101
|
MacDonald IA, Butler KV, Herring LE, Clinkscales SE, Yelagandula R, Stecher K, Bell O, Graves LM, Jin J, Hathaway NA. Pathway-Based High-Throughput Chemical Screen Identifies Compounds That Decouple Heterochromatin Transformations. SLAS DISCOVERY 2019; 24:802-816. [PMID: 31145866 DOI: 10.1177/2472555219849838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heterochromatin protein 1 (HP1) facilitates the formation of repressive heterochromatin domains by recruiting histone lysine methyltransferase enzymes to chromatin, resulting in increased levels of histone H3K9me3. To identify chemical inhibitors of the HP1-heterochromatin gene repression pathway, we combined a cell-based assay that utilized chemical-mediated recruitment of HP1 to an endogenous active gene with high-throughput flow cytometry. Here we characterized small molecule inhibitors that block HP1-mediated heterochromatin formation. Our lead compounds demonstrated dose-dependent inhibition of HP1-stimulated gene repression and were validated in an orthogonal cell-based system. One lead inhibitor was improved by a change in stereochemistry, resulting in compound 2, which was further used to decouple the inverse relationship between H3K9 and H3K4 methylation states. We identified molecular components that bound compound 2, either directly or indirectly, by chemical affinity purification with a biotin-tagged derivative, followed by quantitative proteomic techniques. In summary, our pathway-based chemical screening approach resulted in the discovery of new inhibitors of HP1-mediated heterochromatin formation while identifying exciting new molecular interactions in the pathway to explore in the future. This modular platform can be expanded to test a wide range of chromatin modification pathways yielding inhibitors that are cell permeable and function in a physiologically relevant setting.
Collapse
Affiliation(s)
- Ian A MacDonald
- 1 The Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle V Butler
- 2 Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura E Herring
- 3 Department of Pharmacology, UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Sarah E Clinkscales
- 1 The Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ramesh Yelagandula
- 4 Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Karin Stecher
- 4 Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Oliver Bell
- 4 Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria.,5 Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Lee M Graves
- 3 Department of Pharmacology, UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Jin
- 2 Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathaniel A Hathaway
- 1 The Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
102
|
Ben Zouari Y, Molitor AM, Sikorska N, Pancaldi V, Sexton T. ChiCMaxima: a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C. Genome Biol 2019; 20:102. [PMID: 31118054 PMCID: PMC6532271 DOI: 10.1186/s13059-019-1706-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
Capture Hi-C (CHi-C) is a new technique for assessing genome organization based on chromosome conformation capture coupled to oligonucleotide capture of regions of interest, such as gene promoters. Chromatin loop detection is challenging because existing Hi-C/4C-like tools, which make different assumptions about the technical biases presented, are often unsuitable. We describe a new approach, ChiCMaxima, which uses local maxima combined with limited filtering to detect DNA looping interactions, integrating information from biological replicates. ChiCMaxima shows more stringency and robustness compared to previously developed tools. The tool includes a GUI browser for flexible visualization of CHi-C profiles alongside epigenomic tracks.
Collapse
Affiliation(s)
- Yousra Ben Zouari
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Anne M Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Natalia Sikorska
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM U1037, Toulouse, France
- University Paul Sabatier III, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.
- CNRS UMR7104, Illkirch, France.
- INSERM U1258, Illkirch, France.
- University of Strasbourg, Illkirch, France.
| |
Collapse
|
103
|
Zhu Q, Ramakrishnan M, Park J, Belden WJ. Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci. BMC Genomics 2019; 20:350. [PMID: 31068130 PMCID: PMC6505117 DOI: 10.1186/s12864-019-5729-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Background Histone H3 lysine 4 tri-methylation (H3K4me3) and histone H3 lysine 9 tri-methylation (H3K9me3) are widely perceived to be opposing and often mutually exclusive chromatin modifications. However, both are needed for certain light-activated genes in Neurospora crassa (Neurospora), including frequency (frq) and vivid (vvd). Except for these 2 loci, little is known about how H3K4me3 and H3K9me3 impact and contribute to light-regulated gene expression. Results In this report, we performed a multi-dimensional genomic analysis to understand the role of H3K4me3 and H3K9me3 using the Neurospora light response as the system. RNA-seq on strains lacking H3 lysine 4 methyltransferase (KMT2/SET-1) and histone H3 lysine 9 methyltransferase (KMT1/DIM-5) revealed some light-activated genes had altered expression, but the light response was largely intact. Comparing these 2 mutants to wild-type (WT), we found that roughly equal numbers of genes showed elevated and reduced expression in the dark and the light making the environmental stimulus somewhat ancillary to the genome-wide effects. ChIP-seq experiments revealed H3K4me3 and H3K9me3 had only minor changes in response to light in WT, but there were notable alterations in H3K4me3 in Δkmt1/Δdim-5 and H3K9me3 in Δkmt2/Δset-1 indicating crosstalk and redistribution between the modifications. Integrated analysis of the RNA-seq and ChIP-seq highlighted context-dependent roles for KMT2/SET1 and KMT1/DIM-5 as either co-activators or co-repressors with some overlap as co-regulators. At a small subset of loci, H3K4 methylation is required for H3K9me3-mediated facultative heterochromatin including, the central clock gene frequency (frq). Finally, we used sequential ChIP (re-ChIP) experiment to confirm Neurospora contains K4/K9 bivalent domains. Conclusions Collectively, these data indicate there are obfuscated regulatory roles for H3K4 methylation and H3K9 methylation depending on genome location with some minor overlap and co-dependency. Electronic supplementary material The online version of this article (10.1186/s12864-019-5729-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiaoqiao Zhu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Mukund Ramakrishnan
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Current Address: Department of Biological Sciences, IISER Berhampur, Berhampur, Ganjam, Odisha, 760010, India
| | - Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William J Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
104
|
Wiese M, Bannister AJ, Basu S, Boucher W, Wohlfahrt K, Christophorou MA, Nielsen ML, Klenerman D, Laue ED, Kouzarides T. Citrullination of HP1γ chromodomain affects association with chromatin. Epigenetics Chromatin 2019; 12:21. [PMID: 30940194 PMCID: PMC6444592 DOI: 10.1186/s13072-019-0265-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance. RESULTS We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs. CONCLUSION Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.
Collapse
Affiliation(s)
- Meike Wiese
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Max Planck Institute for Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Andrew J. Bannister
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 1QR UK
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Kai Wohlfahrt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Maria A. Christophorou
- Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU UK
| | - Michael L. Nielsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| |
Collapse
|
105
|
Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep 2019; 9:4372. [PMID: 30867469 PMCID: PMC6416348 DOI: 10.1038/s41598-019-40152-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
A very important open question in stem cells regulation is how the fine balance between GSCs self-renewal and differentiation is orchestrated at the molecular level. In the past several years much progress has been made in understanding the molecular mechanisms underlying intrinsic and extrinsic controls of GSC regulation but the complex gene regulatory networks that regulate stem cell behavior are only partially understood. HP1 is a dynamic epigenetic determinant mainly involved in heterochromatin formation, epigenetic gene silencing and telomere maintenance. Furthermore, recent studies have revealed the importance of HP1 in DNA repair, sister chromatid cohesion and, surprisingly, in positive regulation of gene expression. Here, we show that HP1 plays a crucial role in the control of GSC homeostasis in Drosophila. Our findings demonstrate that HP1 is required intrinsically to promote GSC self-renewal and progeny differentiation by directly stabilizing the transcripts of key genes involved in GSCs maintenance.
Collapse
|
106
|
Saha P, Sowpati DT, Mishra RK. Epigenomic and genomic landscape of Drosophila melanogaster heterochromatic genes. Genomics 2019; 111:177-185. [DOI: 10.1016/j.ygeno.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/21/2018] [Accepted: 02/04/2018] [Indexed: 01/05/2023]
|
107
|
Leopold K, Stirpe A, Schalch T. Transcriptional gene silencing requires dedicated interaction between HP1 protein Chp2 and chromatin remodeler Mit1. Genes Dev 2019; 33:565-577. [PMID: 30808655 PMCID: PMC6499331 DOI: 10.1101/gad.320440.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/05/2019] [Indexed: 11/25/2022]
Abstract
Heterochromatin protein 1 (HP1) proteins are key factors of eukaryotic heterochromatin that coordinate chromatin compaction and transcriptional gene silencing. Through their multivalency they act as adaptors between histone H3 Lys9 di/trimethyl marks in chromatin and effector complexes that bind to the HP1 chromoshadow domain. Most organisms encode for multiple HP1 isoforms and the molecular mechanisms that underpin their diverse functions in genome regulation remain poorly understood. In fission yeast, the two HP1 proteins Chp2 and Swi6 assume distinct roles and Chp2 is tightly associated with the nucleosome remodeling and deacetylation complex SHREC. Here we show that Chp2 directly engages the SHREC nucleosome remodeler subunit Mit1. The crystal structure of the interaction interface reveals an extraordinarily extensive and specific interaction between the chromoshadow domain of Chp2 and the N terminus of Mit1. The integrity of this interface is critical for high affinity binding and for heterochromatin formation. Comparison with Swi6 shows that the Chp2-Mit1 interface is highly selective and thereby provides the molecular basis for the functional specialization of an HP1 isoform.
