101
|
Maksakova IA, Goyal P, Bullwinkel J, Brown JP, Bilenky M, Mager DL, Singh PB, Lorincz MC. H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing. Epigenetics Chromatin 2011; 4:12. [PMID: 21774827 PMCID: PMC3169442 DOI: 10.1186/1756-8935-4-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/20/2011] [Indexed: 02/01/2023] Open
Abstract
Background Endogenous retroviruses (ERVs) are parasitic sequences whose derepression is associated with cancer and genomic instability. Many ERV families are silenced in mouse embryonic stem cells (mESCs) via SETDB1-deposited trimethylated lysine 9 of histone 3 (H3K9me3), but the mechanism of H3K9me3-dependent repression remains unknown. Multiple proteins, including members of the heterochromatin protein 1 (HP1) family, bind H3K9me2/3 and are involved in transcriptional silencing in model organisms. In this work, we address the role of such H3K9me2/3 "readers" in the silencing of ERVs in mESCs. Results We demonstrate that despite the reported function of HP1 proteins in H3K9me-dependent gene repression and the critical role of H3K9me3 in transcriptional silencing of class I and class II ERVs, the depletion of HP1α, HP1β and HP1γ, alone or in combination, is not sufficient for derepression of these elements in mESCs. While loss of HP1α or HP1β leads to modest defects in DNA methylation of ERVs or spreading of H4K20me3 into flanking genomic sequence, respectively, neither protein affects H3K9me3 or H4K20me3 in ERV bodies. Furthermore, using novel ERV reporter constructs targeted to a specific genomic site, we demonstrate that, relative to Setdb1, knockdown of the remaining known H3K9me3 readers expressed in mESCs, including Cdyl, Cdyl2, Cbx2, Cbx7, Mpp8, Uhrf1 and Jarid1a-c, leads to only modest proviral reactivation. Conclusion Taken together, these results reveal that each of the known H3K9me3-binding proteins is dispensable for SETDB1-mediated ERV silencing. We speculate that H3K9me3 might maintain ERVs in a silent state in mESCs by directly inhibiting deposition of active covalent histone marks.
Collapse
Affiliation(s)
- Irina A Maksakova
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Sousa-Victor P, Muñoz-Cánoves P, Perdiguero E. Regulation of skeletal muscle stem cells through epigenetic mechanisms. Toxicol Mech Methods 2011; 21:334-42. [DOI: 10.3109/15376516.2011.557873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
103
|
Cassinat B, Zassadowski F, Ferry C, Llopis L, Bruck N, Lainey E, Duong V, Cras A, Despouy G, Chourbagi O, Beinse G, Fenaux P, Rochette Egly C, Chomienne C. New role for granulocyte colony-stimulating factor-induced extracellular signal-regulated kinase 1/2 in histone modification and retinoic acid receptor α recruitment to gene promoters: relevance to acute promyelocytic leukemia cell differentiation. Mol Cell Biol 2011; 31:1409-18. [PMID: 21262770 PMCID: PMC3135284 DOI: 10.1128/mcb.00756-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The induction of the granulocytic differentiation of leukemic cells by all-trans retinoic acid (RA) has been a major breakthrough in terms of survival for acute promyelocytic leukemia (APL) patients. Here we highlight the synergism and the underlying novel mechanism between RA and the granulocyte colony-stimulating factor (G-CSF) to restore differentiation of RA-refractory APL blasts. First, we show that in RA-refractory APL cells (UF-1 cell line), PML-RA receptor alpha (RARα) is not released from target promoters in response to RA, resulting in the maintenance of chromatin repression. Consequently, RARα cannot be recruited, and the RA target genes are not activated. We then deciphered how the combination of G-CSF and RA successfully restored the activation of RA target genes to levels achieved in RA-sensitive APL cells. We demonstrate that G-CSF restores RARα recruitment to target gene promoters through the activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the subsequent derepression of chromatin. Thus, combinatorial activation of cytokines and RARs potentiates transcriptional activity through epigenetic modifications induced by specific signaling pathways.
Collapse
MESH Headings
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Line, Tumor
- Chromatin Assembly and Disassembly/drug effects
- Enzyme Activation/drug effects
- Enzyme Induction/drug effects
- Extracellular Signal-Regulated MAP Kinases/biosynthesis
- Gene Expression Regulation, Leukemic/drug effects
- Granulocyte Colony-Stimulating Factor/pharmacology
- Histones/metabolism
- Humans
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- MAP Kinase Signaling System/drug effects
- Mitogen-Activated Protein Kinase 3/biosynthesis
- Mitogen-Activated Protein Kinase 6/biosynthesis
- Phosphorylation/drug effects
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Protein Processing, Post-Translational/drug effects
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transcription, Genetic/drug effects
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- B Cassinat
- INSERM UMR-S-940, Université Paris Diderot, Hopital Saint-Louis, 75010 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Vicent GP, Nacht AS, Font-Mateu J, Castellano G, Gaveglia L, Ballaré C, Beato M. Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev 2011; 25:845-62. [PMID: 21447625 DOI: 10.1101/gad.621811] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene regulation by external signals requires access of transcription factors to DNA sequences of target genes, which is limited by the compaction of DNA in chromatin. Although we have gained insight into how core histones and their modifications influence this process, the role of linker histones remains unclear. Here we show that, within the first minute of progesterone action, a complex cooperation between different enzymes acting on chromatin mediates histone H1 displacement as a requisite for gene induction and cell proliferation. First, activated progesterone receptor (PR) recruits the chromatin remodeling complexes NURF and ASCOM (ASC-2 [activating signal cointegrator-2] complex) to hormone target genes. The trimethylation of histone H3 at Lys 4 by the MLL2/MLL3 subunits of ASCOM, enhanced by the hormone-induced displacement of the H3K4 demethylase KDM5B, stabilizes NURF binding. NURF facilitates the PR-mediated recruitment of Cdk2/CyclinA, which is required for histone H1 displacement. Cooperation of ATP-dependent remodeling, histone methylation, and kinase activation, followed by H1 displacement, is a prerequisite for the subsequent displacement of histone H2A/H2B catalyzed by PCAF and BAF. Chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) and expression arrays show that H1 displacement is required for hormone induction of most hormone target genes, some of which are involved in cell proliferation.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra (UPF), E-08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
105
|
Regnard C, Straub T, Mitterweger A, Dahlsveen IK, Fabian V, Becker PB. Global analysis of the relationship between JIL-1 kinase and transcription. PLoS Genet 2011; 7:e1001327. [PMID: 21423663 PMCID: PMC3053325 DOI: 10.1371/journal.pgen.1001327] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 02/05/2011] [Indexed: 01/08/2023] Open
Abstract
The ubiquitous tandem kinase JIL-1 is essential for Drosophila development. Its role in defining decondensed domains of larval polytene chromosomes is well established, but its involvement in transcription regulation has remained controversial. For a first comprehensive molecular characterisation of JIL-1, we generated a high-resolution, chromosome-wide interaction profile of the kinase in Drosophila cells and determined its role in transcription. JIL-1 binds active genes along their entire length. The presence of the kinase is not proportional to average transcription levels or polymerase density. Comparison of JIL-1 association with elongating RNA polymerase and a variety of histone modifications suggests two distinct targeting principles. A basal level of JIL-1 binding can be defined that correlates best with the methylation of histone H3 at lysine 36, a mark that is placed co-transcriptionally. The additional acetylation of H4K16 defines a second state characterised by approximately twofold elevated JIL-1 levels, which is particularly prominent on the dosage-compensated male X chromosome. Phosphorylation of the histone H3 N-terminus by JIL-1 in vitro is compatible with other tail modifications. In vivo, phosphorylation of H3 at serine 10, together with acetylation at lysine 14, creates a composite histone mark that is enriched at JIL-1 binding regions. Its depletion by RNA interference leads to a modest, but significant, decrease of transcription from the male X chromosome. Collectively, the results suggest that JIL-1 participates in a complex histone modification network that characterises active, decondensed chromatin. We hypothesise that one specific role of JIL-1 may be to reinforce, rather than to establish, the status of active chromatin through the phosphorylation of histone H3 at serine 10.
Collapse
Affiliation(s)
- Catherine Regnard
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Tobias Straub
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Mitterweger
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Ina K. Dahlsveen
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Viola Fabian
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM), Ludwig-Maximilians-University, Munich, Germany
| | - Peter B. Becker
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science (CiPSM), Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| |
Collapse
|
106
|
Saint-André V, Batsché E, Rachez C, Muchardt C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol 2011; 18:337-44. [PMID: 21358630 DOI: 10.1038/nsmb.1995] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 12/02/2010] [Indexed: 12/14/2022]
Abstract
Pre-messenger RNAs (pre-mRNAs) maturation is initiated cotranscriptionally. It is therefore conceivable that chromatin-borne information participates in alternative splicing. Here we find that elevated levels of trimethylation of histone H3 on Lys9 (H3K9me3) are a characteristic of the alternative exons of several genes including CD44. On this gene the chromodomain protein HP1γ, frequently defined as a transcriptional repressor, facilitates inclusion of the alternative exons via a mechanism involving decreased RNA polymerase II elongation rate. In addition, accumulation of HP1γ on the variant region of the CD44 gene stabilizes association of the pre-mRNA with the chromatin. Altogether, our data provide evidence for localized histone modifications impacting alternative splicing. They further implicate HP1γ as a possible bridging molecule between the chromatin and the maturating mRNA, with a general impact on splicing decisions.
