101
|
Koidl S, Eisenhardt N, Fatouros C, Droescher M, Chaugule VK, Pichler A. The SUMO2/3 specific E3 ligase ZNF451-1 regulates PML stability. Int J Biochem Cell Biol 2016; 79:478-487. [PMID: 27343429 DOI: 10.1016/j.biocel.2016.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 01/01/2023]
Abstract
The small ubiquitin related modifier SUMO regulates protein functions to maintain cell homeostasis. SUMO attachment is executed by the hierarchical action of E1, E2 and E3 enzymes of which E3 ligases ensure substrate specificity. We recently identified the ZNF451 family as novel class of SUMO2/3 specific E3 ligases and characterized their function in SUMO chain formation. The founding member, ZNF451isoform1 (ZNF451-1) partially resides in PML bodies, nuclear structures organized by the promyelocytic leukemia gene product PML. As PML and diverse PML components are well known SUMO substrates the question arises whether ZNF451-1 is involved in their sumoylation. Here, we show that ZNF451-1 indeed functions as SUMO2/3 specific E3 ligase for PML and selected PML components in vitro. Mutational analysis indicates that substrate sumoylation employs an identical biochemical mechanism as we described for SUMO chain formation. In vivo, ZNF451-1 RNAi depletion leads to PML stabilization and an increased number of PML bodies. By contrast, PML degradation upon arsenic trioxide treatment is not ZNF451-1 dependent. Our data suggest a regulatory role of ZNF451-1 in fine-tuning physiological PML levels in a RNF4 cooperative manner in the mouse neuroblastoma N2a cell-line.
Collapse
Affiliation(s)
- Stefanie Koidl
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Mathias Droescher
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Viduth K Chaugule
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany
| | - Andrea Pichler
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, 79108 Freiburg, Stübeweg 51, Germany.
| |
Collapse
|
102
|
SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1. J Virol 2016; 90:5939-5952. [PMID: 27099310 PMCID: PMC4907222 DOI: 10.1128/jvi.00426-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022] Open
Abstract
Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation.
IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML-NB constituent proteins mediate aspects of intrinsic immunity to restrict herpes simplex virus 1 (HSV-1) as well as other viruses. These proteins repress viral replication through mechanisms that rely on SUMO signaling. However, the participating SUMOylation enzymes are not known. We identify the SUMO ligase PIAS1 as a constituent PML-NB antiviral protein. This finding distinguishes a SUMO ligase that may mediate signaling events important in PML-NB-mediated intrinsic immunity. Moreover, this research complements the recent identification of PIAS4 as an intrinsic antiviral factor, supporting a role for PIAS proteins as both positive and negative regulators of host immunity to virus infection.
Collapse
|
103
|
The activity of the glucocorticoid receptor is regulated by SUMO conjugation to FKBP51. Cell Death Differ 2016; 23:1579-91. [PMID: 27177020 DOI: 10.1038/cdd.2016.44] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
FK506-binding protein 51 (FKBP51) regulates the activity of the glucocorticoid receptor (GR), and is therefore a key mediator of the biological actions of glucocorticoids. However, the understanding of the molecular mechanisms that govern its activity remains limited. Here, we uncover a novel regulatory switch for GR activity by the post-translational modification of FKBP51 with small ubiquitin-like modifier (SUMO). The major SUMO-attachment site, lysine 422, is required for FKBP51-mediated inhibition of GR activity in hippocampal neuronal cells. Importantly, impairment of SUMO conjugation to FKBP51 impacts on GR-dependent neuronal signaling and differentiation. We demonstrate that SUMO conjugation to FKBP51 is enhanced by the E3 ligase PIAS4 and by environmental stresses such as heat shock, which impact on GR-dependent transcription. SUMO conjugation to FKBP51 regulates GR hormone-binding affinity and nuclear translocation by promoting FKBP51 interaction within the GR complex. SUMOylation-deficient FKBP51 fails to interact with Hsp90 and GR thus facilitating the recruitment of the closely related protein, FKBP52, which enhances GR transcriptional activity. Moreover, we show that the modification of FKBP51 with SUMO modulates its binding to Hsp90. Our data establish SUMO conjugation as a novel regulatory mechanism in the Hsp90 cochaperone activity of FKBP51 with a functional impact on GR signaling in a neuronal context.
Collapse
|
104
|
The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiol Mol Biol Rev 2016; 80:495-522. [PMID: 27169854 DOI: 10.1128/mmbr.00064-15] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) have been widely used for decades as a first-line treatment for inflammatory and autoimmune diseases. However, their use is often hampered by the onset of adverse effects or resistance. GCs mediate their effects via binding to glucocorticoid receptor (GR), a transcription factor belonging to the family of nuclear receptors. An important aspect of GR's actions, including its anti-inflammatory capacity, involves its interactions with various proteins, such as transcription factors, cofactors, and modifying enzymes, which codetermine receptor functionality. In this review, we provide a state-of-the-art overview of the protein-protein interactions (PPIs) of GR that positively or negatively affect its anti-inflammatory properties, along with mechanistic insights, if known. Emphasis is placed on the interactions that affect its anti-inflammatory effects in the presence of inflammatory and microbial diseases.
Collapse
|
105
|
SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication. J Virol 2016; 90:4308-4319. [PMID: 26889037 PMCID: PMC4836324 DOI: 10.1128/jvi.00223-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) participates in a reversible posttranslational modification process (SUMOylation) that regulates a wide variety of cellular processes and plays important roles for numerous viruses during infection. However, the roles of viral protein SUMOylation in dengue virus (DENV) infection have not been elucidated. In this study, we found that the SUMOylation pathway was involved in the DENV life cycle, since DENV replication was reduced by silencing the cellular gene Ubc9, which encodes the sole E2-conjugating enzyme required for SUMOylation. By in vivo and in vitro SUMOylation assays, the DENV NS5 protein was identified as an authentic SUMO-targeted protein. By expressing various NS5 mutants, we found that the SUMO acceptor sites are located in the N-terminal domain of NS5 and that a putative SUMO-interacting motif (SIM) of this domain is crucial for its SUMOylation. A DENV replicon harboring the SUMOylation-defective SIM mutant showed a severe defect in viral RNA replication, supporting the notion that NS5 SUMOylation is required for DENV replication. SUMOylation-defective mutants also failed to suppress the induction of STAT2-mediated host antiviral interferon signaling. Furthermore, the SUMOylation of NS5 significantly increased the stability of NS5 protein, which could account for most of the biological functions of SUMOylated NS5. Collectively, these findings suggest that the SUMOylation of DENV NS5 is one of the mechanisms regulating DENV replication. IMPORTANCE SUMOylation is a common posttranslational modification that regulates cellular protein functions but has not been reported in the proteins of dengue virus. Here, we found that the replicase of DENV, nonstructural protein 5 (NS5), can be SUMOylated. It is well known that providing RNA-dependent RNA polymerase activity and antagonizing host antiviral IFN signaling are a “double indemnity” of NS5 to support DENV replication. Without SUMOylation, NS5 fails to maintain its protein stability, which consequently disrupts its function in viral RNA replication and innate immunity antagonism. DENV threatens billions of people worldwide, but no licensed vaccine or specific therapeutics are currently available. Thus, our findings suggest that rather than specifically targeting NS5 enzyme activity, NS5 protein stability is a novel drug target on the growing list of anti-DENV strategies.