Collapse
Affiliation(s)
- Karoline Leopold
- Department of Molecular Biology, Faculty of Science, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Alessandro Stirpe
- Department of Molecular Biology, Faculty of Science, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Thomas Schalch
- Department of Molecular Biology, Faculty of Science, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland.,Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
108
|
Wilson C, Krieg AJ. KDM4B: A Nail for Every Hammer? Genes (Basel) 2019; 10:E134. [PMID: 30759871 PMCID: PMC6410163 DOI: 10.3390/genes10020134] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/01/2023] Open
Abstract
Epigenetic changes are well-established contributors to cancer progression and normal developmental processes. The reversible modification of histones plays a central role in regulating the nuclear processes of gene transcription, DNA replication, and DNA repair. The KDM4 family of Jumonj domain histone demethylases specifically target di- and tri-methylated lysine 9 on histone H3 (H3K9me3), removing a modification central to defining heterochromatin and gene repression. KDM4 enzymes are generally over-expressed in cancers, making them compelling targets for study and therapeutic inhibition. One of these family members, KDM4B, is especially interesting due to its regulation by multiple cellular stimuli, including DNA damage, steroid hormones, and hypoxia. In this review, we discuss what is known about the regulation of KDM4B in response to the cellular environment, and how this context-dependent expression may be translated into specific biological consequences in cancer and reproductive biology.
Collapse
Affiliation(s)
- Cailin Wilson
- Department of Pathology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA.
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|
109
|
Lee DH, Ryu HW, Kim GW, Kwon SH. Comparison of three heterochromatin protein 1 homologs in Drosophila. J Cell Sci 2019; 132:jcs.222729. [PMID: 30659116 DOI: 10.1242/jcs.222729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/22/2018] [Indexed: 01/20/2023] Open
Abstract
Heterochromatin protein 1 (HP1) is an epigenetic regulator of chromatin structure and genome function in eukaryotes. Despite shared features, most eukaryotes have a minimum of three HP1 homologs with differential localization patterns and functions. Most studies focus on Drosophila HP1a [also known as Su(var)205], and little is known about the properties of HP1b and HP1c. To determine the features of the three HP1 homologs, we performed the first comprehensive comparative analysis of Drosophila HP1 homologs. HP1 differentially homodimerizes and heterodimerizes in vivo and in vitro HP1b and HP1c, but not HP1a, are localized to both the nucleus and cytoplasm. The C-terminal extension region (CTE) targets HP1c and HP1b to the cytoplasm. Biochemical approaches show that HP1 binds to various interacting partners with different binding affinities. Each HP1 associates differently with RNA polymerase II; a gene reporter assay revealed that HP1a and HP1b, but not HP1c, inhibit transcriptional activity, suggesting that HP1c serves as a positive regulator in transcription. Thus, these studies provide the basic clues pertaining to the molecular mechanism by which HP1 might control cellular processes in a homolog-specific manner.
Collapse
Affiliation(s)
- Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Wook Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea .,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
110
|
The Histone Methyltransferase SETDB1 Controls T Helper Cell Lineage Integrity by Repressing Endogenous Retroviruses. Immunity 2019; 50:629-644.e8. [PMID: 30737147 DOI: 10.1016/j.immuni.2019.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/02/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Upon activation, naive CD4+ T cells differentiate into distinct T cell subsets via processes reliant on epigenetically regulated, lineage-specific developmental programs. Here, we examined the function of the histone methyltransferase SETDB1 in T helper (Th) cell differentiation. Setdb1-/- naive CD4+ T cells exhibited exacerbated Th1 priming, and when exposed to a Th1-instructive signal, Setdb1-/- Th2 cells crossed lineage boundaries and acquired a Th1 phenotype. SETDB1 did not directly control Th1 gene promoter activity but relied instead on deposition of the repressive H3K9me3 mark at a restricted and cell-type-specific set of endogenous retroviruses (ERVs) located in the vicinity of genes involved in immune processes. Refined bioinformatic analyses suggest that these retrotransposons regulate Th1 gene cis-regulatory elements or act as Th1 gene enhancers. Thus, H3K9me3 deposition by SETDB1 ensures Th cell lineage integrity by repressing a repertoire of ERVs that have been exapted into cis-regulatory modules to shape and control the Th1 gene network.
Collapse
|
111
|
Lorenz V, Milesi MM, Schimpf MG, Luque EH, Varayoud J. Epigenetic disruption of estrogen receptor alpha is induced by a glyphosate-based herbicide in the preimplantation uterus of rats. Mol Cell Endocrinol 2019; 480:133-141. [PMID: 30391669 DOI: 10.1016/j.mce.2018.10.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
Previously, we have shown that perinatal exposure to a glyphosate-based herbicide (GBH) induces implantation failures in rats. Estrogen receptor alpha (ERα) is critical for successful implantation. ERα transcription is under the control of five promoters (E1, OT, O, ON, and OS), which yield different transcripts. Here, we studied whether perinatal exposure to a GBH alters uterine ERα gene expression and prompts epigenetic modifications in its regulatory regions during the preimplantation period. Pregnant rats (F0) were orally treated with 350 mg glyphosate/kg bw/day through food from gestational day (GD) 9 until weaning. F1 females were bred, and uterine samples were collected on GD5 (preimplantation period). ERα mRNA levels and its transcript variants were evaluated by RT-qPCR. Enzyme-specific restriction sites and predicted transcription factors were searched in silico in the ERα promoter regions to assess the methylation status using the methylation-sensitive restriction enzymes-PCR technique. Post-translational modifications of histones were studied by the chromatin immunoprecipitation assay. GBH upregulated the expression of total ERα mRNA by increasing the abundance of the ERα-O transcript variant. In addition, different epigenetic changes were detected in the O promoter. A decrease in DNA methylation was observed in one of the three sites evaluated in the O promoter. Moreover, histone H4 acetylation and histone H3 lysine 9 trimethylation (H3K9me3) were enriched in the O promoter in GBH-exposed rats, whereas H3K27me3 was decreased. All these alterations could account for the increase in ERα gene expression. Our findings show that perinatal exposure to a GBH causes long-term epigenetic disruption of the uterine ERα gene, which could be associated with the GBH-induced implantation failures.
Collapse
Affiliation(s)
- Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - María M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marlise Guerrero Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
112
|
Abstract
Post-translational modifications of histones are widely used to discriminate between different types of chromatin. In a recent issue of Molecular Cell, Becker et al. (2017) delineate chromatin states based on physical properties, thereby expanding our understanding of chromatin function.
Collapse
|
113
|
Segal T, Salmon-Divon M, Gerlitz G. The Heterochromatin Landscape in Migrating Cells and the Importance of H3K27me3 for Associated Transcriptome Alterations. Cells 2018; 7:E205. [PMID: 30423977 PMCID: PMC6262444 DOI: 10.3390/cells7110205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
H3K9me3, H3K27me3, and H4K20me1 are epigenetic markers associated with chromatin condensation and transcriptional repression. Previously, we found that migration of melanoma cells is associated with and dependent on global chromatin condensation that includes a global increase in these markers. Taken together with more recent reports by others suggests it is a general signature of migrating cells. Here, to learn about the function of these markers in migrating cells, we mapped them by ChIP-seq analysis. This analysis revealed that induction of migration leads to expansion of these markers along the genome and to an increased overlapping between them. Significantly, induction of migration led to a higher increase in H3K9me3 and H4K20me1 signals at repetitive elements than at protein-coding genes, while an opposite pattern was found for H3K27me3. Transcriptome analysis revealed 182 altered genes following induction of migration, of which 33% are dependent on H3K27me3 for these changes. H3K27me3 was also required to prevent changes in the expression of 501 other genes upon induction of migration. Taken together, our results suggest that heterochromatinization in migrating cells is global and not restricted to specific genomic loci and that H3K27me3 is a key component in executing a migration-specific transcriptional plan.
