101
|
Morata J, Béjar S, Talavera D, Riera C, Lois S, de Xaxars GM, de la Cruz X. The relationship between gene isoform multiplicity, number of exons and protein divergence. PLoS One 2013; 8:e72742. [PMID: 24023641 PMCID: PMC3758341 DOI: 10.1371/journal.pone.0072742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/14/2013] [Indexed: 11/18/2022] Open
Abstract
At present we know that phenotypic differences between organisms arise from a variety of sources, like protein sequence divergence, regulatory sequence divergence, alternative splicing, etc. However, we do not have yet a complete view of how these sources are related. Here we address this problem, studying the relationship between protein divergence and the ability of genes to express multiple isoforms. We used three genome-wide datasets of human-mouse orthologs to study the relationship between isoform multiplicity co-occurrence between orthologs (the fact that two orthologs have more than one isoform) and protein divergence. In all cases our results showed that there was a monotonic dependence between these two properties. We could explain this relationship in terms of a more fundamental one, between exon number of the largest isoform and protein divergence. We found that this last relationship was present, although with variations, in other species (chimpanzee, cow, rat, chicken, zebrafish and fruit fly). In summary, we have identified a relationship between protein divergence and isoform multiplicity co-occurrence and explained its origin in terms of a simple gene-level property. Finally, we discuss the biological implications of these findings for our understanding of inter-species phenotypic differences.
Collapse
Affiliation(s)
- Jordi Morata
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Santi Béjar
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - David Talavera
- Faculty of Life Sciences, Manchester University, Manchester, United Kingdom
| | - Casandra Riera
- Laboratory of Translational Bioinformatics in Neuroscience, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Sergio Lois
- Laboratory of Translational Bioinformatics in Neuroscience, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Gemma Mas de Xaxars
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Department of Structural Biology, Institut de Biologia Molecular de Barcelona (IBMB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Laboratory of Translational Bioinformatics in Neuroscience, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
102
|
Bruun GH, Doktor TK, Andresen BS. A synonymous polymorphic variation in ACADM exon 11 affects splicing efficiency and may affect fatty acid oxidation. Mol Genet Metab 2013; 110:122-8. [PMID: 23810226 DOI: 10.1016/j.ymgme.2013.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
In recent studies combining genome-wide association and tandem-MS based metabolic profiling, a single-nucleotide polymorphism (SNP), rs211718C>T, located far upstream of the MCAD gene (ACADM) was found to be associated with serum concentrations of medium-chain acylcarnitines indicating improved beta-oxidation of medium-chain fatty acids. We examined the functional basis for this association and identified linkage between rs211718 and the intragenic synonymous polymorphic variant c.1161A>G in ACADM exon 11 (rs1061337). Employing minigene studies we show that the c.1161A allele is associated with exon 11 missplicing, and that the c.1161G allele corrects this missplicing. This may result in production of more full length MCAD protein from the c.1161G allele. Our analysis suggests that the improved splicing of the c.1161G allele is due to changes in the relative binding of splicing regulatory proteins SRSF1 and hnRNP A1. Using publicly available pre-aligned RNA-seq data, we find that the ACADM c.1161G allele is expressed at significantly higher levels than the c.1161A allele across different tissues. This supports that c.1161A>G is a functional SNP, which leads to higher MCAD expression, perhaps due to improved splicing. This study is a proof of principle that synonymous SNPs are not neutral. By changing the binding sites for splicing regulatory proteins they can have significant effects on pre-mRNA splicing and thus protein function. In addition, this study shows that for a sequence variation to have an effect, it might need to change the balance in the relative binding of positive and negative splicing factors.
Collapse
Affiliation(s)
- Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | |
Collapse
|
103
|
Novel GUCA1A mutations suggesting possible mechanisms of pathogenesis in cone, cone-rod, and macular dystrophy patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:517570. [PMID: 24024198 PMCID: PMC3759255 DOI: 10.1155/2013/517570] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/19/2013] [Indexed: 01/06/2023]
Abstract
Here, we report two novel GUCA1A (the gene for guanylate cyclase activating protein 1) mutations identified in unrelated Spanish families affected by autosomal dominant retinal degeneration (adRD) with cone and rod involvement. All patients from a three-generation adRD pedigree underwent detailed ophthalmic evaluation. Total genome scan using single-nucleotide polymorphisms and then the linkage analysis were undertaken on the pedigree. Haplotype analysis revealed a 55.37 Mb genomic interval cosegregating with the disease phenotype on chromosome 6p21.31-q15. Mutation screening of positional candidate genes found a heterozygous transition c.250C>T in exon 4 of GUCA1A, corresponding to a novel mutation p.L84F. A second missense mutation, c.320T>C (p.I107T), was detected by screening of the gene in a Spanish patients cohort. Using bioinformatics approach, we predicted that either haploinsufficiency or dominant-negative effect accompanied by creation of a novel function for the mutant protein is a possible mechanism of the disease due to c.250C>T and c.320T>C. Although additional functional studies are required, our data in relation to the c.250C>T mutation open the possibility that transacting factors binding to de novo created recognition site resulting in formation of aberrant splicing variant is a disease model which may be more widespread than previously recognized as a mechanism causing inherited RD.
Collapse
|
104
|
Blázquez L, Aiastui A, Goicoechea M, Martins de Araujo M, Avril A, Beley C, García L, Valcárcel J, Fortes P, López de Munain A. In vitro correction of a pseudoexon-generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs. Hum Mutat 2013; 34:1387-95. [PMID: 23864287 DOI: 10.1002/humu.22379] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/08/2013] [Indexed: 12/25/2022]
Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is the most frequent autosomal recessive muscular dystrophy. It is caused by mutations in the calpain-3 (CAPN3) gene. The majority of the mutations described to date are located in the coding sequence of the gene. However, it is estimated that 25% of the mutations are present at exon-intron boundaries and modify the pre-mRNA splicing of the CAPN3 transcript. We have previously described the first deep intronic mutation in the CAPN3 gene: c.1782+1072G>C mutation. This mutation causes the pseudoexonization of an intronic sequence of the CAPN3 gene in the mature mRNA. In the present work, we show that the point mutation generates the inclusion of the pseudoexon in the mRNA using a minigene assay. In search of a treatment that restores normal splicing, splicing modulation was induced by RNA-based strategies, which included antisense oligonucleotides and modified small-nuclear RNAs. The best effect was observed with antisense sequences, which induced pseudoexon skipping in both HeLa cells cotransfected with mutant minigene and in fibroblasts from patients. Finally, transfection of antisense sequences and siRNA downregulation of serine/arginine-rich splicing factor 1 (SRSF1) indicate that binding of this factor to splicing enhancer sequences is involved in pseudoexon activation.
Collapse
Affiliation(s)
- Lorea Blázquez
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Neuroscience Area, Health Research Institute Biodonostia, San Sebastian, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Mayrose I, Stern A, Burdelova EO, Sabo Y, Laham-Karam N, Zamostiano R, Bacharach E, Pupko T. Synonymous site conservation in the HIV-1 genome. BMC Evol Biol 2013; 13:164. [PMID: 23914950 PMCID: PMC3750384 DOI: 10.1186/1471-2148-13-164] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Synonymous or silent mutations are usually thought to evolve neutrally. However, accumulating recent evidence has demonstrated that silent mutations may destabilize RNA structures or disrupt cis regulatory motifs superimposed on coding sequences. Such observations suggest the existence of stretches of codon sites that are evolutionary conserved at both DNA-RNA and protein levels. Such stretches may point to functionally important regions within protein coding sequences not necessarily reflecting functional constraints on the amino-acid sequence. The HIV-1 genome is highly compact, and often harbors overlapping functional elements at the protein, RNA, and DNA levels. This superimposition of functions leads to complex selective forces acting on all levels of the genome and proteome. Considering the constraints on HIV-1 to maintain such a highly compact genome, we hypothesized that stretches of synonymous conservation would be common within its genome. RESULTS We used a combined computational-experimental approach to detect and characterize regions exhibiting strong purifying selection against synonymous substitutions along the HIV-1 genome. Our methodology is based on advanced probabilistic evolutionary models that explicitly account for synonymous rate variation among sites and rate dependencies among adjacent sites. These models are combined with a randomization procedure to automatically identify the most statistically significant regions of conserved synonymous sites along the genome. Using this procedure we identified 21 conserved regions. Twelve of these are mapped to regions within overlapping genes, seven correlate with known functional elements, while the functions of the remaining four are yet unknown. Among these four regions, we chose the one that deviates most from synonymous rate homogeneity for in-depth computational and experimental characterization. In our assays aiming to quantify viral fitness in both early and late stages of the replication cycle, no differences were observed between the mutated and the wild type virus following the introduction of synonymous mutations. CONCLUSIONS The contradiction between the inferred purifying selective forces and the lack of effect of these mutations on viral replication may be explained by the fact that the phenotype was measured in single-cycle infection assays in cell culture. Such a system does not account for the complexity of HIV-1 infections in vivo, which involves multiple infection cycles and interaction with the host immune system.