Collapse
|
106
|
Leehy KA, Regan Anderson TM, Daniel AR, Lange CA, Ostrander JH. Modifications to glucocorticoid and progesterone receptors alter cell fate in breast cancer. J Mol Endocrinol 2016; 56:R99-R114. [PMID: 26831511 PMCID: PMC7256961 DOI: 10.1530/jme-15-0322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022]
Abstract
Steroid hormone receptors (SRs) are heavily posttranslationally modified by the reversible addition of a variety of molecular moieties, including phosphorylation, acetylation, methylation, SUMOylation, and ubiquitination. These rapid and dynamic modifications may be combinatorial and interact (i.e. may be sequential, complement, or oppose each other), creating a vast array of uniquely modified receptor subspecies that allow for diverse receptor behaviors that enable highly sensitive and context-dependent hormone action. For example, in response to hormone or growth factor membrane-initiated signaling events, posttranslational modifications (PTMs) to SRs alter protein-protein interactions that govern the complex process of promoter or gene-set selection coupled to transcriptional repression or activation. Unique phosphorylation events allow SRs to associate or disassociate with specific cofactors that may include pioneer factors and other tethering partners, which specify the resulting transcriptome and ultimately change cell fate. The impact of PTMs on SR action is particularly profound in the context of breast tumorigenesis, in which frequent alterations in growth factor-initiated signaling pathways occur early and act as drivers of breast cancer progression toward endocrine resistance. In this article, with primary focus on breast cancer relevance, we review the mechanisms by which PTMs, including reversible phosphorylation events, regulate the closely related SRs, glucocorticoid receptor and progesterone receptor, allowing for precise biological responses to ever-changing hormonal stimuli.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Female
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Prognosis
- Protein Isoforms
- Protein Processing, Post-Translational
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Signal Transduction
- Stress, Physiological
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Katherine A Leehy
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Tarah M Regan Anderson
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Andrea R Daniel
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Carol A Lange
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Julie H Ostrander
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| |
Collapse
|
107
|
Moriuchi T, Kuroda M, Kusumoto F, Osumi T, Hirose F. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif. Exp Cell Res 2016; 342:83-94. [DOI: 10.1016/j.yexcr.2016.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/01/2023]
|
108
|
McLaughlin D, Coey CT, Yang WC, Drohat AC, Matunis MJ. Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo. J Biol Chem 2016; 291:9014-24. [PMID: 26917720 DOI: 10.1074/jbc.m115.706325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 12/12/2022] Open
Abstract
Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo.
Collapse
Affiliation(s)
- Dylan McLaughlin
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205 and
| | - Christopher T Coey
- the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Wei-Chih Yang
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205 and
| | - Alexander C Drohat
- the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Michael J Matunis
- From the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205 and
| |
Collapse
|
109
|
Scherer M, Wagenknecht N, Reuter N, Stamminger T. Silencing of Human Cytomegalovirus Gene Expression Mediated by Components of PML Nuclear Bodies. EPIGENETICS - A DIFFERENT WAY OF LOOKING AT GENETICS 2016. [DOI: 10.1007/978-3-319-27186-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
110
|
Svadlenka J, Brazina J, Hanzlikova H, Cermak L, Andera L. Multifunctional adaptor protein Daxx interacts with chromatin-remodelling ATPase Brg1. Biochem Biophys Rep 2015; 5:246-252. [PMID: 28955830 PMCID: PMC5600331 DOI: 10.1016/j.bbrep.2015.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/25/2015] [Accepted: 12/28/2015] [Indexed: 01/22/2023] Open
Abstract
Multifunctional adapter and chaperone protein Daxx participates in the regulation of a number of mainly transcription-related processes. Most notably in a complex with chromatin-remodelling ATPase ATRX, Daxx serves as a histone H3.3 chaperone at telomeric regions and certain genes. In this report we document that Daxx interacts with another chromatin-remodelling, ATPase Brg1. We confirm the Daxx-Brg1 association both in vitro and in cells and show that Daxx interacts with Brg1 in high-molecular-weight complexes. Ectopic co-expression of Daxx with Brg1 and PML could shift disperse nuclear localisation of Brg1 into PML bodies. Mapping the Daxx-Brg1 interaction revealed that Daxx preferentially binds the region between Brg1 N-terminal QLQ and HSA domains, but also weakly interacts with its C-terminal part. Brg1 interacted with both the central and N-terminal parts of Daxx. SiRNA-mediated down-regulation of Daxx in SW13 adrenal carcinoma cells markedly enhanced expression of Brg1-activated genes CD44 or SCEL, suggesting that Daxx either directly through Brg1 and/or indirectly via other factors is a negative regulator of their transcription. Our findings point to Brg1 as another chromatin-remodelling protein that might similarly, as ATRX, target Daxx to specific chromatin regions where it can carry out its chromatin- and transcription-regulating functions.
Collapse
Affiliation(s)
- Jan Svadlenka
- Institute of Molecular Genetics AS CR, Czech Republic
| | - Jan Brazina
- Institute of Molecular Genetics AS CR, Czech Republic
| | | | - Lukas Cermak
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ladislav Andera
- Institute of Molecular Genetics AS CR, Czech Republic.,Institute of Biotechnology AS CR, Prague, Czech Republic
| |
Collapse
|
111
|
GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc Natl Acad Sci U S A 2015; 113:E626-34. [PMID: 26712002 DOI: 10.1073/pnas.1522821113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Unique among the nuclear receptor superfamily, the glucocorticoid (GC) receptor (GR) can exert three distinct transcriptional regulatory functions on binding of a single natural (cortisol in human and corticosterone in mice) and synthetic [e.g., dexamethasone (Dex)] hormone. The molecular mechanisms underlying GC-induced positive GC response element [(+)GRE]-mediated activation of transcription are partially understood. In contrast, these mechanisms remain elusive for GC-induced evolutionary conserved inverted repeated negative GC response element (IR nGRE)-mediated direct transrepression and for tethered indirect transrepression that is mediated by DNA-bound NF-κB/activator protein 1 (AP1)/STAT3 activators and instrumental in GC-induced anti-inflammatory activity. We demonstrate here that SUMOylation of lysine K293 (mouse K310) located within an evolutionary conserved sequence in the human GR N-terminal domain allows the formation of a GR-small ubiquitin-related modifiers (SUMOs)-NCoR1/SMRT-HDAC3 repressing complex mandatory for GC-induced IR nGRE-mediated direct repression in vitro, but does not affect transactivation. Importantly, these results were validated in vivo: in K310R mutant mice and in mice ablated selectively for nuclear receptor corepressor 1 (NCoR1)/silencing mediator for retinoid or thyroid-hormone receptors (SMRT) corepressors in skin keratinocytes, Dex-induced direct repression and the formation of repressing complexes on IR nGREs were impaired, whereas transactivation was unaffected. In mice selectively ablated for histone deacetylase 3 (HDAC3) in skin keratinocytes, GC-induced direct repression, but not bindings of GR and of corepressors NCoR1/SMRT, was abolished, indicating that HDAC3 is instrumental in IR nGRE-mediated repression. Moreover, we demonstrate that the binding of HDAC3 to IR nGREs in vivo is mediated through interaction with SMRT/NCoR1. We also show that the GR ligand binding domain (LBD) is not required for SMRT-mediated repression, which can be mediated by a LBD-truncated GR, whereas it is mandatory for NCoR1-mediated repression through an interaction with K579 in the LBD.
