101
|
Grunstein M, Gasser SM. Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a017491. [PMID: 23818500 DOI: 10.1101/cshperspect.a017491] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Saccharomyces cerevisiae provides a well-studied model system for heritable silent chromatin, in which a nonhistone protein complex--the SIR complex--represses genes by spreading in a sequence-independent manner, much like heterochromatin in higher eukaryotes. The ability to study mutations in histones and to screen genome-wide for mutations that impair silencing has yielded an unparalleled depth of detail about this system. Recent advances in the biochemistry and structural biology of the SIR-chromatin complex bring us much closer to a molecular understanding of how Sir3 selectively recognizes the deacetylated histone H4 tail and demethylated histone H3 core. The existence of appropriate mutants has also shown how components of the silencing machinery affect physiological processes beyond transcriptional repression.
Collapse
Affiliation(s)
- Michael Grunstein
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
102
|
Sites of acetylation on newly synthesized histone H4 are required for chromatin assembly and DNA damage response signaling. Mol Cell Biol 2013; 33:3286-98. [PMID: 23775118 DOI: 10.1128/mcb.00460-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.
Collapse
|
103
|
Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet 2013; 9:e1003518. [PMID: 23754951 PMCID: PMC3675013 DOI: 10.1371/journal.pgen.1003518] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/04/2013] [Indexed: 11/24/2022] Open
Abstract
Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1−/− neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1−/− mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1−/− MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly. The packaging of genomic DNA during replication is a highly orchestrated process. An important aspect of chromatin assembly is the processing of newly synthesized histones prior to their incorporation into chromatin. The transient acetylation of histone H3 and H4 NH2-terminal tails is a hallmark of this processing with newly synthesized molecules of histone H4 being predominantly diacetylated. This diacetylation occurs specifically on lysine residues 5 and 12 and this precise pattern is widely conserved throughout eukaryotic evolution. The acetylation of newly synthesized histones is catalyzed by type B histone acetyltransferases. Hat1 is the founding member of this class of enzymes and has been proposed to be responsible for the diacetylation of newly synthesized histone H4. Here we describe the development of a mouse knockout model of Hat1. The absence of Hat1 results in neonatal lethality due to developmental defects in the lung. Mouse embryonic fibroblasts derived from Hat1−/− mice are sensitive to DNA damaging agents and display a high level of genome instability. Biochemical analyses provide definitive evidence that Hat1 is the sole enzyme responsible for the acetylation of newly synthesized histone H4. Surprisingly, Hat1 is also necessary for the normal processing of newly synthesized histone H3.
Collapse
|
104
|
Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 2013; 340:195-9. [PMID: 23580526 DOI: 10.1126/science.1229758] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The histone variant H2A.Z plays key roles in gene expression, DNA repair, and centromere function. H2A.Z deposition is controlled by SWR-C chromatin remodeling enzymes that catalyze the nucleosomal exchange of canonical H2A with H2A.Z. Here we report that acetylation of histone H3 on lysine 56 (H3-K56Ac) alters the substrate specificity of SWR-C, leading to promiscuous dimer exchange in which either H2A.Z or H2A can be exchanged from nucleosomes. This result was confirmed in vivo, where genome-wide analysis demonstrated widespread decreases in H2A.Z levels in yeast mutants with hyperacetylated H3K56. Our work also suggests that a conserved SWR-C subunit may function as a "lock" that prevents removal of H2A.Z from nucleosomes. Our study identifies a histone modification that regulates a chromatin remodeling reaction and provides insights into how histone variants and nucleosome turnover can be controlled by chromatin regulators.
Collapse
Affiliation(s)
- Shinya Watanabe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
105
|
Guan X, Rastogi N, Parthun MR, Freitas MA. Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS). Mol Cell Proteomics 2013; 12:2048-59. [PMID: 23592332 DOI: 10.1074/mcp.m112.026716] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this paper we describe an approach that combines stable isotope labeling of amino acids in cells culture, high mass accuracy liquid chromatography tandem mass spectrometry and a novel data analysis approach to accurately determine relative peptide post-translational modification levels. This paper describes the application of this approach to the discovery of novel histone modification crosstalk networks in Saccharomyces cerevisiae. Yeast histone mutants were generated to mimic the presence/absence of 44 well-known modifications on core histones H2A, H2B, H3, and H4. In each mutant strain the relative change in H3 K79 methylation and H3 K56 acetylation were determined using stable isotope labeling of amino acids in cells culture. This approach showed relative changes in H3 K79 methylation and H3 K56 acetylation that are consistent with known histone crosstalk networks. More importantly, this study revealed additional histone modification sites that affect H3 K79 methylation and H3 K56 acetylation.
Collapse
Affiliation(s)
- Xiaoyan Guan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
106
|
Nucleosome assembly factors CAF-1 and HIR modulate epigenetic switching frequencies in an H3K56 acetylation-associated manner in Candida albicans. EUKARYOTIC CELL 2013; 12:591-603. [PMID: 23417560 DOI: 10.1128/ec.00334-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CAF-1 and HIR are highly conserved histone chaperone protein complexes that function in the assembly of nucleosomes onto chromatin. CAF-1 is characterized as having replication-coupled nucleosome activity, whereas the HIR complex can assemble nucleosomes independent of replication. Histone H3K56 acetylation, controlled by the acetyltransferase Rtt109 and deacetylase Hst3, also plays a significant role in nucleosome assembly. In this study, we generated a set of deletion mutants to genetically characterize pathway-specific and overlapping functions of CAF-1 and HIR in C. albicans. Their roles in epigenetic maintenance of cell type were examined by using the white-opaque switching system in C. albicans. We show that CAF-1 and HIR play conserved roles in UV radiation recovery, repression of histone gene expression, correct chromosome segregation, and stress responses. Unique to C. albicans, the cac2Δ/Δ mutant shows increased sensitivity to the Hst3 inhibitor nicotinamide, while the rtt109Δ/Δ cac2Δ/Δ and hir1Δ/Δ cac2Δ/Δ mutants are resistant to nicotinamide. CAF-1 plays a major role in maintaining cell types, as the cac2Δ/Δ mutant exhibited increased switching frequencies in both directions and switched at a high frequency to opaque in response to nicotinamide. Like the rtt109Δ/Δ mutant, the hir1Δ/Δ cac2Δ/Δ double mutant is defective in maintaining the opaque cell fate and blocks nicotinamide-induced opaque formation, and the defects are suppressed by ectopic expression of the master white-opaque regulator Wor1. Our data suggest an overlapping function of CAF-1 and HIR in epigenetic regulation of cell fate determination in an H3K56 acetylation-associated manner.