Collapse
Affiliation(s)
- Violaine Saint-André
- Institut Pasteur, Département de Biologie du Développement, Unité de Régulation Epigénétique, Paris, France
| | | | | | | |
Collapse
|
107
|
Kato S, Yokoyama A, Fujiki R. Nuclear receptor coregulators merge transcriptional coregulation with epigenetic regulation. Trends Biochem Sci 2011; 36:272-81. [PMID: 21315607 DOI: 10.1016/j.tibs.2011.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 12/11/2022]
Abstract
Members of the nuclear steroid/thyroid hormone receptor (NR) gene superfamily are DNA-binding transcription factors that regulate target genes in a spatiotemporal manner, depending on the promoter context. In vivo observations of ligand responses in NR-mediated gene regulation led to the identification of ligand-dependent coregulators that directly interact with NRs. Functional dissection of NR coregulators revealed that their transcriptional coregulation was linked to histone acetylation. However, recent work in the fields of reversible histone modification and chromatin remodeling indicates that histone-modifying enzymes, including histone methylases and chromatin remodelers, are potential transcriptional coregulators that interact directly and indirectly with NRs.
Collapse
Affiliation(s)
- Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
108
|
Castoria G, D'Amato L, Ciociola A, Giovannelli P, Giraldi T, Sepe L, Paolella G, Barone MV, Migliaccio A, Auricchio F. Androgen-induced cell migration: role of androgen receptor/filamin A association. PLoS One 2011; 6:e17218. [PMID: 21359179 PMCID: PMC3040221 DOI: 10.1371/journal.pone.0017218] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/25/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. METHODOLOGY/PRINCIPAL FINDINGS Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. CONCLUSIONS/SIGNIFICANCE The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer metastasis.
Collapse
Affiliation(s)
- Gabriella Castoria
- Dipartimento di Patologia Generale, II Università di Napoli, Napoli, Italy
| | - Loredana D'Amato
- Dipartimento di Patologia Generale, II Università di Napoli, Napoli, Italy
| | | | - Pia Giovannelli
- Dipartimento di Patologia Generale, II Università di Napoli, Napoli, Italy
| | - Tiziana Giraldi
- Dipartimento di Patologia Generale, II Università di Napoli, Napoli, Italy
| | - Leandra Sepe
- Dipartimento di Biochimica e Biotecnologie Mediche, Università ‘Federico II’, Napoli, Italy
| | - Giovanni Paolella
- Dipartimento di Biochimica e Biotecnologie Mediche, Università ‘Federico II’, Napoli, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Disease, Dipartimento di Pediatria, Università ‘Federico II’, Napoli, Italy
| | - Antimo Migliaccio
- Dipartimento di Patologia Generale, II Università di Napoli, Napoli, Italy
| | | |
Collapse
|
109
|
Tardáguila M, González-Gugel E, Sánchez-Pacheco A. Aurora kinase B activity is modulated by thyroid hormone during transcriptional activation of pituitary genes. Mol Endocrinol 2011; 25:385-93. [PMID: 21239609 DOI: 10.1210/me.2010-0446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Covalent histone modifications clearly play an essential role in ligand-dependent transcriptional regulation by nuclear receptors. One of the predominant mechanisms used by nuclear receptors to activate or repress target-gene transcription is the recruitment of coregulatory factors capable of covalently modify the amino terminal ends of histones. Here we show that the thyroid hormone (T3) produces a rapid increase in histone H3Ser10 phosphorylation (H3Ser10ph) concomitant to the rapid displacement of the heterochromatin protein 1β (HP1β) to the nuclear periphery. Moreover, we found that T3-mediated pituitary gene transcription is associated with an increase in H3Ser10ph. Interestingly, the Aurora kinase B inhibitor ZM443979 abolishes the effect of T3 on H3Ser10ph, blocks HP1β delocalization, and significantly reduces ligand-dependent transactivation. Similar effects were shown when Aurora kinase B expression was abrogated in small interfering RNA assays. In an effort to understand the underlying mechanism by which T3 increases H3Ser10ph, we demonstrate that liganded thyroid hormone receptor directly interacts with Aurora kinase B, increasing its kinase activity. Moreover, using chromatin immunoprecipitation assays, we have shown that Aurora kinase B participates of a mechanism that displaces HP1β from promoter region, thus preparing the chromatin for the transcriptional activation of T3 regulated genes. Our findings reveal a novel role for Aurora kinase B during transcriptional initiation in GO/G1, apart from its well-known mitotic activity.
Collapse
Affiliation(s)
- Manuel Tardáguila
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | |
Collapse
|
110
|
Mikula M, Bomsztyk K. Direct recruitment of ERK cascade components to inducible genes is regulated by heterogeneous nuclear ribonucleoprotein (hnRNP) K. J Biol Chem 2011; 286:9763-75. [PMID: 21233203 DOI: 10.1074/jbc.m110.213330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Components of the ERK cascade are recruited to genes, but it remains unknown how they are regulated at these sites. The RNA-binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) K interacts with kinases and is found along genes including the mitogen-inducible early response gene EGR-1. Here, we used chromatin immunoprecipitations to study co-recruitment of hnRNP K and ERK cascade activity along the EGR-1 gene. These measurements revealed that the spatiotemporal binding patterns of ERK cascade transducers (GRB2, SOS, B-Raf, MEK, and ERK) at the EGR-1 locus resemble both hnRNP K and RNA polymerase II (Pol II). Inhibition of EGR-1 transcription with either serum-responsive factor knockdown or 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole altered recruitment of all of the above ERK cascade components along this locus that mirrored the changes in Pol II and hnRNP K profiles. siRNA knockdown of hnRNP K decreased the levels of active MEK and ERK at the EGR-1, changes associated with decreased levels of elongating pre-mRNA and less efficient splicing. The hnRNP K dependence and pattern of ERK cascade activation at the c-MYC locus were different from at EGR-1. Ribonucleoprotein immunoprecipitations revealed that hnRNP K was associated with the EGR-1 but not c-MYC mRNAs. These data suggest a model where Pol II transcription-driven recruitment of hnRNP K along the EGR-1 locus compartmentalizes activation of the ERK cascade at these genes, events that regulate synthesis of mature mRNA.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
111
|
Lee GS, Simons SS. Ligand binding domain mutations of the glucocorticoid receptor selectively modify the effects with, but not binding of, cofactors. Biochemistry 2010; 50:356-66. [PMID: 21142156 DOI: 10.1021/bi101792d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We previously reported that several point mutations in the ligand binding domain (LBD) of glucocorticoid receptors (GRs) marginally affect the binding affinity of the synthetic glucocorticoids dexamethasone (Dex) and deacylcortivazol (DAC). However, these mutations dramatically alter the efficacy (A(max)) and potency (EC(50)) of agonists, along with the partial agonist activity (PAA) of the antisteroid Dex-mesylate (DM), for gene induction and repression in a steroid-dependent manner. This was proposed to result, in part, from altered protein-protein interactions in the complex of GR with the coactivator TIF2 despite normal TIF2 binding. To explore the generality of this phenomenon, we now ask whether these mutations also affect the transactivation properties, but not binding, of other GR-bound factors. We find that an elevated concentration of GR, to probe unidentified cofactors, or of the comodulator Ubc9 does not reverse the effects of GR LBD mutations that increase the EC(50) and lower the PAA with the GREtkLUC reporter in both CV-1 and U2OS cells. This behavior is more dramatic with Ubc9 and the isolated GR LBD fused to the GAL4 DNA binding domain, despite normal binding of Ubc9 to the mutant GRs. Similar effects, albeit gene, steroid, and transcriptional property-specific, are seen with full-length GRs and three endogenous genes in U2OS cells. Thus, changes in simple steady-state binding capacities of mutant receptors for factors cannot account for the modified transcriptional properties. In all cases, the nuclear translocation of Dex- and DAC-bound wild-type and mutant receptors is the same. These results are consistent with the earlier results with TIF2 and support the hypothesis that small changes in the GR LBD can alter the activities of the bound cofactor without modifying cofactor binding. We propose that this separation of binding and the modulation of transactivation parameters occurs for a wide variety of GR-associated cofactors.
Collapse
Affiliation(s)
- Geun-Shik Lee
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases/Clinical Endocrinology Branch, National Institutes of Health, Bethesda, MD 20892-1772, USA
| | | |
Collapse
|
112
|
Abstract
Post-translational modifications of histone proteins in conjunction with DNA methylation represent important events in the regulation of local and global genome functions. Advances in the study of these chromatin modifications established temporal and spatial co-localization of several distinct 'marks' on the same histone and/or the same nucleosome. Such complex modification patterns suggest the possibility of combinatorial effects. This idea was originally proposed to establish a code of histone modifications that regulates the interpretation of the genetic code of DNA. Indeed, interdependency of different modifications is now well documented in the literature. Our current understanding is that the function of a given histone modification is influenced by neighbouring or additional modifications. Such context sensitivity of the readout of a modification provides more flexible translation than would be possible if distinct modifications function as isolated units. The mechanistic principles for modification cross-talk can originate in the modulation of the activity of histone-modifying enzymes or may be due to selective recognition of these marks via modification of specific binding proteins. In the present chapter, we discuss fundamental biochemical principles of modification cross-talk and reflect on the interplay of chromatin marks in cellular signalling, cell-cycle progression and cell-fate determination.