Collapse
Affiliation(s)
- Tamar Segal
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel.
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel.
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
114
|
Imanishi S, Umezu T, Kobayashi C, Ohta T, Ohyashiki K, Ohyashiki JH. Chromatin Regulation by HP1γ Contributes to Survival of 5-Azacytidine-Resistant Cells. Front Pharmacol 2018; 9:1166. [PMID: 30386240 PMCID: PMC6198088 DOI: 10.3389/fphar.2018.01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Recent investigations of the treatment for hematologic neoplasms have focused on targeting epigenetic regulators. The DNA methyltransferase inhibitor 5-azacytidine (AZA) has produced good results in the treatment of patients with myelodysplastic syndromes. The mechanism underlying its pharmacological activity involves many cellular processes including histone modifications, but chromatin regulation in AZA-resistant cells is still largely unknown. Therefore, we compared human leukemia cells with AZA resistance and their AZA-sensitive counterparts with regard to the response of histone modifications and their readers to AZA treatment to identify novel molecular target(s) in hematologic neoplasms with AZA resistance. We observed an a decrease of HP1γ, a methylated lysine 9 of histone H3-specific reader protein, in AZA-sensitive cells after treatment, whereas AZA treatment did not affect HP1 family proteins in AZA-resistant cells. The expression of shRNA targeting HP1γ reduced viability and induced apoptosis specifically in AZA-resistant cells, which accompanied with down-regulation of ATM/BRCA1 signaling, indicating that chromatin regulation by HP1γ plays a key role in the survival of AZA-resistant cells. In addition, the amount of HP1γ protein in AZA-sensitive and AZA-resistant cells was decreased after treatment with the bromodomain inhibitor I-BET151 at a dose that inhibited the growth of AZA-resistant cells more strongly than that of AZA-sensitive cells. Our findings demonstrate that treatment with AZA, which affects an epigenetic reader protein and targets HP1γ, or a bromodomain inhibitor is a novel strategy that can be used to treat patients with hematopoietic neoplasms with AZA resistance.
Collapse
Affiliation(s)
- Satoshi Imanishi
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Kobayashi
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Junko H Ohyashiki
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
115
|
Ruan Z, Zhao X, Li Z, Qin X, Shao Q, Ruan Q, Deng Y, Jiang J, Huang B, Lu F, Shi D. Effect of sex differences in donor foetal fibroblast on the early development and DNA methylation status of buffalo (Bubalus bubalis) nuclear transfer embryos. Reprod Domest Anim 2018; 54:11-22. [PMID: 30051521 DOI: 10.1111/rda.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/08/2018] [Indexed: 11/27/2022]
Abstract
Low efficiency of somatic cell nuclear transfer (SCNT) embryos is largely attributable to imperfect reprogramming of the donor nucleus. The differences in epigenetic reprogramming between female and male buffalo cloned embryos remain unclear. We explored the effects of donor cell sex differences on the development of SCNT embryos. We and then compared the expression of DNA methylation (5-methylcytosine-5mC and 5-hydroxymethylcytosine-5hmC) and the expression level of relevant genes, and histone methylation (H3K9me2 and H3K9me3) level in SCNT-♀ and SCNT-♂ preimplantation embryos with in vitro fertilization (IVF) counterparts. In the study, we showed that developmental potential of SCNT-♀ embryos was greater than that of SCNT-♂ embryos (p < 0.05). 5mC was mainly expressed in SCNT-♀ embryos, whereas 5hmC was majorly expressed in SCNT-♂ embryos (p < 0.05). The levels of DNA methylation (5mC and 5hmC), Dnmt3b, TET1 and TET3 in the SCNT-♂ embryos were higher than those of SCNT-♀ embryos (p < 0.05). In addition, there were no significant differences in the expression of H3K9me2 at eight-stage of the IVF, SCNT-♀ and SCNT-♂embryos (p < 0.05). However, H3K9me3 was upregulated in SCNT-♂ embryos at the eight-cell stage (p < 0.05). Thus, KDM4B ectopic expression decreased the level of H3K9me3 and significantly improved the developmental rate of two-cell, eight-cell and blastocysts of SCNT-♂ embryos (p < 0.05). Overall, the lower levels of DNA methylation (5mC and 5hmC) and H3K9me3 may introduce the greater developmental potential in buffalo SCNT-♀ embryos than that of SCNT-♂ embryos.
Collapse
Affiliation(s)
- Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Zhengda Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Xiling Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Qiming Shao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Qiuyan Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jianrong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.,Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
116
|
Zhu H, Zheng L, Wang L, Tang F, Hua J. MiR-302 enhances the viability and stemness of male germline stem cells. Reprod Domest Anim 2018; 53:1580-1588. [PMID: 30070400 DOI: 10.1111/rda.13266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022]
Abstract
MicroRNAs were reported to be able to regulate mGSCs' self-renewal through post-transcriptional inhibition of gene expression. miR-302 worked as one important microRNA family existed mainly in human ESCs, and its role in mGSCs has not been reported yet. To elucidate the role of miR-302 in dairy goat mGSCs, the expression profile of miR-302 was explored through qPCR and FISH. Furthermore, to detect the function of miR-302, the expression vector containing miR-302 was transfected into mGSCs, and then, the cell cycle, the cell apoptosis and the genes associated with mGSCs' self-renewal and differentiation were examined. The results showed that miR-302 expressed in testis moderately and located on the basement of seminiferous tubes which shared the same location as mGSCs. Transfection of the vector containing miR-302 fragment into the immortalized mGSCs obviously enhanced the cell proliferation ability and the attachment ability, also, promoted the expression level of CD49f and OCT4. Also, miR-302 reduced the cell apoptosis and downregulated the expression of P21. miR-302 sustained mGSCs' proliferation in vitro.
Collapse
Affiliation(s)
- Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China.,Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Research Center of Life Science in Yulin University, Yulin, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Long Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
117
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
118
|
Nie X, Li B, Wang S. Epigenetic and Posttranslational Modifications in Regulating the Biology of Aspergillus Species. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:191-226. [PMID: 30342722 DOI: 10.1016/bs.aambs.2018.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetic and posttranslational modifications have been proved to participate in multiple cellular processes and suggested to be an important regulatory mechanism on transcription of genes in eukaryotes. However, our knowledge about epigenetic and posttranslational modifications mainly comes from the studies of yeasts, plants, and animals. Recently, epigenetic and posttranslational modifications have also raised concern for the relevance of regulating fungal biology in Aspergillus. Emerging evidence indicates that these modifications could be a connection between genetic elements and environmental factors, and their combined effects may finally lead to fungal phenotypical changes. This article describes the advances in typical DNA and protein modifications in the genus Aspergillus, focusing on methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and neddylation.
Collapse
Affiliation(s)
- Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
119
|
Watanabe S, Mishima Y, Shimizu M, Suetake I, Takada S. Interactions of HP1 Bound to H3K9me3 Dinucleosome by Molecular Simulations and Biochemical Assays. Biophys J 2018; 114:2336-2351. [PMID: 29685391 PMCID: PMC6129468 DOI: 10.1016/j.bpj.2018.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin protein 1 (HP1), associated with heterochromatin formation, recognizes an epigenetically repressive marker, trimethylated lysine 9 in histone H3 (H3K9me3), and generally contributes to long-term silencing. How HP1 induces heterochromatin is not fully understood. Recent experiments suggested that not one, but two nucleosomes provide a platform for this recognition. Integrating previous and new biochemical assays with computational modeling, we provide near-atomic structural models for HP1 binding to the dinucleosomes. We found that the dimeric HP1α tends to bind two H3K9me3s that are in adjacent nucleosomes, thus bridging two nucleosomes. We identified, to our knowledge, a novel DNA binding motif in the hinge region that is specific to HP1α and is essential for recognizing the H3K9me3 sites of two nucleosomes. An HP1 isoform, HP1γ, does not easily bridge two nucleosomes in extended conformations because of the absence of the above binding motif and its shorter hinge region. We propose a molecular mechanism for chromatin structural changes caused by HP1.
Collapse
Affiliation(s)
- Shuhei Watanabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Yuichi Mishima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masahiro Shimizu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; College of Nutrition, Koshien University, Takarazuka, Japan.