Collapse
|
107
|
Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid. PLoS Genet 2013; 9:e1003237. [PMID: 23357952 PMCID: PMC3554610 DOI: 10.1371/journal.pgen.1003237] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/27/2012] [Indexed: 11/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are harmful lesions that arise mainly during replication. The choice of the sister chromatid as the preferential repair template is critical for genome integrity, but the mechanisms that guarantee this choice are unknown. Here we identify new genes with a specific role in assuring the sister chromatid as the preferred repair template. Physical analyses of sister chromatid recombination (SCR) in 28 selected mutants that increase Rad52 foci and inter-homolog recombination uncovered 8 new genes required for SCR. These include the SUMO/Ub-SUMO protease Wss1, the stress-response proteins Bud27 and Pdr10, the ADA histone acetyl-transferase complex proteins Ahc1 and Ada2, as well as the Hst3 and Hst4 histone deacetylase and the Rtt109 histone acetyl-transferase genes, whose target is histone H3 Lysine 56 (H3K56). Importantly, we use mutations in H3K56 residue to A, R, and Q to reveal that H3K56 acetylation/deacetylation is critical to promote SCR as the major repair mechanism for replication-born DSBs. The same phenotype is observed for a particular class of rad52 alleles, represented by rad52-C180A, with a DSB repair defect but a spontaneous hyper-recombination phenotype. We propose that specific Rad52 residues, as well as the histone H3 acetylation/deacetylation state of chromatin and other specific factors, play an important role in identifying the sister as the choice template for the repair of replication-born DSBs. Our work demonstrates the existence of specific functions to guarantee SCR as the main repair event for replication-born DSBs that can occur by two pathways, one Rad51-dependent and the other Pol32-dependent. A dysfunction can lead to genome instability as manifested by high levels of homolog recombination and DSB accumulation. Double-strand breaks (DSBs) are among the most dangerous DNA lesions and can lead to genomic instability, a process associated with cancer and hereditary diseases. An important source of DSBs is replication, Sister Chromatid Recombination (SCR) being the main mechanism for DSB repair in dividing eukaryotic cells. SCR repair is error-free and uses the sister chromatid as template, generating an identical DNA sequence and therefore preventing genomic instability. In this work, we use an inverted-repeat assay with which we can physically detect SCR intermediates generated by the repair of a replication-born DSB. We hypothesized that SCR defects can result in an increase of recombination with the homologous chromosome, so we assayed SCR in 28 mutants previously described to increase homolog recombination. Our results describe 8 new genes involved in SCR, including functions such as histone acetylation/deacetylation, SUMO-Ubiquitin metabolism, and stress response, as well as an allele of RAD52. This demonstrates the importance of the choice of the sister chromatid as template for DSB repair and provides a broad vision of SCR as a tightly regulated process essential for genome integrity.
Collapse
|
108
|
Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Appl Biochem Biotechnol 2013; 169:1405-17. [PMID: 23315209 DOI: 10.1007/s12010-012-0070-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/26/2012] [Indexed: 01/27/2023]
Abstract
Bud dormancy is of ecological and economical interest due to its impact on tea (Camellia sinensis (L.) O. Kuntze) plant growth and yield. Growth regulation associated with dormancy is an essential element in plant's life cycle that leads to changes in expression of large number of genes. In order to identify and provide a picture of the transcriptome profile, cDNA library was constructed from dormant bud (banjhi) of tea. Sequence and gene ontology analysis of 3,500 clones, in many cases, enabled their functional categorization concerning the bud growth. Based on the cDNA library data, the putative role of identified genes from tea is discussed in relation to growth and dormancy, which includes morphogenesis, cellular differentiation, tropism, cell cycle, signaling, and various metabolic pathways. There was a higher representation of unknown processes such as unknown molecular functions (65.80 %), unknown biological processes (62.46 %), and unknown cellular components (67.42 %). However, these unknown transcripts represented a novel component of transcripts in tea plant bud growth and/or dormancy development. The identified transcripts and expressed sequence tags provides a valuable public resource and preliminary insights into the molecular mechanisms of bud dormancy regulation. Further, the findings will be the target of future expression experiments, particularly for further identification of dormancy-related genes in this species.
Collapse
|
109
|
Trickey M, Fujimitsu K, Yamano H. Anaphase-promoting complex/cyclosome-mediated proteolysis of Ams2 in the G1 phase ensures the coupling of histone gene expression to DNA replication in fission yeast. J Biol Chem 2013; 288:928-37. [PMID: 23195958 PMCID: PMC3543042 DOI: 10.1074/jbc.m112.410241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/20/2012] [Indexed: 01/12/2023] Open
Abstract
Histone transcription and deposition are tightly regulated with the DNA replication cycle to maintain genetic integrity. Ams2 is a GATA-containing transcription factor responsible for core histone gene expression and for CENP-A loading at centromeres in fission yeast. Ams2 levels are cell cycle-regulated, and after the S phase Ams2 is degraded by the SCF(pof3) ubiquitin ligase; however, the regulation of Ams2 in G(1) or meiosis is poorly understood. Here we show that another ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) targets Ams2 for destruction in G(1). Ubiquitylation and destruction of Ams2 is dependent upon a coactivator Cdh1/Ste9 and the KEN box in the C terminus of Ams2. We also find that stabilization of Ams2 sensitizes cells to the anti-microtubule drug thiabendazole and the histone deacetylase inhibitor tricostatin A when a histone deacetylase gene hst4 is deleted, suggesting that histone acetylation together with Ams2 stability ensures the coupling of mitosis to DNA replication. Furthermore, in meiosis, the failure of the APC/C-mediated destruction of Ams2 is deleterious, and pre-meiotic DNA replication is barely completed. These data suggest that Ams2 destruction via both the APC/C and the SCF ubiquitin ligases underlies the coordination of histone expression and DNA replication.
Collapse
Affiliation(s)
- Michelle Trickey
- From the Cell Cycle Control Group, University College London Cancer Institute, WC1E 6BT, United Kingdom
| | - Kazuyuki Fujimitsu
- From the Cell Cycle Control Group, University College London Cancer Institute, WC1E 6BT, United Kingdom
| | - Hiroyuki Yamano
- From the Cell Cycle Control Group, University College London Cancer Institute, WC1E 6BT, United Kingdom
| |
Collapse
|
110
|
Isolation and characterization of Histone1 gene and its promoter from tea plant (Camellia sinensis). Mol Biol Rep 2013; 40:3641-8. [DOI: 10.1007/s11033-012-2439-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023]
|
111
|
Liu Y, Wang DL, Chen S, Zhao L, Sun FL. Oncogene Ras/phosphatidylinositol 3-kinase signaling targets histone H3 acetylation at lysine 56. J Biol Chem 2012; 287:41469-80. [PMID: 22982396 PMCID: PMC3510844 DOI: 10.1074/jbc.m112.367847] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is well established that the small GTPase Ras promotes tumor initiation by activating at least three different mediators: Raf, PI3K, and Ras-like (Ral) guanine nucleotide exchange factors. However, the exact mechanisms that underlie these different Ras signaling pathways, which are involved in tumor progression, remain to be elucidated. In this study, we report that the Ras-PI3K pathway, but not Raf or the Ral guanine nucleotide exchange factors, specifically targets the acetylation of H3 at lysine 56 (H3K56ac), thereby regulating tumor cell activity. We demonstrate that the Ras-PI3K-induced reduction in H3K56ac is associated with the proliferation and migration of tumor cells by targeting the transcription of tumor-associated genes. The depletion of the histone deacetyltransferases Sirt1 and Sirt2 rescues the Ras-PI3K-induced decrease in H3K56ac, gene transcription, tumor cell proliferation, and tumor cell migration. Furthermore, we demonstrate that the Ras-PI3K-AKT pathway regulates H3K56ac via the MDM2-dependent degradation of CREB-binding protein/p300. Taken together, the results of this study demonstrate that the Ras-PI3K signaling pathway targets specific epigenetic modifications in tumor cells.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
112
|
Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression. Mol Cell Biol 2012; 32:4337-49. [PMID: 22907759 DOI: 10.1128/mcb.00871-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.
Collapse
|
113
|
Cesarini E, D'Alfonso A, Camilloni G. H4K16 acetylation affects recombination and ncRNA transcription at rDNA in Saccharomyces cerevisiae. Mol Biol Cell 2012; 23:2770-81. [PMID: 22621897 PMCID: PMC3395664 DOI: 10.1091/mbc.e12-02-0095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transcription-associated recombination (TAR) is crucial for stability among repeated units of rDNA. Several histone deacetylases and a chromatin architectural component control the synthesis of ncRNA and rDNA recombination. The only acetylation state of histone H4 at Lys-16 is sufficient to regulate TAR at rDNA. Transcription-associated recombination is an important process involved in several aspects of cell physiology. In the ribosomal DNA (rDNA) of Saccharomyces cerevisiae, RNA polymerase II transcription–dependent recombination has been demonstrated among the repeated units. In this study, we investigate the mechanisms controlling this process at the chromatin level. On the basis of a small biased screening, we found that mutants of histone deacetylases and chromatin architectural proteins alter both the amount of Pol II–dependent noncoding transcripts and recombination products at rDNA in a coordinated manner. Of interest, chromatin immunoprecipitation analyses in these mutants revealed a corresponding variation of the histone H4 acetylation along the rDNA repeat, particularly at Lys-16. Here we provide evidence that a single, rapid, and reversible posttranslational modification—the acetylation of the H4K16 residue—is involved in the coordination of transcription and recombination at rDNA.