Collapse
|
112
|
Chen C, Zhu C, Huang J, Zhao X, Deng R, Zhang H, Dou J, Chen Q, Xu M, Yuan H, Wang Y, Yu J. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency. Nat Commun 2015; 6:8899. [PMID: 26582366 PMCID: PMC4673853 DOI: 10.1038/ncomms9899] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
Small RNA-induced gene silencing is essential for post-transcriptional regulation of gene expression; however, it remains unclear how miRNA/siRNA efficiency is regulated. Here we show that TARBP2 is SUMOylated at K52, which can be enhanced by its phosphorylation. This modification can stabilize TARBP2 via repressing its K48-linked ubiquitination. We find that TARBP2 SUMOylation does not influence the overall production of mature miRNAs, but it regulates miRNA/siRNA efficiency. SUMOylated TARBP2 recruits Ago2 to constitute the RNA-induced silencing complex (RISC)-loading complex (RLC), and simultaneously promotes more pre-miRNAs to load into the RLC. Consequently, Ago2 is stabilized and miRNAs/siRNAs bound by TARBP2/Dicer is effectively transferred to Ago2. Thus, these processes lead to the formation of the effective RISC for RNA interference (RNAi). Collectively, our data suggest that SUMOylation of TARBP2 is required for regulating miRNA/siRNA efficiency, which is a general mechanism of miRNA/siRNA regulation. As part of the miRNA-generating machinery, TARBP2 stabilizes the RNA-induced silencing complex (RISC) loading complex (RLC). Here, Chen et al. show that sumoylation of TARBP2 regulates RNAi efficiency by increasing precursor miRNAs loaded on RLC.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changhong Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinzhuo Dou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qin Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haihua Yuan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.,Department of Oncology, Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
113
|
PML/TRIM19-Dependent Inhibition of Retroviral Reverse-Transcription by Daxx. PLoS Pathog 2015; 11:e1005280. [PMID: 26566030 PMCID: PMC4643962 DOI: 10.1371/journal.ppat.1005280] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/23/2015] [Indexed: 01/19/2023] Open
Abstract
PML (Promyelocytic Leukemia protein), also known as TRIM19, belongs to the family of tripartite motif (TRIM) proteins. PML is mainly expressed in the nucleus, where it forms dynamic structures known as PML nuclear bodies that recruit many other proteins, such as Sp100 and Daxx. While the role of PML/TRIM19 in antiviral defense is well documented, its effect on HIV-1 infection remains unclear. Here we show that infection by HIV-1 and other retroviruses triggers the formation of PML cytoplasmic bodies, as early as 30 minutes post-infection. Quantification of the number and size of PML cytoplasmic bodies revealed that they last approximately 8 h, with a peak at 2 h post-infection. PML re-localization is blocked by reverse-transcription inhibitors and is not observed following infection with unrelated viruses, suggesting it is specifically triggered by retroviral reverse-transcription. Furthermore, we show that PML interferes with an early step of retroviral infection since PML knockdown dramatically increases reverse-transcription efficiency. We demonstrate that PML does not inhibit directly retroviral infection but acts through the stabilization of one of its well-characterized partners, Daxx. In the presence of PML, cytoplasmic Daxx is found in the vicinity of incoming HIV-1 capsids and inhibits reverse-transcription. Interestingly, Daxx not only interferes with exogenous retroviral infections but can also inhibit retrotransposition of endogenous retroviruses, thus identifying Daxx as a broad cellular inhibitor of reverse-transcription. Altogether, these findings unravel a novel antiviral function for PML and PML nuclear body-associated protein Daxx. Among the several protection mechanisms raised by mammalian organisms against viral infections, an early line of defense consists of cellular proteins known as restriction factors that interfere with viral replication. PML, also known as TRIM19, is one of these proteins and has been shown to inhibit diverse viruses. PML is mainly expressed in the nucleus, where it forms dynamic structures known as PML nuclear bodies that recruit many other proteins, such as Sp100 and Daxx. While the role of PML/TRIM19 in antiviral defense is well documented, its effect on HIV-1 infection remains unclear. Here we show that PML is rapidly re-localized in the cytoplasm of cells infected by HIV-1 and other retroviruses and interferes with reverse-transcription of incoming retroviral RNA. We were able to demonstrate that PML does not inhibit retroviral infection directly but through the stabilization of one of its well-characterized partners, Daxx. In the presence of PML, Daxx inhibits an early step of reverse-transcription thereby interfering with retroviral infections. Our findings unravel a novel antiviral function for PML and its partner Daxx.
Collapse
|
114
|
Guan D, Kao HY. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell Biosci 2015; 5:60. [PMID: 26539288 PMCID: PMC4632682 DOI: 10.1186/s13578-015-0051-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor protein, promyelocytic leukemia protein (PML), was originally identified in acute promyelocytic leukemia due to a chromosomal translocation between chromosomes 15 and 17. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs), which are disrupted in acute promyelocytic leukemia cells. PML plays important roles in cell cycle regulation, survival and apoptosis, and inactivation or down-regulation of PML is frequently found in cancer cells. More than 120 proteins have been experimentally identified to physically associate with PML, and most of them either transiently or constitutively co-localize with PML-NBs. These interactions are associated with many cellular processes, including cell cycle arrest, apoptosis, senescence, transcriptional regulation, DNA repair and intermediary metabolism. Importantly, PML inactivation in cancer cells can occur at the transcriptional-, translational- or post-translational- levels. However, only a few somatic mutations have been found in cancer cells. A better understanding of its regulation and its role in tumor suppression will provide potential therapeutic opportunities. In this review, we discuss the role of PML in multiple tumor suppression pathways and summarize the players and stimuli that control PML protein expression or subcellular distribution.
Collapse
Affiliation(s)
- Dongyin Guan
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, and Comprehensive Cancer Center of Case Western Reserve University, Cleveland, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| |
Collapse
|
115
|
Sahin U, de Thé H, Lallemand-Breitenbach V. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 2015; 5:499-507. [PMID: 25482067 DOI: 10.4161/19491034.2014.970104] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases.
Collapse
Affiliation(s)
- Umut Sahin
- a University Paris Diderot; Sorbonne Paris Cité ; Hôpital St. Louis ; Paris , France
| | | | | |
Collapse
|
116
|
Escobar-Ramirez A, Vercoutter-Edouart AS, Mortuaire M, Huvent I, Hardivillé S, Hoedt E, Lefebvre T, Pierce A. Modification by SUMOylation Controls Both the Transcriptional Activity and the Stability of Delta-Lactoferrin. PLoS One 2015; 10:e0129965. [PMID: 26090800 PMCID: PMC4474976 DOI: 10.1371/journal.pone.0129965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Delta-lactoferrin is a transcription factor, the expression of which is downregulated or silenced in case of breast cancer. It possesses antitumoral activities and when it is re-introduced in mammary epithelial cancer cell lines, provokes antiproliferative effects. It is posttranslationally modified and our earlier investigations showed that the O-GlcNAcylation/phosphorylation interplay plays a major role in the regulation of both its stability and transcriptional activity. Here, we report the covalent modification of delta-lactoferrin with the small ubiquitin-like modifier SUMO-1. Mutational and reporter gene analyses identified five different lysine residues at K13, K308, K361, K379 and K391 as SUMO acceptor sites. The SUMOylation deficient M5S mutant displayed enhanced transactivation capacity on a delta-lactoferrin responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of delta-lactoferrin. K13, K308 and K379 are the main SUMO sites and among them, K308, which is located in a SUMOylation consensus motif of the NDSM-like type, is a key SUMO site involved in repression of delta-lactoferrin transcriptional activity. K13 and K379 are both targeted by other posttranslational modifications. We demonstrated that K13 is the main acetylation site and that favoring acetylation at K13 reduced SUMOylation and increased delta-lactoferrin transcriptional activity. K379, which is either ubiquitinated or SUMOylated, is a pivotal site for the control of delta-lactoferrin stability. We showed that SUMOylation competes with ubiquitination and protects delta-lactoferrin from degradation by positively regulating its stability. Collectively, our results indicate that multi-SUMOylation occurs on delta-lactoferrin to repress its transcriptional activity. Reciprocal occupancy of K13 by either SUMO-1 or an acetyl group may contribute to the establishment of finely regulated mechanisms to control delta-lactoferrin transcriptional activity. Moreover, competition between SUMOylation and ubiquitination at K379 coordinately regulates the stability of delta-lactoferrin toward proteolysis. Therefore SUMOylation of delta-lactoferrin is a novel mechanism controlling both its activity and stability.