Collapse
|
113
|
Giraldi T, Giovannelli P, Di Donato M, Castoria G, Migliaccio A, Auricchio F. Steroid signaling activation and intracellular localization of sex steroid receptors. J Cell Commun Signal 2010; 4:161-72. [PMID: 21234121 DOI: 10.1007/s12079-010-0103-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 10/13/2010] [Indexed: 12/21/2022] Open
Abstract
In addition to stimulating gene transcription, sex steroids trigger rapid, non-genomic responses in the extra-nuclear compartment of target cells. These events take place within seconds or minutes after hormone administration and do not require transcriptional activity of sex steroid receptors. Depending on cell systems, activation of extra-nuclear signaling pathways by sex steroids fosters cell cycle progression, prevents apoptosis, leads to epigenetic modifications and increases cell migration through cytoskeleton changes. These findings have raised the question of intracellular localization of sex steroid receptors mediating these responses. During the past years, increasing evidence has shown that classical sex steroid receptors localized in the extra-nuclear compartment or close to membranes of target cells induce these events. The emerging picture is that a process of bidirectional control between signaling activation and sex steroid receptor localization regulates the outcome of hormonal responses in target cells. This mechanism ensures cell cycle progression in estradiol-treated breast cancer cells, and its derangement might occur in progression of human proliferative diseases. These findings will be reviewed here together with unexpected examples of the relationship between sex steroid receptor localization, signaling activation and biological responses in target cells. We apologize to scientists whose reports are not mentioned or extensively discussed owing to space limitations.
Collapse
Affiliation(s)
- Tiziana Giraldi
- Department of General Pathology, II University of Naples, Via L. de Crecchio, 7, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
114
|
Richly H, Lange M, Simboeck E, Di Croce L. Setting and resetting of epigenetic marks in malignant transformation and development. Bioessays 2010; 32:669-79. [PMID: 20658705 DOI: 10.1002/bies.201000016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epigenetic modifications, such as DNA methylation and post-translation modifications of histones, have been shown to play an important role in chromatin structure, promoter activity, and cellular reprogramming. Large protein complexes, such as Polycomb and trithorax, often harbor multiple activities which affect histone tail modification. Nevertheless, the mechanisms underlying the deposition of these marks, their propagation during cell replication, and the alteration on their distribution during transformation still require further study. Here we review recent data on those processes in both normal and cancer cells, and we propose that the unscheduled expression of oncogenic transcription factors causes reprogramming of normal cells into cancer stem cells.
Collapse
Affiliation(s)
- Holger Richly
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
115
|
Vicent GP, Nacht AS, Zaurín R, Ballaré C, Clausell J, Beato M. Minireview: role of kinases and chromatin remodeling in progesterone signaling to chromatin. Mol Endocrinol 2010; 24:2088-98. [PMID: 20484412 PMCID: PMC5417384 DOI: 10.1210/me.2010-0027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/21/2010] [Indexed: 11/19/2022] Open
Abstract
Steroid hormones regulate gene expression by interaction of their receptors with hormone-responsive elements on DNA or with other transcription factors, but they can also activate cytoplasmic signaling cascades. Rapid activation of Erk by progestins via an interaction of the progesterone receptor (PR) with the estrogen receptor is critical for transcriptional activation of the mouse mammary tumor virus (MMTV) promoter and other progesterone target genes. Erk activation leads to the phosphorylation of PR, activation of mitogen- and stress-activated protein kinase 1, and the recruitment of a complex of the three activated proteins and of P300/CBP-associated factor (PCAF) to a single nucleosome, resulting in the phosphoacetylation of histone H3 and the displacement of heterochromatin protein 1γ. Hormone-dependent gene expression requires ATP-dependent chromatin remodeling complexes. Two switch/sucrose nonfermentable-like complexes, Brahma-related gene 1-associated factor (BAF) and polybromo-BAF are present in breast cancer cells, but only BAF is recruited to the MMTV promoter and cooperates with PCAF during activation of hormone-responsive promoters. PCAF acetylates histone H3 at K14, an epigenetic mark recognized by BAF subunits, thus anchoring the complex to chromatin. BAF catalyzes localized displacement of histones H2A and H2B, facilitating access of nuclear factor 1 and additional PR complexes to the hidden hormone-responsive elements on the MMTV promoter. The linker histone H1 is a structural component of chromatin generally regarded as a general repressor of transcription. However, it contributes to a better regulation of the MMTV promoter by favoring a more homogeneous nucleosome positioning, thus reducing basal transcription and actually enhancing hormone induced transcription. During transcriptional activation, H1 is phosphorylated and displaced from the promoter. The kinase cyclin-dependent kinase 2 is activated after progesterone treatment and could catalyze progesterone-induced phosphorylation of histone H1 by chromatin remodeling complexes. The initial steps of gene induction by progestins involve changes in the chromatin organization of target promoters that require the activation of several kinase signaling pathways initiated by membrane anchored PR. Because these pathways also respond to other external signals, they serve to integrate the hormonal response in the global context of the cellular environment.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Aiguader 88, E-08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
116
|
Ji H, Long V, Briody V, Chien EK. Progesterone modulates integrin {alpha}2 (ITGA2) and {alpha}11 (ITGA11) in the pregnant cervix. Reprod Sci 2010; 18:156-63. [PMID: 20959644 DOI: 10.1177/1933719110382305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Fibrillar collagen in the cervical extracellular matrix (ECM) is the predominant component providing mechanical support. Cellular integrins contribute to structural integrity by cross-linking ECM components. We investigated the expression of collagen-binding integrins in the normal rat gestation and after treatment with mifepristone to determine whether integrin modulation is involved in changes in tissue resistance. STUDY DESIGN Cervical tissue was harvested from nonpregnant and timed pregnant Sprague-Dawley rats. Normal gestational expression was evaluated in nonpregnant and timed pregnant tissue on days 12, 16, 18, 20, 21 and 22. Progesterone inhibition was induced with 3 mg mifepristone administered on day 15. Primary rat cervical stromal (RCS) cell cultures were generated from nonpregnant rats using tissue explants. The effects of progesterone environment on RCS cells were evaluated in the presence and absence of various inhibitors. Protein expression and signaling pathways were evaluated by Western blot. RESULTS Integrin α2 (ITGA2) expression increased over gestation, peaking at the end of gestation (analysis of variance [ANOVA] P < .01). Integrin α11 (ITGA11) expression increased through mid-gestation, peaking on day 18 and decreasing through day 22 (ANOVA P < .001). Progesterone increased the expression of ITGA11 and phosphorylated focal adhesion kinase ([pFAK] P < .002). Mifepristone blocked these effects in vitro. Mifepristone increased ITGA2 and phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2) in vivo and in vitro. Mifepristone-induced upregulation of ITGA2 was abrogated by inhibition of ERK1/2. CONCLUSION Progesterone/progesterone withdrawal is involved in regulating the expression of collagen-binding integrins. These changes differ among the collagen-binding integrins. Mitogen-activated protein kinase (MAPK) signaling is involved in regulating some of these integrins.
Collapse
Affiliation(s)
- Huiling Ji
- Department of Obstetrics and Gynecology, Section of Maternal Fetal Medicine, The Warren Alpert Medical School of Brown University, Women & Infants' Hospital of Rhode Island, Providence, RI 02905, USA
| | | | | | | |
Collapse
|
117
|
Genomic collaboration of estrogen receptor alpha and extracellular signal-regulated kinase 2 in regulating gene and proliferation programs. Mol Cell Biol 2010; 31:226-36. [PMID: 20956553 DOI: 10.1128/mcb.00821-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear hormone receptor, estrogen receptor α (ERα), and mitogen-activated protein kinases (MAPKs) play key roles in hormone-dependent cancers, and yet their interplay and the integration of their signaling inputs remain poorly understood. In these studies, we document that estrogen-occupied ERα activates and interacts with extracellular signal-regulated kinase 2 (ERK2), a downstream effector in the MAPK pathway, resulting in ERK2 and ERα colocalization at chromatin binding sites across the genome of breast cancer cells. This genomic colocalization, predominantly at conserved distal enhancer sites, requires the activation of both ERα and ERK2 and enables ERK2 modulation of estrogen-dependent gene expression and proliferation programs. The ERK2 substrate CREB1 was also activated and recruited to ERK2-bound chromatin following estrogen treatment and found to cooperate with ERα/ERK2 in regulating gene transcription and cell cycle progression. Our study reveals a novel paradigm with convergence of ERK2 and ERα at the chromatin level that positions this kinase to support nuclear receptor activities in crucial and direct ways, a mode of collaboration likely to underlie MAPK regulation of gene expression by other nuclear receptors as well.
Collapse
|
118
|
Simboeck E, Sawicka A, Zupkovitz G, Senese S, Winter S, Dequiedt F, Ogris E, Di Croce L, Chiocca S, Seiser C. A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J Biol Chem 2010; 285:41062-73. [PMID: 20952396 DOI: 10.1074/jbc.m110.184481] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3ζ, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a cross-talk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells.