Collapse
Affiliation(s)
- Elisa Cesarini
- Dipartimento di Biologia e Biotecnologie, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | |
Collapse
|
114
|
Abstract
For unicellular organisms, the decision to enter the cell cycle can be viewed most fundamentally as a metabolic problem. A cell must assess its nutritional and metabolic status to ensure it can synthesize sufficient biomass to produce a new daughter cell. The cell must then direct the appropriate metabolic outputs to ensure completion of the division process. Herein, we discuss the changes in metabolism that accompany entry to, and exit from, the cell cycle for the unicellular eukaryote Saccharomyces cerevisiae. Studies of budding yeast under continuous, slow-growth conditions have provided insights into the essence of these metabolic changes at unprecedented temporal resolution. Some of these mechanisms by which cell growth and proliferation are coordinated with metabolism are likely to be conserved in multicellular organisms. An improved understanding of the metabolic basis of cell cycle control promises to reveal fundamental principles governing tumorigenesis, metazoan development, niche expansion, and many additional aspects of cell and organismal growth control.
Collapse
Affiliation(s)
- Ling Cai
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA.
| | | |
Collapse
|
115
|
Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2. Proc Natl Acad Sci U S A 2012; 109:E916-25. [PMID: 22474337 DOI: 10.1073/pnas.1121471109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.
Collapse
|
116
|
Lopes da Rosa J, Kaufman PD. Chromatin-mediated Candida albicans virulence. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1819:349-55. [PMID: 21888998 PMCID: PMC3243783 DOI: 10.1016/j.bbagrm.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Candida albicans is the most prevalent human fungal pathogen. To successfully propagate an infection, this organism relies on the ability to change morphology, express virulence-associated genes and resist DNA damage caused by the host immune system. Many of these events involve chromatin alterations that are crucial for virulence. This review will focus on the studies that have been conducted on how chromatin function affects pathogenicity of C. albicans and other fungi. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
Affiliation(s)
- Jessica Lopes da Rosa
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | - Paul D. Kaufman
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| |
Collapse
|
117
|
Xu D, Huang W, Li Y, Wang H, Huang H, Cui X. Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:792-808. [PMID: 22026817 DOI: 10.1111/j.1365-313x.2011.04831.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation.
Collapse
Affiliation(s)
- Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
118
|
Masumoto H, Nakato R, Kanemaki M, Shirahige K, Hachinohe M. The inheritance of histone modifications depends upon the location in the chromosome in Saccharomyces cerevisiae. PLoS One 2012; 6:e28980. [PMID: 22216151 PMCID: PMC3244422 DOI: 10.1371/journal.pone.0028980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/18/2011] [Indexed: 01/17/2023] Open
Abstract
Histone modifications are important epigenetic features of chromatin that must be replicated faithfully. However, the molecular mechanisms required to duplicate and maintain histone modification patterns in chromatin remain to be determined. Here, we show that the introduction of histone modifications into newly deposited nucleosomes depends upon their location in the chromosome. In Saccharomyces cerevisiae, newly deposited nucleosomes consisting of newly synthesized histone H3-H4 tetramers are distributed throughout the entire chromosome. Methylation of lysine 4 on histone H3 (H3-K4), a hallmark of euchromatin, is introduced into these newly deposited nucleosomes, regardless of whether the neighboring preexisting nucleosomes harbor the K4 mutation in histone H3. Furthermore, if the heterochromatin-binding protein Sir3 is unavailable during DNA replication, histone H3-K4 methylation is introduced onto newly deposited nucleosomes in telomeric heterochromatin. Thus, a conservative distribution model most accurately explains the inheritance of histone modifications because the location of histones within euchromatin or heterochromatin determines which histone modifications are introduced.
Collapse
Affiliation(s)
- Hiroshi Masumoto
- Faculty of Life and Environmental Sciences, Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
119
|
Histone H3 lysine 56 acetylation and the response to DNA replication fork damage. Mol Cell Biol 2011; 32:154-72. [PMID: 22025679 DOI: 10.1128/mcb.05415-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes are not due to defects in base excision repair, defects in DNA damage tolerance, or a lack of Rad51 loading at sites of DNA damage. Our results argue that the acute sensitivity of H3K56ac-deficient cells to MMS and camptothecin stems from a failure to complete the repair of specific types of DNA lesions by recombination and/or from defects in the completion of DNA replication.
Collapse
|
120
|
Abstract
Alterations of chromatin structure have been shown to be crucial for response to cell signaling and for programmed gene expression in development. Posttranslational histone modifications influence changes in chromatin structure both directly and by targeting or activating chromatin-remodeling complexes. Histone modifications intersect with cell signaling pathways to control gene expression and can act combinatorially to enforce or reverse epigenetic marks in chromatin. Through their recognition by protein complexes with enzymatic activities cross talk is established between different modifications and with other epigenetic pathways, including noncoding RNAs (ncRNAs) and DNA methylation. Here, we review the functions of histone modifications and their exploitation in the programming of gene expression during several events in development.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
121
|
Nebbioso A, Pereira R, Khanwalkar H, Matarese F, García-Rodríguez J, Miceli M, Logie C, Kedinger V, Ferrara F, Stunnenberg HG, de Lera AR, Gronemeyer H, Altucci L. Death Receptor Pathway Activation and Increase of ROS Production by the Triple Epigenetic Inhibitor UVI5008. Mol Cancer Ther 2011; 10:2394-404. [DOI: 10.1158/1535-7163.mct-11-0525] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
122
|
Parthun MR. Histone acetyltransferase 1: more than just an enzyme? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:256-63. [PMID: 24459728 DOI: 10.1016/j.bbagrm.2011.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
Histone acetyltransferase 1 (HAT1) is an enzyme that is likely to be responsible for the acetylation that occurs on lysines 5 and 12 of the NH2-terminal tail of newly synthesized histone H4. Initial studies suggested that, despite its evolutionary conservation, this modification of new histone H4 played only a minor role in chromatin assembly. However, a number of recent studies have brought into focus the important role of both this modification and HAT1 in histone dynamics. Surprisingly, the function of HAT1 in chromatin assembly may extend beyond just its catalytic activity to include its role as a major histone binding protein. These results are incorporated into a model for the function of HAT1 in histone deposition and chromatin assembly. This article is part of a Special issue entitled: Histone chaperones and Chromatin assembly.
Collapse
Affiliation(s)
- Mark R Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
123
|
Oberle C, Blattner C. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Curr Genomics 2011; 11:184-98. [PMID: 21037856 PMCID: PMC2878983 DOI: 10.2174/138920210791110979] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/22/2022] Open
Abstract
Damage to the genetic material can affect cellular function in many ways. Therefore, maintenance of the genetic integrity is of primary importance for all cells. Upon DNA damage, cells respond immediately with proliferation arrest and repair of the lesion or apoptosis. All these consequences require recognition of the lesion and transduction of the information to effector systems. The accomplishment of DNA repair, but also of cell cycle arrest and apoptosis furthermore requires protein-protein interactions and the formation of larger protein complexes. More recent research shows that the formation of many of these aggregates depends on post-translational modifications. In this article, we have summarized the different cellular events in response to a DNA double strand break, the most severe lesion of the DNA.