Collapse
Affiliation(s)
- Adelma Escobar-Ramirez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Anne-Sophie Vercoutter-Edouart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Marlène Mortuaire
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Isabelle Huvent
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Stephan Hardivillé
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Esthelle Hoedt
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Annick Pierce
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| |
Collapse
|
117
|
Hendriks IA, D'Souza RC, Chang JG, Mann M, Vertegaal ACO. System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun 2015; 6:7289. [PMID: 26073453 PMCID: PMC4490555 DOI: 10.1038/ncomms8289] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/26/2015] [Indexed: 12/18/2022] Open
Abstract
SUMOylation is a reversible post-translational modification (PTM) regulating all nuclear processes. Identification of SUMOylation sites by mass spectrometry (MS) has been hampered by bulky tryptic fragments, which thus far necessitated the use of mutated SUMO. Here we present a SUMO-specific protease-based methodology which circumvents this problem, dubbed Protease-Reliant Identification of SUMO Modification (PRISM). PRISM allows for detection of SUMOylated proteins as well as identification of specific sites of SUMOylation while using wild-type SUMO. The method is generic and could be widely applied to study lysine PTMs. We employ PRISM in combination with high-resolution MS to identify SUMOylation sites from HeLa cells under standard growth conditions and in response to heat shock. We identified 751 wild-type SUMOylation sites on endogenous proteins, including 200 dynamic SUMO sites in response to heat shock. Thus, we have developed a method capable of quantitatively studying wild-type mammalian SUMO at the site-specific and system-wide level. Tryptic digestion of SUMOylated proteins generates large peptides, rendering proteomic characterisation of this post-translational modification particularly challenging unless mutant SUMO is used. Hendriks et al. present a method that allows the quantitative identification of wild-type SUMO sites.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Rochelle C D'Souza
- Department for Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jer-Gung Chang
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Matthias Mann
- Department for Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
118
|
Wagenknecht N, Reuter N, Scherer M, Reichel A, Müller R, Stamminger T. Contribution of the Major ND10 Proteins PML, hDaxx and Sp100 to the Regulation of Human Cytomegalovirus Latency and Lytic Replication in the Monocytic Cell Line THP-1. Viruses 2015; 7:2884-907. [PMID: 26057166 PMCID: PMC4488718 DOI: 10.3390/v7062751] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/01/2015] [Indexed: 01/16/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence andWestern blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency.
Collapse
Affiliation(s)
- Nadine Wagenknecht
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Nina Reuter
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Myriam Scherer
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Anna Reichel
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Regina Müller
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Thomas Stamminger
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| |
Collapse
|
119
|
Sadic D, Schmidt K, Groh S, Kondofersky I, Ellwart J, Fuchs C, Theis FJ, Schotta G. Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep 2015; 16:836-50. [PMID: 26012739 DOI: 10.15252/embr.201439937] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/17/2015] [Indexed: 12/29/2022] Open
Abstract
More than 50% of mammalian genomes consist of retrotransposon sequences. Silencing of retrotransposons by heterochromatin is essential to ensure genomic stability and transcriptional integrity. Here, we identified a short sequence element in intracisternal A particle (IAP) retrotransposons that is sufficient to trigger heterochromatin formation. We used this sequence in a genome-wide shRNA screen and identified the chromatin remodeler Atrx as a novel regulator of IAP silencing. Atrx binds to IAP elements and is necessary for efficient heterochromatin formation. In addition, Atrx facilitates a robust and largely inaccessible heterochromatin structure as Atrx knockout cells display increased chromatin accessibility at retrotransposons and non-repetitive heterochromatic loci. In summary, we demonstrate a direct role of Atrx in the establishment and robust maintenance of heterochromatin.
Collapse
Affiliation(s)
- Dennis Sadic
- Adolf-Butenandt-Institute, Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPS), Munich, Germany
| | - Katharina Schmidt
- Adolf-Butenandt-Institute, Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPS), Munich, Germany
| | - Sophia Groh
- Adolf-Butenandt-Institute, Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPS), Munich, Germany
| | - Ivan Kondofersky
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Garching, Germany
| | - Joachim Ellwart
- Helmholtz Zentrum München, Institute of Molecular Immunology, Munich, Germany
| | - Christiane Fuchs
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Garching, Germany
| | - Fabian J Theis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Garching, Germany
| | - Gunnar Schotta
- Adolf-Butenandt-Institute, Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPS), Munich, Germany
| |
Collapse
|
120
|
Egeland M, Zunszain PA, Pariante CM. Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 2015; 16:189-200. [PMID: 25790864 DOI: 10.1038/nrn3855] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coping with stress is fundamental for mental health, but understanding of the molecular neurobiology of stress is still in its infancy. Adult neurogenesis is well known to be regulated by stress, and conversely adult neurogenesis regulates stress responses. Recent studies in neurogenic cells indicate that molecular pathways activated by glucocorticoids, the main stress hormones, are modulated by crosstalk with other stress-relevant mechanisms, including inflammatory mediators, neurotrophic factors and morphogen signalling pathways. This Review discusses the pathways that are involved in this crosstalk and thus regulate this complex relationship between adult neurogenesis and stress.
Collapse
Affiliation(s)
- Martin Egeland
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Patricia A Zunszain
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Carmine M Pariante
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|
121
|
Hendriks IA, Schimmel J, Eifler K, Olsen JV, Vertegaal ACO. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4). J Biol Chem 2015; 290:15526-15537. [PMID: 25969536 DOI: 10.1074/jbc.m114.618132] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/06/2022] Open
Abstract
Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Joost Schimmel
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Karolin Eifler
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
122
|
New Insights into the Post-Translational Regulation of DNA Damage Response and Double-Strand Break Repair in Caenorhabditis elegans. Genetics 2015; 200:495-504. [PMID: 25819793 DOI: 10.1534/genetics.115.175661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/24/2015] [Indexed: 11/18/2022] Open
Abstract
Although a growing number of studies have reported the importance of SUMOylation in genome maintenance and DNA double-strand break repair (DSBR), relevant target proteins and how this modification regulates their functions are yet to be clarified. Here, we analyzed SUMOylation of ZTF-8, the homolog of mammalian RHINO, to test the functional significance of this protein modification in the DSBR and DNA damage response (DDR) pathways in the Caenorhabditis elegans germline. We found that ZTF-8 is a direct target for SUMOylation in vivo and that its modification is required for DNA damage checkpoint induced apoptosis and DSBR. Non-SUMOylatable mutants of ZTF-8 mimic the phenotypes observed in ztf-8 null mutants, including reduced fertility, impaired DNA damage repair, and defective DNA damage checkpoint activation. However, while mutants for components acting in the SUMOylation pathway fail to properly localize ZTF-8, its localization is not altered in the ZTF-8 non-SUMOylatable mutants. Taken together, these data show that direct SUMOylation of ZTF-8 is required for its function in DSBR as well as DDR but not its localization. ZTF-8's human ortholog is enriched in the germline, but its meiotic role as well as its post-translational modification has never been explored. Therefore, our discovery may assist in understanding the regulatory mechanism of this protein in DSBR and DDR in the germline.
Collapse
|
123
|
Zhang D, Liang Y, Xie Q, Gao G, Wei J, Huang H, Li J, Gao J, Huang C. A novel post-translational modification of nucleolin, SUMOylation at Lys-294, mediates arsenite-induced cell death by regulating gadd45α mRNA stability. J Biol Chem 2015; 290:4784-4800. [PMID: 25561743 PMCID: PMC4335216 DOI: 10.1074/jbc.m114.598219] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and; Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuguang Liang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jinlong Wei
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and.
| |
Collapse
|
124
|
Binding properties of SUMO-interacting motifs (SIMs) in yeast. J Mol Model 2015; 21:50. [PMID: 25690366 DOI: 10.1007/s00894-015-2597-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 11/27/2022]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.
Collapse
|
125
|
Tan CM, Li MY, Yang PY, Chang SH, Ho YP, Lin H, Deng WL, Yang JY. Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas type III effector XopD(Xcc8004). PLoS One 2015; 10:e0117067. [PMID: 25647296 PMCID: PMC4315394 DOI: 10.1371/journal.pone.0117067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on salicylic acid and correlated with lesion-mimic phenotypes observed in XVE::XopDXcc8004 transgenic plants. Moreover, XopDXcc8004 was able to desumoylate HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, through SUMO protease activity. Interestingly, the hfr1-201 mutant increased the expression of host defense-response genes and displayed a resistance phenotype to Xcc8004. These data suggest that HFR1 is involved in plant innate immunity and is potentially regulated by XopDXcc8004.