Collapse
Affiliation(s)
- Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel-Aviv 69978, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Zhang C, Lee KY, Swanson MS, Darnell RB. Prediction of clustered RNA-binding protein motif sites in the mammalian genome. Nucleic Acids Res 2013; 41:6793-807. [PMID: 23685613 PMCID: PMC3737533 DOI: 10.1093/nar/gkt421] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/24/2023] Open
Abstract
Sequence-specific interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for post-transcriptional gene expression regulation in mammals. However, accurate prediction of RBP motif sites has been difficult because many RBPs recognize short and degenerate sequences. Here we describe a hidden Markov model (HMM)-based algorithm mCarts to predict clustered functional RBP-binding sites by effectively integrating the number and spacing of individual motif sites, their accessibility in local RNA secondary structures and cross-species conservation. This algorithm learns and quantifies rules of these features, taking advantage of a large number of in vivo RBP-binding sites obtained from cross-linking and immunoprecipitation data. We applied this algorithm to study two representative RBP families, Nova and Mbnl, which regulate tissue-specific alternative splicing through interacting with clustered YCAY and YGCY elements, respectively, and predicted their binding sites in the mouse transcriptome. Despite the low information content in individual motif elements, our algorithm made specific predictions for successful experimental validation. Analysis of predicted sites also revealed cases of extensive and distal RBP-binding sites important for splicing regulation. This algorithm can be readily applied to other RBPs to infer their RNA-regulatory networks. The software is freely available at http://zhanglab.c2b2.columbia.edu/index.php/MCarts.
Collapse
Affiliation(s)
- Chaolin Zhang
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA, Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL 32610, USA and Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Kuang-Yung Lee
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA, Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL 32610, USA and Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Maurice S. Swanson
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA, Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL 32610, USA and Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Robert B. Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA, Department of Molecular Genetics and Microbiology and the Center for NeuroGenetics, University of Florida, College of Medicine, Gainesville, FL 32610, USA and Department of Neurology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| |
Collapse
|
107
|
Patnala R, Clements J, Batra J. Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet 2013; 14:39. [PMID: 23656885 PMCID: PMC3655892 DOI: 10.1186/1471-2156-14-39] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/15/2013] [Indexed: 01/01/2023] Open
Abstract
The candidate gene approach has been a pioneer in the field of genetic epidemiology, identifying risk alleles and their association with clinical traits. With the advent of rapidly changing technology, there has been an explosion of in silico tools available to researchers, giving them fast, efficient resources and reliable strategies important to find casual gene variants for candidate or genome wide association studies (GWAS). In this review, following a description of candidate gene prioritisation, we summarise the approaches to single nucleotide polymorphism (SNP) prioritisation and discuss the tools available to assess functional relevance of the risk variant with consideration to its genomic location. The strategy and the tools discussed are applicable to any study investigating genetic risk factors associated with a particular disease. Some of the tools are also applicable for the functional validation of variants relevant to the era of GWAS and next generation sequencing (NGS).
Collapse
Affiliation(s)
- Radhika Patnala
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | | |
Collapse
|
108
|
Solomon O, Oren S, Safran M, Deshet-Unger N, Akiva P, Jacob-Hirsch J, Cesarkas K, Kabesa R, Amariglio N, Unger R, Rechavi G, Eyal E. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA (NEW YORK, N.Y.) 2013; 19:591-604. [PMID: 23474544 PMCID: PMC3677275 DOI: 10.1261/rna.038042.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery.
Collapse
Affiliation(s)
- Oz Solomon
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- The Everard & Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Shirley Oren
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Safran
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Naamit Deshet-Unger
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Pinchas Akiva
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jasmine Jacob-Hirsch
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Karen Cesarkas
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Reut Kabesa
- The Everard & Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ninette Amariglio
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Ron Unger
- The Everard & Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Eyal
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- Corresponding authorE-mail
| |
Collapse
|
109
|
Testing for natural selection in human exonic splicing regulators associated with evolutionary rate shifts. J Mol Evol 2013; 76:228-39. [PMID: 23529588 DOI: 10.1007/s00239-013-9555-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 03/09/2013] [Indexed: 12/21/2022]
Abstract
Despite evidence that at the interspecific scale, exonic splicing silencers (ESSs) are under negative selection in constitutive exons, little is known about the effects of slightly deleterious polymorphisms on these splicing regulators. Through the application of a modified version of the McDonald-Kreitman test, we compared the normalized proportions of human polymorphisms and human/rhesus substitutions affecting exonic splicing regulators (ESRs) on sequences of constitutive and alternative exons. Our results show a depletion of substitutions and an enrichment of SNPs associated with ESS gain in constitutive exons. Moreover, we show that this evolutionary pattern is also present in a set of ESRs previously involved in the transition from constitutive to skipped exons in the mammalian lineage. The similarity between these two sets of ESRs suggests that the transition from constitutive to skipped exons in mammals is more frequently associated with the inhibition than with the promotion of splicing signals. This is in accordance with the hypothesis of a constitutive origin of exon skipping and corroborates previous findings about the antagonistic role of certain exonic splicing enhancers.
Collapse
|
110
|
Lu CC, Chen TH, Wu JR, Chen HH, Yu HY, Tarn WY. Phylogenetic and molecular characterization of the splicing factor RBM4. PLoS One 2013; 8:e59092. [PMID: 23527094 PMCID: PMC3602429 DOI: 10.1371/journal.pone.0059092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/11/2013] [Indexed: 12/13/2022] Open
Abstract
The mammalian multi-functional RNA-binding motif 4 (RBM4) protein regulates alterative splicing of precursor mRNAs and thereby affects pancreas and muscle cell differentiation. RBM4 homologs exist in all metazoan lineages. The C-terminal unstructured domain of RBM4 is evolutionarily divergent and contains stretches of low-complexity sequences, including single amino acid and/or dipeptide repeats. Here we examined the splicing activity, phosphorylation potential, and subcellular localization of RBM4 homologs from a wide range of species. The results show that these RBM4 homologs exert different effects on 5′ splice site utilization and exon selection, and exhibit different subnuclear localization patterns. Therefore, the C-terminal domain of RBM4 may contribute to functional divergence between homologs. On the other hand, analysis of chimeric human RBM4 proteins containing heterologous sequences at the C-terminus revealed that the N-terminal RNA binding domain of RBM4 could have a dominant role in determining splicing outcome. Finally, all RBM4 homologs examined could be phosphorylated by an SR protein kinase, suggesting that they are regulated by a conserved mechanism in different species. This study offers a first clue to functional evolution of a splicing factor.
Collapse
Affiliation(s)
- Chia-Chen Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tz-Hao Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jhe-Rong Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yi Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
111
|
Roca X, Krainer AR, Eperon IC. Pick one, but be quick: 5' splice sites and the problems of too many choices. Genes Dev 2013; 27:129-44. [PMID: 23348838 DOI: 10.1101/gad.209759.112] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Splice site selection is fundamental to pre-mRNA splicing and the expansion of genomic coding potential. 5' Splice sites (5'ss) are the critical elements at the 5' end of introns and are extremely diverse, as thousands of different sequences act as bona fide 5'ss in the human transcriptome. Most 5'ss are recognized by base-pairing with the 5' end of the U1 small nuclear RNA (snRNA). Here we review the history of research on 5'ss selection, highlighting the difficulties of establishing how base-pairing strength determines splicing outcomes. We also discuss recent work demonstrating that U1 snRNA:5'ss helices can accommodate noncanonical registers such as bulged duplexes. In addition, we describe the mechanisms by which other snRNAs, regulatory proteins, splicing enhancers, and the relative positions of alternative 5'ss contribute to selection. Moreover, we discuss mechanisms by which the recognition of numerous candidate 5'ss might lead to selection of a single 5'ss and propose that protein complexes propagate along the exon, thereby changing its physical behavior so as to affect 5'ss selection.
Collapse
Affiliation(s)
- Xavier Roca
- School of Biological Sciences, Division of Molecular Genetics and Cell Biology, Nanyang Technological University, Singapore.
| | | | | |
Collapse
|
112
|
Kallel R, Niasme-Grare M, Belguith-Maalej S, Mnif M, Abid M, Ayadi H, Masmoudi S, Jonard L, Hadj Kacem H. Screening of SLC26A4 gene in autoimmune thyroid diseases. Int J Immunogenet 2013; 40:284-91. [PMID: 23280318 DOI: 10.1111/iji.12035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/30/2022]
Abstract
The Pendred syndrome (PS) gene, SLC26A4, was involved in the genetic susceptibility of autoimmune thyroid disease (AITD) in Tunisian population. Recently, functional assays have shown a differential expression of SLC26A4 gene between Graves' disease (GD) and Hashimoto's thyroiditis (HT). Here, by the mean of DHPLC and HRM, we explored the 21 exons and their flanking intronic sequences of 128 patients affected with GD (n = 64) or HT (n = 64). The pathogenic effect of identified variations on splice was investigated using the web server HSF. Eighteen allelic variations were identified and ranged on missense, sens and splice variations. Nine identified variations (c.-66C>G, c.898A>C, c.1002-9A>C, c.1061T>C, c.1544 + 9G>T, c.1545-5T>G, c.1790T>C, c.1826T>G, c.2139T>G) were previously reported in hearing impairment studies. Forty-seven per cent (30/64) of GD patients and 37,5% (24/64) of HT patients present at least one variant in the explored sequences. Moreover, the analysis of the variant distribution between HT (9 (5'UTR), 12 exonic and 13 intronic) and GD (18 (5'UTR), 13 exonic and 5 intronic) patients showed a significant difference (χ² = 6.54, 2df, P = 0.03). Interestingly, missense changes (I300L, p.M283I, F354S and p.L597S) affected conserved residues of pendrin. On the other hand, the HSF analyses ascertain that some variants identified in HT disease are predicted to have a pathogenic effect on splice. In conclusion, our analysis of SLC26A4 sequence variations suggested a distinct genetics basis between HT and GD patients, which should be confirmed on a large cohort.