Collapse
Affiliation(s)
- C Oberle
- Karlsruher Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe PO-Box 3640, 76021 Karlsruhe, Germany
| | | |
Collapse
|
124
|
Stevenson JS, Liu H. Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3. Mol Microbiol 2011; 81:1078-91. [PMID: 21749487 DOI: 10.1111/j.1365-2958.2011.07754.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How different cell types with the same genotype are formed and heritability maintained is a fundamental question in biology. We utilized white-opaque switching in Candida albicans as a system to study mechanisms of cell-type formation and maintenance. Each cell type has tractable characters, which are maintained over many cell divisions. Cell-type specification is under the control of interlocking transcriptional feedback loops, with Wor1 being the master regulator of the opaque cell type. Here we show that deletion of RTT109, encoding the acetyltransferase for histone H3K56, impairs stochastic and environmentally stimulated white-opaque switching. Ectopic expression of WOR1 mostly bypasses the requirement for RTT109, but opaque cells lacking RTT109 cannot be maintained. We have also discovered that nicotinamide induces opaque cell formation, and this activity of nicotinamide requires RTT109. Reducing the copy number of HST3, which encodes the H3K56 deacetylase, also leads to increased opaque formation. We further show that the Hst3 level is downregulated in the presence of genotoxins and ectopic expression of HST3 blocks genotoxin induced switching. This finding links genotoxin induced switching to Hst3 regulation. Together, these findings suggest RTT109 and HST3 genes play an important role in the regulation of white-opaque switching in C. albicans.
Collapse
Affiliation(s)
- John S Stevenson
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
125
|
Li Q, Burgess R, Zhang Z. All roads lead to chromatin: Multiple pathways for histone deposition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:238-46. [PMID: 21763476 DOI: 10.1016/j.bbagrm.2011.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/28/2022]
Abstract
Chromatin, a complex of DNA and associated proteins, governs diverse processes including gene transcription, DNA replication and DNA repair. The fundamental unit of chromatin is the nucleosome, consisting of 147bp of DNA wound about 1.6 turns around a histone octamer of one (H3-H4)(2) tetramer and two H2A-H2B dimers. In order to form nucleosomes, (H3-H4)(2) tetramers are deposited first, followed by the rapid deposition of H2A-H2B. It is believed that the assembly of (H3-H4)(2) tetramers into nucleosomes is the rate-limiting step of nucleosome assembly. Moreover, assembly of H3-H4 into nucleosomes following DNA replication, DNA repair and gene transcription is likely to be a key step in the inheritance of epigenetic information and maintenance of genome integrity. In this review, we discuss how nucleosome assembly of H3-H4 is regulated by concerted actions of histone chaperones and modifications on newly synthesized H3 and H4. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
126
|
Battu A, Ray A, Wani AA. ASF1A and ATM regulate H3K56-mediated cell-cycle checkpoint recovery in response to UV irradiation. Nucleic Acids Res 2011; 39:7931-45. [PMID: 21727091 PMCID: PMC3185425 DOI: 10.1093/nar/gkr523] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Successful DNA repair within chromatin requires coordinated interplay of histone modifications, chaperones and remodelers for allowing access of repair and checkpoint machineries to damaged sites. Upon completion of repair, ordered restoration of chromatin structure and key epigenetic marks herald the cell's normal function. Here, we demonstrate such a restoration role of H3K56 acetylation (H3K56Ac) mark in response to ultraviolet (UV) irradiation of human cells. A fast initial deacetylation of H3K56 is followed by full renewal of an acetylated state at ~24-48 h post-irradiation. Histone chaperone, anti-silencing function-1 A (ASF1A), is crucial for post-repair H3K56Ac restoration, which in turn, is needed for the dephosphorylation of γ-H2AX and cellular recovery from checkpoint arrest. On the other hand, completion of DNA damage repair is not dependent on ASF1A or H3K56Ac. H3K56Ac restoration is regulated by ataxia telangiectasia mutated (ATM) checkpoint kinase. These cross-talking molecular cellular events reveal the important pathway components influencing the regulatory function of H3K56Ac in the recovery from UV-induced checkpoint arrest.
Collapse
Affiliation(s)
- Aruna Battu
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
127
|
Oppikofer M, Kueng S, Martino F, Soeroes S, Hancock SM, Chin JW, Fischle W, Gasser SM. A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. EMBO J 2011; 30:2610-21. [PMID: 21666601 PMCID: PMC3155304 DOI: 10.1038/emboj.2011.170] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/28/2011] [Indexed: 11/09/2022] Open
Abstract
Discrete regions of the eukaryotic genome assume heritable chromatin structure that is refractory to transcription. In budding yeast, silent chromatin is characterized by the binding of the Silent Information Regulatory (Sir) proteins to unmodified nucleosomes. Using an in vitro reconstitution assay, which allows us to load Sir proteins onto arrays of regularly spaced nucleosomes, we have examined the impact of specific histone modifications on Sir protein binding and linker DNA accessibility. Two typical marks for active chromatin, H3K79(me) and H4K16(ac) decrease the affinity of Sir3 for chromatin, yet only H4K16(ac) affects chromatin structure, as measured by nuclease accessibility. Surprisingly, we found that the Sir2-4 subcomplex, unlike Sir3, has higher affinity for chromatin carrying H4K16(ac). NAD-dependent deacetylation of H4K16(ac) promotes binding of the SIR holocomplex but not of the Sir2-4 heterodimer. This function of H4K16(ac) cannot be substituted by H3K56(ac). We conclude that acetylated H4K16 has a dual role in silencing: it recruits Sir2-4 and repels Sir3. Moreover, the deacetylation of H4K16(ac) by Sir2 actively promotes the high-affinity binding of the SIR holocomplex.
Collapse
Affiliation(s)
- Mariano Oppikofer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephanie Kueng
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fabrizio Martino
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Szabolcs Soeroes
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Susan M Hancock
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wolfgang Fischle
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
128
|
Albaugh BN, Arnold KM, Lee S, Denu JM. Autoacetylation of the histone acetyltransferase Rtt109. J Biol Chem 2011; 286:24694-701. [PMID: 21606491 DOI: 10.1074/jbc.m111.251579] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rtt109 is a yeast histone acetyltransferase (HAT) that associates with histone chaperones Asf1 and Vps75 to acetylate H3K56, H3K9, and H3K27 and is important in DNA replication and maintaining genomic integrity. Recently, mass spectrometry and structural studies of Rtt109 have shown that active site residue Lys-290 is acetylated. However, the functional role of this modification and how the acetyl group is added to Lys-290 was unclear. Here, we examined the mechanism of Lys-290 acetylation and found that Rtt109 catalyzes intramolecular autoacetylation of Lys-290 ∼200-times slower than H3 acetylation. Deacetylated Rtt109 was prepared by reacting with a sirtuin protein deacetylase, producing an enzyme with negligible HAT activity. Autoacetylation of Rtt109 restored full HAT activity, indicating that autoacetylation is necessary for HAT activity and is a fully reversible process. To dissect the mechanism of activation, biochemical, and kinetic analyses were performed with Lys-290 variants of the Rtt109-Vps75 complex. We found that autoacetylation of Lys-290 increases the binding affinity for acetyl-CoA and enhances the rate of acetyl-transfer onto histone substrates. This study represents the first detailed investigation of a HAT enzyme regulated by single-site intramolecular autoacetylation.