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan.
| |
Collapse
|
120
|
Alam H, Li N, Dhar SS, Wu SJ, Lv J, Chen K, Flores ER, Baseler L, Lee MG. HP1γ Promotes Lung Adenocarcinoma by Downregulating the Transcription-Repressive Regulators NCOR2 and ZBTB7A. Cancer Res 2018; 78:3834-3848. [PMID: 29764865 DOI: 10.1158/0008-5472.can-17-3571] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/09/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
Abstract
Lung adenocarcinoma is a major form of lung cancer, which is the leading cause of cancer death. Histone methylation reader proteins mediate the effect of histone methylation, a hallmark of epigenetic and transcriptional regulation of gene expression. However, their roles in lung adenocarcinoma are poorly understood. Here, our bioinformatic screening and analysis in search of a lung adenocarcinoma-promoting histone methylation reader protein show that heterochromatin protein 1γ (HP1γ; also called CBX3) is among the most frequently overexpressed and amplified histone reader proteins in human lung adenocarcinoma, and that high HP1γ mRNA levels are associated with poor prognosis in patients with lung adenocarcinoma. In vivo depletion of HP1γ reduced K-RasG12D-driven lung adenocarcinoma and lengthened survival of mice bearing K-RasG12D-induced lung adenocarcinoma. HP1γ and its binding activity to methylated histone H3 lysine 9 were required for the proliferation, colony formation, and migration of lung adenocarcinoma cells. HP1γ directly repressed expression of the transcription-repressive regulators NCOR2 and ZBTB7A. Knockdown of NCOR2 or ZBTB7A significantly restored defects in proliferation, colony formation, and migration in HP1γ-depleted lung adenocarcinoma cells. Low NCOR2 or ZBTB7A mRNA levels were associated with poor prognosis in patients with lung adenocarcinoma and correlated with high HP1γ mRNA levels in lung adenocarcinoma samples. NCOR2 and ZBTB7A downregulated expression of tumor-promoting factors such as ELK1 and AXL, respectively. These findings highlight the importance of HP1γ and its reader activity in lung adenocarcinoma tumorigenesis and reveal a unique lung adenocarcinoma-promoting mechanism in which HP1γ downregulates NCOR2 and ZBTB7A to enhance expression of protumorigenic genes.Significance: Direct epigenetic repression of the transcription-repressive regulators NCOR2 and ZBTB7A by the histone reader protein HP1γ leads to activation of protumorigenic genes in lung adenocarcinoma. Cancer Res; 78(14); 3834-48. ©2018 AACR.
Collapse
Affiliation(s)
- Hunain Alam
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Li
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shilpa S Dhar
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah J Wu
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Jie Lv
- Institute for Academic Medicine, the Methodist Hospital Research Institute, Houston, Texas.,Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, the Methodist Hospital Research Institute, Houston, Texas.,Weill Cornell Medical College, Cornell University, New York, New York
| | - Kaifu Chen
- Institute for Academic Medicine, the Methodist Hospital Research Institute, Houston, Texas.,Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, the Methodist Hospital Research Institute, Houston, Texas.,Weill Cornell Medical College, Cornell University, New York, New York
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Laura Baseler
- Department of Veterinary Medicine and Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
121
|
Larson AG, Narlikar GJ. The Role of Phase Separation in Heterochromatin Formation, Function, and Regulation. Biochemistry 2018; 57:2540-2548. [PMID: 29644850 PMCID: PMC9084486 DOI: 10.1021/acs.biochem.8b00401] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In eukaryotic cells, structures called heterochromatin play critical roles in nuclear processes ranging from gene repression to chromosome segregation. Biochemical and in vivo studies over the past several decades have implied that the diverse functions of heterochromatin rely on the ability of these structures to spread across large regions of the genome, to compact the underlying DNA, and to recruit different types of activities. Recent observations have suggested that heterochromatin may possess liquid droplet-like properties. Here, we discuss how these observations provide a new perspective on the mechanisms for the assembly, regulation, and functions of heterochromatin.
Collapse
Affiliation(s)
- Adam G. Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, California 94158, United States
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
122
|
Gallagher PS, Larkin M, Thillainadesan G, Dhakshnamoorthy J, Balachandran V, Xiao H, Wellman C, Chatterjee R, Wheeler D, Grewal SIS. Iron homeostasis regulates facultative heterochromatin assembly in adaptive genome control. Nat Struct Mol Biol 2018; 25:372-383. [PMID: 29686279 PMCID: PMC5936480 DOI: 10.1038/s41594-018-0056-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
Iron metabolism is critical for sustaining life and maintaining human health. Here, we find that iron homeostasis is linked to facultative heterochromatin assembly and regulation of gene expression during adaptive genome control. We show that the fission yeast Clr4/Suv39h histone methyltransferase is part of a rheostat-like mechanism in which transcriptional upregulation of mRNAs in response to environmental change provides feedback to prevent their uncontrolled expression through heterochromatin assembly. Interestingly, proper iron homeostasis is required, as iron depletion or downregulation of iron transporters causes defects in heterochromatin assembly and unrestrained upregulation of gene expression. Remarkably, an unbiased genetic screen revealed that restoration of iron homeostasis is sufficient to re-establish facultative heterochromatin and proper gene control genome-wide. These results establish a role for iron homeostasis in facultative heterochromatin assembly and reveal a dynamic mechanism for reprogramming the genome in response to environmental changes.
Collapse
Affiliation(s)
- Pamela S Gallagher
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Madeline Larkin
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Wellman
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
123
|
Natural Compounds as Epigenetic Regulators of Human Dendritic Cell-mediated Immune Function. J Immunother 2018; 41:169-180. [DOI: 10.1097/cji.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
124
|
Ropa J, Saha N, Chen Z, Serio J, Chen W, Mellacheruvu D, Zhao L, Basrur V, Nesvizhskii AI, Muntean AG. PAF1 complex interactions with SETDB1 mediate promoter H3K9 methylation and transcriptional repression of Hoxa9 and Meis1 in acute myeloid leukemia. Oncotarget 2018; 9:22123-22136. [PMID: 29774127 PMCID: PMC5955148 DOI: 10.18632/oncotarget.25204] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
The Polymerase Associated Factor 1 complex (PAF1c) is an epigenetic co-modifying complex that directly contacts RNA polymerase II (RNAPII) and several epigenetic regulating proteins. Mutations, overexpression and loss of expression of subunits of the PAF1c are observed in various forms of cancer suggesting proper regulation is needed for cellular development. However, the biochemical interactions with the PAF1c that allow dynamic gene regulation are unclear. We and others have shown that the PAF1c makes a direct interaction with MLL fusion proteins, which are potent oncogenic drivers of acute myeloid leukemia (AML). This interaction is critical for the maintenance of MLL translocation driven AML by targeting MLL fusion proteins to the target genes Meis1 and Hoxa9. Here, we use a proteomics approach to identify protein-protein interactions with the PAF1c subunit CDC73 that regulate the function of the PAF1c. We identified a novel interaction with a histone H3 lysine 9 (H3K9) methyltransferase protein, SETDB1. This interaction is stabilized with a mutant CDC73 that is incapable of supporting AML cell growth. Importantly, transcription of Meis1 and Hoxa9 is reduced and promoter H3K9 trimethylation (H3K9me3) increased by overexpression of SETDB1 or stabilization of the PAF1c-SETDB1 interaction in AML cells. These findings were corroborated in human AML patients where increased SETDB1 expression was associated with reduced HOXA9 and MEIS1. To our knowledge, this is the first proteomics approach to search for CDC73 protein-protein interactions in AML, and demonstrates that the PAF1c may play a role in H3K9me3-mediated transcriptional repression in AML.
Collapse
Affiliation(s)
- James Ropa
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nirmalya Saha
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiling Chen
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Justin Serio
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wei Chen
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dattatreya Mellacheruvu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew G. Muntean
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
125
|
Oyama K, El-Nachef D, Fang C, Kajimoto H, Brown JP, Singh PB, MacLellan WR. Deletion of HP1γ in cardiac myocytes affects H4K20me3 levels but does not impact cardiac growth. Epigenetics Chromatin 2018; 11:18. [PMID: 29665845 PMCID: PMC5905015 DOI: 10.1186/s13072-018-0187-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/01/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Heterochromatin, which is formed when tri-methyl lysine 9 of histone H3 (H3K9me3) is bound by heterochromatin 1 proteins (HP1s), plays an important role in differentiation and senescence by silencing cell cycle genes. Cardiac myocytes (CMs) accumulate heterochromatin during differentiation and demethylation of H3K9me3 inhibits cell cycle gene silencing and cell cycle exit in CMs; however, it is unclear if this process is mediated by HP1s. In this study, we created a conditional CM-specific HP1 gamma (HP1γ) knockout (KO) mouse model and tested whether HP1γ is required for cell cycle gene silencing and cardiac growth. RESULTS HP1γ KO mice were generated by crossing HP1γ floxed mice (fl) with mice expressing Cre recombinase driven by the Nkx2.5 (cardiac progenitor gene) promoter (Cre). We confirmed that deletion of critical exons of HP1γ led to undetectable levels of HP1γ protein in HP1γ KO (Cre;fl/fl) CMs. Analysis of cardiac size and function by echo revealed no significant differences between HP1γ KO and control (WT, Cre, fl/fl) mice. No significant difference in expression of cell cycle genes or cardiac-specific genes was observed. Global transcriptome analysis demonstrated a very moderate effect of HP1γ deletion on global gene expression, with only 51 genes differentially expressed in HP1γ KO CMs. We found that HP1β protein, but not HP1α, was significantly upregulated and that subnuclear localization of HP1β to perinuclear heterochromatin was increased in HP1γ KO CMs. Although HP1γ KO had no effect on H3K9me3 levels, we found a significant reduction in another major heterochromatin mark, tri-methylated lysine 20 of histone H4 (H4K20me3). CONCLUSIONS These data indicate that HP1γ is dispensable for cell cycle exit and normal cardiac growth but has a significant role in maintaining H4K20me3 and regulating a limited number of genes in CMs.