Collapse
Affiliation(s)
- Elisabeth Simboeck
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Integration of protein kinases into transcription complexes: identifying components of immobilised in vitro pre-initiation complexes. Methods Mol Biol 2010. [PMID: 20694675 DOI: 10.1007/978-1-60761-738-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Regulation of gene expression is essential for coordinated cell growth and development. The de-regulation of certain genes is also recognised to contribute to both heritable and acquired disease. Transcription factors influence the assembly and activity of transcription complexes, which they achieve in part by recruiting co-activators to gene promoters to participate in the dynamic cycle of polymerase binding, initiation and escape from the promoter. Co-activator recruitment and accompanying post-translational modifications to components of promoter complexes appear to differ between genes and as a consequence of varying signal input. Thus a full understanding of transcriptional initiation and control will ultimately require the elucidation of these processes. The method described here was designed to detect the presence of proteins and post-translational modifications in complexes formed in vitro on gene-specific promoters. It has been used, among other things, to detect the recruitment of the Mitogen-Activated Protein (MAP) kinases ERK1 and ERK2 to the promoters of mitogen-responsive genes.
Collapse
|
120
|
Ferreiro I, Barragan M, Gubern A, Ballestar E, Joaquin M, Posas F. The p38 SAPK is recruited to chromatin via its interaction with transcription factors. J Biol Chem 2010; 285:31819-28. [PMID: 20682780 PMCID: PMC2951253 DOI: 10.1074/jbc.m110.155846] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In mammals, the stress-activated protein kinase (SAPK) p38 coordinates a rapid and complex transcriptional program to adapt to sudden changes in the extracellular environment. Although a number of genes have been reported to be under the control of p38, the basic mechanisms of transcriptional regulation by this SAPK remain uncharacterized. Here we show that in response to osmotic shock, anisomycin- or TNFα-activated p38 SAPK is recruited to stress-induced genes. The MAPKK MKK6 is also found at stress-responsive promoters. The recruitment of RNA polymerase II complex to the target promoters requires p38 activity. Moreover, when tethered to DNA as a LexA fusion protein, p38 activates transcription in a stress-regulated manner. Thus, p38 activity allows for recruitment of RNA polymerase and transcription initiation. p38 directly phosphorylates and interacts with the transcription factor Elk1. p38 activity is necessary for the recruitment of Elk1 to the c-Fos promoter, and knocking down Elk1 by siRNAs compromises both p38 recruitment to the c-Fos promoter and c-Fos transcriptional up-regulation upon osmostress. In addition, p38 recruitment to the osmoinducible gene Cox2 and the TNFα target gene IL8 is mediated by the transcription factors AP1 and NFκB, respectively. Therefore, anchoring of active SAPK to target genes is mediated by transcription factors. The presence of active p38 at open reading frames also suggests the involvement of the SAPK in elongation. Taken together, SAPK recruitment to target genes appears to be a broad mechanism to regulate transcription that has been preserved from yeast to mammals.
Collapse
Affiliation(s)
- Isabel Ferreiro
- Cell Signalling Research Group, Departament de Ciències Experimetals i de la Salut, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
121
|
Burgio G, Onorati MC, Corona DFV. Chromatin remodeling regulation by small molecules and metabolites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:671-80. [PMID: 20493981 DOI: 10.1016/j.bbagrm.2010.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/08/2010] [Indexed: 10/19/2022]
Abstract
The eukaryotic genome is a highly organized nucleoprotein structure comprising of DNA, histones, non-histone proteins, and RNAs, referred to as chromatin. The chromatin exists as a dynamic entity, shuttling between the open and closed forms at specific nuclear regions and loci based on the requirement of the cell. This dynamicity is essential for the various DNA-templated phenomena like transcription, replication, and repair and is achieved through the activity of ATP-dependent chromatin remodeling complexes and covalent modifiers of chromatin. A growing body of data indicates that chromatin enzymatic activities are finely and specifically regulated by a variety of small molecules derived from the intermediary metabolism. This review tries to summarize the work conducted in many laboratories and on different model organisms showing how ATP-dependent chromatin remodeling complexes are regulated by small molecules and metabolites such as adenosine triphosphate (ATP), acetyl coenzyme A (AcCoA), S-adenosyl methionine (SAM), nicotinamide adenine dinucleotide (NAD), and inositol polyphosphates (IPs).
Collapse
Affiliation(s)
- Giosalba Burgio
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università degli Studi di Palermo, 90100 Palermo, Italy
| | | | | |
Collapse
|
122
|
Abstract
The rapid activation of gene expression in response to stimuli occurs largely through the regulation of RNA polymerase II-dependent transcription. In this Review, we discuss events that occur during the transcription cycle in eukaryotes that are important for the rapid and specific activation of gene expression in response to external stimuli. In addition to regulated recruitment of the transcription machinery to the promoter, it has now been shown that control steps can include chromatin remodelling and the release of paused polymerase. Recent work suggests that some components of signal transduction cascades also play an integral part in activating transcription at target genes.
Collapse
|
123
|
Malakhova M, D'Angelo I, Kim HG, Kurinov I, Bode AM, Dong Z. The crystal structure of the active form of the C-terminal kinase domain of mitogen- and stress-activated protein kinase 1. J Mol Biol 2010; 399:41-52. [PMID: 20382163 DOI: 10.1016/j.jmb.2010.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 01/12/2023]
Abstract
Mitogen- and stress-activated protein kinase 1 (MSK1) is a growth-factor-stimulated serine/threonine kinase that is involved in gene transcription regulation and proinflammatory cytokine stimulation. MSK1 is a dual kinase possessing two nonidentical protein kinase domains in one polypeptide. We present the active conformation of the crystal structures of its C-terminal kinase domain in apo form and in complex with a nonhydrolyzable ATP analogue at 2.0 A and 2.5 A resolutions, respectively. Structural analysis revealed substantial differences in the contacts formed by the C-terminal helix, which is responsible for the inactivity of other autoinhibited kinases. In the C-terminal kinase domain of MSK1, the C-terminal alphaL-helix is located in the surface groove, but forms no hydrogen bonds with the substrate-binding loop or nearby helices, and does not interfere with the protein's autophosphorylation activity. Mutational analysis confirmed that the alphaL-helix is inherently nonautoinhibitory. Overexpression of the single C-terminal kinase domain in JB6 cells resulted in tumor-promoter-induced neoplastic transformation in a manner similar to that induced by the full-length MSK1 protein. The overall results suggest that the C-terminal kinase domain of MSK1 is regulated by a novel alphaL-helix-independent mechanism, suggesting that a diverse mechanism of autoinhibition and activation might be adopted by members of a closely related protein kinase family.
Collapse
Affiliation(s)
- Margarita Malakhova
- The Hormel Institute University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | | | | | | | | | | |
Collapse
|
124
|
Drobic B, Pérez-Cadahía B, Yu J, Kung SKP, Davie JR. Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 2010; 38:3196-208. [PMID: 20129940 PMCID: PMC2879512 DOI: 10.1093/nar/gkq030] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Upon activation of the ERK and p38 MAPK pathways, the MSK1/2-mediated nucleosomal response, including H3 phosphorylation at serine 28 or 10, is coupled with the induction of immediate-early (IE) gene transcription. The outcome of this response, varying with the stimuli and cellular contexts, ranges from neoplastic transformation to neuronal synaptic plasticity. Here, we used sequential co-immunoprecipitation assays and sequential chromatin immunoprecipitation (ChIP) assays on mouse fibroblast 10T1/2 and MSK1 knockdown 10T1/2 cells to show that H3 serine 28 and 10 phosphorylation leads to promoter remodeling. MSK1, in complexes with phospho-serine adaptor 14-3-3 proteins and BRG1 the ATPase subunit of the SWI/SNF remodeler, is recruited to the promoter of target genes by transcription factors such as Elk-1 or NF-kappaB. Following MSK1-mediated H3 phosphorylation, BRG1 associates with the promoter of target genes via 14-3-3 proteins, which act as scaffolds. The recruited SWI/SNF remodels nucleosomes at the promoter of IE genes enabling the binding of transcription factors like JUN and the onset of transcription.
Collapse
Affiliation(s)
- Bojan Drobic
- Department of Immunology, University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba R3E 0V9, Canada
| | | | | | | | | |
Collapse
|
125
|
Pérez-Cadahía B, Drobic B, Davie JR. H3 phosphorylation: dual role in mitosis and interphase. Biochem Cell Biol 2010; 87:695-709. [PMID: 19898522 DOI: 10.1139/o09-053] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromatin condensation and subsequent decondensation are processes required for proper execution of various cellular events. During mitosis, chromatin compaction is at its highest, whereas relaxation of chromatin is necessary for DNA replication, repair, recombination, and gene transcription. Since histone proteins are directly complexed with DNA in the form of a nucleosome, great emphasis is put on deciphering histone post-translational modifications that control the chromatin condensation state. Histone H3 phosphorylation is a mark present in mitosis, where chromatin condensation is necessary, and in transcriptional activation of genes, when chromatin needs to be decondensed. There are four characterized phospho residues within the H3 N-terminal tail during mitosis: Thr3, Ser10, Thr11, and Ser28. Interestingly, H3 phosphorylated at Ser10, Thr11, and Ser28 has been observed on genomic regions of transcriptionally active genes. Therefore, H3 phosphorylation is involved in processes requiring opposing chromatin states. The level of H3 phosphorylation is mediated by opposing actions of specific kinases and phosphatases during mitosis and gene transcription. The cellular contexts under which specific residues on H3 are phosphorylated in mitosis and interphase are known to some extent. However, the functional consequences of H3 phosphorylation are still unclear.