Collapse
Affiliation(s)
- Choon Meng Tan
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National ChungHsing University and Academia Sinica, Taipei, Taiwan
| | - Meng-Ying Li
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Pei-Yun Yang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Shu Heng Chang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Hong Lin
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Wen-Ling Deng
- Department of Plant Pathology, National ChungHsing University, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National ChungHsing University and Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, National ChungHsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National ChungHsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National ChungHsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
126
|
Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genet 2015; 11:e1004899. [PMID: 25569253 PMCID: PMC4287433 DOI: 10.1371/journal.pgen.1004899] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023] Open
Abstract
Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect. Proper repair of DNA lesions is crucial for cell growth and organism development. Both the choice and capacity of DNA repair pathways are tightly regulated in response to environmental cues and cell cycle phase. Recent work has uncovered the importance of protein modifications, such as phosphorylation and sumoylation, in this regulation. Sumoylation is known to be critical for the efficient repair of highly toxic DNA double-strand breaks in both yeast and humans, and this is partly mediated by influencing DNA end resection. However, it has been unclear for which resection factor sumoylation is important, how sumoylation influences specific attributes of the relevant targets, and how this modification is coordinated with phosphorylation-based regulation. Here, we provide exciting new insights into these issues by revealing that 1) a conserved end resection factor is a SUMO target relevant to this process, 2) this regulation favors a specific repair pathway, 3) sumoylation collaborates with phosphorylation to promote protein solubility, and 4) sumoylation influences DNA repair via an “ensemble effect” that entails simultaneous small alterations of multiple substrates. Our work reveals both a novel mechanism and a general principle for SUMO-mediated regulation of DNA repair.
Collapse
|
127
|
Sridharan V, Park H, Ryu H, Azuma Y. SUMOylation regulates polo-like kinase 1-interacting checkpoint helicase (PICH) during mitosis. J Biol Chem 2015; 290:3269-76. [PMID: 25564610 DOI: 10.1074/jbc.c114.601906] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitotic SUMOylation has an essential role in faithful chromosome segregation in eukaryotes, although its molecular consequences are not yet fully understood. In Xenopus egg extract assays, we showed that poly(ADP-ribose) polymerase 1 (PARP1) is modified by SUMO2/3 at mitotic centromeres and that its enzymatic activity could be regulated by SUMOylation. To determine the molecular consequence of mitotic SUMOylation, we analyzed SUMOylated PARP1-specific binding proteins. We identified Polo-like kinase 1-interacting checkpoint helicase (PICH) as an interaction partner of SUMOylated PARP1 in Xenopus egg extract. Interestingly, PICH also bound to SUMOylated topoisomerase IIα (TopoIIα), a major centromeric small ubiquitin-like modifier (SUMO) substrate. Purified recombinant human PICH interacted with SUMOylated substrates, indicating that PICH directly interacts with SUMO, and this interaction is conserved among species. Further analysis of mitotic chromosomes revealed that PICH localized to the centromere independent of mitotic SUMOylation. Additionally, we found that PICH is modified by SUMO2/3 on mitotic chromosomes and in vitro. PICH SUMOylation is highly dependent on protein inhibitor of activated STAT, PIASy, consistent with other mitotic chromosomal SUMO substrates. Finally, the SUMOylation of PICH significantly reduced its DNA binding capability, indicating that SUMOylation might regulate its DNA-dependent ATPase activity. Collectively, our findings suggest a novel SUMO-mediated regulation of the function of PICH at mitotic centromeres.
Collapse
Affiliation(s)
- Vinidhra Sridharan
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Hyewon Park
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Hyunju Ryu
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Yoshiaki Azuma
- From the Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
128
|
Guervilly JH, Takedachi A, Naim V, Scaglione S, Chawhan C, Lovera Y, Despras E, Kuraoka I, Kannouche P, Rosselli F, Gaillard PHL. The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Mol Cell 2014; 57:123-37. [PMID: 25533188 DOI: 10.1016/j.molcel.2014.11.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/08/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
Abstract
The SLX4 Fanconi anemia protein is a tumor suppressor that may act as a key regulator that engages the cell into specific genome maintenance pathways. Here, we show that the SLX4 complex is a SUMO E3 ligase that SUMOylates SLX4 itself and the XPF subunit of the DNA repair/recombination XPF-ERCC1 endonuclease. This SLX4-dependent activity is mediated by a remarkably specific interaction between SLX4 and the SUMO-charged E2 conjugating enzyme UBC9 and relies not only on newly identified SUMO-interacting motifs (SIMs) in SLX4 but also on its BTB domain. In contrast to its ubiquitin-binding UBZ4 motifs, SLX4 SIMs are dispensable for its DNA interstrand crosslink repair functions. Instead, while detrimental in response to global replication stress, the SUMO E3 ligase activity of the SLX4 complex is critical to prevent mitotic catastrophe following common fragile site expression.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France.
| | - Arato Takedachi
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France
| | - Valeria Naim
- Université Paris-Sud, UMR 8200 CNRS, Equipe Labélisée La Ligue Contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - Sarah Scaglione
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France
| | - Charly Chawhan
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Yoann Lovera
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France
| | - Emmanuelle Despras
- Université Paris-Sud, UMR 8200 CNRS, Equipe Labélisée La Ligue Contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - Isao Kuraoka
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Patricia Kannouche
- Université Paris-Sud, UMR 8200 CNRS, Equipe Labélisée La Ligue Contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - Filippo Rosselli
- Université Paris-Sud, UMR 8200 CNRS, Equipe Labélisée La Ligue Contre le Cancer, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - Pierre-Henri L Gaillard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7258, Inserm-Unité 1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, F-13009 Marseille, France; Aix-Marseille Université, F-13284 Marseille, France.
| |
Collapse
|
129
|
Cappadocia L, Mascle XH, Bourdeau V, Tremblay-Belzile S, Chaker-Margot M, Lussier-Price M, Wada J, Sakaguchi K, Aubry M, Ferbeyre G, Omichinski JG. Structural and functional characterization of the phosphorylation-dependent interaction between PML and SUMO1. Structure 2014; 23:126-138. [PMID: 25497731 DOI: 10.1016/j.str.2014.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
PML and several other proteins localizing in PML-nuclear bodies (PML-NB) contain phosphoSIMs (SUMO-interacting motifs), and phosphorylation of this motif plays a key role in their interaction with SUMO family proteins. We examined the role that phosphorylation plays in the binding of the phosphoSIMs of PML and Daxx to SUMO1 at the atomic level. The crystal structures of SUMO1 bound to unphosphorylated and tetraphosphorylated PML-SIM peptides indicate that three phosphoserines directly contact specific positively charged residues of SUMO1. Surprisingly, the crystal structure of SUMO1 bound to a diphosphorylated Daxx-SIM peptide indicate that the hydrophobic residues of the phosphoSIM bind in a manner similar to that seen with PML, but important differences are observed when comparing the phosphorylated residues. Together, the results provide an atomic level description of how specific acetylation patterns within different SUMO family proteins can work together with phosphorylation of phosphoSIM's regions of target proteins to regulate binding specificity.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Xavier H Mascle
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Véronique Bourdeau
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Samuel Tremblay-Belzile
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Malik Chaker-Margot
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Mathieu Lussier-Price
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Junya Wada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuyasu Sakaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Muriel Aubry
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - James G Omichinski
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
130
|
A Phospho-SIM in the Antiviral Protein PML is Required for Its Recruitment to HSV-1 Genomes. Cells 2014; 3:1131-58. [PMID: 25513827 PMCID: PMC4276917 DOI: 10.3390/cells3041131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/08/2014] [Accepted: 11/03/2014] [Indexed: 01/22/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a significant human pathogen that infects a large portion of the human population. Cells deploy a variety of defenses to limit the extent to which the virus can replicate. One such factor is the promyelocytic leukemia (PML) protein, the nucleating and organizing factor of nuclear domain 10 (ND10). PML responds to a number of stimuli and is implicated in intrinsic and innate cellular antiviral defenses against HSV-1. While the role of PML in a number of cellular pathways is controlled by post-translational modifications, the effects of phosphorylation on its antiviral activity toward HSV-1 have been largely unexplored. Consequently, we mapped phosphorylation sites on PML, mutated these and other known phosphorylation sites on PML isoform I (PML-I), and examined their effects on a number of PML's activities. Our results show that phosphorylation at most sites on PML-I is dispensable for the formation of ND10s and colocalization between PML-I and the HSV-1 regulatory protein, ICP0, which antagonizes PML-I function. However, inhibiting phosphorylation at sites near the SUMO-interaction motif (SIM) of PML-I impairs its ability to respond to HSV-1 infection. Overall, our data suggest that PML phosphorylation regulates its antiviral activity against HSV-1.