Collapse
Affiliation(s)
- R Kallel
- Laboratoire de Microorganismes et Biomolécules, équipe des Procédés de Criblage Moléculaires et Cellulaires, Center de Biotechnologie de Sfax, Sfax, Tunisie
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Wu X, Tronholm A, Cáceres EF, Tovar-Corona JM, Chen L, Urrutia AO, Hurst LD. Evidence for deep phylogenetic conservation of exonic splice-related constraints: splice-related skews at exonic ends in the brown alga Ectocarpus are common and resemble those seen in humans. Genome Biol Evol 2013; 5:1731-45. [PMID: 23902749 PMCID: PMC3787667 DOI: 10.1093/gbe/evt115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 12/22/2022] Open
Abstract
The control of RNA splicing is often modulated by exonic motifs near splice sites. Chief among these are exonic splice enhancers (ESEs). Well-described ESEs in mammals are purine rich and cause predictable skews in codon and amino acid usage toward exonic ends. Looking across species, those with relatively abundant intronic sequence are those with the more profound end of exon skews, indicative of exonization of splice site recognition. To date, the only intron-rich species that have been analyzed are mammals, precluding any conclusions about the likely ancestral condition. Here, we examine the patterns of codon and amino acid usage in the vicinity of exon-intron junctions in the brown alga Ectocarpus siliculosus, a species with abundant large introns, known SR proteins, and classical splice sites. We find that amino acids and codons preferred/avoided at both 3' and 5' ends in Ectocarpus, of which there are many, tend, on average, to also be preferred/avoided at the same exon ends in humans. Moreover, the preferences observed at the 5' ends of exons are largely the same as those at the 3' ends, a symmetry trend only previously observed in animals. We predict putative hexameric ESEs in Ectocarpus and show that these are purine rich and that there are many more of these identified as functional ESEs in humans than expected by chance. These results are consistent with deep phylogenetic conservation of SR protein binding motifs. Assuming codons preferred near boundaries are "splice optimal" codons, in Ectocarpus, unlike Drosophila, splice optimal and translationally optimal codons are not mutually exclusive. The exclusivity of translationally optimal and splice optimal codon sets is thus not universal.
Collapse
Affiliation(s)
- XianMing Wu
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| | - Ana Tronholm
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
- Present address: Department of Biological Sciences, University of Alabama, Mary Harmon Bryant Hall, Tuscaloosa, AL
| | - Eva Fernández Cáceres
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| | - Jaime M. Tovar-Corona
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| | - Lu Chen
- Human Genetics, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
| | - Araxi O. Urrutia
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| | - Laurence D. Hurst
- Department of Biology and Biochemistry, University of Bath, Somerset, United Kingdom
| |
Collapse
|
114
|
Wang Y, Xiao X, Zhang J, Choudhury R, Robertson A, Li K, Ma M, Burge CB, Wang Z. A complex network of factors with overlapping affinities represses splicing through intronic elements. Nat Struct Mol Biol 2012; 20:36-45. [PMID: 23241926 PMCID: PMC3537874 DOI: 10.1038/nsmb.2459] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022]
Abstract
To better understand splicing regulation, we used a cell-based screen to identify ten diverse motifs that inhibit splicing from intron. Each motif was validated in another human cell type and gene context, and their presence correlated with in vivo splicing changes. All motifs exhibited exonic splicing enhancer or silencer activity, and grouping these motifs based on their distributions yielded clusters with distinct patterns of context-dependent activity. Candidate regulatory factors associated with each motif were identified, recovering 24 known and novel splicing regulators. Specific domains in selected factors were sufficient to confer ISS activity. Many factors bound multiple distinct motifs with similar affinity, and all motifs were recognized by multiple factors, revealing a complex, overlapping network of protein:RNA interactions. This arrangement enables individual cis-element to function differently in distinct cellular contexts depending on the spectrum of regulatory factors present.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
The neurexin genes (NRXN1, NRXN2, and NRXN3) encode polymorphic presynaptic proteins that are implicated in synaptic plasticity and memory processing. In rat brain neurons grown in culture, depolarization induces reversible, calcium-dependent, repression of NRXN2α exon 11 (E11) splicing. Using Neuro2a cells as a model, we explored E11 cis elements and trans-acting factors involved in alternative splicing of NRXN2α E11 pre-mRNA under basal and depolarization conditions. E11 mutation studies revealed two motifs, CTGCCTG (enhancer) and GCACCCA (suppressor) regulating NRXN2α E11 alternative splicing. Subsequent E11 RNA affinity pull-down experiments demonstrated heterogeneous nuclear ribonucleoprotein (hnRNP) K and hnRNP L binding to this exon. Under depolarization, the amount of E11-bound hnRNP L (but not of hnRNP K) increased, in parallel to NRXN2α E11 splicing repression. Depletion of hnRNP K or hnRNP L in the Neuro2a cells by specific siRNAs enhanced NRXN2α E11 splicing and ablated the depolarization-induced repression of this exon. In addition, depolarization suppressed whereas hnRNP K depletion enhanced NRXN2α expression. These results indicate a role for hnRNP K in regulation of NRXN2α expression and of hnRNP L in the activity-dependent alternative splicing of neurexins which may potentially govern trans-synaptic signaling required for memory processing.
Collapse
|
116
|
Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat Struct Mol Biol 2012; 19:1044-52. [PMID: 22983564 PMCID: PMC3753194 DOI: 10.1038/nsmb.2377] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022]
Abstract
Most human genes produce multiple splicing isoforms with distinct functions. To systematically understand splicing regulation, we conducted an unbiased screen and identified >100 intronic splicing enhancers (ISEs) that were clustered by sequence similarity into six groups. All ISEs functioned in another cell type and heterologous introns, and their distribution and conservation patterns in different pre-mRNA regions are similar to exonic splicing silencers. Consistently all ISEs inhibited use of splice sites from exonic locations. The putative trans-factors of each ISE group were identified and validated. Five distinct ISE motifs were recognized by hnRNP H and F whose C-terminal domains were sufficient to render context-dependent activities of ISEs. The sixth group was controlled by factors that either activate or suppress splicing. This work provided a comprehensive picture of general ISE activities and provided new models of how a single element can function oppositely depending on its locations and binding factors.
Collapse
|
117
|
Heintz C, Dobrowolski SF, Andersen HS, Demirkol M, Blau N, Andresen BS. Splicing of phenylalanine hydroxylase (PAH) exon 11 is vulnerable: molecular pathology of mutations in PAH exon 11. Mol Genet Metab 2012; 106:403-11. [PMID: 22698810 DOI: 10.1016/j.ymgme.2012.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/20/2012] [Accepted: 05/20/2012] [Indexed: 02/04/2023]
Abstract
In about 20-30% of phenylketonuria (PKU) patients, phenylalanine (Phe) levels can be controlled by cofactor 6R-tetrahydrobiopterin (BH(4)) administration. The phenylalanine hydroxylase (PAH) genotype has a predictive value concerning BH(4)-response and therefore a correct assessment of the mutation molecular pathology is important. Mutations that disturb the splicing of exons (e.g. interplay between splice site strength and regulatory sequences like exon splicing enhancers (ESEs)/exon splicing silencers (ESSs)) may cause different severity of PKU. In this study, we identified PAH exon 11 as a vulnerable exon and used patient derived lymphoblast cell lines and PAH minigenes to study the molecular defect that impacted pre-mRNA processing. We showed that the c.1144T>C and c.1066-3C>T mutations cause exon 11 skipping, while the c.1139C>T mutation is neutral or slightly beneficial. The c.1144T>C mutation resides in a putative splicing enhancer motif and binding by splicing factors SF2/ASF, SRp20 and SRp40 is disturbed. Additional mutations in potential splicing factor binding sites contributed to elucidate the pathogenesis of mutations in PAH exon 11. We suggest that PAH exon 11 is vulnerable due to a weak 3' splice site and that this makes exon 11 inclusion dependent on an ESE spanning position c.1144. Importantly, this implies that other mutations in exon 11 may affect splicing, since splicing is often determined by a fine balance between several positive and negative splicing regulatory elements distributed throughout the exon. Finally, we identified a pseudoexon in intron 11, which would have pathogenic consequences if activated by mutations or improved splicing conditions. Exonic mutations that disrupt splicing are unlikely to facilitate response to BH(4) and may lead to inconsistent genotype-phenotype correlations. Therefore, recognizing such mutations enhances our ability to predict the BH(4)-response.
Collapse
Affiliation(s)
- Caroline Heintz
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
118
|
Edwards NC, Hing ZA, Perry A, Blaisdell A, Kopelman DB, Fathke R, Plum W, Newell J, Allen CE, S. G, Shapiro A, Okunji C, Kosti I, Shomron N, Grigoryan V, Przytycka TM, Sauna ZE, Salari R, Mandel-Gutfreund Y, Komar AA, Kimchi-Sarfaty C. Characterization of coding synonymous and non-synonymous variants in ADAMTS13 using ex vivo and in silico approaches. PLoS One 2012; 7:e38864. [PMID: 22768050 PMCID: PMC3387200 DOI: 10.1371/journal.pone.0038864] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/13/2012] [Indexed: 12/20/2022] Open
Abstract
Synonymous variations, which are defined as codon substitutions that do not change the encoded amino acid, were previously thought to have no effect on the properties of the synthesized protein(s). However, mounting evidence shows that these “silent” variations can have a significant impact on protein expression and function and should no longer be considered “silent”. Here, the effects of six synonymous and six non-synonymous variations, previously found in the gene of ADAMTS13, the von Willebrand Factor (VWF) cleaving hemostatic protease, have been investigated using a variety of approaches. The ADAMTS13 mRNA and protein expression levels, as well as the conformation and activity of the variants have been compared to that of wild-type ADAMTS13. Interestingly, not only the non-synonymous variants but also the synonymous variants have been found to change the protein expression levels, conformation and function. Bioinformatic analysis of ADAMTS13 mRNA structure, amino acid conservation and codon usage allowed us to establish correlations between mRNA stability, RSCU, and intracellular protein expression. This study demonstrates that variants and more specifically, synonymous variants can have a substantial and definite effect on ADAMTS13 function and that bioinformatic analysis may allow development of predictive tools to identify variants that will have significant effects on the encoded protein.