Collapse
Affiliation(s)
- Beatriz Pérez-Cadahía
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E0V9, Canada
| | | | | |
Collapse
|
126
|
Shimada M, Nakadai T, Fukuda A, Hisatake K. cAMP-response element-binding protein (CREB) controls MSK1-mediated phosphorylation of histone H3 at the c-fos promoter in vitro. J Biol Chem 2010; 285:9390-9401. [PMID: 20089855 DOI: 10.1074/jbc.m109.057745] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rapid induction of the c-fos gene correlates with phosphorylations of histone H3 and HMGN1 by mitogen- and stress-activated protein kinases. We have used a cell-free system to dissect the mechanism by which MSK1 phosphorylates histone H3 within the c-fos chromatin. Here, we show that the reconstituted c-fos chromatin presents a strong barrier to histone H3 phosphorylation by MSK1; however, the activators (serum response factor, Elk-1, cAMP-response element-binding protein (CREB), and ATF1) bound on their cognate sites recruit MSK1 to phosphorylate histone H3 at Ser-10 within the chromatin. This activator-dependent phosphorylation of histone H3 is enhanced by HMGN1 and occurs preferentially near the promoter region. Among the four activators, CREB plays a predominant role in MSK1-mediated phosphorylation of histone H3, and the phosphorylation of Ser-133 in CREB is essential for this process. Mutational analyses of MSK1 show that its N-terminal inhibition domain is critical for the kinase to phosphorylate chromatin-embedded histone H3 in a CREB-dependent manner, indicating the presence of an intricate regulatory network for MSK1-mediated phosphorylation of histone H3.
Collapse
Affiliation(s)
- Miho Shimada
- Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495
| | - Tomoyoshi Nakadai
- Department of Molecular Biology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495
| | - Aya Fukuda
- Department of Biochemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Koji Hisatake
- Department of Biochemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
127
|
Tang H, Park S, Sun SC, Trumbly R, Ren G, Tsung E, Yeung KC. RKIP inhibits NF-kappaB in cancer cells by regulating upstream signaling components of the IkappaB kinase complex. FEBS Lett 2009; 584:662-8. [PMID: 20043910 DOI: 10.1016/j.febslet.2009.12.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/17/2009] [Accepted: 12/19/2009] [Indexed: 11/17/2022]
Abstract
RKIP was first identified as an inhibitor of the Raf-MEK-ERK signaling pathway. RKIP was also found to play an important role in the NF-kappaB pathway. Genetic and biochemical studies demonstrated that RKIP functioned as a scaffold protein facilitating the phosphorylation of IkappaB by upstream kinases. However, contrary to what one would expect of a scaffold protein, our results show that RKIP has an overall inhibitory effect on the NF-kappaB transcriptional activities. Since NF-kappaB target gene expression is subject to negative regulation involving the optimal induction of negative regulators, our data support a hypothesis that RKIP inhibits NF-kappaB activity via the auto-regulatory feedback loop by rapidly inducing the expression and synthesis of inhibitors of NF-kappaB activation.
Collapse
Affiliation(s)
- Huihui Tang
- Department of Biochemistry and Cancer Biology, College of Medicine, University of Toledo, Toledo, OH 43614-5804, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Echeverria PC, Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:641-9. [PMID: 20006655 DOI: 10.1016/j.bbamcr.2009.11.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Steroid hormone receptors (SHRs) are notorious intracellular travellers, transiting among different cellular compartments as they mature, are subjected to regulation and exert their biological functions. Understanding the processes governing the intracellular traffic of SHRs is important, since their unbalanced or erroneous localization could lead to the development of diseases. In this review, we not only explore the functions of the heat-shock protein 90 (Hsp90) molecular chaperone machine for the intracellular transport of SHRs, but also for the regulation of their nuclear mobility, for their recycling and for the regulation of their transcriptional output.
Collapse
Affiliation(s)
- Pablo C Echeverria
- Département de Biologie Cellulaire, Université de Genève, 1211 Genève 4, Switzerland
| | | |
Collapse
|
129
|
Lavigne M, Eskeland R, Azebi S, Saint-André V, Jang SM, Batsché E, Fan HY, Kingston RE, Imhof A, Muchardt C. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet 2009; 5:e1000769. [PMID: 20011120 PMCID: PMC2782133 DOI: 10.1371/journal.pgen.1000769] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/12/2009] [Indexed: 01/06/2023] Open
Abstract
The heterochromatin-enriched HP1 proteins play a critical role in regulation of transcription. These proteins contain two related domains known as the chromo- and the chromoshadow-domain. The chromo-domain binds histone H3 tails methylated on lysine 9. However, in vivo and in vitro experiments have shown that the affinity of HP1 proteins to native methylated chromatin is relatively poor and that the opening of chromatin occurring during DNA replication facilitates their binding to nucleosomes. These observations prompted us to investigate whether HP1 proteins have additional histone binding activities, envisioning also affinity for regions potentially occluded by the nucleosome structure. We find that the chromoshadow-domain interacts with histone H3 in a region located partially inside the nucleosomal barrel at the entry/exit point of the nucleosome. Interestingly, this region is also contacted by the catalytic subunits of the human SWI/SNF complex. In vitro, efficient SWI/SNF remodeling requires this contact and is inhibited in the presence of HP1 proteins. The antagonism between SWI/SNF and HP1 proteins is also observed in vivo on a series of interferon-regulated genes. Finally, we show that SWI/SNF activity favors loading of HP1 proteins to chromatin both in vivo and in vitro. Altogether, our data suggest that HP1 chromoshadow-domains can benefit from the opening of nucleosomal structures to bind chromatin and that HP1 proteins use this property to detect and arrest unwanted chromatin remodeling. HP1 proteins are transcriptional regulators frequently associated with gene silencing, a phenomenon involving masking of promoter DNA by dense chromatin. Owing to their chromo-domain, these proteins can read and bind an epigenetic mark that on many non-expressed genes is present on histone H3 at the surface of the nucleosome (the fundamental packing unit of chromatin). However, the binding to this mark does not explain the repressing activity of HP1 proteins. Here, we show that these proteins can establish a second contact with histone H3, independently of the epigenetic mark. This second contact site is located inside the nucleosome, in a position likely to be inaccessible. Interestingly, this site is also contacted by a subunit of the SWI/SNF complex and this contact is required for the ATP-dependent chromatin remodeling catalyzed by SWI/SNF. We provide evidence suggesting that HP1 proteins use the SWI/SNF chromatin remodeling to gain access to the contact site inside the nucleosome and to prevent further remodeling by competing with SWI/SNF for binding at this position. These observations lead us to suggest that HP1 proteins function as gatekeepers on promoters, detecting and stopping unwanted exposure of internal nucleosomal sites.
Collapse
Affiliation(s)
- Marc Lavigne
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Ragnhild Eskeland
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Saliha Azebi
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Violaine Saint-André
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Suk Min Jang
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Eric Batsché
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
| | - Hua-Ying Fan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Axel Imhof
- Munich Center for Integrated Protein Science CIPSM, Histone Modifications Group, Adolf-Butenandt Institute, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christian Muchardt
- Institut Pasteur, Département de Biologie du Développement, Unité de Recherche Associée URA2578 du Centre National de la Recherche Scientifique CNRS, Unité de Régulation Epigénétique, équipe AVENIR de l'Institut National de la Santé Et de la Recherche Médicale INSERM, Paris, France
- * E-mail:
| |
Collapse
|
130
|
Beck IME, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K. Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 2009; 30:830-82. [PMID: 19890091 PMCID: PMC2818158 DOI: 10.1210/er.2009-0013] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/18/2009] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms. The reversible phosphomodification of various mediators in the inflammatory process plays a key role in modulating and fine-tuning the sensitivity, longevity, and intensity of the inflammatory response. As such, the antiinflammatory GCs can modulate the activity and/or expression of various kinases and phosphatases, thus affecting the signaling efficacy toward the propagation of proinflammatory gene expression and proinflammatory gene mRNA stability. Conversely, phosphorylation of GR can affect GR ligand- and DNA-binding affinity, mobility, and cofactor recruitment, culminating in altered transactivation and transrepression capabilities of GR, and consequently leading to a modified antiinflammatory potential. Recently, new roles for kinases and phosphatases have been described in GR-based antiinflammatory mechanisms. Moreover, kinase inhibitors have become increasingly important as antiinflammatory tools, not only for research but also for therapeutic purposes. In light of these developments, we aim to illuminate the integrated interplay between GR signaling and its correlating kinases and phosphatases in the context of the clinically important combat of inflammation, giving attention to implications on GC-mediated side effects and therapy resistance.