Collapse
|
131
|
Xiao Y, Pollack D, Nieves E, Winchell A, Callaway M, Vigodner M. Can your protein be sumoylated? A quick summary and important tips to study SUMO-modified proteins. Anal Biochem 2014; 477:95-7. [PMID: 25454506 DOI: 10.1016/j.ab.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/27/2014] [Accepted: 11/11/2014] [Indexed: 12/23/2022]
Abstract
A diverse set of SUMO target proteins has been identified. Therefore, there is a growing interest in studying sumoylation and SUMO interactions in cells. When the sumoylation of a protein or a SUMO interaction is suspected, a standard co-immunoprecipitation analysis using anti-SUMO and anti-target protein antibody is usually performed as a first step. However, the identification of endogenous sumoylated proteins is challenging because of the activity of isopeptidases, and often only a small fraction of a target protein is sumoylated at a given time. Here, we briefly summarize several important steps to ensure a successful co-immunoprecipitation analysis to detect possible sumoylation.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Biology, Yeshiva University, New York, NY 10016, USA
| | - Daniel Pollack
- Department of Biology, Yeshiva University, New York, NY 10016, USA
| | - Edward Nieves
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aby Winchell
- Department of Biology, Yeshiva University, New York, NY 10016, USA
| | - Myrasol Callaway
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Margarita Vigodner
- Department of Biology, Yeshiva University, New York, NY 10016, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
132
|
Jin G, Gao Y, Lin HK. Cytoplasmic PML: from molecular regulation to biological functions. J Cell Biochem 2014; 115:812-8. [PMID: 24288198 DOI: 10.1002/jcb.24727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/19/2013] [Indexed: 01/18/2023]
Abstract
The tumor suppressor promyelocytic leukemia protein (PML) is predominantly localized in the nucleus, where it is essential for the formation and stabilization of the PML nuclear bodies (PML-NBs). PML-NBs are involved in the regulation of numerous cellular functions, such as tumorigenesis, DNA damage and antiviral responses. Despite its nuclear localization, a small portion of PML has been found in the cytoplasm. A number of studies recently demonstrated that the cytoplasmic PML (cPML) has diverse functions in many cellular processes including tumorigenesis, metabolism, antiviral responses, cell cycle regulation, and laminopothies. In this prospective, we will summarize the current viewpoints on the regulation and biological significance of cPML and discuss the important questions that still need to be further answered.
Collapse
Affiliation(s)
- Guoxiang Jin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | | | | |
Collapse
|
133
|
SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:136-43. [PMID: 25409927 DOI: 10.1016/j.bbamcr.2014.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
The non-canonical IKK kinase TBK1 serves as an important signal transmitter of the antiviral interferon response, but is also involved in the regulation of further processes such as autophagy. The activity of TBK1 is regulated by posttranslational modifications comprising phosphorylation and ubiquitination. This study identifies SUMOylation as a novel posttranslational TBK1 modification. TBK1 kinase activity is required to allow the attachment of SUMO1 or SUMO2/3 proteins. Since TBK1 does not bind to the E2 enzyme Ubc9, this modification most likely proceeds via trans-SUMOylation. Mass spectrometry allowed identifying K694 as the SUMO acceptor site, a residue located in the C-terminal coiled-coil domain which is exclusively responsible for the association with the adaptor proteins NAP1, Sintbad and TANK. SUMO modification at K694 contributes to the antiviral function of TBK1 and accordingly the viral protein Gam1 antagonizes this posttranslational modification.
Collapse
|
134
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
135
|
Chang PC, Kung HJ. SUMO and KSHV Replication. Cancers (Basel) 2014; 6:1905-24. [PMID: 25268162 PMCID: PMC4276950 DOI: 10.3390/cancers6041905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023] Open
Abstract
Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi's sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV's life cycle and pathogenesis.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Hsing-Jien Kung
- Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
136
|
Guzzo CM, Ringel A, Cox E, Uzoma I, Zhu H, Blackshaw S, Wolberger C, Matunis MJ. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM)-type zinc fingers in ZNF261 and ZNF198. PLoS One 2014; 9:e105271. [PMID: 25133527 PMCID: PMC4136804 DOI: 10.1371/journal.pone.0105271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/20/2014] [Indexed: 02/03/2023] Open
Abstract
SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM)-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs). Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs). In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.
Collapse
Affiliation(s)
- Catherine M. Guzzo
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alison Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Eric Cox
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ijeoma Uzoma
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael J. Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
137
|
Singh R, Brewer MK, Mashburn CB, Lou D, Bondada V, Graham B, Geddes JW. Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies. J Biol Chem 2014; 289:19383-94. [PMID: 24838245 PMCID: PMC4094050 DOI: 10.1074/jbc.m114.575159] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/14/2014] [Indexed: 12/20/2022] Open
Abstract
Calpain 5 (CAPN5) is a non-classical member of the calpain family. It lacks the EF hand motif characteristic of classical calpains but retains catalytic and Ca(2+) binding domains, and it contains a unique C-terminal domain. TRA-3, an ortholog of CAPN5, has been shown to be involved in necrotic cell death in Caenorhabditis elegans. CAPN5 is expressed throughout the CNS, but its expression relative to other calpains and subcellular distribution has not been investigated previously. Based on relative mRNA levels, Capn5 is the second most highly expressed calpain in the rat CNS, with Capn2 mRNA being the most abundant. Unlike classical calpains, CAPN5 is a non-cytosolic protein localized to the nucleus and extra-nuclear locations. CAPN5 possesses two nuclear localization signals (NLS): an N-terminal monopartite NLS and a unique bipartite NLS closer to the C terminus. The C-terminal NLS contains a SUMO-interacting motif that contributes to nuclear localization, and mutation or deletion of both NLS renders CAPN5 exclusively cytosolic. Dual NLS motifs are common among transcription factors. Interestingly, CAPN5 is found in punctate domains associated with promyelocytic leukemia (PML) protein within the nucleus. PML nuclear bodies are implicated in transcriptional regulation, cell differentiation, cellular response to stress, viral defense, apoptosis, and cell senescence as well as protein sequestration, modification, and degradation. The roles of nuclear CAPN5 remain to be determined.
Collapse
Affiliation(s)
- Ranjana Singh
- From the Spinal Cord and Brain Injury Research Center and the Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536
| | | | | | - Dingyuan Lou
- From the Spinal Cord and Brain Injury Research Center and
| | - Vimala Bondada
- From the Spinal Cord and Brain Injury Research Center and
| | | | - James W Geddes
- From the Spinal Cord and Brain Injury Research Center and the Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
138
|
Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, Liu Z, Zhao Y, Xue Y, Ren J. GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res 2014; 42:W325-30. [PMID: 24880689 PMCID: PMC4086084 DOI: 10.1093/nar/gku383] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022] Open
Abstract
Small ubiquitin-like modifiers (SUMOs) regulate a variety of cellular processes through two distinct mechanisms, including covalent sumoylation and non-covalent SUMO interaction. The complexity of SUMO regulations has greatly hampered the large-scale identification of SUMO substrates or interaction partners on a proteome-wide level. In this work, we developed a new tool called GPS-SUMO for the prediction of both sumoylation sites and SUMO-interaction motifs (SIMs) in proteins. To obtain an accurate performance, a new generation group-based prediction system (GPS) algorithm integrated with Particle Swarm Optimization approach was applied. By critical evaluation and comparison, GPS-SUMO was demonstrated to be substantially superior against other existing tools and methods. With the help of GPS-SUMO, it is now possible to further investigate the relationship between sumoylation and SUMO interaction processes. A web service of GPS-SUMO was implemented in PHP+JavaScript and freely available at http://sumosp.biocuckoo.org.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Advanced Computing, Sun Yat-sen University, Guangzhou 510275, China
| | - Yubin Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Advanced Computing, Sun Yat-sen University, Guangzhou 510275, China
| | - Yueyuan Zheng
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Advanced Computing, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuai Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Advanced Computing, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenzhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Advanced Computing, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiping Mu
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Advanced Computing, Sun Yat-sen University, Guangzhou 510275, China
| | - Zexian Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yong Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Advanced Computing, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Advanced Computing, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
139
|
Multiple Arkadia/RNF111 structures coordinate its Polycomb body association and transcriptional control. Mol Cell Biol 2014; 34:2981-95. [PMID: 24912682 DOI: 10.1128/mcb.00036-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RING domain protein Arkadia/RNF111 is a ubiquitin ligase in the transforming growth factor β (TGFβ) pathway. We previously identified Arkadia as a small ubiquitin-like modifier (SUMO)-binding protein with clustered SUMO-interacting motifs (SIMs) that together form a SUMO-binding domain (SBD). However, precisely how SUMO interaction contributes to the function of Arkadia was not resolved. Through analytical molecular and cell biology, we found that the SIMs share redundant function with Arkadia's M domain, a region distinguishing Arkadia from its paralogs ARKL1/ARKL2 and the prototypical SUMO-targeted ubiquitin ligase (STUbL) RNF4. The SIMs and M domain together promote both Arkadia's colocalization with CBX4/Pc2, a component of Polycomb bodies, and the activation of a TGFβ pathway transcription reporter. Transcriptome profiling through RNA sequencing showed that Arkadia can both promote and inhibit gene expression, indicating that Arkadia's activity in transcriptional control may depend on the epigenetic context, defined by Polycomb repressive complexes and DNA methylation.