Collapse
Affiliation(s)
- Nathan C. Edwards
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Zachary A. Hing
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Avital Perry
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Adam Blaisdell
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - David B. Kopelman
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Robert Fathke
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - William Plum
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Jordan Newell
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Courtni E. Allen
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Geetha S.
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Aaron Shapiro
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Chinyere Okunji
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Idit Kosti
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel
| | - Vahan Grigoryan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zuben E. Sauna
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Raheleh Salari
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Anton A. Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
- * E-mail: (CKS); (AAK)
| | - Chava Kimchi-Sarfaty
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail: (CKS); (AAK)
| |
Collapse
|
119
|
Liberles DA, Teichmann SA, Bahar I, Bastolla U, Bloom J, Bornberg-Bauer E, Colwell LJ, de Koning APJ, Dokholyan NV, Echave J, Elofsson A, Gerloff DL, Goldstein RA, Grahnen JA, Holder MT, Lakner C, Lartillot N, Lovell SC, Naylor G, Perica T, Pollock DD, Pupko T, Regan L, Roger A, Rubinstein N, Shakhnovich E, Sjölander K, Sunyaev S, Teufel AI, Thorne JL, Thornton JW, Weinreich DM, Whelan S. The interface of protein structure, protein biophysics, and molecular evolution. Protein Sci 2012; 21:769-85. [PMID: 22528593 PMCID: PMC3403413 DOI: 10.1002/pro.2071] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 12/20/2022]
Abstract
Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction.
Collapse
Affiliation(s)
- David A Liberles
- Department of Molecular Biology, University of WyomingLaramie, Wyoming 82071
| | - Sarah A Teichmann
- MRC Laboratory of Molecular BiologyHills Road, Cambridge CB2 0QH, United Kingdom
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of PittsburghPittsburgh, Pennsylvania 15213
| | - Ugo Bastolla
- Bioinformatics Unit. Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid28049 Cantoblanco Madrid, Spain
| | - Jesse Bloom
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattle, Washington 98109
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of MuensterGermany
| | - Lucy J Colwell
- MRC Laboratory of Molecular BiologyHills Road, Cambridge CB2 0QH, United Kingdom
| | - A P Jason de Koning
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of ColoradoAurora, Colorado
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillNorth Carolina 27599
| | - Julian Echave
- Escuela de Ciencia y Tecnología, Universidad Nacional de San MartínMartín de Irigoyen 3100, 1650 San Martín, Buenos Aires, Argentina
| | - Arne Elofsson
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm Bioinformatics Center, Science for Life Laboratory, Swedish E-science Research Center, Stockholm University106 91 Stockholm, Sweden
| | - Dietlind L Gerloff
- Biomolecular Engineering Department, University of CaliforniaSanta Cruz, California 95064
| | - Richard A Goldstein
- Division of Mathematical Biology, National Institute for Medical Research (MRC)Mill Hill, London NW7 1AA, United Kingdom
| | - Johan A Grahnen
- Department of Molecular Biology, University of WyomingLaramie, Wyoming 82071
| | - Mark T Holder
- Department of Ecology and Evolutionary Biology, University of KansasLawrence, Kansas 66045
| | - Clemens Lakner
- Bioinformatics Research Center, North Carolina State UniversityRaleigh, North Carolina 27695
| | - Nicholas Lartillot
- Département de Biochimie, Faculté de Médecine, Université de MontréalMontréal, QC H3T1J4, Canada
| | - Simon C Lovell
- Faculty of Life Sciences, University of ManchesterManchester M13 9PT, United Kingdom
| | - Gavin Naylor
- Department of Biology, College of CharlestonCharleston, South Carolina 29424
| | - Tina Perica
- MRC Laboratory of Molecular BiologyHills Road, Cambridge CB2 0QH, United Kingdom
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of ColoradoAurora, Colorado
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven 06511
| | - Andrew Roger
- Department of Biochemistry and Molecular Biology, Dalhousie UniversityHalifax, NS, Canada
| | - Nimrod Rubinstein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel Aviv, Israel
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridge, Massachusetts 02138
| | - Kimmen Sjölander
- Department of Bioengineering, University of CaliforniaBerkeley, Berkeley, California 94720
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School77 Avenue Louis Pasteur, Boston, Massachusetts 02115
| | - Ashley I Teufel
- Department of Molecular Biology, University of WyomingLaramie, Wyoming 82071
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State UniversityRaleigh, North Carolina 27695
| | - Joseph W Thornton
- Howard Hughes Medical Institute and Institute for Ecology and Evolution, University of OregonEugene, Oregon 97403
- Department of Human Genetics, University of ChicagoChicago, Illinois 60637
- Department of Ecology and Evolution, University of ChicagoChicago, Illinois 60637
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, and Center for Computational Molecular Biology, Brown UniversityProvidence, Rhode Island 02912
| | - Simon Whelan
- Faculty of Life Sciences, University of ManchesterManchester M13 9PT, United Kingdom
| |
Collapse
|
120
|
Silva B, Martins R, Proença D, Fleming R, Faustino P. The functional significance of E277K and V295A HFE mutations. Br J Haematol 2012; 158:399-408. [DOI: 10.1111/j.1365-2141.2012.09164.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/15/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Bruno Silva
- Departamento de Genética; Instituto Nacional de Saúde Dr. Ricardo Jorge; Lisboa; Portugal
| | - Rute Martins
- Departamento de Genética; Instituto Nacional de Saúde Dr. Ricardo Jorge; Lisboa; Portugal
| | - Daniela Proença
- Departamento de Genética; Instituto Nacional de Saúde Dr. Ricardo Jorge; Lisboa; Portugal
| | - Rita Fleming
- Serviço de Imuno-hemoterapia; Hospital de Santa Maria; Lisboa; Portugal
| | - Paula Faustino
- Departamento de Genética; Instituto Nacional de Saúde Dr. Ricardo Jorge; Lisboa; Portugal
| |
Collapse
|
121
|
Transcriptional enhancers in protein-coding exons of vertebrate developmental genes. PLoS One 2012; 7:e35202. [PMID: 22567096 PMCID: PMC3342275 DOI: 10.1371/journal.pone.0035202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/10/2012] [Indexed: 11/19/2022] Open
Abstract
Many conserved noncoding sequences function as transcriptional enhancers that regulate gene expression. Here, we report that protein-coding DNA also frequently contains enhancers functioning at the transcriptional level. We tested the enhancer activity of 31 protein-coding exons, which we chose based on strong sequence conservation between zebrafish and human, and occurrence in developmental genes, using a Tol2 transposable GFP reporter assay in zebrafish. For each exon we measured GFP expression in hundreds of embryos in 10 anatomies via a novel system that implements the voice-recognition capabilities of a cellular phone. We find that 24/31 (77%) exons drive GFP expression compared to a minimal promoter control, and 14/24 are anatomy-specific (expression in four anatomies or less). GFP expression driven by these coding enhancers frequently overlaps the anatomies where the host gene is expressed (60%), suggesting self-regulation. Highly conserved coding sequences and highly conserved noncoding sequences do not significantly differ in enhancer activity (coding: 24/31 vs. noncoding: 105/147) or tissue-specificity (coding: 14/24 vs. noncoding: 50/105). Furthermore, coding and noncoding enhancers display similar levels of the enhancer-related histone modification H3K4me1 (coding: 9/24 vs noncoding: 34/81). Meanwhile, coding enhancers are over three times as likely to contain an H3K4me1 mark as other exons of the host gene. Our work suggests that developmental transcriptional enhancers do not discriminate between coding and noncoding DNA and reveals widespread dual functions in protein-coding DNA.
Collapse
|
122
|
Levanat S, Musani V, Cvok ML, Susac I, Sabol M, Ozretic P, Car D, Eljuga D, Eljuga L, Eljuga D. Three novel BRCA1/BRCA2 mutations in breast/ovarian cancer families in Croatia. Gene 2012; 498:169-176. [PMID: 22366370 DOI: 10.1016/j.gene.2012.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/09/2012] [Indexed: 02/08/2023]
Abstract
BRCA1 and BRCA2 genes from 167 candidates (145 families) were scanned for mutations. We identified 14 pathogenic point mutations in 17 candidates, 9 in BRCA1 and 5 in BRCA2. Of those, 11 have been previously described and 3 were novel (c.5335C>T in BRCA1 and c.4139_4140dupTT and c.8175G>A in BRCA2). No large deletions or duplications involving BRCA1 and BRCA2 genes were identified. No founder mutations were detected for the Croatian population. Croatia shares most of the mutations with neighboring Slovenia and also with Germany, Austria and Poland. Two common sequence variants in BRCA1, c.2077G>A and c.4956G>A, were found more frequently in mutation carriers compared to healthy controls. No difference in BRCA2 variants was detected between the groups. Haplotype inference showed no difference in haplotype distributions between deleterious mutation carriers and non-carriers in neither BRCA1 nor BRCA2. In silico analyses identified one BRCA1 sequence variant (c.4039A>G) and two BRCA2 variants (c.5986G>A and c.6884G>C) as harmful with high probability, and inconclusive results were obtained for our novel BRCA2 variant c.3864_3866delTAA. Combination of QMPSF and HRMA methods provides high detection rate and complete coverage of BRCA1/2 genes. Benefit of BRCA1/2 mutation testing is clear, since we detected mutations in young unaffected women, who will be closely monitored for breast and ovarian cancer.