Collapse
Affiliation(s)
- Ilse M E Beck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
131
|
Multilayered control of gene expression by stress-activated protein kinases. EMBO J 2009; 29:4-13. [PMID: 19942851 DOI: 10.1038/emboj.2009.346] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/02/2009] [Indexed: 11/09/2022] Open
Abstract
Stress-activated protein kinases (SAPKs) are key elements for intracellular signalling networks that serve to respond and adapt to extracellular changes. Exposure of yeast to high osmolarity results in the activation of p38-related SAPK, Hog1, which is essential for reprogramming the gene expression capacity of the cell by regulation of several steps of the transcription process. At initiation, active Hog1 not only directly phosphorylates several transcription factors to alter their activities, but also associates at stress-responsive promoters through such transcription factors. Once at the promoters, Hog1 serves as a platform to recruit general transcription factors, chromatin-modifying activities and RNA Pol II. In addition, the SAPK pathway has a role in elongation. At the stress-responsive ORFs, Hog1 recruits the RSC chromatin-remodelling complex to modify nucleosome organization. Several SAPKs from yeast to mammals have maintained some of the regulatory abilities of Hog1. Thus, elucidating the control of gene expression by the Hog1 SAPK should help to understand how eukaryotic cells implement a massive and rapid change on their transcriptional capacity in response to adverse conditions.
Collapse
|
132
|
Vicent GP, Zaurin R, Nacht AS, Font-Mateu J, Le Dily F, Beato M. Nuclear factor 1 synergizes with progesterone receptor on the mouse mammary tumor virus promoter wrapped around a histone H3/H4 tetramer by facilitating access to the central hormone-responsive elements. J Biol Chem 2009; 285:2622-31. [PMID: 19940123 DOI: 10.1074/jbc.m109.060848] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Steroid hormones induce transcription of their responsive genes by complex mechanisms including synergism between the hormone receptors and other transcription factors. On the mouse mammary tumor virus (MMTV) promoter progesterone induction is mediated by the reciprocal synergism between progesterone receptor (PR) and the ubiquitous transcription factor nuclear factor 1 (NF1). PR binding mediates ATP-dependent displacement of histone H2A and H2B, enabling NF1 access to its target site. In minichromosomes assembled in vitro NF1 binding facilitates access of PR to the hormone-responsive elements (HREs) by precluding reforming of the histone octamer, but the function of NF1 in living cells remains unclear. Here we show that depleting NF1 by small interfering RNAs or mutating the NF1-binding site significantly compromises transcription of the MMTV promoter. The central HREs 2 and 3 are not needed for ATP-dependent H2A/H2B displacement or NF1 binding but are critical for full PR binding and MMTV transactivation. We found that NF1 binding to the MMTV promoter on a H3/H4 histone tetramer particle exposes the central HREs and facilitates their binding by PR, suggesting a possible mechanism for the reciprocal synergism between PR and NF1.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Dr Aiguader 88, E-08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
133
|
Laserna EJ, Valero ML, Sanz L, del Pino MMS, Calvete JJ, Barettino D. Proteomic analysis of phosphorylated nuclear proteins underscores novel roles for rapid actions of retinoic acid in the regulation of mRNA splicing and translation. Mol Endocrinol 2009; 23:1799-814. [PMID: 19812389 DOI: 10.1210/me.2009-0165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinoic acid (RA) signaling is mediated by the retinoic acid receptor (RAR), belonging to the nuclear hormone receptor superfamily. In addition to its classical transcriptional actions, RAR also mediates rapid transcription-independent (nongenomic) actions, consisting in the activation of signal transduction pathways, as the phosphatidyl-inositol-3-kinase or the ERK MAPK-signaling pathways. RA-induced rapid transcription-independent actions play a role in different physiological contexts. As an effort toward understanding the functions of those rapid actions on signaling elicited by RA, we have identified nuclear proteins the phosphorylation state of which is rapidly modified by RA treatment in neuroblastoma cells, using a proteomic approach. Our results show that RA treatment led to changes in the phosphorylation patterns in two families of proteins: 1) those related to chromatin dynamics in relation to transcriptional activation, and 2) those related to mRNA processing and, in particular, mRNA splicing. We show that treatment of neuroblastoma cells with RA leads to alteration of the regulation of pre-mRNA splicing and mRNA translation. Thus, our results underscore novel functions for the rapid signaling elicited by RAR in the regulation of mRNA processing. We conclude that RA activation of signaling pathways can indeed regulate mRNA processing as part of a cellular response orchestrated by the nuclear receptor RAR.
Collapse
Affiliation(s)
- Emilio J Laserna
- Biology of Hormone Action Unit, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, [corrected] E-46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
134
|
Biochemical analyses of nuclear receptor-dependent transcription with chromatin templates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:137-92. [PMID: 20374704 DOI: 10.1016/s1877-1173(09)87005-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Chromatin, the physiological template for transcription, plays important roles in gene regulation by nuclear receptors (NRs). It can (1) restrict the binding of NRs or the transcriptional machinery to their genomic targets, (2) serve as a target of regulatory posttranslational modifications by NR coregulator proteins with histone-directed enzymatic activities, and (3) function as a binding scaffold for a variety of transcription-related proteins. The advent of in vitro or "cell-free" systems that accurately recapitulate ligand-dependent transcription by NRs with chromatin templates has allowed detailed analyses of these processes. Biochemical studies have advanced our understanding of the mechanisms of gene regulation, including the role of ligands, coregulators, and nucleosome remodeling. In addition, they have provided new insights about the dynamics of NR-mediated transcription. This chapter reviews the current methodologies for assembling, transcribing, and analyzing chromatin in vitro, as well as the new information that has been gained from these studies.
Collapse
|
135
|
Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 2009; 138:1122-36. [PMID: 19766566 DOI: 10.1016/j.cell.2009.07.031] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/13/2009] [Accepted: 07/16/2009] [Indexed: 12/21/2022]
Abstract
The phosphorylation of the serine 10 at histone H3 has been shown to be important for transcriptional activation. Here, we report the molecular mechanism through which H3S10ph triggers transcript elongation of the FOSL1 gene. Serum stimulation induces the PIM1 kinase to phosphorylate the preacetylated histone H3 at the FOSL1 enhancer. The adaptor protein 14-3-3 binds the phosphorylated nucleosome and recruits the histone acetyltransferase MOF, which triggers the acetylation of histone H4 at lysine 16 (H4K16ac). This histone crosstalk generates the nucleosomal recognition code composed of H3K9acS10ph/H4K16ac determining a nucleosome platform for the bromodomain protein BRD4 binding. The recruitment of the positive transcription elongation factor b (P-TEFb) via BRD4 induces the release of the promoter-proximal paused RNA polymerase II and the increase of its processivity. Thus, the single phosphorylation H3S10ph at the FOSL1 enhancer triggers a cascade of events which activate transcriptional elongation.
Collapse
|
136
|
Vicent GP, Zaurin R, Ballaré C, Nacht AS, Beato M. Erk signaling and chromatin remodeling in MMTV promoter activation by progestins. NUCLEAR RECEPTOR SIGNALING 2009; 7:e008. [PMID: 20087429 PMCID: PMC2807634 DOI: 10.1621/nrs.07008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 08/27/2009] [Indexed: 12/05/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter can be induced by progestins. The progesterone receptor (PR) binds to a cluster of five hormone responsive elements (HREs) and activates the promoter by synergistic interactions with the ubiquitous transcription factor, nuclear factor 1 (NF1). Progesterone treatment of cells in culture leads to activation of the Src/Ras/Erk/Msk1 cascade. Selective inhibition of Erk, or its target kinase Msk1, interferes with chromatin remodeling and blocks MMTV activation. A complex of activated PR, Erk and Msk1 is recruited to promoter after 5 min of hormone treatment and phosphorylates histone H3 at serine 10. This modification promotes the displacement of HP1γ and subsequent chromatin remodeling. Progestin treatment leads to the recruitment of the BAF complex, which selectively displaces histones H2A and H2B from the nucleosome containing the HREs. The acetyltransferase PCAF is also required for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark, which interacts with Brg1 and Brm, anchoring the BAF complex to chromatin. In nucleosomes assembled on either MMTV or mouse rDNA promoter sequences, SWI/SNF displaces histones H2A and H2B from MMTV, but not from the rDNA nucleosome. Thus, the outcome of nucleosome remodeling by purified SWI/SNF depends on DNA sequence. The resultant H3/H4 tetramer particle is then the substrate for subsequent events in induction. Thus, initial activation of the MMTV promoter requires activation of several kinases and PCAF leading to phosphoacetylation of H3, and recruitment of BAF with subsequent removal of H2A/H2B.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
137
|
Abstract
Mitogen- and stress-activated kinase 2 (MSK2) inhibits the transcription factor p53, and we investigate here the mechanisms underlying this inhibition. In the absence of stress stimuli, MSK2 selectively suppressed the expression of a subset of p53 target genes. This basal inhibition of p53 by MSK2 occurred independently of its kinase activity and of upstream mitogen-activated protein kinase signaling to MSK2. Furthermore, MSK2 interacted with and inhibited the p53 coactivator p300 and associated with the Noxa promoter. Apoptotic stimuli promoted the degradation of MSK2, thus relieving its inhibition of p53 and enabling efficient p53-dependent transactivation of Noxa, which contributed to apoptosis. Together, these findings constitute a new mechanism for the regulation of p53 transcriptional activity in response to stress.