Collapse
|
140
|
Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Thé H, Lallemand-Breitenbach V. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. ACTA ACUST UNITED AC 2014; 204:931-45. [PMID: 24637324 PMCID: PMC3998805 DOI: 10.1083/jcb.201305148] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PML multimerization into nuclear bodies following its oxidation promotes sumoylation and sequestration of partner proteins in these structures. The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.
Collapse
Affiliation(s)
- Umut Sahin
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Li J, Zou WX, Chang KS. Inhibition of Sp1 functions by its sequestration into PML nuclear bodies. PLoS One 2014; 9:e94450. [PMID: 24728382 PMCID: PMC3984170 DOI: 10.1371/journal.pone.0094450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/16/2014] [Indexed: 01/17/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are comprised of PML and a striking variety of its associated proteins. Various cellular functions have been attributed to PML NBs, including the regulation of gene expression. We report here that induced expression of PML recruits Sp1 into PML NBs, leading to the reduction of Sp1 transactivation function. Specifically, Chromatin immunoprecipitation (ChIP) assay demonstrated that induced expression of PML significantly diminishes the amount of Sp1 binding to its target gene promoter, immunofluorescence staining showed dramatic increase in the co-localization between PML and Sp1 upon induction of PML expression, moreover, PML and Sp1 co-fractionated in the core nuclear matrix. Our study further showed that PML promotes SUMOylation of Sp1 in a RING-motif-dependent manner, SUMOylation of Sp1 facilitates physical interaction between Sp1 and PML and recruitment of Sp1 into the PML NBs, the SUMO binding motif of PML was also important for its interaction with Sp1. The results of this study demonstrate a novel mechanism by which PML regulates gene expression through sequestration of the transcription factor into PML NBs.
Collapse
Affiliation(s)
- June Li
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JL); (KC)
| | - Wen-Xin Zou
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kun-Sang Chang
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JL); (KC)
| |
Collapse
|
142
|
Evidence Implicating CCNB1IP1, a RING Domain-Containing Protein Required for Meiotic Crossing Over in Mice, as an E3 SUMO Ligase. Genes (Basel) 2014; 1:440-51. [PMID: 21779533 PMCID: PMC3139512 DOI: 10.3390/genes1030440] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The RING domain-containing protein CCNB1IP1 (Cyclin B1 Interacting Protein 1) is a putative ubiquitin E3 ligase that is essential for chiasmata formation, and hence fertility, in mice. Previous studies in cultured cells indicated that CCNB1IP1 targets Cyclin B for degradation, thus playing a role in cell cycle regulation. Mice homozygous for a mutant allele (mei4) of Ccnb1ip1 display no detectable phenotype other than meiotic failure from an absence of chiasmata. CCNB1IP1 is not conserved in key model organisms such as yeast and Drosophila, and there are no features of the protein that implicate clear mechanisms for a role in recombination. To gain insight into CCNB1IP1’s function in meiotic cells, we raised a specific antibody and determined that the protein appears in pachynema. This indicates that CCNB1IP1 is involved with crossover intermediate maturation, rather than early (leptotene) specification of a subset of SPO11-induced double strand breaks towards the crossover pathway. Additionally, a yeast 2-hybrid (Y2H) screen revealed that CCNB1IP1 interacts with SUMO2 and a set of proteins enriched for consensus sumoylation sites. The Y2H studies, combined with scrutiny of CCNB1IP1 domains, implicate this protein as an E3 ligase of the sumoylation cascade. We hypothesize CCNB1IP1 represents a novel meiosis-specific SUMO E3 ligase critical to resolution of recombination intermediates into mature chiasmata.
Collapse
|
143
|
Sun X, Li J, Dong FN, Dong JT. Characterization of nuclear localization and SUMOylation of the ATBF1 transcription factor in epithelial cells. PLoS One 2014; 9:e92746. [PMID: 24651376 PMCID: PMC3961433 DOI: 10.1371/journal.pone.0092746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/24/2014] [Indexed: 11/30/2022] Open
Abstract
ATBF1/ZFHX3 is a large transcription factor that functions in development, tumorigenesis and other biological processes. ATBF1 is normally localized in the nucleus, but is often mislocalized in the cytoplasm in cancer cells. The mechanism underlying the mislocalization of ATBF1 is unknown. In this study, we analyzed the nuclear localization of ATBF1, and found that ectopically expressed ATBF1 formed nuclear body (NB)-like dots in the nucleus, some of which indeed physically associated with promyelocytic leukemia (PML) NBs. We also defined a 3-amino acid motif, KRK2615-2617, as the nuclear localization signal (NLS) for ATBF1. Interestingly, diffusely distributed nuclear SUMO1 proteins were sequestered into ATBF1 dots, which could be related to ATBF1's physical association with PML NBs, known SUMOylation hotspots. Furthermore, ATBF1 itself was SUMOylated. ATBF1 SUMOylation occurred at more than 3 lysine residues including K2349, K2806 and K3258 and was nuclear specific. Finally, the PIAS3 SUMO1 E3 ligase, which interacts with ATBF1 directly, diminished rather than enhanced ATBF1 SUMOylation, preventing the co-localization of ATBF1 with SUMO1 in the nucleus. These findings suggest that nuclear localization and SUMOylation are important for the transcription factor function of ATBF1, and that ATBF1 could cooperate with PML NBs to regulate protein SUMOylation in different biological processes.
Collapse
Affiliation(s)
- Xiaodong Sun
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jie Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Frederick N. Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
144
|
Hirohama M, Voet AR, Ozawa T, Saitoh H, Nakao Y, Zhang KY, Ito A, Yoshida M. Assay methods for small ubiquitin-like modifier (SUMO)–SUMO-interacting motif (SIM) interactions in vivo and in vitro using a split-luciferase complementation system. Anal Biochem 2014; 448:92-4. [DOI: 10.1016/j.ab.2013.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 11/28/2022]
|
145
|
Cheng CY, Chu CH, Hsu HW, Hsu FR, Tang CY, Wang WC, Kung HJ, Chang PC. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example. BMC Genomics 2014; 15 Suppl 1:S1. [PMID: 24564277 PMCID: PMC4046823 DOI: 10.1186/1471-2164-15-s1-s1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Post-translational modification (PTM) of transcriptional factors and chromatin remodelling proteins is recognized as a major mechanism by which transcriptional regulation occurs. Chromatin immunoprecipitation (ChIP) in combination with high-throughput sequencing (ChIP-seq) is being applied as a gold standard when studying the genome-wide binding sites of transcription factor (TFs). This has greatly improved our understanding of protein-DNA interactions on a genomic-wide scale. However, current ChIP-seq peak calling tools are not sufficiently sensitive and are unable to simultaneously identify post-translational modified TFs based on ChIP-seq analysis; this is largely due to the wide-spread presence of multiple modified TFs. Using SUMO-1 modification as an example; we describe here an improved approach that allows the simultaneous identification of the particular genomic binding regions of all TFs with SUMO-1 modification. Results Traditional peak calling methods are inadequate when identifying multiple TF binding sites that involve long genomic regions and therefore we designed a ChIP-seq processing pipeline for the detection of peaks via a combinatorial fusion method. Then, we annotate the peaks with known transcription factor binding sites (TFBS) using the Transfac Matrix Database (v7.0), which predicts potential SUMOylated TFs. Next, the peak calling result was further analyzed based on the promoter proximity, TFBS annotation, a literature review, and was validated by ChIP-real-time quantitative PCR (qPCR) and ChIP-reChIP real-time qPCR. The results show clearly that SUMOylated TFs are able to be pinpointed using our pipeline. Conclusion A methodology is presented that analyzes SUMO-1 ChIP-seq patterns and predicts related TFs. Our analysis uses three peak calling tools. The fusion of these different tools increases the precision of the peak calling results. TFBS annotation method is able to predict potential SUMOylated TFs. Here, we offer a new approach that enhances ChIP-seq data analysis and allows the identification of multiple SUMOylated TF binding sites simultaneously, which can then be utilized for other functional PTM binding site prediction in future.