Collapse
Affiliation(s)
- Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Buendia P, Tyree J, Loredo R, Hsu SN. Identification of conserved splicing motifs in mutually exclusive exons of 15 insect species. BMC Genomics 2012; 13 Suppl 2:S1. [PMID: 22537296 PMCID: PMC3303723 DOI: 10.1186/1471-2164-13-s2-s1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background During alternative splicing, the inclusion of an exon in the final mRNA molecule is determined by nuclear proteins that bind cis-regulatory sequences in a target pre-mRNA molecule. A recent study suggested that the regulatory codes of individual RNA-binding proteins may be nearly immutable between very diverse species such as mammals and insects. The model system Drosophila melanogaster therefore presents an excellent opportunity for the study of alternative splicing due to the availability of quality EST annotations in FlyBase. Methods In this paper, we describe an in silico analysis pipeline to extract putative exonic splicing regulatory sequences from a multiple alignment of 15 species of insects. Our method, ESTs-to-ESRs (E2E), uses graph analysis of EST splicing graphs to identify mutually exclusive (ME) exons and combines phylogenetic measures, a sliding window approach along the multiple alignment and the Welch's t statistic to extract conserved ESR motifs. Results The most frequent 100% conserved word of length 5 bp in different insect exons was "ATGGA". We identified 799 statistically significant "spike" hexamers, 218 motifs with either a left or right FDR corrected spike magnitude p-value < 0.05 and 83 with both left and right uncorrected p < 0.01. 11 genes were identified with highly significant motifs in one ME exon but not in the other, suggesting regulation of ME exon splicing through these highly conserved hexamers. The majority of these genes have been shown to have regulated spatiotemporal expression. 10 elements were found to match three mammalian splicing regulator databases. A putative ESR motif, GATGCAG, was identified in the ME-13b but not in the ME-13a of Drosophila N-Cadherin, a gene that has been shown to have a distinct spatiotemporal expression pattern of spliced isoforms in a recent study. Conclusions Analysis of phylogenetic relationships and variability of sequence conservation as implemented in the E2E spikes method may lead to improved identification of ESRs. We found that approximately half of the putative ESRs in common between insects and mammals have a high statistical support (p < 0.01). Several Drosophila genes with spatiotemporal expression patterns were identified to contain putative ESRs located in one exon of the ME exon pairs but not in the other.
Collapse
|
124
|
Abstract
Our knowledge about human genes and the consequences of mutations leading to human genetic diseases has drastically improved over the last few years. It has been recognized that many mutations are indeed pathogenic because they impact the mRNA rather than the protein itself. With our better understanding of the very complex mechanism of splicing, various bioinformatics tools have been developed. They are now frequently used not only to search for sequence motifs corresponding to splicing signals (splice sites, branch points, ESE, and ESS) but also to predict the impact of mutations on these signals. We now need to address the impact of mutations that affect the splicing process, as their consequences could vary from the activation of cryptic signals to the skipping of one or multiple exons. Despite the major developments of the bioinformatics field coupled to experimental data generated on splicing, it is today still not possible to efficiently predict the consequences of mutations impacting splicing signals, especially to predict if they will lead to exon skipping or to cryptic splice site activation.
Collapse
|
125
|
Pierson CR, Dulin-Smith AN, Durban AN, Marshall ML, Marshall JT, Snyder AD, Naiyer N, Gladman JT, Chandler DS, Lawlor MW, Buj-Bello A, Dowling JJ, Beggs AH. Modeling the human MTM1 p.R69C mutation in murine Mtm1 results in exon 4 skipping and a less severe myotubular myopathy phenotype. Hum Mol Genet 2011; 21:811-25. [PMID: 22068590 DOI: 10.1093/hmg/ddr512] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
X-linked myotubular myopathy (MTM) is a severe neuromuscular disease of infancy caused by mutations of MTM1, which encodes the phosphoinositide lipid phosphatase, myotubularin. The Mtm1 knockout (KO) mouse has a severe phenotype and its short lifespan (8 weeks) makes it a challenge to use as a model in the testing of certain preclinical therapeutics. Many MTM patients succumb early in life, but some have a more favorable prognosis. We used human genotype-phenotype correlation data to develop a myotubularin-deficient mouse model with a less severe phenotype than is seen in Mtm1 KO mice. We modeled the human c.205C>T point mutation in Mtm1 exon 4, which is predicted to introduce the p.R69C missense change in myotubularin. Hemizygous male Mtm1 p.R69C mice develop early muscle atrophy prior to the onset of weakness at 2 months. The median survival period is 66 weeks. Histopathology shows small myofibers with centrally placed nuclei. Myotubularin protein is undetectably low because the introduced c.205C>T base change induced exon 4 skipping in most mRNAs, leading to premature termination of myotubularin translation. Some full-length Mtm1 mRNA bearing the mutation is present, which provides enough myotubularin activity to account for the relatively mild phenotype, as Mtm1 KO and Mtm1 p.R69C mice have similar muscle phosphatidylinositol 3-phosphate levels. These data explain the basis for phenotypic variability among human patients with MTM1 p.R69C mutations and establish the Mtm1 p.R69C mouse as a valuable model for the disease, as its less severe phenotype will expand the scope of testable preclinical therapies.
Collapse
|
126
|
Paredes UM, Bubb VJ, Haddley K, Macho GA, Quinn JP. Intronic tandem repeat in the serotonin transporter gene in Old World monkeys: a new transcriptional regulator? J Mol Neurosci 2011; 47:401-7. [PMID: 22038691 DOI: 10.1007/s12031-011-9664-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/12/2011] [Indexed: 11/28/2022]
Abstract
The serotonin transporter gene (SLC6A4) is heavily involved in the regulation of social behaviour of primates. Old World monkeys (e.g. macaques, baboons) have been used to study interactions between variation in the SLC6A4 gene and behaviour. Correlations of variation at one polymorphism located in the promoter region (known as 5HTTLPR) and variation at SLC6A4 expression levels, serotonin turnover and behaviour has been widely studied. In Old World monkeys, the third intron of the SLC6A4 gene also presents a tandem repeat, which sequence varies across species by a few point substitutions. We predict that in these species, this repeated region also acts as transcriptional regulatory domain and that sequence variation at this polymorphic locus might result in differential levels of expression in gene-environment interactions. For testing these hypotheses, the tandem repeat of Mandrillus sphinx and Cercopithecus aethiops from the third intron were cloned into a reporter gene vector and delivered to either primary cultures of rat neonate frontal cortex or the human cell line (JAr) to analyse their transcriptional activities. These repeated sequences supported significantly different levels of gene expression only when delivered into frontal cortex cultures. Furthermore, we tested in silico if such substitutions could have an effect on their binding profile to RNA- and DNA-binding proteins and on splicing. Taken together our results suggest that the tandem repeat in the third intron of the SLC6A4 gene of Old World monkeys could constitute a second transcriptional regulator as suggested for the 5HTTLPR and therefore contribute to diversification of serotonin-related behaviour in these primates.
Collapse
Affiliation(s)
- Ursula M Paredes
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | | | | | | | | |
Collapse
|
127
|
Lin MF, Kheradpour P, Washietl S, Parker BJ, Pedersen JS, Kellis M. Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes. Genome Res 2011; 21:1916-28. [PMID: 21994248 DOI: 10.1101/gr.108753.110] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The degeneracy of the genetic code allows protein-coding DNA and RNA sequences to simultaneously encode additional, overlapping functional elements. A sequence in which both protein-coding and additional overlapping functions have evolved under purifying selection should show increased evolutionary conservation compared to typical protein-coding genes--especially at synonymous sites. In this study, we use genome alignments of 29 placental mammals to systematically locate short regions within human ORFs that show conspicuously low estimated rates of synonymous substitution across these species. The 29-species alignment provides statistical power to locate more than 10,000 such regions with resolution down to nine-codon windows, which are found within more than a quarter of all human protein-coding genes and contain ∼2% of their synonymous sites. We collect numerous lines of evidence that the observed synonymous constraint in these regions reflects selection on overlapping functional elements including splicing regulatory elements, dual-coding genes, RNA secondary structures, microRNA target sites, and developmental enhancers. Our results show that overlapping functional elements are common in mammalian genes, despite the vast genomic landscape.
Collapse
Affiliation(s)
- Michael F Lin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
128
|
Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons. Genome Res 2011; 22:35-50. [PMID: 21974994 DOI: 10.1101/gr.119834.110] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exon-intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon-intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3' and 5' splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery.