Collapse
Affiliation(s)
- Brittany N Albaugh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | | | | | | |
Collapse
|
129
|
Kong S, Kim SJ, Sandal B, Lee SM, Gao B, Zhang DD, Fang D. The type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation. J Biol Chem 2011; 286:16967-75. [PMID: 21454709 PMCID: PMC3089540 DOI: 10.1074/jbc.m111.218206] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/16/2011] [Indexed: 11/06/2022] Open
Abstract
The NAD-dependent histone deacetylase Sirt1 is a negative regulator of T cell activation. Here we report that Sirt1 inhibits T cell activation by suppressing the transcription of Bcl2-associated factor 1 (Bclaf1), a protein required for T cell activation. Sirt1-null T cells have increased acetylation of the histone 3 lysine 56 residue (H3K56) at the bclaf1 promoter, as well as increasing Bclaf1 transcription. Sirt1 binds to bclaf1 promoter upon T cell receptor (TCR)/CD28 stimulation by forming a complex with histone acetyltransferase p300 and NF-κB transcription factor Rel-A. The recruitment of Sirt1, but not p300, requires Rel-A because blocking Rel-A nuclear translocation in T cells and siRNA-mediated knockdown of Rel-A can inhibit Sirt1 binding to bclaf1 promoter. Although knockdown of either p300 or GCN5 partially suppressed global H3K56 acetylation, only p300 knockdown specifically attenuated H3K56 acetylation at the bclaf1 promoter. Lastly, knockdown of Bclaf1 suppresses the hyperactivation observed in Sirt1(-/-) T cells, indicated by less IL-2 production in CD4(+) T cells and reduced proliferation. Therefore, Sirt1 negatively regulates T cell activation via H3K56 deacetylation at the promoter region to inhibit transcription of Bclaf1.
Collapse
Affiliation(s)
- Sinyi Kong
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Seung-Jae Kim
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Barry Sandal
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Sang-Myeong Lee
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Beixue Gao
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | - Donna D. Zhang
- the Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Deyu Fang
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| |
Collapse
|
130
|
Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast. Cell Res 2011; 21:1619-33. [PMID: 21467995 DOI: 10.1038/cr.2011.58] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Xbp1 has been shown to regulate the cell cycle as a transcriptional repressor in budding yeast Saccharomyces cerevisiae. In this study, we demonstrated that Xbp1 regulates DNA double-strand break (DSB) repair in S. cerevisiae. Xbp1 physically and genetically interacts with the histone deacetylase Rpd3 complex. Chromatin immunoprecipitation revealed that Xbp1 is required for efficient deacetylation of histone H4 flanking DSBs by the Rpd3 complex. Deletion of XBP1 leads to the delayed deacetylation of histone H4, which is coupled with increased nucleosome displacement, increased DNA end resection and decreased non-homologous end-joining (NHEJ). In response to DNA damage, Xbp1 is upregulated in a Mec1-Rad9-Rad53 checkpoint pathway-dependent manner and undergoes dephosphorylation. Cdk1, a central regulator of S. cerevisiae cell cycle, is responsible for Xbp1 phosphorylation at residues Ser146, Ser271 and Ser551. Substitution of these serine residues with alanine not only increases the association of Xbp1 with the Rpd3 complex and its recruitment to a DSB, but also promotes DSB repair. Together, our findings reveal a role for Xbp1 in DSB repair via NHEJ through regulation of histone H4 acetylation and nucleosome displacement in a positive feedback manner.
Collapse
|
131
|
Hachinohe M, Hanaoka F, Masumoto H. Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells 2011; 16:467-77. [PMID: 21401809 DOI: 10.1111/j.1365-2443.2011.01493.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The acetylation of histone H3 on lysine 56 (H3-K56) occurs during S phase and contributes to the processes of DNA damage repair and histone gene transcription. Hst3 and Hst4 have been implicated in the removal of histone H3-K56 acetylation in Saccharomyces cerevisiae. Here, we show that Hst3 and Hst4 regulate the replicative lifespan of S. cerevisiae mother cells. An hst3Δ hst4Δ double-mutant strain, in which acetylation of histone H3-K56 persists throughout the genome during the cell cycle, exhibits genomic instability, which is manifested by a loss of heterozygosity with cell aging. Furthermore, we show that in the absence of other proteins Hst3 and Hst4 can deacetylate nucleosomal histone H3-K56 in a nicotinamide adenine dinucleotide(NAD)(+) -dependent manner. Our results suggest that Hst3 and Hst4 regulate replicative lifespan through their ability to deacetylate histone H3-K56 to minimize genomic instability.
Collapse
Affiliation(s)
- Mayumi Hachinohe
- Graduate School of Life and Environmental Sciences, Initiative for the Promotion of Young Scientists' Independent Research, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | |
Collapse
|
132
|
Chang DY, Shi G, Durand-Dubief M, Ekwall K, Lu AL. The role of MutY homolog (Myh1) in controlling the histone deacetylase Hst4 in the fission yeast Schizosaccharomyces pombe. J Mol Biol 2011; 405:653-65. [PMID: 21110984 PMCID: PMC3035937 DOI: 10.1016/j.jmb.2010.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
The DNA glycosylase MutY homolog (Myh1) excises adenines misincorporated opposite guanines or 7,8-dihydro-8-oxo-guanines on DNA by base excision repair thereby preventing G:C to T:A mutations. Schizosaccharomyces pombe (Sp) Hst4 is an NAD(+)-dependent histone/protein deacetylase involved in gene silencing and maintaining genomic integrity. Hst4 regulates deacetylation of histone 3 Lys56 at the entry and exit points of the nucleosome core particle. Here, we demonstrate that the hst4 mutant is more sensitive to H(2)O(2) than wild-type cells. H(2)O(2) treatment results in an SpMyh1-dependent decrease in SpHst4 protein level and hyperacetylation of histone 3 Lys56. Furthermore, SpHst4 interacts with SpMyh1 and the cell cycle checkpoint Rad9-Rad1-Hus1 (9-1-1) complex. SpHst4, SpMyh1, and SpHus1 are physically bound to telomeres. Following oxidative stress, there is an increase in the telomeric association of SpMyh1. Conversely, the telomeric association of spHst4 is decreased. Deletion of SpMyh1 strongly abrogated telomeric association of SpHst4 and SpHus1. However, telomeric association of SpMyh1 is enhanced in hst4Δ cells in the presence of chronic DNA damage. These results suggest that SpMyh1 repair regulates the functions of SpHst4 and the 9-1-1 complex in maintaining genomic stability.
Collapse
Affiliation(s)
- Dau-Yin Chang
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 North Greene Street, Baltimore, Maryland 21201, USA
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 North Greene Street, Baltimore, Maryland 21201, USA
| | - Mickaël Durand-Dubief
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Biosciences, Novum, 141 57 Huddinge, Sweden
| | - Karl Ekwall
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Biosciences, Novum, 141 57 Huddinge, Sweden
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 North Greene Street, Baltimore, Maryland 21201, USA
| |
Collapse
|
133
|
Toiber D, Sebastian C, Mostoslavsky R. Characterization of nuclear sirtuins: molecular mechanisms and physiological relevance. Handb Exp Pharmacol 2011; 206:189-224. [PMID: 21879451 DOI: 10.1007/978-3-642-21631-2_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sirtuins are protein deacetylases/mono-ADP-ribosyltransferases found in organisms ranging from bacteria to humans. This group of enzymes relies on nicotinamide adenine dinucleotide (NAD(+)) as a cofactor linking their activity to the cellular metabolic status. Originally found in yeast, Sir2 was discovered as a silencing factor and has been shown to mediate the effects of calorie restriction on lifespan extension. In mammals seven homologs (SIRT1-7) exist which evolved to have specific biological outcomes depending on the particular cellular context, their interacting proteins, and the genomic loci to where they are actively targeted. Sirtuins biological roles are highlighted in the early lethal phenotypes observed in the deficient murine models. In this chapter, we summarize current concepts on non-metabolic functions for sirtuins, depicting this broad family from yeast to mammals.