Collapse
Affiliation(s)
- Kyohei Oyama
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA
| | - Danny El-Nachef
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA
| | - Chen Fang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA
| | - Hidemi Kajimoto
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA
| | - Jeremy P Brown
- Fächerverbund Anatomie, Institut für Zell-und Neurobiologie, Charite-Universitätsmedizin, 10117, Berlin, Germany
| | - Prim B Singh
- Fächerverbund Anatomie, Institut für Zell-und Neurobiologie, Charite-Universitätsmedizin, 10117, Berlin, Germany.,Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan, 010000.,Department of Natural Sciences, Laboratory of epigenetics, Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
| | - W Robb MacLellan
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA.
| |
Collapse
|
126
|
CBX3 promotes tumor proliferation by regulating G1/S phase via p21 downregulation and associates with poor prognosis in tongue squamous cell carcinoma. Gene 2018; 654:49-56. [PMID: 29462646 DOI: 10.1016/j.gene.2018.02.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/14/2023]
Abstract
Chromobox protein homolog 3 (CBX3), a core component of the heterochromatin proteins 1, is recently proved to be involved in human cancerogenesis and associated with the prognosis of patient. However, the role of CBX3 in Tongue squamous cell carcinoma (TSCC) remains unclear. In the present study we found that CBX3 was upregulated in TSCC tissues when compared to adjacent non-tumor tissues, and multivariable analysis showed that high CBX3 expression was associated with clinical stage and cervical node metastasis, which was an independent prognostic indicator of TSCC. Furthermore, Kaplan-Meier survival analysis and log-rank test showed that TSCC patients with high CBX3 expression had a poorer rate of OS compared to patients with low CBX3 expression. Moreover, knocking down CBX3 inhibited TSCC cells proliferation both in vitro and in vivo, while overexpressing CBX3 promoted TSCC cells proliferation. In addition, CBX3 depletion resulted in cell cycle delay at the G1/S phase via the p21 pathway. In summary, we identifies CBX3 as a potential novel oncogene in TSCC, which may act as a biomarker and target in the diagnosis and treatment of this killer disease.
Collapse
|
127
|
Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle. Gene 2018; 649:50-57. [PMID: 29382574 DOI: 10.1016/j.gene.2018.01.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/03/2018] [Accepted: 01/26/2018] [Indexed: 12/26/2022]
Abstract
The importance of histone lysine methylation is well established in health, disease, early development, aging, and cancer. However, the potential role of histone H3 methylation in regulating gene expression in response to extended periods of oxygen deprivation (anoxia) in a natural, anoxia-tolerant model system is underexplored. Red-eared sliders (Trachemys scripta elegans) can tolerate and survive three months of absolute anoxia and recover without incurring detrimental cellular damage, mainly by reducing the overall metabolic rate by 90% when compared to normoxia. Stringent regulation of gene expression is a vital aspect of metabolic rate depression in red-eared sliders, and as such we examined the anoxia-responsive regulation of histone lysine methylation in the liver during 5 h and 20 h anoxia exposure. Interestingly, this is the first study to illustrate the existence of histone lysine methyltransferases (HKMTs) and corresponding histone H3 lysine methylation levels in the liver of anoxia-tolerant red-eared sliders. In brief, H3K4me1, a histone mark associated with active transcription, and two corresponding histone lysine methyltransferases that modify H3K4me1 site, significantly increased in response to anoxia. On the contrary, H3K27me1, another transcriptionally active histone mark, significantly decreased during 20 h anoxia, and a transcriptionally repressive histone mark, H3K9me3, and the corresponding KMTs, similarly increased during 20 h anoxia. Overall, the results suggest a dynamic regulation of histone H3 lysine methylation in the liver of red-eared sliders that could theoretically aid in the selective upregulation of genes that are necessary for anoxia survival, while globally suppressing others to conserve energy.
Collapse
|
128
|
Radford EJ. An Introduction to Epigenetic Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:29-48. [DOI: 10.1016/bs.pmbts.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
129
|
Pan MR, Hsu MC, Chen LT, Hung WC. Orchestration of H3K27 methylation: mechanisms and therapeutic implication. Cell Mol Life Sci 2018; 75:209-223. [PMID: 28717873 PMCID: PMC5756243 DOI: 10.1007/s00018-017-2596-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Histone proteins constitute the core component of the nucleosome, the basic unit of chromatin. Chemical modifications of histone proteins affect their interaction with genomic DNA, the accessibility of recognized proteins, and the recruitment of enzymatic complexes to activate or diminish specific transcriptional programs to modulate cellular response to extracellular stimuli or insults. Methylation of histone proteins was demonstrated 50 years ago; however, the biological significance of each methylated residue and the integration between these histone markers are still under intensive investigation. Methylation of histone H3 on lysine 27 (H3K27) is frequently found in the heterochromatin and conceives a repressive marker that is linked with gene silencing. The identification of enzymes that add or erase the methyl group of H3K27 provides novel insights as to how this histone marker is dynamically controlled under different circumstances. Here we summarize the methyltransferases and demethylases involved in the methylation of H3K27 and show the new evidence by which the H3K27 methylation can be established via an alternative mechanism. Finally, the progress of drug development targeting H3K27 methylation-modifying enzymes and their potential application in cancer therapy are discussed.
Collapse
Affiliation(s)
- Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 704, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 804, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
130
|
Becker JS, McCarthy RL, Sidoli S, Donahue G, Kaeding KE, He Z, Lin S, Garcia BA, Zaret KS. Genomic and Proteomic Resolution of Heterochromatin and Its Restriction of Alternate Fate Genes. Mol Cell 2017; 68:1023-1037.e15. [PMID: 29272703 PMCID: PMC5858919 DOI: 10.1016/j.molcel.2017.11.030] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 12/24/2022]
Abstract
Heterochromatin is integral to cell identity maintenance by impeding the activation of genes for alternate cell fates. Heterochromatic regions are associated with histone 3 lysine 9 trimethylation (H3K9me3) or H3K27me3, but these modifications are also found in euchromatic regions that permit transcription. We discovered that resistance to sonication is a reliable indicator of the heterochromatin state, and we developed a biophysical method (gradient-seq) to discriminate subtypes of H3K9me3 and H3K27me3 domains in sonication-resistant heterochromatin (srHC) versus euchromatin. These classifications are more accurate than the histone marks alone in predicting transcriptional silence and resistance of alternate fate genes to activation during direct cell conversion. Our proteomics of H3K9me3-marked srHC and functional screens revealed diverse proteins, including RBMX and RBMXL1, that impede gene induction during cellular reprogramming. Isolation of srHC with gradient-seq provides a genome-wide map of chromatin structure, elucidating subtypes of repressed domains that are uniquely predictive of diverse other chromatin properties.
Collapse
Affiliation(s)
- Justin S Becker
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Ryan L McCarthy
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kelsey E Kaeding
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Zhiying He
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shu Lin
- Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Epigenetics Program , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology , Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
131
|
Charó NL, Galigniana NM, Piwien-Pilipuk G. Heterochromatin protein (HP)1γ is not only in the nucleus but also in the cytoplasm interacting with actin in both cell compartments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:432-443. [PMID: 29208528 DOI: 10.1016/j.bbamcr.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.