Collapse
|
129
|
Brooks AN, Aspden JL, Podgornaia AI, Rio DC, Brenner SE. Identification and experimental validation of splicing regulatory elements in Drosophila melanogaster reveals functionally conserved splicing enhancers in metazoans. RNA (NEW YORK, N.Y.) 2011; 17:1884-94. [PMID: 21865603 PMCID: PMC3185920 DOI: 10.1261/rna.2696311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/08/2011] [Indexed: 05/22/2023]
Abstract
RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESEs) and 231 putative intronic splicing enhancers (ISEs) enriched near weak 5' and 3' splice sites of constitutively spliced introns, distinguishing between those found near short and long introns. We found that a significant proportion (58%) of fly enhancer sequences were previously reported in at least one of the vertebrates. Furthermore, 20% of putative fly ESEs were previously identified as ESEs in human, mouse, and pufferfish; while only two fly ISEs, CTCTCT and TTATAA, were identified as ISEs in all three vertebrate species. Several putative enhancer sequences are similar to characterized binding-site motifs for Drosophila and mammalian splicing regulators. To provide additional evidence for the function of putative ISEs, we separately identified 298 intronic hexamers significantly enriched within sequences phylogenetically conserved among 15 insect species. We found that 73 putative ISEs were among those enriched in conserved regions of the D. melanogaster genome. The functions of nine enhancer sequences were verified in a heterologous splicing reporter, demonstrating that these sequences are sufficient to enhance splicing in vivo. Taken together, these data identify a set of predicted positive-acting splicing regulatory motifs in the Drosophila genome and reveal regulatory sequences that are present in distant metazoan genomes.
Collapse
Affiliation(s)
- Angela N. Brooks
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Julie L. Aspden
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Integrative Genomics, University of California, Berkeley, California 94720, USA
| | - Anna I. Podgornaia
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Donald C. Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Center for Integrative Genomics, University of California, Berkeley, California 94720, USA
| | - Steven E. Brenner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Corresponding author.E-mail .
| |
Collapse
|
130
|
Roque JB, O'Leary CA, Duffy DL, Kyaw-Tanner M, Latter M, Mason K, Vogelnest L, Shipstone M. IgE responsiveness to Dermatophagoides farinae in West Highland white terrier dogs is associated with region on CFA35. J Hered 2011; 102 Suppl 1:S74-80. [PMID: 21846750 DOI: 10.1093/jhered/esr054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin E (IgE)-mediated hypersensitivity against environmental allergens, commonly including Dermatophagoides farinae, is associated with atopic diseases in both humans and dogs. We have recently identified a family of clinically healthy West Highland white terriers (WHWTs) with high-serum D. farinae-IgE levels. In this study, we investigated the genetic mechanism controlling IgE responsiveness in dogs by performing a genome-wide association study (GWAS) using the Affymetrix V2 Dog SNP array in 31 high-IgE and 24 low-IgE responder WHWTs. A gene-dropping simulation method, using SIB-PAIR software, showed significant allelic association between serum D. farinae-specific IgE levels and a 2.3-Mb area on CFA35 (best empirical P = 1 × 10(-5)). A nearby candidate gene, CD83, encodes a protein which has important immunological functions in antigen presentation and regulation of humoral immune responses. We sequenced this gene in 2 high-IgE responders and 2 low-IgE responders and identified an intronic polymorphic repeat sequence with a predicted functional effect, but the association was insufficient to explain the GWAS association signal in this population (P = 1 × 10(-3)). Further studies are necessary to investigate the significance of these findings for IgE responsiveness and atopic disease in the dog.
Collapse
Affiliation(s)
- Joana Barros Roque
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Sterne-Weiler T, Howard J, Mort M, Cooper DN, Sanford JR. Loss of exon identity is a common mechanism of human inherited disease. Genome Res 2011; 21:1563-71. [PMID: 21750108 DOI: 10.1101/gr.118638.110] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It is widely accepted that at least 10% of all mutations causing human inherited disease disrupt splice-site consensus sequences. In contrast to splice-site mutations, the role of auxiliary cis-acting elements such as exonic splicing enhancers (ESE) and exonic splicing silencers (ESS) in human inherited disease is still poorly understood. Here we use a top-down approach to determine rates of loss or gain of known human exonic splicing regulatory (ESR) sequences associated with either disease-causing mutations or putatively neutral single nucleotide polymorphisms (SNPs). We observe significant enrichment toward loss of ESEs and gain of ESSs among inherited disease-causing variants relative to neutral polymorphisms, indicating that exon skipping may play a prominent role in aberrant gene regulation. Both computational and biochemical approaches underscore the relevance of exonic splicing enhancer loss and silencer gain in inherited disease. Additionally, we provide direct evidence that both SRp20 (SRSF3) and possibly PTB (PTBP1) are involved in the function of a splicing silencer that is created de novo by a total of 83 different inherited disease mutations in 67 different disease genes. Taken together, we find that ~25% (7154/27,681) of known mis-sense and nonsense disease-causing mutations alter functional splicing signals within exons, suggesting a much more widespread role for aberrant mRNA processing in causing human inherited disease than has hitherto been appreciated.
Collapse
Affiliation(s)
- Timothy Sterne-Weiler
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
132
|
Hu HJ, Goh SH, Lee YS. Association pattern mining of intron retention events in human based on hybrid learning machine. Genes Genet Syst 2011; 85:383-94. [PMID: 21415568 DOI: 10.1266/ggs.85.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alternative splicing is a main component of protein diversity, and aberrant splicing is known to be one of the main causes of genetic disorders such as cancer. Many statistical and computational approaches have identified several major factors that determine the splicing event, such as exon/intron length, splice site strength, and density of splicing enhancers or silencers. These factors may be correlated with one another and thus result in a specific type of splicing, but there has not been a systematic approach to extracting comprehensible association patterns. Here, we attempted to understand the decision making process of the learning machine on intron retention event. We adopted a hybrid learning machine approach using a random forest and association rule mining algorithm to determine the governing factors of intron retention events and their combined effect on decision-making processes. By quantifying all candidate features into five category values, we enhanced the understandability of generated rules. The interesting features found by the random forest algorithm are that only the adenine- and thymine-based triplets such as ATA, TTA, and ATT, but not the known intronic splicing enhancer GGG triplet is shown the significant features. The rules generated by the association rule mining algorithm also show that constitutive introns are generally characterized by high adenine- and thymine-based triplet frequency (level 3 and above), 3' and 5' splice site scores, exonic splicing silencer scores, and intron length, whereas retained introns are characterized by low-level counterpart scores.
Collapse
Affiliation(s)
- Hae-Jin Hu
- Functional Genomics Branch, Research Institute, National Cancer Center, Gyeonggi-do, Republic of Korea
| | | | | |
Collapse
|
133
|
Rubinstein ND, Doron-Faigenboim A, Mayrose I, Pupko T. Evolutionary models accounting for layers of selection in protein-coding genes and their impact on the inference of positive selection. Mol Biol Evol 2011; 28:3297-308. [PMID: 21690564 DOI: 10.1093/molbev/msr162] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The selective forces acting on a protein-coding gene are commonly inferred using evolutionary codon models by contrasting the rate of nonsynonymous substitutions to the rate of synonymous substitutions. These models usually assume that the synonymous substitution rate, Ks, is homogenous across all sites, which is justified if synonymous sites are free from selection. However, a growing body of evidence indicates that the DNA and RNA levels of protein-coding genes are subject to varying degrees of selective constraints due to various biological functions encoded at these levels. In this paper, we develop evolutionary models that account for these layers of selection by allowing for both among-site variability of substitution rates at the DNA/RNA level (which leads to Ks variability among protein-coding sites) and among-site variability of substitution rates at the protein level (Ka variability). These models are constructed so that positive selection is either allowed or not. This enables statistical testing of positive selection when variability at the DNA/RNA substitution rate is accounted for. Using this methodology, we show that variability of the baseline DNA/RNA substitution rate is a widespread phenomenon in coding sequence data of mammalian genomes, most likely reflecting varying degrees of selection at the DNA and RNA levels. Additionally, we use simulations to examine the impact that accounting for the variability of the baseline DNA/RNA substitution rate has on the inference of positive selection. Our results show that ignoring this variability results in a high rate of erroneous positive-selection inference. Our newly developed model, which accounts for this variability, does not suffer from this problem and hence provides a likelihood framework for the inference of positive selection on a background of variability in the baseline DNA/RNA substitution rate.
Collapse
Affiliation(s)
- Nimrod D Rubinstein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
134
|
Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci U S A 2011; 108:11093-8. [PMID: 21685335 DOI: 10.1073/pnas.1101135108] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We present an intuitive strategy for predicting the effect of sequence variation on splicing. In contrast to transcriptional elements, splicing elements appear to be strongly position dependent. We demonstrated that exonic binding of the normally intronic splicing factor, U2AF65, inhibits splicing. Reasoning that the positional distribution of a splicing element is a signature of its function, we developed a method for organizing all possible sequence motifs into clusters based on the genomic profile of their positional distribution around splice sites. Binding sites for serine/arginine rich (SR) proteins tended to be exonic whereas heterogeneous ribonucleoprotein (hnRNP) recognition elements were mostly intronic. In addition to the known elements, novel motifs were returned and validated. This method was also predictive of splicing mutations. A mutation in a motif creates a new motif that sometimes has a similar distribution shape to the original motif and sometimes has a different distribution. We created an intraallelic distance measure to capture this property and found that mutations that created large intraallelic distances disrupted splicing in vivo whereas mutations with small distances did not alter splicing. Analyzing the dataset of human disease alleles revealed known splicing mutants to have high intraallelic distances and suggested that 22% of disease alleles that were originally classified as missense mutations may also affect splicing. This category together with mutations in the canonical splicing signals suggest that approximately one third of all disease-causing mutations alter pre-mRNA splicing.