Collapse
Affiliation(s)
- Debra Toiber
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
134
|
Osipov SA, Preobrazhenskaya OV, Karpov VL. Chromatin structure and transcription regulation in Saccharomyces cerevisiae. Mol Biol 2010. [DOI: 10.1134/s0026893310060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
135
|
The DNA damage response pathway contributes to the stability of chromosome III derivatives lacking efficient replicators. PLoS Genet 2010; 6:e1001227. [PMID: 21151954 PMCID: PMC2996327 DOI: 10.1371/journal.pgen.1001227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 10/29/2010] [Indexed: 11/21/2022] Open
Abstract
In eukaryotic chromosomes, DNA replication initiates at multiple origins. Large inter-origin gaps arise when several adjacent origins fail to fire. Little is known about how cells cope with this situation. We created a derivative of Saccharomyces cerevisiae chromosome III lacking all efficient origins, the 5ORIΔ-ΔR fragment, as a model for chromosomes with large inter-origin gaps. We used this construct in a modified synthetic genetic array screen to identify genes whose products facilitate replication of long inter-origin gaps. Genes identified are enriched in components of the DNA damage and replication stress signaling pathways. Mrc1p is activated by replication stress and mediates transduction of the replication stress signal to downstream proteins; however, the response-defective mrc1AQ allele did not affect 5ORIΔ-ΔR fragment maintenance, indicating that this pathway does not contribute to its stability. Deletions of genes encoding the DNA-damage-specific mediator, Rad9p, and several components shared between the two signaling pathways preferentially destabilized the 5ORIΔ-ΔR fragment, implicating the DNA damage response pathway in its maintenance. We found unexpected differences between contributions of components of the DNA damage response pathway to maintenance of ORIΔ chromosome derivatives and their contributions to DNA repair. Of the effector kinases encoded by RAD53 and CHK1, Chk1p appears to be more important in wild-type cells for reducing chromosomal instability caused by origin depletion, while Rad53p becomes important in the absence of Chk1p. In contrast, RAD53 plays a more important role than CHK1 in cell survival and replication fork stability following treatment with DNA damaging agents and hydroxyurea. Maintenance of ORIΔ chromosomes does not depend on homologous recombination. These observations suggest that a DNA-damage-independent mechanism enhances ORIΔ chromosome stability. Thus, components of the DNA damage response pathway contribute to genome stability, not simply by detecting and responding to DNA template damage, but also by facilitating replication of large inter-origin gaps. Loss of genome integrity underlies aspects of aging and human disease. During DNA replication, two parallel signaling pathways play important roles in the maintenance of genome integrity. One pathway detects DNA damage, while the other senses replication stress. Both pathways activate responses that include arrest of cell cycle progression, giving cells time to cope with the problem. These pathways have been defined by treating cells with compounds that induce either replication stress or DNA damage, but little is known about their roles during unperturbed DNA replication. They may be important when several adjacent replication origins fail to initiate and forks from flanking origins must replicate longer regions of DNA than normal to complete replication. We have used a derivative of budding yeast chromosome III lacking all efficient replication origins to identify mutants that preferentially destabilize this chromosome fragment, which mimics a chromosome with a large inter-origin gap. We found that the DNA damage response pathway, but not the replication stress response pathway, plays an important role in maintaining this fragment. The signal recognized in this case may be replisome failure rather than forks stalled at endogenous DNA damage.
Collapse
|
136
|
Miller A, Chen J, Takasuka TE, Jacobi JL, Kaufman PD, Irudayaraj JMK, Kirchmaier AL. Proliferating cell nuclear antigen (PCNA) is required for cell cycle-regulated silent chromatin on replicated and nonreplicated genes. J Biol Chem 2010; 285:35142-54. [PMID: 20813847 PMCID: PMC2966128 DOI: 10.1074/jbc.m110.166918] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/02/2010] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, silent chromatin is formed at HMR upon the passage through S phase, yet neither the initiation of DNA replication at silencers nor the passage of a replication fork through HMR is required for silencing. Paradoxically, mutations in the DNA replication processivity factor, POL30, disrupt silencing despite this lack of requirement for DNA replication in the establishment of silencing. We tested whether pol30 mutants could establish silencing at either replicated or non-replicated HMR loci during S phase and found that pol30 mutants were defective in establishing silencing at HMR regardless of its replication status. Although previous studies tie the silencing defect of pol30 mutants to the chromatin assembly factors Asf1p and CAF-1, we found pol30 mutants did not exhibit a gross defect in packaging HMR into chromatin. Rather, the pol30 mutants exhibited defects in histone modifications linked to ASF1 and CAF-1-dependent pathways, including SAS-I- and Rtt109p-dependent acetylation events at H4-K16 and H3-K9 (plus H3-K56; Miller, A., Yang, B., Foster, T., and Kirchmaier, A. L. (2008) Genetics 179, 793-809). Additional experiments using FLIM-FRET revealed that Pol30p interacted with SAS-I and Rtt109p in the nuclei of living cells. However, these interactions were disrupted in pol30 mutants with defects linked to ASF1- and CAF-1-dependent pathways. Together, these results imply that Pol30p affects epigenetic processes by influencing the composition of chromosomal histone modifications.
Collapse
Affiliation(s)
- Andrew Miller
- From the Department of Biochemistry
- the Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - Jiji Chen
- the Department of Agricultural and Biological Engineering, and
- the Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - Taichi E. Takasuka
- From the Department of Biochemistry
- the Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - Jennifer L. Jacobi
- From the Department of Biochemistry
- the Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - Paul D. Kaufman
- the Program in Gene Function and Gene Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Joseph M. K. Irudayaraj
- the Department of Agricultural and Biological Engineering, and
- the Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| | - Ann L. Kirchmaier
- From the Department of Biochemistry
- the Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907 and
| |
Collapse
|
137
|
Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK. Elevated histone expression promotes life span extension. Mol Cell 2010; 39:724-35. [PMID: 20832724 DOI: 10.1016/j.molcel.2010.08.015] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/04/2010] [Accepted: 07/20/2010] [Indexed: 02/05/2023]
Abstract
Changes to the chromatin structure accompany aging, but the molecular mechanisms underlying aging and the accompanying changes to the chromatin are unclear. Here, we report a mechanism whereby altering chromatin structure regulates life span. We show that normal aging is accompanied by a profound loss of histone proteins from the genome. Indeed, yeast lacking the histone chaperone Asf1 or acetylation of histone H3 on lysine 56 are short lived, and this appears to be at least partly due to their having decreased histone levels. Conversely, increasing the histone supply by inactivation of the histone information regulator (Hir) complex or overexpression of histones dramatically extends life span via a pathway that is distinct from previously known pathways of life span extension. This study indicates that maintenance of the fundamental chromatin structure is critical for slowing down the aging process and reveals that increasing the histone supply extends life span.
Collapse
Affiliation(s)
- Jason Feser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80010, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 2010; 17:1218-25. [PMID: 20890289 PMCID: PMC2951278 DOI: 10.1038/nsmb.1897] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/29/2010] [Indexed: 11/09/2022]
Abstract
During replicative aging of primary cells morphological transformations occur, the expression pattern is altered and chromatin changes globally. Here we show that chronic damage signals, probably caused by telomere processing, affect expression of histones and lead to their depletion. We investigated the abundance and cell cycle expression of histones and histone chaperones and found defects in histone biosynthesis during replicative aging. Simultaneously, epigenetic marks were redistributed across the phases of the cell cycle and the DNA damage response (DDR) machinery was activated. The age-dependent reprogramming affected telomeric chromatin itself, which was progressively destabilized, leading to a boost of the telomere-associated DDR with each successive cell cycle. We propose a mechanism in which changes in the structural and epigenetic integrity of telomeres affect core histones and their chaperones, enforcing a self-perpetuating pathway of global epigenetic changes that ultimately leads to senescence.