Collapse
Affiliation(s)
- Nancy L Charó
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
132
|
Zhang C, Chen D, Maguire EM, He S, Chen J, An W, Yang M, Afzal TA, Luong LA, Zhang L, Lei H, Wu Q, Xiao Q. Cbx3 inhibits vascular smooth muscle cell proliferation, migration, and neointima formation. Cardiovasc Res 2017; 114:443-455. [DOI: 10.1093/cvr/cvx236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Eithne Margaret Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jiangyong Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mei Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tayyab Adeel Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Le Anh Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Han Lei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Guangzhou, Guangdong 511436, Panyu District, China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Guangzhou, Guangdong 511436, Panyu District, China
| |
Collapse
|
133
|
Boscolo-Rizzo P, Furlan C, Lupato V, Polesel J, Fratta E. Novel insights into epigenetic drivers of oropharyngeal squamous cell carcinoma: role of HPV and lifestyle factors. Clin Epigenetics 2017; 9:124. [PMID: 29209433 PMCID: PMC5704592 DOI: 10.1186/s13148-017-0424-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
In the last years, the explosion of high throughput sequencing technologies has enabled epigenome-wide analyses, allowing a more comprehensive overview of the oropharyngeal squamous cell carcinoma (OPSCC) epigenetic landscape. In this setting, the cellular pathways contributing to the neoplastic phenotype, including cell cycle regulation, cell signaling, DNA repair, and apoptosis have been demonstrated to be potential targets of epigenetic alterations in OPSCC. Of note, it has becoming increasingly clear that HPV infection and OPSCC lifestyle risk factors differently drive the epigenetic machinery in cancer cells. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNA expression, can be used as powerful and reliable tools for early diagnosis of OPSCC patients and improve prognostication. Since epigenetic changes are dynamic and reversible, epigenetic enzymes may also represent suitable targets for the development of more effective OPSCC therapeutic strategies. Thus, this review will focus on the main known epigenetic modifications that can occur in OPSCC and their exploitation as potential biomarkers and therapeutic targets. Furthermore, we will address epigenetic alterations to OPSCC risk factors, with a particular focus on HPV infection, tobacco exposure, and heavy alcohol consumption.
Collapse
Affiliation(s)
- Paolo Boscolo-Rizzo
- Department of Neurosciences, ENT Clinic and Regional Center for Head and Neck Cancer, Treviso Regional Hospital, University of Padova, Treviso, Italy
| | - Carlo Furlan
- Division of Radiotherapy, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| | - Valentina Lupato
- Unit of Otolaryngology, General Hospital “S. Maria degli Angeli”, Pordenone, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico, IRCCS-National Cancer Institute, Aviano, PN Italy
| |
Collapse
|
134
|
Gates LA, Foulds CE, O'Malley BW. Histone Marks in the 'Driver's Seat': Functional Roles in Steering the Transcription Cycle. Trends Biochem Sci 2017; 42:977-989. [PMID: 29122461 DOI: 10.1016/j.tibs.2017.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022]
Abstract
Particular chromatin modifications are associated with different states of gene transcription, yet our understanding of which modifications are causal 'drivers' in promoting transcription is incomplete. Here, we discuss new developments describing the ordered, mechanistic role of select histone marks occurring during distinct steps in the RNA polymerase II (Pol II) transcription cycle. In particular, we highlight the interplay between histone marks in specifying the 'next step' of transcription. While many studies have described correlative relationships between histone marks and their occupancy at distinct gene regions, we focus on studies that elucidate clear functional consequences of specific histone marks during different stages of transcription. These recent discoveries have refined our current mechanistic understanding of how histone marks promote Pol II transcriptional progression.
Collapse
Affiliation(s)
- Leah A Gates
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Current address: Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
135
|
Andrey G, Mundlos S. The three-dimensional genome: regulating gene expression during pluripotency and development. Development 2017; 144:3646-3658. [PMID: 29042476 DOI: 10.1242/dev.148304] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The precise expression of genes in time and space during embryogenesis is largely influenced by communication between enhancers and promoters, which is propagated and governed by the physical proximity of these elements in the nucleus. Here, we review how chromatin domains organize the genome by guiding enhancers to their target genes thereby preventing non-specific interactions with other neighboring regions. We also discuss the dynamics of chromatin interactions between enhancers and promoters, as well as the consequent changes in gene expression, that occur in pluripotent cells and during development. Finally, we evaluate how genomic changes such as deletions, inversions and duplications affect 3D chromatin configuration overall and lead to ectopic enhancer-promoter contacts, and thus gene misexpression, which can contribute to abnormal development and disease.
Collapse
Affiliation(s)
- Guillaume Andrey
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany .,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
136
|
Lee J, Hwang YJ, Kim Y, Lee MY, Hyeon SJ, Lee S, Kim DH, Jang SJ, Im H, Min SJ, Choo H, Pae AN, Kim DJ, Cho KS, Kowall NW, Ryu H. Remodeling of heterochromatin structure slows neuropathological progression and prolongs survival in an animal model of Huntington's disease. Acta Neuropathol 2017; 134:729-748. [PMID: 28593442 DOI: 10.1007/s00401-017-1732-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurological disorder caused by expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. Altered histone modifications and epigenetic mechanisms are closely associated with HD suggesting that transcriptional repression may play a pathogenic role. Epigenetic compounds have significant therapeutic effects in cellular and animal models of HD, but they have not been successful in clinical trials. Herein, we report that dSETDB1/ESET, a histone methyltransferase (HMT), is a mediator of mutant HTT-induced degeneration in a fly HD model. We found that nogalamycin, an anthracycline antibiotic and a chromatin remodeling drug, reduces trimethylated histone H3K9 (H3K9me3) levels and pericentromeric heterochromatin condensation by reducing the expression of Setdb1/Eset. H3K9me3-specific ChIP-on-ChIP analysis identified that the H3K9me3-enriched epigenome signatures of multiple neuronal pathways including Egr1, Fos, Ezh1, and Arc are deregulated in HD transgenic (R6/2) mice. Nogalamycin modulated the expression of the H3K9me3-landscaped epigenome in medium spiny neurons and reduced mutant HTT nuclear inclusion formation. Moreover, nogalamycin slowed neuropathological progression, preserved motor function, and extended the life span of R6/2 mice. Together, our results indicate that modulation of SETDB1/ESET and H3K9me3-dependent heterochromatin plasticity is responsible for the neuroprotective effects of nogalamycin in HD and that small compounds targeting dysfunctional histone modification and epigenetic modification by SETDB1/ESET may be a rational therapeutic strategy in HD.
Collapse
|
137
|
Maksimov DA, Laktionov PP, Posukh OV, Belyakin SN, Koryakov DE. Genome-wide analysis of SU(VAR)3-9 distribution in chromosomes of Drosophila melanogaster. Chromosoma 2017; 127:85-102. [DOI: 10.1007/s00412-017-0647-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
|
138
|
Spalluto CM, Singhania A, Cellura D, Woelk CH, Sanchez-Elsner T, Staples KJ, Wilkinson TMA. IFN-γ Influences Epithelial Antiviral Responses via Histone Methylation of the RIG-I Promoter. Am J Respir Cell Mol Biol 2017; 57:428-438. [PMID: 28481620 DOI: 10.1165/rcmb.2016-0392oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The asthmatic lung is prone to respiratory viral infections that exacerbate the symptoms of the underlying disease. Recent work has suggested that a deficient T-helper cell type 1 response in early life may lead to these aberrant antiviral responses. To study the development of long-term dysregulation of innate responses, which is a hallmark of asthma, we investigated whether the inflammatory environment of the airway epithelium can modulate antiviral gene expression via epigenetic mechanisms. We primed AALEB cells, a human bronchial epithelial cell line, with IFN-γ and IL-13, and subsequently infected the cells with respiratory syncytial virus (RSV). We then analyzed the expression of innate antiviral genes and their epigenetic markers. Priming epithelial cells with IFN-γ reduced the RSV viral load. Microarray analysis identified that IFN-γ priming enhanced retinoic acid-inducible gene (RIG)-I mRNA expression, and this expression correlated with epigenetic changes at the RIG-I promoter that influenced its transcription. Using chromatin immunoprecipitation, we observed a reduction of trimethylated histone 3 lysine 9 at the RIG-I promoter. Addition of inhibitor BIX-01294 to this model indicated an involvement of lysine methyltransferase G9a in RIG-I epigenetic regulation. These data suggest that prior exposure to IFN-γ may leave an epigenetic mark on the chromatin that enhances airway cells' ability to resist infection, possibly via epigenetic upregulation of RIG-I. These observations provide further evidence for a crucial role of IFN-γ in the development of mature antiviral responses within a model of respiratory infection. Further clinical validation is required to determine whether this effect in early life leads to changes in antiviral responses associated with asthma.