Collapse
|
135
|
Ke S, Shang S, Kalachikov SM, Morozova I, Yu L, Russo JJ, Ju J, Chasin LA. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res 2011; 21:1360-74. [PMID: 21659425 DOI: 10.1101/gr.119628.110] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We describe a comprehensive quantitative measure of the splicing impact of a complete set of RNA 6-mer sequences by deep sequencing successfully spliced transcripts. All 4096 6-mers were substituted at five positions within two different internal exons in a 3-exon minigene, and millions of successfully spliced transcripts were sequenced after transfection of human cells. The results allowed the assignment of a relative splicing strength score to each mutant molecule. The effect of 6-mers on splicing often depended on their location; much of this context effect could be ascribed to the creation of different overlapping sequences at each site. Taking these overlaps into account, the splicing effect of each 6-mer could be quantified, and 6-mers could be designated as enhancers (ESEseqs) and silencers (ESSseqs), with an ESRseq score indicating their strength. Some 6-mers exhibited positional bias relative to the two splice sites. The distribution and conservation of these ESRseqs in and around human exons supported their classification. Predicted RNA secondary structure effects were also seen: Effective enhancers, silencers and 3' splice sites tend to be single stranded, and effective 5' splice sites tend to be double stranded. 6-mers that may form positive or negative synergy with another were also identified. Chromatin structure may also influence the splicing enhancement observed, as a good correspondence was found between splicing performance and the predicted nucleosome occupancy scores of 6-mers. This approach may prove of general use in defining nucleic acid regulatory motifs, substitute for functional SELEX in most cases, and provide insights about splicing mechanisms.
Collapse
Affiliation(s)
- Shengdong Ke
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Hyperuricemia cosegregating with osteogenesis imperfecta is associated with a mutation in GPATCH8. Hum Genet 2011; 130:671-83. [DOI: 10.1007/s00439-011-1006-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
137
|
Ke S, Chasin LA. Context-dependent splicing regulation: exon definition, co-occurring motif pairs and tissue specificity. RNA Biol 2011; 8:384-8. [PMID: 21444999 DOI: 10.4161/rna.8.3.14458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Splicing is a crucial process in gene expression in higher organisms because: 1) most vertebrate genes contain introns; and 2) alternative splicing is primarily responsible for increasing proteomic complexity and functional diversity. Intron definition, the coordination across an intron, is a mandatory step in the splicing process. However, exon definition, the coordination across an exon, is also thought to be required for the splicing of most vertebrate exons. Recent investigations of exon definition complexes provide insights into splicing dynamics. That splicing regulators act in a context-dependent mode is supported by a large collection of evidence. Splicing contexts generally can be classified as cis-element and trans-element contexts. A widespread cis-element context is defined by co-occurring motif pairs to which splicing regulatory factors bind to direct specific molecular interactions. Splicing regulation is also coordinated by trans-element contexts as exemplified by tissue specific splicing, where alternative exons can be coordinately regulated by a few splicing factors, the expression and/or activity of which are concertedly higher or lower in the corresponding tissues.
Collapse
Affiliation(s)
- Shengdong Ke
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
138
|
Fernandez-Costa JM, Llamusi MB, Garcia-Lopez A, Artero R. Alternative splicing regulation by Muscleblind proteins: from development to disease. Biol Rev Camb Philos Soc 2011; 86:947-58. [PMID: 21489124 DOI: 10.1111/j.1469-185x.2011.00180.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulated use of exons in pre-mRNAs, a process known as alternative splicing, strongly contributes to proteome diversity. Alternative splicing is finely regulated by factors that bind specific sequences within the precursor mRNAs. Members of the Muscleblind (Mbl) family of splicing factors control critical exon use changes during the development of specific tissues, particularly heart and skeletal muscle. Muscleblind homologs are only found in metazoans from Nematoda to mammals. Splicing targets and recognition mechanisms are also conserved through evolution. In this recognition, Muscleblind CCCH-type zinc finger domains bind to intronic motifs in pre-mRNA targets in which the protein can either activate or repress splicing of nearby exons, depending on the localization of the binding motifs relative to the regulated alternative exon. In humans, the Muscleblind-like 1 (MBNL1) proteins play a critical role in hereditary diseases caused by microsatellite expansions, particularly myotonic dystrophy type 1 (DM1), in which depletion of MBNL1 activity through sequestration explains most misregulated alternative splicing events, at least in murine models. Because of the involvement of these proteins in human diseases, further understanding of the molecular mechanisms by which MBNL1 regulates splicing will help design therapies to revert pathological splicing alterations. Here we summarize the most relevant findings on this family of proteins in recent years, focusing on recently described functional motifs, transcriptional regulation of Muscleblind, regulatory activity on splicing, and involvement in human diseases.
Collapse
|
139
|
Serio RN. Unraveling the Mysteries of Aging Through a Hutchinson–Gilford Progeria Syndrome Model. Rejuvenation Res 2011; 14:133-41. [DOI: 10.1089/rej.2010.1088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
140
|
Raponi M, Kralovicova J, Copson E, Divina P, Eccles D, Johnson P, Baralle D, Vorechovsky I. Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in BRCA1 exon 6. Hum Mutat 2011; 32:436-44. [PMID: 21309043 DOI: 10.1002/humu.21458] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 01/07/2011] [Indexed: 12/29/2022]
Abstract
Missense, nonsense, and translationally silent mutations can inactivate genes by altering the inclusion of mutant exons in mRNA, but their overall frequency among disease-causing exonic substitutions is unknown. Here, we have tested missense and silent mutations deposited in the BRCA1 mutation databases of unclassified variants for their effects on exon inclusion. Analysis of 21 BRCA1 variants using minigene assays revealed a single exon-skipping mutation c.231G>T. Comprehensive mutagenesis of an adjacent 12-nt segment showed that this silent mutation resulted in a higher level of exon skipping than the 35 other single-nucleotide substitutions. Exon inclusion levels of mutant constructs correlated significantly with predicted splicing enhancers/silencers, prompting the development of two online utilities freely available at http://www.dbass.org.uk. EX-SKIP quickly estimates which allele is more susceptible to exon skipping, whereas HOT-SKIP examines all possible mutations at each exon position and identifies candidate exon-skipping positions/substitutions. We demonstrate that the distribution of exon-skipping and disease-associated substitutions previously identified in coding regions was biased toward top-ranking HOT-SKIP mutations. Finally, we show that proteins 9G8, SC35, SF2/ASF, Tra2, and hnRNP A1 were associated with significant alterations of BRCA1 exon 6 inclusion in the mRNA. Together, these results facilitate prediction of exonic substitutions that reduce exon inclusion in mature transcripts.
Collapse
Affiliation(s)
- Michela Raponi
- University of Southampton School of Medicine, Southampton, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Fu Y, Masuda A, Ito M, Shinmi J, Ohno K. AG-dependent 3'-splice sites are predisposed to aberrant splicing due to a mutation at the first nucleotide of an exon. Nucleic Acids Res 2011; 39:4396-404. [PMID: 21288883 PMCID: PMC3105431 DOI: 10.1093/nar/gkr026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In pre-mRNA splicing, a conserved AG/G at the 3′-splice site is recognized by U2AF35. A disease-causing mutation abrogating the G nucleotide at the first position of an exon (E+1) causes exon skipping in GH1, FECH and EYA1, but not in LPL or HEXA. Knockdown of U2AF35 enhanced exon skipping in GH1 and FECH. RNA-EMSA revealed that wild-type FECH requires U2AF35 but wild-type LPL does not. A series of artificial mutations in the polypyrimidine tracts of GH1, FECH, EYA1, LPL and HEXA disclosed that a stretch of at least 10–15 pyrimidines is required to ensure normal splicing in the presence of a mutation at E+1. Analysis of nine other disease-causing mutations at E+1 detected five splicing mutations. Our studies suggest that a mutation at the AG-dependent 3′-splice site that requires U2AF35 for spliceosome assembly causes exon skipping, whereas one at the AG-independent 3′-splice site that does not require U2AF35 gives rise to normal splicing. The AG-dependence of the 3′-splice site that we analyzed in disease-causing mutations at E+1 potentially helps identify yet unrecognized splicing mutations at E+1.
Collapse
Affiliation(s)
- Yuan Fu
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
142
|
Xiao X, Lee JH. Systems analysis of alternative splicing and its regulation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:550-565. [PMID: 20836047 DOI: 10.1002/wsbm.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alternative splicing (AS) has emerged as a key mechanism that accounts for gene expression diversity in metazoan organisms. Splicing is tightly regulated by a repertoire of RNA and protein factors and RNA sequence elements that function in a cooperative manner. Systems-level experimental and computational approaches have been instrumental in establishing comprehensive profiles of transcript variants generated by AS. In addition, systems biology approaches are starting to define how combinatorial splicing regulation shapes the complex splicing phenotypes observed in different tissue types and developmental stages and under different conditions. Here, we review recent progress in these areas.