Collapse
Affiliation(s)
- Susana Llanos
- Spanish National Cancer Research Centre, Madrid, Spain.
| | | | | |
Collapse
|
138
|
ERK activation and cell growth require CaM kinases in MCF-7 breast cancer cells. Mol Cell Biochem 2009; 335:155-71. [DOI: 10.1007/s11010-009-0252-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
139
|
Hyperactivated NF-{kappa}B and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the interleukin-6 gene promoter in metastatic breast cancer cells. Mol Cell Biol 2009; 29:5488-504. [PMID: 19687301 DOI: 10.1128/mcb.01657-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin-6 (IL-6), involved in cancer-related inflammation, acts as an autocrine and paracrine growth factor, which promotes angiogenesis, metastasis, and subversion of immunity, and changes the response to hormones and to chemotherapeutics. We explored transcription mechanisms involved in differential IL-6 gene expression in breast cancer cells with different metastatic properties. In weakly metastatic MCF7 cells, histone H3 K9 methylation, HP1 binding, and weak recruitment of AP-1 Fra-1/c-Jun, NF-kappaB p65 transcription factors, and coactivators is indicative of low chromatin accessibility and gene transcription at the IL-6 gene promoter. In highly metastatic MDA-MB231 cells, strong DNase, MNase, and restriction enzyme accessibility, as well potent constitutive transcription of the IL-6 gene promoter, coincide with increased H3 S10 K14 phosphoacetylation and promoter enrichment of AP-1 Fra-1/c-Jun and NF-kappaB p65 transcription factors and MSK1, CBP/p300, Brg1, and Ezh2 cofactors. Complementation, silencing, and kinase inhibitor experiments further demonstrate involvement of AP-1 Fra-1/c-Jun and NF-kappaB p65/RelB members, but not of the alpha estrogen receptor in promoting chromatin accessibility and transcription across the IL-6 gene promoter in metastatic breast cancer cells. Finally, the natural withanolide Withaferin A was found to repress IL-6 gene transcription in metastatic breast cancer cells upon dual inhibition of NF-kappaB and AP-1 Fra-1 transcription factors and silencing of IL-6 promoter chromatin accessibility.
Collapse
|
140
|
Vicent GP, Zaurin R, Nacht AS, Li A, Font-Mateu J, Le Dily F, Vermeulen M, Mann M, Beato M. Two chromatin remodeling activities cooperate during activation of hormone responsive promoters. PLoS Genet 2009; 5:e1000567. [PMID: 19609353 PMCID: PMC2704372 DOI: 10.1371/journal.pgen.1000567] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 06/18/2009] [Indexed: 12/22/2022] Open
Abstract
Steroid hormones regulate gene expression by interaction of their receptors with hormone responsive elements (HREs) and recruitment of kinases, chromatin remodeling complexes, and coregulators to their target promoters. Here we show that in breast cancer cells the BAF, but not the closely related PBAF complex, is required for progesterone induction of several target genes including MMTV, where it catalyzes localized displacement of histones H2A and H2B and subsequent NF1 binding. PCAF is also needed for induction of progesterone target genes and acetylates histone H3 at K14, an epigenetic mark that interacts with the BAF subunits by anchoring the complex to chromatin. In the absence of PCAF, full loading of target promoters with hormone receptors and BAF is precluded, and induction is compromised. Thus, activation of hormone-responsive promoters requires cooperation of at least two chromatin remodeling activities, BAF and PCAF. In order to adapt its gene expression program to the needs of the environment, the cell must access the information stored in the DNA sequence that is tightly packaged into chromatin in the cell nucleus. How the cell manages to do it in a selective maner is still unclear. Here we show that, in breast cancer cells treated with the ovarian hormone progesterone, the hormone receptor recruits to the regulated genes two chromatin remodeling complexes that cooperate in opening the chromatin structure. One of the complexes puts a mark in a chromatin protein that anchors the other complex, enabling full gene activation. The present discovery highlights the importance of the concerted order of events for access to genomic information during activation of gene expression and reveals the intricacies of hormonal gene regulation.
Collapse
Affiliation(s)
- Guillermo Pablo Vicent
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Roser Zaurin
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - A. Silvina Nacht
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Ang Li
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Jofre Font-Mateu
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Francois Le Dily
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
| | - Michiel Vermeulen
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
- Department of Physiological Chemistry and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Miguel Beato
- Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Parc de Recerca Biomèdica (PRBB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
141
|
Demidov D, Hesse S, Tewes A, Rutten T, Fuchs J, Ashtiyani RK, Lein S, Fischer A, Reuter G, Houben A. Aurora1 phosphorylation activity on histone H3 and its cross-talk with other post-translational histone modifications in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:221-30. [PMID: 19582900 DOI: 10.1111/j.1365-313x.2009.03861.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The enzymological properties of AtAurora1, a kinase responsible for the cell cycle-dependent phosphorylation of histone H3 at S10, and its cross-talk with other post-translational histone modifications, were determined. In vitro phosphorylation of H3S10 by AtAurora1 is strongly increased by K9 acetylation, and decreased by K14 acetylation and T11 phosphorylation. However, S10 phosphorylation activity is unaltered by mono-, di- or trimethylation of K9. An interference of H3K9 dimethylation by SUVR4 occurs by a pre-existing phosphorylation at S10. Hence, cross-talk in plants exists between phosphorylation of H3S10 and methylation, acetylation or phosphorylation of neighbouring amino acid residues. AtAurora1 undergoes autophosphorylation in vivo regardless of the presence of substrate, and forms dimers in planta. Of the three ATP-competitive Aurora inhibitors tested, Hesperadin was most effective in reducing the in vivo kinase activity of AtAurora1. Hesperadin consistently inhibited histone H3S10 phosphorylation during mitosis in Arabidopsis cells, but did not affect other H3 post-translational modifications, suggesting a specific inhibition of AtAurora in vivo. Inactivation of AtAurora also caused lagging chromosomes in a number of anaphase cells, but, unlike the situation in mammalian cells, Hesperadin did not influence the microtubule dynamics in dividing cells.
Collapse
Affiliation(s)
- Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Naito M, Zager RA, Bomsztyk K. BRG1 increases transcription of proinflammatory genes in renal ischemia. J Am Soc Nephrol 2009; 20:1787-96. [PMID: 19556365 DOI: 10.1681/asn.2009010118] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury stimulates renal production of inflammatory mediators, including TNF-alpha and monocyte chemoattractant protein 1 (MCP-1). These responses reflect, in part, injury-induced transcription of proinflammatory genes by proximal tubule cells. Because of the compact structure of chromatin, a series of events at specified loci remodel chromatin to provide access for transcription factors and RNA polymerase II (Pol II). Here, we examined the role of Brahma-related gene-1 (BRG1), a chromatin remodeling enzyme, in the transcription of TNF-alpha and MCP-1 in response to renal ischemia. Two hours after renal ischemic injury in mice, renal TNF-alpha and MCP-1 mRNA increased and remained elevated for at least 1 wk. Matrix chromatin immunoprecipitation assays revealed sustained increases in Pol II at these genes, suggesting that the elevated mRNA levels were, at least in part, transcriptionally mediated. The profile of BGR1 binding to the genes encoding TNF-alpha and MCP-1 resembled Pol II recruitment. Knockdown of BRG1 by small interfering RNA blocked an ATP depletion-induced increase in TNF-alpha and MCP-1 transcription in a human proximal tubule cell line; this effect was associated with decreased recruitment of BRG1 and Pol II to these genes. In conclusion, BRG1 promotes increased transcription of TNF-alpha and MCP-1 by the proximal tubule in response to renal ischemia.
Collapse
Affiliation(s)
- Masayo Naito
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | |
Collapse
|
143
|
Liu D, Benlhabib H, Mendelson CR. cAMP enhances estrogen-related receptor alpha (ERRalpha) transcriptional activity at the SP-A promoter by increasing its interaction with protein kinase A and steroid receptor coactivator 2 (SRC-2). Mol Endocrinol 2009; 23:772-83. [PMID: 19264843 PMCID: PMC2691680 DOI: 10.1210/me.2008-0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 02/24/2009] [Indexed: 01/01/2023] Open
Abstract
Estrogen-related receptor (ERRalpha) plays a critical role in basal and cAMP-induced expression of the human surfactant protein-A (SP-A) gene in lung type II cells through direct binding to an ERR response element (ERRE, 5'-TGACCTTA-3') within its 5'-flanking region. Furthermore, protein kinase A (PKA) up-regulates ERRalpha activation of the hSP-A promoter. In the present study, using cultured human fetal lung type II cells, we observed that cAMP enhanced ERRalpha phosphorylation and nuclear expression levels. cAMP/PKA stimulation of ERRalpha activation of the SP-A promoter was blocked by the PKA inhibitor, H89, whereas the MAPK P38 inhibitor, SB203580, and the MAPK kinase inhibitor, PD98059, had negligible to modest effects. This suggests that cAMP acts selectively through PKA to increase ERRalpha transcriptional activity. Of several coactivators tested, steroid receptor coactivator 2 (SRC-2) had the most pronounced effect to increase ERRalpha transcriptional activity at the SP-A promoter; this was enhanced by cotransfection with PKA catalytic subunit (PKAcat). Interestingly, SRC-2, ERRalpha, and PKAcat in type II cell nuclear extracts interacted at the ERRE; this was enhanced by cAMP and inhibited by H89. cAMP increased in vivo binding of PKAcat and SRC-2 to the ERRE genomic region in lung type II cells. In mutagenesis studies, three serines (S87, S114, and S277) were found to be critical for PKA and SRC-2 induction of ERRalpha transcriptional activity. Collectively, these findings indicate that cAMP/PKA signaling enhances ERRalpha phosphorylation and nuclear localization, recruitment to the SP-A promoter, and interaction with PKAcat and SRC-2, resulting in the up-regulation of SP-A gene transcription.