Collapse
Affiliation(s)
- C Mirella Spalluto
- 1 Clinical and Experimental Sciences and
- 2 Wessex Investigational Sciences Hub, Faculty of Medicine, University of Southampton, and
| | | | | | | | | | - Karl J Staples
- 1 Clinical and Experimental Sciences and
- 2 Wessex Investigational Sciences Hub, Faculty of Medicine, University of Southampton, and
| | - Tom M A Wilkinson
- 1 Clinical and Experimental Sciences and
- 2 Wessex Investigational Sciences Hub, Faculty of Medicine, University of Southampton, and
- 3 Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
139
|
Epigenetics in multiple myeloma: From mechanisms to therapy. Semin Cancer Biol 2017; 51:101-115. [PMID: 28962927 DOI: 10.1016/j.semcancer.2017.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a tumor of antibody producing plasmablasts/plasma cells that resides within the bone marrow (BM). In addition to the well-established role of genetic lesions and tumor-microenvironment interactions in the development of MM, deregulated epigenetic mechanisms are emerging as important in MM pathogenesis. Recently, MM sequencing and expression projects have revealed that mutations and copy number variations as well as deregulation in the expression of epigenetic modifiers are characteristic features of MM. In the past decade, several studies have suggested epigenetic mechanisms via DNA methylation, histone modifications and non-coding RNAs as important contributing factors in MM with impacts on disease initiation, progression, clonal heterogeneity and response to treatment. Herein we review the present view and knowledge that has accumulated over the past decades on the role of epigenetics in MM, with focus on the interplay between epigenetic mechanisms and the potential use of epigenetic inhibitors as future treatment modalities for MM.
Collapse
|
140
|
Huang Y, Zou Y, Lin L, Ma X, Huang X. Effect of BIX-01294 on proliferation, apoptosis and histone methylation of acute T lymphoblastic leukemia cells. Leuk Res 2017; 62:34-39. [PMID: 28982057 DOI: 10.1016/j.leukres.2017.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 09/24/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine effect of G9a inhibitor BIX-01294 on proliferation, apoptosis and histone methylation of acute T lymphoblastic leukemia cells (MOLT-4 and Jurkat) and to explore the underlying mechanism. METHODS Cell proliferation was detected by MTT assay and apoptosis and cell cycle were measured by flow cytometry. Western blot was performed to determine expression of caspase-3, Bcl-2, Bax, P21, P15 and DNMT1 as well as levels of histone H3 acetylation, histone H3K9 mono- di- and tri-methylation. RESULTS BIX-01294 inhibits expression of Bcl-2, upregulates expression of Bax and caspase-3 and induces cell apoptosis. BIX-01294 upregulates cell cycle inhibitor P21 expression and induces cell cycle arrest in the phase G0/G1. Furthermore, BIX-01294 suppresses expression of DNA demethylase DNMT1 and promotes expression of tumor suppressor protein P15, thereby inhibiting proliferation of MOLT-4 and Jurkat cells. BIX-01294 downregulates histone H3K9 mono- and di-methylation levels and has no effect on H3K9 trimethylation and histone H3 acetylation. CONCLUSION Taken together, our results indicate that by regulating H3K9 methylation and cell cycle, BIX-01294 inhibits the proliferation and induces apoptosis of acute T lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian 363000, China
| | - Xiaohong Huang
- Department of Pharmacy, Zhangzhou Affiliated Hospital of Fujian Medical University, No. 59 Shengli Road, Zhangzhou, Fujian 363000, China.
| |
Collapse
|
141
|
Isaac RS, Sanulli S, Tibble R, Hornsby M, Ravalin M, Craik CS, Gross JD, Narlikar GJ. Biochemical Basis for Distinct Roles of the Heterochromatin Proteins Swi6 and Chp2. J Mol Biol 2017; 429:3666-3677. [PMID: 28942089 DOI: 10.1016/j.jmb.2017.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/23/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022]
Abstract
Heterochromatin protein 1 (HP1) family proteins are conserved chromatin binding proteins involved in gene silencing, chromosome packaging, and chromosome segregation. These proteins recognize histone H3 lysine 9 methylated tails via their chromodomain and recruit additional ligand proteins with diverse activities through their dimerization domain, the chromoshadow domain. Species that have HP1 proteins possess multiple paralogs that perform non-overlapping roles in vivo. How different HP1 proteins, which are highly conserved, perform different functions is not well understood. Here, we use the two Schizosaccharomyces pombe HP1 paralogs, Swi6 and Chp2, as model systems to compare and contrast their biophysical properties. We find that Swi6 and Chp2 have similar dimerization and oligomerization equilibria, and that Swi6 binds slightly (~3-fold) more strongly to nucleosomes than Chp2. Furthermore, while Swi6 binding to the H3K9me3 mark is regulated by a previously described auto-inhibition mechanism, the binding of Chp2 to the H3K9me3 mark is not analogously regulated. In the context of chromoshadow domain interactions, we show using a newly identified peptide sequence from the Clr3 histone deacetylase and a previously identified sequence from the protein Shugoshin that the Swi6 chromoshadow domain binds both ligands more strongly than the Chp2. Overall, our findings uncover quantitative differences in how Swi6 and Chp2 interact with nucleosomal and non-nucleosomal ligands and qualitative differences in how their assembly on nucleosomes is regulated. These findings provide a biochemical framework to explain the varied functions of Chp2 and Swi6 in vivo.
Collapse
Affiliation(s)
- R Stefan Isaac
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158 United States; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Serena Sanulli
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, 94158 United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Ryan Tibble
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, 94158 United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Michael Hornsby
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Matthew Ravalin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - John D Gross
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA, 94158 United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158 United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158 United States.
| |
Collapse
|
142
|
Liu Y, Wang Y, Chen C, Zhang J, Qian W, Dong Y, Liu Z, Zhang X, Wang X, Zhang Z, Shi X, Wu S. LSD1 binds to HPV16 E7 and promotes the epithelial-mesenchymal transition in cervical cancer by demethylating histones at the Vimentin promoter. Oncotarget 2017; 8:11329-11342. [PMID: 27894088 PMCID: PMC5355268 DOI: 10.18632/oncotarget.13516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/17/2016] [Indexed: 12/27/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1), which specifically demethylates histone H3 lysine 4 (H3K4) and lysine 9 (H3K9), is dysregulated in several cancers. We found that ectopic expression of LSD1 in cervical cancer cells promoted invasion and metastasis in vitro and in vivo, reduced the expression of the epithelial marker E-cadherin, and induced the expression of the mesenchymal marker, Vimentin. By contrast, LSD1 knockdown had the opposite effect and attenuated the HPV16 E7-induced epithelial-mesenchymal transition (EMT). We proposed a novel mechanism, whereby LSD1 is recruited to the Vimentin promoter and demethylates H3K4me1 and H3K4me2. Notably, HPV16 E7 enhanced the expression of LSD1, formed a complex with LSD1, and suppressed LSD1 demethylase activity by hindering the recruitment of LSD1 to the Vimentin promoter. Thus, LSD1 is a primary and positive regulator of the HPV16 E7-induced EMT and an attractive therapeutic target for alleviating HPV16 E7-induced EMT and tumor metastasis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yanan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Chunqin Chen
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Shanghai Tongji University, Shanghai, China
| | - Wenyan Qian
- Department of Gynecology and Obstetrics, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China
| | - Yu Dong
- Department of Obstetrics and Gynecology, Shanghai Xinhua hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhiqiang Liu
- Division of Cancer Medicine, Department of Lymphoma and Myeloma, Center for Cancer Immunology Research, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Xi Zhang
- Department of Physiology and Neurobiology, University of Connecticut, CT, USA
| | - Xiaoyun Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaobing Shi
- Department of Molecular Carcinogenesis and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genes and Development and Molecular Carcinogenesis Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
143
|
Jeziorska DM, Murray RJS, De Gobbi M, Gaentzsch R, Garrick D, Ayyub H, Chen T, Li E, Telenius J, Lynch M, Graham B, Smith AJH, Lund JN, Hughes JR, Higgs DR, Tufarelli C. DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proc Natl Acad Sci U S A 2017; 114:E7526-E7535. [PMID: 28827334 PMCID: PMC5594649 DOI: 10.1073/pnas.1703087114] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.