Collapse
|
146
|
Varadaraj A, Mattoscio D, Chiocca S. SUMO Ubc9 enzyme as a viral target. IUBMB Life 2014; 66:27-33. [PMID: 24395713 DOI: 10.1002/iub.1240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/22/2013] [Indexed: 01/20/2023]
Abstract
Viruses alter specific host cell targets to counteract possible defense mechanisms aimed at eliminating infectivity and viral propagation. The SUMO conjugating enzyme Ubc9 functions as a hub for protein sumoylation, whilst also providing an interactive surface for sumoylated proteins through noncovalent interactions. The targeting of Ubc9 by viruses and viral proteins is thus highly beneficial for the disruption of both protein modification and protein-protein interaction mechanisms with which proteins increase their functional repertoire in cells. This review explores some of the clever mechanisms adopted by viruses to deregulate Ubc9, influence effector pathways and positively impact viral persistence consequently.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | |
Collapse
|
147
|
Voet ARD, Ito A, Hirohama M, Matsuoka S, Tochio N, Kigawa T, Yoshida M, Zhang KYJ. Discovery of small molecule inhibitors targeting the SUMO–SIM interaction using a protein interface consensus approach. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We present a virtual screening approach incorporating the consensus of protein interactions that led to the discovery of non-peptidic inhibitors.
Collapse
Affiliation(s)
| | - Akihiro Ito
- Chemical Genetics Laboratory
- RIKEN
- Wako, Japan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
- Wako, Japan
| | - Mikako Hirohama
- Chemical Genetics Laboratory
- RIKEN
- Wako, Japan
- Japan Science and Technology Corporation, CREST Research Project
- Kawaguchi, Japan
| | - Seiji Matsuoka
- Drug Discovery Platforms Cooperation Division
- RIKEN Center for Sustainable Resource Science
- Wako, Japan
| | - Naoya Tochio
- Laboratory for Biomolecular Structure and Dynamics
- Quantitative Biology Center
- RIKEN
- Yokohama, Japan
| | - Takanori Kigawa
- Laboratory for Biomolecular Structure and Dynamics
- Quantitative Biology Center
- RIKEN
- Yokohama, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory
- RIKEN
- Wako, Japan
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
- Wako, Japan
| | | |
Collapse
|
148
|
Ward JD, Bojanala N, Bernal T, Ashrafi K, Asahina M, Yamamoto KR. Sumoylated NHR-25/NR5A regulates cell fate during C. elegans vulval development. PLoS Genet 2013; 9:e1003992. [PMID: 24348269 PMCID: PMC3861103 DOI: 10.1371/journal.pgen.1003992] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner.
Collapse
Affiliation(s)
- Jordan D. Ward
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Nagagireesh Bojanala
- Institute of Parasitology, Biology Centre ASCR, Ceske Budejovice, Czech Republic
- University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Teresita Bernal
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Masako Asahina
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Institute of Parasitology, Biology Centre ASCR, Ceske Budejovice, Czech Republic
- University of South Bohemia, Ceske Budejovice, Czech Republic
- * E-mail: (MA); (KRY)
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MA); (KRY)
| |
Collapse
|
149
|
Jentsch S, Psakhye I. Control of Nuclear Activities by Substrate-Selective and Protein-Group SUMOylation. Annu Rev Genet 2013; 47:167-86. [DOI: 10.1146/annurev-genet-111212-133453] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Ivan Psakhye
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| |
Collapse
|
150
|
Chang PC, Cheng CY, Campbell M, Yang YC, Hsu HW, Chang TY, Chu CH, Lee YW, Hung CL, Lai SM, Tepper CG, Hsieh WP, Wang HW, Tang CY, Wang WC, Kung HJ. The chromatin modification by SUMO-2/3 but not SUMO-1 prevents the epigenetic activation of key immune-related genes during Kaposi's sarcoma associated herpesvirus reactivation. BMC Genomics 2013; 14:824. [PMID: 24267727 PMCID: PMC4046822 DOI: 10.1186/1471-2164-14-824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND SUMOylation, as part of the epigenetic regulation of transcription, has been intensively studied in lower eukaryotes that contain only a single SUMO protein; however, the functions of SUMOylation during mammalian epigenetic transcriptional regulation are largely uncharacterized. Mammals express three major SUMO paralogues: SUMO-1, SUMO-2, and SUMO-3 (normally referred to as SUMO-1 and SUMO-2/3). Herpesviruses, including Kaposi's sarcoma associated herpesvirus (KSHV), seem to have evolved mechanisms that directly or indirectly modulate the SUMO machinery in order to evade host immune surveillance, thus advancing their survival. Interestingly, KSHV encodes a SUMO E3 ligase, K-bZIP, with specificity toward SUMO-2/3 and is an excellent model for investigating the global functional differences between SUMO paralogues. RESULTS We investigated the effect of experimental herpesvirus reactivation in a KSHV infected B lymphoma cell line on genomic SUMO-1 and SUMO-2/3 binding profiles together with the potential role of chromatin SUMOylation in transcription regulation. This was carried out via high-throughput sequencing analysis. Interestingly, chromatin immunoprecipitation sequencing (ChIP-seq) experiments showed that KSHV reactivation is accompanied by a significant increase in SUMO-2/3 modification around promoter regions, but SUMO-1 enrichment was absent. Expression profiling revealed that the SUMO-2/3 targeted genes are primarily highly transcribed genes that show no expression changes during viral reactivation. Gene ontology analysis further showed that these genes are involved in cellular immune responses and cytokine signaling. High-throughput annotation of SUMO occupancy of transcription factor binding sites (TFBS) pinpointed the presence of three master regulators of immune responses, IRF-1, IRF-2, and IRF-7, as potential SUMO-2/3 targeted transcriptional factors after KSHV reactivation. CONCLUSION Our study is the first to identify differential genome-wide SUMO modifications between SUMO paralogues during herpesvirus reactivation. Our findings indicate that SUMO-2/3 modification near protein-coding gene promoters occurs in order to maintain host immune-related gene unaltered during viral reactivation.
Collapse
Affiliation(s)
- Pei-Ching Chang
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Chia-Yang Cheng
- />Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300 Taiwan
- />Department of Computer Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Mel Campbell
- />UC Davis Cancer Center, University of California, Davis, CA 95616 USA
| | - Yi-Cheng Yang
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Hung-Wei Hsu
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Ting-Yu Chang
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Chia-Han Chu
- />Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Yi-Wei Lee
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Chiu-Lien Hung
- />Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Shi-Mei Lai
- />Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Clifford G Tepper
- />UC Davis Cancer Center, University of California, Davis, CA 95616 USA
- />Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 USA
| | - Wen-Ping Hsieh
- />Institute of Statistics, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Hsei-Wei Wang
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Chuan-Yi Tang
- />Department of Computer Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Wen-Ching Wang
- />Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Hsing-Jien Kung
- />UC Davis Cancer Center, University of California, Davis, CA 95616 USA
- />Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
- />Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 USA
- />Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xin Street, Taipei City, Taiwan
| |
Collapse
|