cycle checkpoints can delay mitotic exit in budding yeast. The master controller is the small GTPase Tem1, with inputs from a proposed guanine nucleotide exchange factor (GEF), Lte1, and a GTPase-activating protein (GAP), Bub2/Bfa1. In this issue, Fraschini et al. (p. 335) show that GAP activity of Bub2/Bfa1 appears to be dispensable for inactivation of Tem1 in cells. Their results call into question the GTP/GDP switch model for Tem1 activity, as have other results in the past. The paper also focuses attention on the two spindle pole bodies as potential sites for regulation of Tem1.
Collapse
Affiliation(s)
- John A Cooper
- Department of Cell Biology, Washington University, St. Louis, MO 63110, USA.
| | | |
Collapse
|
116
|
Yoshida S, Guillet M, Pellman D. MEN signaling: daughter bound pole must escape her mother to be fully active. Dev Cell 2005; 9:168-70. [PMID: 16054023 DOI: 10.1016/j.devcel.2005.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Budding yeast divide asymmetrically and must therefore align the position of the mitotic spindle with the plane of division. The success of this process is monitored by a checkpoint-signaling mechanism. Two recent papers in Molecular Cell reveal an important new facet of this signal transduction pathway.
Collapse
Affiliation(s)
- Satoshi Yoshida
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
117
|
de Gramont A, Cohen-Fix O. The many phases of anaphase. Trends Biochem Sci 2005; 30:559-68. [PMID: 16126387 DOI: 10.1016/j.tibs.2005.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/29/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
Anaphase is the stage of the cell cycle in which duplicated chromosomes separate and move towards opposite poles of the cell. Although its chromosome movements have always been viewed as majestic, until recently anaphase lacked obvious landmarks of regulation. The picture has changed with numerous recent studies that have highlighted the raison d'être of anaphase. It is now known to be associated with a series of regulatory pathways that promote a switch from high to low cyclin-dependent kinase activity--an essential feature for proper mitotic exit. The balance between protein phosphorylation and protein dephosphorylation drives and coordinates diverse processes such as chromosome movement, spindle dynamics and cleavage furrow formation. This well-ordered sequence of events is central to successful mitosis.
Collapse
Affiliation(s)
- Armand de Gramont
- The Laboratory of Molecular and Cellular Biology, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
118
|
Pereira G, Schiebel E. Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol Cell 2005; 19:209-21. [PMID: 16039590 DOI: 10.1016/j.molcel.2005.05.030] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/25/2005] [Accepted: 05/27/2005] [Indexed: 11/19/2022]
Abstract
For many polarized cells, it is critical that the mitotic spindle becomes positioned relative to the polarity axis. This is especially important in yeast, where the site of cytokinesis is predetermined. The spindle position checkpoint (SPOC) therefore delays mitotic exit of cells with a mispositioned spindle. One component of the SPOC is the Bub2-Bfa1 complex, an inhibitor of the mitotic exit network (MEN). Here, we show that the Kin4 kinase is a component of the SPOC and as such is essential to delay cell cycle progression of cells with a misaligned spindle. When spindles are correctly oriented, Kin4 and Bub2-Bfa1 are asymmetrically localized to opposite spindle pole bodies (SPBs). Bub2-Bfa1 then becomes inhibited by Cdc5 polo kinase with anaphase onset, a prerequisite for mitotic exit. In response to spindle misalignment, Kin4 and Bub2-Bfa1 are brought together at both SPBs. Kin4 now maintains Bub2-Bfa1 activity by counteracting Cdc5, thereby inhibiting mitotic exit.
Collapse
Affiliation(s)
- Gislene Pereira
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|