Collapse
Affiliation(s)
- Danuta M Jeziorska
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Robert J S Murray
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, United Kingdom
| | - Marco De Gobbi
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Ricarda Gaentzsch
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - David Garrick
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Helena Ayyub
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Science Research, The University of Texas M. D. Anderson Cancer Center, Smithville, TX 78957
| | - En Li
- China Novartis Institutes for BioMedical Research, Shanghai 201203, China
| | - Jelena Telenius
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Magnus Lynch
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Bryony Graham
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Andrew J H Smith
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
- Medical Research Council Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Jonathan N Lund
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, United Kingdom
| | - Jim R Hughes
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Douglas R Higgs
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom;
| | - Cristina Tufarelli
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, United Kingdom;
| |
Collapse
|
144
|
CBX3 promotes colon cancer cell proliferation by CDK6 kinase-independent function during cell cycle. Oncotarget 2017; 8:19934-19946. [PMID: 28193906 PMCID: PMC5386735 DOI: 10.18632/oncotarget.15253] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/12/2016] [Indexed: 12/29/2022] Open
Abstract
Heterochromatin protein 1γ (CBX3) links histone methylation marks to transcriptional silence, DNA repair and RNA splicing, but a role for CBX3 in cancer remains largely unknown. In this study, we show that CBX3 in colon cancer cells promotes the progression of the cell cycle and proliferation in vitro and in vivo. Cell cycle (G1 phase to S phase) related gene CDK6 and p21 were further identified as targets of CBX3. In addition, we found that enhancing CDK6 suppresses cell proliferation by upregulating inhibitor p21 in the absence of CBX3, and this function is independent of the kinase activity of CDK6. Our results demonstrate a key role of CBX3 in colon carcinogenesis via suppressing the expression of CDK6/p21, which may disrupt the role of CDK6 in transcriptionally regulating p21, as part of a negative feedback loop to limit CDK6 excessive activation.
Collapse
|
145
|
Kawabata KC, Hayashi Y, Inoue D, Meguro H, Sakurai H, Fukuyama T, Tanaka Y, Asada S, Fukushima T, Nagase R, Takeda R, Harada Y, Kitaura J, Goyama S, Harada H, Aburatani H, Kitamura T. High expression of ABCG2 induced by EZH2 disruption has pivotal roles in MDS pathogenesis. Leukemia 2017; 32:419-428. [PMID: 28720764 DOI: 10.1038/leu.2017.227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 01/10/2023]
Abstract
Both proto-oncogenic and tumor-suppressive functions have been reported for enhancer of zeste homolog 2 (EZH2). To investigate the effects of its inactivation, a mutant EZH2 lacking its catalytic domain was prepared (EZH2-dSET). In a mouse bone marrow transplant model, EZH2-dSET expression in bone marrow cells induced a myelodysplastic syndrome (MDS)-like disease in transplanted mice. Analysis of these mice identified Abcg2 as a direct target of EZH2. Intriguingly, Abcg2 expression alone induced the same disease in the transplanted mice, where stemness genes were enriched. Interestingly, ABCG2 expression is specifically high in MDS patients. The present results indicate that ABCG2 de-repression induced by EZH2 mutations have crucial roles in MDS pathogenesis.
Collapse
Affiliation(s)
- K C Kawabata
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan.,Division of Hematology/Medical Oncology, Department of Medicine, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Y Hayashi
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - D Inoue
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan.,Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Meguro
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - H Sakurai
- Division of Hematology, Department of Medicine, Juntendo University, Bunkyo, Japan.,Division of Hemalogy, Shizuoka Hospital, Juntendo University, Izunokuni, Japan
| | - T Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - Y Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - S Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - T Fukushima
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - R Nagase
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - R Takeda
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - Y Harada
- Division of Hematology, Department of Medicine, Juntendo University, Bunkyo, Japan.,Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Bunkyo, Japan
| | - J Kitaura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan.,Atopy Research Center, Juntendo University. School of Medicine, Bunkyo-ku, Japan
| | - S Goyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - H Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.,Division of Hematology, Department of Medicine, Juntendo University, Bunkyo, Japan
| | - H Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Japan
| | - T Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| |
Collapse
|
146
|
Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 2017; 547:236-240. [PMID: 28636604 PMCID: PMC5606208 DOI: 10.1038/nature22822] [Citation(s) in RCA: 1212] [Impact Index Per Article: 151.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 05/16/2017] [Indexed: 01/15/2023]
Abstract
Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.
Collapse
Affiliation(s)
- Adam G. Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Elnatan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madeline M. Keenen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
147
|
G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc Natl Acad Sci U S A 2017; 114:E6054-E6063. [PMID: 28698370 DOI: 10.1073/pnas.1700694114] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone methyltransferase G9a has critical roles in promoting cancer-cell growth and gene suppression, but whether it is also associated with the DNA damage response is rarely studied. Here, we report that loss of G9a impairs DNA damage repair and enhances the sensitivity of cancer cells to radiation and chemotherapeutics. In response to DNA double-strand breaks (DSBs), G9a is phosphorylated at serine 211 by casein kinase 2 (CK2) and recruited to chromatin. The chromatin-enriched G9a can then directly interact with replication protein A (RPA) and promote loading of the RPA and Rad51 recombinase to DSBs. This mechanism facilitates homologous recombination (HR) and cell survival. We confirmed the interaction between RPA and G9a to be critical for RPA foci formation and HR upon DNA damage. Collectively, our findings demonstrate a regulatory pathway based on CK2-G9a-RPA that permits HR in cancer cells and provide further rationale for the use of G9a inhibitors as a cancer therapeutic.
Collapse
|
148
|
Poulard C, Bittencourt D, Wu DY, Hu Y, Gerke DS, Stallcup MR. A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP. EMBO Rep 2017; 18:1442-1459. [PMID: 28615290 DOI: 10.15252/embr.201744060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
Like many transcription regulators, histone methyltransferases G9a and G9a-like protein (GLP) can act gene-specifically as coregulators, but mechanisms controlling this specificity are mostly unknown. We show that adjacent post-translational methylation and phosphorylation regulate binding of G9a and GLP to heterochromatin protein 1 gamma (HP1γ), formation of a ternary complex with the glucocorticoid receptor (GR) on chromatin, and function of G9a and GLP as coactivators for a subset of GR target genes. HP1γ is recruited by G9a and GLP to GR binding sites associated with genes that require G9a, GLP, and HP1γ for glucocorticoid-stimulated transcription. At the physiological level, G9a and GLP coactivator function is required for glucocorticoid activation of genes that repress cell migration in A549 lung cancer cells. Thus, regulated methylation and phosphorylation serve as a switch controlling G9a and GLP coactivator function, suggesting that this mechanism may be a general paradigm for directing specific transcription factor and coregulator actions on different genes.
Collapse
Affiliation(s)
- Coralie Poulard
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Danielle Bittencourt
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Dai-Ying Wu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Yixin Hu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Daniel S Gerke
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
149
|
Christogianni A, Chatzantonaki E, Soupsana K, Giannios I, Platania A, Politou AS, Georgatos S. Heterochromatin remodeling in embryonic stem cells proceeds through stochastic de-stabilization of regional steady-states. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:661-673. [DOI: 10.1016/j.bbagrm.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/19/2016] [Accepted: 01/19/2017] [Indexed: 01/10/2023]
|
150
|
Xu X, Nagel S, Quentmeier H, Wang Z, Pommerenke C, Dirks WG, Macleod RAF, Drexler HG, Hu Z. KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia. Leuk Lymphoma 2017; 59:204-213. [PMID: 28540746 DOI: 10.1080/10428194.2017.1324156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
KDM3B reportedly shows both tumor-suppressive and tumor-promoting activities in leukemia. The function of KDM3B is likely cell-type dependent and its seeming functional discordance may reflect its phenotypic dependence on downstream targets. Here, we first showed the underexpression of KDM3B in acute myeloid leukemia (AML) patients and AML cell lines with MLL-AF6/9 or PML-RARA translocations. Overexpression of KDM3B repressed colony formation of AML cell line with 5q deletion. We then performed global microarray profiling to identify potential downstream targets of KDM3B, notably HOXA1, which was verified by real time PCR and Western blotting. We further showed KDM3B binding at retinoic acid response elements (RARE) but not at the promoter region of HOXA1 gene. KDM3B knockdown resulted in increased mono-methylation but decreased di-methylation of H3K9 at RARE while eschewing the promoter region of HOXA1. Collectively, we found that KDM3B exhibits potential tumor-suppressive activity and transcriptionally modulates HOXA1 expression via RARE in AML.
Collapse
Affiliation(s)
- Xin Xu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Stefan Nagel
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hilmar Quentmeier
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhanju Wang
- c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Claudia Pommerenke
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Wilhelm G Dirks
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Roderick A F Macleod
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hans G Drexler
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhenbo Hu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China.,c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| |
Collapse
|