Collapse
Affiliation(s)
- Roderick J. O’Sullivan
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, 10010 North Torrey Pines Rd., La Jolla, CA92037, USA
| | - Stefan Kubicek
- The Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA02142, USA
| | - Stuart L. Schreiber
- The Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA02142, USA
- Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, 10010 North Torrey Pines Rd., La Jolla, CA92037, USA
| |
Collapse
|
139
|
Rossetto D, Truman AW, Kron SJ, Côté J. Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res 2010; 16:4543-52. [PMID: 20823147 PMCID: PMC2940951 DOI: 10.1158/1078-0432.ccr-10-0513] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Factors involved in the cellular response to double-strand break (DSB) DNA damage have been identified as potential therapeutic targets that would greatly sensitize cancer cells to radiotherapy and genotoxic chemotherapy. These targets could disable the repair machinery and/or reinstate normal cell-cycle checkpoint leading to growth arrest, senescence, and apoptosis. It is now clear that a major aspect of the DNA damage response occurs through specific interactions with chromatin structure and its modulation. It implicates highly dynamic posttranslational modifications of histones that are critical for DNA damage recognition and/or signaling, repair of the lesion, and release of cell-cycle arrest. Therefore, drugs that target the enzymes responsible for these modifications, or the protein modules reading them, have very high therapeutic potential. This review presents the current state of knowledge on the different chromatin modifications and their roles in each step of eukaryotic DSB DNA damage response.
Collapse
Affiliation(s)
- Dorine Rossetto
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| | - Andrew W. Truman
- Department of Molecular Genetics and Cell Biology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL USA
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL USA
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, Qc G1R 2J6, Canada
| |
Collapse
|
140
|
Albaugh BN, Kolonko EM, Denu JM. Kinetic mechanism of the Rtt109-Vps75 histone acetyltransferase-chaperone complex. Biochemistry 2010; 49:6375-85. [PMID: 20560668 PMCID: PMC2917178 DOI: 10.1021/bi100381y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rtt109 is a histone acetyltransferase (HAT) involved in promoting genomic stability, DNA repair, and transcriptional regulation. Rtt109 associates with the NAP1 family histone chaperone Vps75 and stimulates histone acetylation. Here we explore the mechanism of histone acetylation and report a detailed kinetic investigation of the Rtt109-Vps75 complex. Rtt109 and Vps75 form a stable complex with nanomolar binding affinity (K(d) = 10 +/- 2 nM). Steady-state kinetic analysis reveals evidence of a sequential kinetic mechanism whereby the Rtt109-Vps75 complex, AcCoA, and histone H3 substrates form a complex prior to chemical catalysis. Product inhibition studies demonstrate that CoA binds competitively with AcCoA, and equilibrium measurements reveal AcCoA or CoA binding is not stimulated in the presence of H3 substrate. Additionally, the Rtt109-Vps75 complex binds H3 substrates in the absence AcCoA. Pre-steady-state kinetic analysis suggests the chemical attack of substrate lysine on the bound AcCoA is the rate-limiting step of catalysis, while the pH profile of k(cat) reveals a critical ionization with a pK(a) of 8.5 that must be unprotonated for catalysis. Amino acid substitution at D287 and D288 did not substantially change the shape of the k(cat)-pH profile, suggesting these conserved residues do not function as base catalysts for histone acetylation. However, the D288N mutant revealed a dramatic 1000-fold decrease in k(cat)/K(m) for AcCoA, consistent with a role in AcCoA binding. Together, these data support a sequential mechanism in which AcCoA and H3 bind to the Rtt109-Vps75 complex without obligate order, followed by the direct attack of the unprotonated epsilon-amino group on AcCoA, transferring the acetyl group to H3 lysine residues.
Collapse
Affiliation(s)
- Brittany N. Albaugh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Ave., Madison, WI 53706
| | - Erin M. Kolonko
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Ave., Madison, WI 53706
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Ave., Madison, WI 53706
| |
Collapse
|
141
|
Wurtele H, Tsao S, Lépine G, Mullick A, Tremblay J, Drogaris P, Lee EH, Thibault P, Verreault A, Raymond M. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 2010; 16:774-80. [PMID: 20601951 PMCID: PMC4108442 DOI: 10.1038/nm.2175] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/03/2010] [Indexed: 12/12/2022]
Abstract
Candida albicans is a major fungal pathogen that causes serious systemic and mucosal infections in immunocompromised individuals. In yeast, histone H3 Lys56 acetylation (H3K56ac) is an abundant modification regulated by enzymes that have fungal-specific properties, making them appealing targets for antifungal therapy. Here we demonstrate that H3K56ac in C. albicans is regulated by the RTT109 and HST3 genes, which respectively encode the H3K56 acetyltransferase (Rtt109p) and deacetylase (Hst3p). We show that reduced levels of H3K56ac sensitize C. albicans to genotoxic and antifungal agents. Inhibition of Hst3p activity by conditional gene repression or nicotinamide treatment results in a loss of cell viability associated with abnormal filamentous growth, histone degradation and gross aberrations in DNA staining. We show that genetic or pharmacological alterations in H3K56ac levels reduce virulence in a mouse model of C. albicans infection. Our results demonstrate that modulation of H3K56ac is a unique strategy for treatment of C. albicans and, possibly, other fungal infections.
Collapse
Affiliation(s)
- Hugo Wurtele
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Vempati RK, Jayani RS, Notani D, Sengupta A, Galande S, Haldar D. p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem 2010; 285:28553-64. [PMID: 20587414 PMCID: PMC2937881 DOI: 10.1074/jbc.m110.149393] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis.
Collapse
Affiliation(s)
- Rahul K Vempati
- Department of Biology, Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India
| | | | | | | | | | | |
Collapse
|
143
|
Aslam A, Logie C. Histone H3 serine 57 and lysine 56 interplay in transcription elongation and recovery from S-phase stress. PLoS One 2010; 5:e10851. [PMID: 20520775 PMCID: PMC2877106 DOI: 10.1371/journal.pone.0010851] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 05/05/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acetylation of lysine 56 of histone H3 plays an important role in the DNA damage response and it has been postulated to play an as yet undefined role in transcription, both in yeast and in higher eukaryotes. Because phosphorylated human histone H3 serine 57 peptides have been detected by mass spectrometry we examined whether H3-S57 phosphorylation interplays with H3-K56 acetylation in vivo. METHODOLOGY/PRINCIPAL FINDINGS To explore the physiological role of H3-S57, H3-K56 was mutated to mimic constitutively (un)acetylated forms of H3-K56 and these were combined with constitutively (un)phosphorylated mimics of H3-S57, in yeast. A phosphorylated serine mimic at position 57 lessened sensitivities to a DNA replication fork inhibitor and to a transcription elongation inhibitor that were caused by an acetylated lysine mimic at position 56, while the same substitution exacerbated sensitivities due to mimicking a constitutive non-acetylated lysine at position 56. Strikingly, opposite results were obtained in the context of a serine to alanine substitution at position 57 of histone H3. CONCLUSIONS/SIGNIFICANCE The phenotypes elicited and the context-dependent interplay of the H3-K56 and -S57 point mutations that mimic their respective modification states suggest that serine 57 phosphorylation promotes a nucleosomal transaction when lysine 56 is acetylated. We speculate that histone H3-S57 couples H3-K56 acetylation to histone quaternary structures involving arginine 40 on histone H4 helix 1.
Collapse
Affiliation(s)
- Aamir Aslam
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
144
|
Unnikrishnan A, Gafken PR, Tsukiyama T. Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol 2010; 17:430-7. [PMID: 20228802 PMCID: PMC3060656 DOI: 10.1038/nsmb.1780] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/25/2010] [Indexed: 12/22/2022]
Abstract
Although histone modifications have been implicated in many DNA-dependent processes, their precise role in DNA replication remains largely unknown. Here we describe an efficient single-step method to specifically purify histones located around an origin of replication from Saccharomyces cerevisiae. Using high-resolution MS, we have obtained a comprehensive view of the histone modifications surrounding the origin of replication throughout the cell cycle. We have discovered that acetylation of histone H3 and H4 is dynamically regulated around an origin of replication, at the level of multiply acetylated histones. Furthermore, we find that this acetylation is required for efficient origin activation during S phase.