Collapse
Affiliation(s)
- Dongyuan Liu
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 75390-9038, USA
| | | | | |
Collapse
|
144
|
Vermeulen L, Vanden Berghe W, Beck IME, De Bosscher K, Haegeman G. The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 2009; 34:311-8. [PMID: 19464896 DOI: 10.1016/j.tibs.2009.02.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 10/20/2022]
Abstract
Among the mitogen-activated protein kinase (MAPK) targets, MSKs (mitogen- and stress-activated protein kinases) comprise a particularly interesting protein family. Because MSKs can be activated by both extracellular-signal-regulated kinase and p38 MAPKs, they are activated by many physiological and pathological stimuli. About ten years after their original discovery, they have been recognized as versatile kinases regulating gene transcription at multiple levels. MSKs directly target transcription factors, such as cAMP-response-element-binding protein and nuclear factor-kappaB, thereby enhancing their transcriptional activity. They also induce histone phosphorylation, which is accompanied by chromatin relaxation and facilitated binding of additional regulatory proteins. Here, we review the current knowledge on MSK activation and its molecular targets, focusing on recent insights into the role of MSKs at multiple levels of transcriptional regulation.
Collapse
Affiliation(s)
- Linda Vermeulen
- Laboratory of Eukaryotic Gene Expression & Signal Transduction (LEGEST), Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
145
|
Rochette-Egly C, Germain P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). NUCLEAR RECEPTOR SIGNALING 2009; 7:e005. [PMID: 19471584 PMCID: PMC2686084 DOI: 10.1621/nrs.07005] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/17/2009] [Indexed: 12/12/2022]
Abstract
Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, INSERM U596, CNRS UMR7104, Université Louis Pasteur de Strasbourg, Strasbourg, France.
| | | |
Collapse
|
146
|
Quiles I, Millán-Ariño L, Subtil-Rodríguez A, Miñana B, Spinedi N, Ballaré C, Beato M, Jordan A. Mutational analysis of progesterone receptor functional domains in stable cell lines delineates sets of genes regulated by different mechanisms. Mol Endocrinol 2009; 23:809-26. [PMID: 19299443 DOI: 10.1210/me.2008-0454] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Steroid hormone receptors act directly in the nucleus on the chromatin organization and transcriptional activity of several promoters. Furthermore, they have an indirect effect on cytoplasmic signal transduction pathways, including MAPK, impacting ultimately on gene expression. We are interested in distinguishing between the two modes of action of progesterone receptor (PR) on the control of gene expression and cell proliferation. For this, we have stably expressed, in PR-negative breast cancer cells, tagged forms of the PR isoform B mutated at regions involved either in DNA binding (DNA-binding domain) or in its ability to interact with the estrogen receptor and to activate the c-Src/MAPK/Erk/Msk cascade (estrogen receptor-interacting domain). Both mutants impair PR-mediated activation of a well-understood model promoter in response to progestin, as well as hormone-induced cell proliferation. Additional mutants affecting transactivation activity of PR (activation function 2) or a zinc-finger implicated in dimerization (D-box) have also been tested. Microarrays and gene expression experiments on these cell lines define the subsets of hormone-responsive genes regulated by different modes of action of PR isoform B, as well as genes in which the nuclear and nongenomic pathways cooperate. Correlation between CCND1 expression in the different cell lines and their ability to support cell proliferation confirms CCND1 as a key controller gene.
Collapse
Affiliation(s)
- Ignacio Quiles
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Epigenetics refers to mitotically and/or meiotically heritable variations in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms regulate all biological processes from conception to death, including genome reprogramming during early embryogenesis and gametogenesis, cell differentiation and maintenance of a committed lineage. Key epigenetic players are DNA methylation and histone post-translational modifications, which interplay with each other, with regulatory proteins and with non-coding RNAs, to remodel chromatin into domains such as euchromatin, constitutive or facultative heterochromatin and to achieve nuclear compartmentalization. Besides epigenetic mechanisms such as imprinting, chromosome X inactivation or mitotic bookmarking which establish heritable states, other rapid and transient mechanisms, such as histone H3 phosphorylation, allow cells to respond and adapt to environmental stimuli. However, these epigenetic marks can also have long-term effects, for example in learning and memory formation or in cancer. Erroneous epigenetic marks are responsible for a whole gamut of diseases including diseases evident at birth or infancy or diseases becoming symptomatic later in life. Moreover, although epigenetic marks are deposited early in development, adaptations occurring through life can lead to diseases and cancer. With epigenetic marks being reversible, research has started to focus on epigenetic therapy which has had encouraging success. As we witness an explosion of knowledge in the field of epigenetics, we are forced to revisit our dogma. For example, recent studies challenge the idea that DNA methylation is irreversible. Further, research on Rett syndrome has revealed an unforeseen role for methyl-CpG-binding protein 2 (MeCP2) in neurons.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
148
|
Abstract
Both prolactin (PRL) and estrogen (E2) are involved in the pathogenesis and progression of mammary neoplasia, but the mechanisms by which these hormones interact to exert their effects in breast cancer cells are not well understood. We show here that PRL is able to activate the unliganded estrogen receptor (ER). In breast cancer cells, PRL activates a reporter plasmid containing estrogen response elements (EREs) and induces the ER target gene pS2. These actions are blocked by the antagonist ICI 182,780, showing that ER is required for the PRL-mediated effect. Moreover, PRL leads to phosphorylation of ERalpha in serine-118 (P-ERalpha), a modification related to the potentiation of ligand-independent transcriptional activation. In addition, PRL mimics the effect of E2 on target gene expression by inducing cyclical recruitment of ERalpha and P-ERalpha to ERE-containing promoters, resulting in recruitment of co-activators and acetylation of histone H3. Finally, PRL induces expression of c-Myc and Cyclin D1 and leads to increased cell proliferation, which is specifically antagonized by ICI 182,780 or ERalpha depletion. These results show that ligand-independent ERalpha activation appears to be an important component of the proliferative and transcriptional actions of PRL in breast cancer cells.
Collapse
|
149
|
Bruck N, Vitoux D, Ferry C, Duong V, Bauer A, de Thé H, Rochette-Egly C. A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARalpha to target promoters. EMBO J 2008; 28:34-47. [PMID: 19078967 DOI: 10.1038/emboj.2008.256] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 11/11/2008] [Indexed: 12/24/2022] Open
Abstract
The nuclear retinoic acid (RA) receptor alpha (RARalpha) is a transcriptional transregulator that controls the expression of specific gene subsets through binding at response elements and dynamic interactions with coregulators, which are coordinated by the ligand. Here, we highlighted a novel paradigm in which the transcription of RARalpha target genes is controlled by phosphorylation cascades initiated by the rapid RA activation of the p38MAPK/MSK1 pathway. We demonstrate that MSK1 phosphorylates RARalpha at S369 located in the ligand-binding domain, allowing the binding of TFIIH and thereby phosphorylation of the N-terminal domain at S77 by cdk7/cyclin H. MSK1 also phosphorylates histone H3 at S10. Finally, the phosphorylation cascade initiated by MSK1 controls the recruitment of RARalpha/TFIIH complexes to response elements and subsequently RARalpha target gene activation. Cancer cells characterized by a deregulated p38MAPK/MSK1 pathway, do not respond to RA, outlining the essential contribution of the RA-triggered phosphorylation cascade in RA signalling.
Collapse
Affiliation(s)
- Nathalie Bruck
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596, CNRS UMR7104, Université Louis Pasteur de Strasbourg, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
150
|
Ordóñez-Morán P, Larriba MJ, Pálmer HG, Valero RA, Barbáchano A, Duñach M, de Herreros AG, Villalobos C, Berciano MT, Lafarga M, Muñoz A. RhoA-ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells. ACTA ACUST UNITED AC 2008; 183:697-710. [PMID: 19015318 PMCID: PMC2582889 DOI: 10.1083/jcb.200803020] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The active vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits proliferation and promotes differentiation of colon cancer cells through the activation of vitamin D receptor (VDR), a transcription factor of the nuclear receptor superfamily. Additionally, 1,25(OH)2D3 has several nongenomic effects of uncertain relevance. We show that 1,25(OH)2D3 induces a transcription-independent Ca2+ influx and activation of RhoA–Rho-associated coiled kinase (ROCK). This requires VDR and is followed by activation of the p38 mitogen-activated protein kinase (p38MAPK) and mitogen- and stress-activated kinase 1 (MSK1). As shown by the use of chemical inhibitors, dominant-negative mutants and small interfering RNA, RhoA–ROCK, and p38MAPK-MSK1 activation is necessary for the induction of CDH1/E-cadherin, CYP24, and other genes and of an adhesive phenotype by 1,25(OH)2D3. RhoA–ROCK and MSK1 are also required for the inhibition of Wnt–β-catenin pathway and cell proliferation. Thus, the action of 1,25(OH)2D3 on colon carcinoma cells depends on the dual action of VDR as a transcription factor and a nongenomic activator of RhoA–ROCK and p38MAPK-MSK1.
Collapse
Affiliation(s)
- Paloma Ordóñez-Morán
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|