Collapse
Affiliation(s)
- Xinshu Xiao
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Jae-Hyung Lee
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
143
|
SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol Cell Biol 2010; 31:793-802. [PMID: 21135118 DOI: 10.1128/mcb.01117-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SR proteins are well known to promote exon inclusion in regulated splicing through exonic splicing enhancers. SR proteins have also been reported to cause exon skipping, but little is known about the mechanism. We previously characterized SRSF1 (SF2/ASF)-dependent exon skipping of the CaMKIIδ gene during heart remodeling. By using mouse embryo fibroblasts derived from conditional SR protein knockout mice, we now show that SR protein-induced exon skipping depends on their prevalent actions on a flanking constitutive exon and requires collaboration of more than one SR protein. These findings, coupled with other established rules for SR proteins, provide a theoretical framework to understand the complex effect of SR protein-regulated splicing in mammalian cells. We further demonstrate that heart-specific CaMKIIδ splicing can be reconstituted in fibroblasts by downregulating SR proteins and upregulating a RBFOX protein and that SR protein overexpression impairs regulated CaMKIIδ splicing and neuronal differentiation in P19 cells, illustrating that SR protein-dependent exon skipping may constitute a key strategy for synergism with other splicing regulators in establishing tissue-specific alternative splicing critical for cell differentiation programs.
Collapse
|
144
|
Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 2010; 11:773-85. [PMID: 20940738 PMCID: PMC3743540 DOI: 10.1038/nrg2867] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The limitations of genome-wide association (GWA) studies that focus on the phenotypic influence of common genetic variants have motivated human geneticists to consider the contribution of rare variants to phenotypic expression. The increasing availability of high-throughput sequencing technologies has enabled studies of rare variants but these methods will not be sufficient for their success as appropriate analytical methods are also needed. We consider data analysis approaches to testing associations between a phenotype and collections of rare variants in a defined genomic region or set of regions. Ultimately, although a wide variety of analytical approaches exist, more work is needed to refine them and determine their properties and power in different contexts.
Collapse
Affiliation(s)
- Vikas Bansal
- The Scripps Translational Science Institute, 3344 North Torrey Pines Court, Suite 300, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
145
|
Llorian M, Schwartz S, Clark TA, Hollander D, Tan LY, Spellman R, Gordon A, Schweitzer AC, de la Grange P, Ast G, Smith CWJ. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol 2010; 17:1114-23. [PMID: 20711188 PMCID: PMC2933513 DOI: 10.1038/nsmb.1881] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022]
Abstract
To gain global insights into the role of the well-known repressive splicing regulator PTB, we analyzed the consequences of PTB knockdown in HeLa cells using high-density oligonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB-repressed and PTB-activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTB-activated exon to a PTB-repressed exon. Our results show that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.
Collapse
Affiliation(s)
- Miriam Llorian
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Ke S, Chasin LA. Intronic motif pairs cooperate across exons to promote pre-mRNA splicing. Genome Biol 2010; 11:R84. [PMID: 20704715 PMCID: PMC2945786 DOI: 10.1186/gb-2010-11-8-r84] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 07/02/2010] [Accepted: 08/12/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A very early step in splice site recognition is exon definition, a process that is as yet poorly understood. Communication between the two ends of an exon is thought to be required for this step. We report genome-wide evidence for exons being defined through the combinatorial activity of motifs located in flanking intronic regions. RESULTS Strongly co-occurring motifs were found to specifically reside in four intronic regions surrounding a large number of human exons. These paired motifs occur around constitutive and alternative exons but not pseudo exons. Most co-occurring motifs are limited to intronic regions within 100 nucleotides of the exon. They are preferentially associated with weaker exons. Their pairing is conserved in evolution and they exhibit a lower frequency of single nucleotide polymorphism when paired. Paired motifs display specificity with respect to distance from the exon borders and in constitutive versus alternative splicing. Many resemble binding sites for heterogeneous nuclear ribonucleoproteins. Specific pairs are associated with tissue-specific genes, the higher expression of which coincides with that of the pertinent RNA binding proteins. Tested pairs acted synergistically to enhance exon inclusion, and this enhancement was found to be exon-specific. CONCLUSIONS The exon-flanking sequence pairs identified here by genomic analysis promote exon inclusion and may play a role in the exon definition step in pre-mRNA splicing. We propose a model in which multiple concerted interactions are required between exonic sequences and flanking intronic sequences to effect exon definition.
Collapse
Affiliation(s)
- Shengdong Ke
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, MC 2433, New York, NY 10027, USA.
| | | |
Collapse
|
147
|
Shomron N, Hamasaki-Katagiri N, Hunt R, Hershko K, Pommier E, Geetha S, Blaisdell A, Dobkin A, Marple A, Roma I, Newell J, Allen C, Friedman S, Kimchi-Sarfaty C. A splice variant of ADAMTS13 is expressed in human hepatic stellate cells and cancerous tissues. Thromb Haemost 2010; 104:531-5. [PMID: 20664912 DOI: 10.1160/th09-12-0860] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/06/2010] [Indexed: 11/05/2022]
Abstract
Although ADAMTS13, the von Willebrand factor (VWF)-cleaving protease, is expressed in a range of tissues, the physiological significance of tissue-specific ADAMTS13 alternative splicing isoforms have yet to be clarified. Screening a panel of human tissues and cell lines revealed a spliced ADAMTS13 transcript in hepatic stellate cells and a hepatoma cell line that retains the 25th intron. A nonsense codon within the intron truncates the protease, which gains 64 novel amino acids in lieu of both CUB domains. This isoform, while retaining VWF-cleaving capability, accumulates intracellularly and its biological inaccessibility may prevent its participation in regulating haemostasis and other physiologic functions.
Collapse
Affiliation(s)
- Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Nlend Nlend R, Meyer K, Schümperli D. Repair of pre-mRNA splicing: prospects for a therapy for spinal muscular atrophy. RNA Biol 2010; 7:430-40. [PMID: 20523126 DOI: 10.4161/rna.7.4.12206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent analyses of complete genomes have revealed that alternative splicing became more prevalent and important during eukaryotic evolution. Alternative splicing augments the protein repertoire--particularly that of the human genome--and plays an important role in the development and function of differentiated cell types. However, splicing is also extremely vulnerable, and defects in the proper recognition of splicing signals can give rise to a variety of diseases. In this review, we discuss splicing correction therapies, by using the inherited disease Spinal Muscular Atrophy (SMA) as an example. This lethal early childhood disorder is caused by deletions or other severe mutations of SMN1, a gene coding for the essential survival of motoneurons protein. A second gene copy present in humans and few non-human primates, SMN2, can only partly compensate for the defect because of a single nucleotide change in exon 7 that causes this exon to be skipped in the majority of mRNAs. Thus SMN2 is a prime therapeutic target for SMA. In recent years, several strategies based on small molecule drugs, antisense oligonucleotides or in vivo expressed RNAs have been developed that allow a correction of SMN2 splicing. For some of these, a therapeutic benefit has been demonstrated in mouse models for SMA. This means that clinical trials of such splicing therapies for SMA may become possible in the near future.
Collapse
|
149
|
Saccone SF, Bolze R, Thomas P, Quan J, Mehta G, Deelman E, Tischfield JA, Rice JP. SPOT: a web-based tool for using biological databases to prioritize SNPs after a genome-wide association study. Nucleic Acids Res 2010; 38:W201-9. [PMID: 20529875 PMCID: PMC2896195 DOI: 10.1093/nar/gkq513] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/18/2010] [Accepted: 05/21/2010] [Indexed: 11/13/2022] Open
Abstract
SPOT (http://spot.cgsmd.isi.edu), the SNP prioritization online tool, is a web site for integrating biological databases into the prioritization of single nucleotide polymorphisms (SNPs) for further study after a genome-wide association study (GWAS). Typically, the next step after a GWAS is to genotype the top signals in an independent replication sample. Investigators will often incorporate information from biological databases so that biologically relevant SNPs, such as those in genes related to the phenotype or with potentially non-neutral effects on gene expression such as a splice sites, are given higher priority. We recently introduced the genomic information network (GIN) method for systematically implementing this kind of strategy. The SPOT web site allows users to upload a list of SNPs and GWAS P-values and returns a prioritized list of SNPs using the GIN method. Users can specify candidate genes or genomic regions with custom levels of prioritization. The results can be downloaded or viewed in the browser where users can interactively explore the details of each SNP, including graphical representations of the GIN method. For investigators interested in incorporating biological databases into a post-GWAS SNP selection strategy, the SPOT web tool is an easily implemented and flexible solution.
Collapse
Affiliation(s)
- Scott F Saccone
- Department of Psychiatry, Washington University, St Louis, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Paz I, Akerman M, Dror I, Kosti I, Mandel-Gutfreund Y. SFmap: a web server for motif analysis and prediction of splicing factor binding sites. Nucleic Acids Res 2010; 38:W281-5. [PMID: 20501600 PMCID: PMC2896136 DOI: 10.1093/nar/gkq444] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is a post-transcriptional process considered to be responsible for the huge diversity of proteins in higher eukaryotes. AS events are regulated by different splicing factors (SFs) that bind to sequence elements on the RNA. SFmap is a web server for predicting putative SF binding sites in genomic data (http://sfmap.technion.ac.il). SFmap implements the COS(WR) algorithm, which computes similarity scores for a given regulatory motif based on information derived from its sequence environment and its evolutionary conservation. Input for SFmap is a human genomic sequence or a list of sequences in FASTA format that can either be uploaded from a file or pasted into a window. SFmap searches within a given sequence for significant hits of binding motifs that are either stored in our database or defined by the user. SFmap results are provided both as a text file and as a graphical web interface.
Collapse
Affiliation(s)
- Inbal Paz
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|