Collapse
Affiliation(s)
- Ashwin Unnikrishnan
- Divison of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, U.S.A
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA 98195, U.S.A
| | - Philip R. Gafken
- Proteomics Facility, Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North, Seattle, WA 98109, U.S.A
| | - Toshio Tsukiyama
- Divison of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, U.S.A
| |
Collapse
|
145
|
Abstract
Genetic interactions represent the degree to which the presence of one mutation modulates the phenotype of a second mutation. In recent years, approaches for measuring genetic interactions systematically and quantitatively have proven to be effective tools for unbiased characterization of gene function and have provided valuable data for analyses of evolution. Here, we present protocols for systematic measurement of genetic interactions with respect to organismal growth rate for two yeast species.
Collapse
Affiliation(s)
- Sean R Collins
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
146
|
Acetylation of H3 K56 is required for RNA polymerase II transcript elongation through heterochromatin in yeast. Mol Cell Biol 2010; 30:1467-77. [PMID: 20065036 DOI: 10.1128/mcb.01151-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In Saccharomyces cerevisiae SIR proteins mediate transcriptional silencing, forming heterochromatin structures at repressed loci. Although recruitment of transcription initiation factors can occur even to promoters packed in heterochromatin, it is unclear whether heterochromatin inhibits RNA polymerase II (RNAPII) transcript elongation. To clarify this issue, we recruited SIR proteins to the coding region of an inducible gene and characterized the effects of the heterochromatic structure on transcription. Surprisingly, RNAPII is fully competent for transcription initiation and elongation at the locus, leading to significant loss of heterochromatin proteins from the region. A search for auxiliary factors required for transcript elongation through the heterochromatic locus revealed that two proteins involved in histone H3 lysine 56 acetylation, Rtt109 and Asf1, are needed for efficient transcript elongation by RNAPII. The efficiency of transcription through heterochromatin is also impaired in a strain carrying the K56R mutation in histone H3. Our results show that H3 K56 modification is required for efficient transcription of heterochromatic locus by RNAPII, and we propose that transcription-coupled incorporation of H3 acetylated K56 (acK56) into chromatin is needed for efficient opening of heterochromatic loci for transcription.
Collapse
|
147
|
Costelloe T, Lowndes NF. Chromatin assembly and signalling the end of DNA repair requires acetylation of histone H3 on lysine 56. Subcell Biochem 2010; 50:43-54. [PMID: 20012576 DOI: 10.1007/978-90-481-3471-7_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The packaging of DNA into chromatin results in a barrier to all DNA transactions. To facilitate transcription, replication and repair histone proteins are frequently post-translational modified. Such covalent additions to histone residues can modulate chromatin folding and/or provide specificity to docking surfaces for non-histone chromatin proteins. In the budding yeast, one such modification, transient acetylation of histone H3 on residue lysine 56 (H3K56ac); occurs on newly synthesized H3 molecules and facilitates their deposition onto newly replicated DNA during S phase. H3K56ac also has a role in chromatin reassembly following DNA damage in S phase. Importantly, the completion of H3K56ac-dependent chromatin reassembly appears to be required for resumption of cell proliferation after DNA repair. Emerging evidence, although not without conflict, suggests that H3K56ac is not only present in human cells, but is similarly regulated and required for chromatin reassembly.
Collapse
Affiliation(s)
- Thomas Costelloe
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
148
|
Erkmann JA, Kaufman PD. A negatively charged residue in place of histone H3K56 supports chromatin assembly factor association but not genotoxic stress resistance. DNA Repair (Amst) 2009; 8:1371-9. [PMID: 19796999 DOI: 10.1016/j.dnarep.2009.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 12/17/2022]
Abstract
In fungal species, lysine 56 of newly synthesized histone H3 molecules is modified by the acetyltransferase Rtt109, which promotes resistance to genotoxic agents. To further explore how H3 K56ac contributes to genome stability, we conducted screens for suppressors of the DNA damage sensitivity of budding yeast rtt109 Delta mutants. We recovered a single extragenic suppressor mutation that efficiently restored damage resistance. The suppressor is a point mutation in the histone H3 gene HHT2, and converts lysine 56 to glutamic acid. In some ways, K56E mimics K56ac, because it suppresses other mutations that interfere with the production of H3 K56ac and restores histone binding to chromatin assembly proteins CAF-1 and Rtt106. Therefore, we demonstrate that enhanced association with chromatin assembly factors can be accomplished not only by acetylation-mediated charge neutralization of H3K56 but also by the replacement of the positively charged lysine with an acidic residue. These data suggest that removal of the positive charge on lysine 56 is the functionally important consequence of H3K56 acetylation. Additionally, the suppressive function of K56E requires the presence of a second H3 allele, because K56E impairs growth when it is the sole source of histones, even more so than does constitutive H3K56 acetylation. Our studies therefore emphasize how H3 K56ac not only promotes chromatin assembly but also leads to chromosomal malfunction if not removed following histone deposition.
Collapse
Affiliation(s)
- Judith A Erkmann
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation St. #506, Worcester, MA 01605, USA
| | | |
Collapse
|
149
|
Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH, Kim JK. The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:764-76. [PMID: 19453457 DOI: 10.1111/j.1365-313x.2009.03908.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have previously isolated a rice gene encoding a histone deacetylase, OsHDAC1, and observed that its transgenic overexpression increases seedling root growth. To identify the transcriptional repression events that occur as a result of OsHDAC1 overexpression (OsHDAC1(OE)), a global profiling of root-expressed genes was performed on OsHDAC1(OE) or HDAC inhibitor-treated non-transgenic (NT) roots, in comparison with untreated NT roots. We selected 39 genes that are induced and repressed in HDAC inhibitor-treated NT and OsHDAC1(OE) roots, compared with NT roots, respectively. Interestingly, OsNAC6, a member of the NAM-ATAF-CUC (NAC) family, was identified as a key component of the OsHDAC1 regulon, and was found to be epigenetically repressed by OsHDAC1 overexpression. The root phenotype of OsNAC6 knock-out seedlings was observed to be similar to that of the OsHDAC1(OE) seedlings. Conversely, the root phenotype of the OsNAC6 overexpressors was similar to that of the OsHDAC1 knock-out seedlings. These observations indicate that OsHDAC1 negatively regulates the OsNAC6 gene that primarily mediates the alteration in the root growth of the OsHDAC1(OE) seedlings. Chromatin immunoprecipitation assays of the OsNAC6 promoter region using antibodies specific to acetylated histones H3 and H4 revealed that OsHDAC1 epigenetically represses the expression of OsNAC6 by deacetylating K9, K14 and K18 on H3 and K5, K12 and K16 on H4.
Collapse
Affiliation(s)
- Pil Joong Chung
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | | | | | | | | | | |
Collapse
|
150
|
Falbo KB, Shen X. Histone modifications during DNA replication. Mol Cells 2009; 28:149-54. [PMID: 19779690 DOI: 10.1007/s10059-009-0127-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022] Open
Abstract
Faithful and accurate replication of the DNA molecule is essential for eukaryote organisms. Nonetheless, in the last few years it has become evident that inheritance of the chromatin states associated with different regions of the genome is as important as the faithful inheritance of the DNA sequence itself. Such chromatin states are determined by a multitude of factors that act to modify not only the DNA molecule, but also the histone proteins associated with it. For instance, histones can be posttranslationally modified, and it is well established that these posttranslational marks are involved in several essential nuclear processes such as transcription and DNA repair. However, recent evidence indicates that posttranslational modifications of histones might be relevant during DNA replication. Hence, the aim of this review is to describe the most recent publications related to the role of histone posttranslational modifications during DNA replication.
Collapse
Affiliation(s)
- Karina B Falbo
- Department of Carcinogenesis, Science Park Research Division, MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | | |
Collapse
|