101
|
Lavi-Itzkovitz A, Peterman N, Jost D, Levine E. Quantitative effect of target translation on small RNA efficacy reveals a novel mode of interaction. Nucleic Acids Res 2014; 42:12200-11. [PMID: 25294829 PMCID: PMC4231754 DOI: 10.1093/nar/gku889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small regulatory RNAs (sRNAs) in bacteria regulate many important cellular activities under normal conditions and in response to stress. Many sRNAs bind to the mRNA targets at or near the 5′ untranslated region (UTR) resulting in translation inhibition and accelerated degradation. Often the sRNA-binding site is adjacent to or overlapping with the ribosomal binding site (RBS), suggesting a possible interplay between sRNA and ribosome binding. Here we combine quantitative experiments with mathematical modeling to reveal novel features of the interaction between small RNAs and the translation machinery at the 5′UTR of a target mRNA. By measuring the response of a library of reporter targets with varied RBSs, we find that increasing translation rate can lead to increased repression. Quantitative analysis of these data suggests a recruitment model, where bound ribosomes facilitate binding of the sRNA. We experimentally verified predictions of this model for the cell-to-cell variability of target expression. Our findings offer a framework for understanding sRNA silencing in the context of bacterial physiology.
Collapse
Affiliation(s)
- Anat Lavi-Itzkovitz
- Department of Physics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Neil Peterman
- Department of Physics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Jost
- Department of Physics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Erel Levine
- Department of Physics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
102
|
Wen J, Fozo EM. sRNA antitoxins: more than one way to repress a toxin. Toxins (Basel) 2014; 6:2310-35. [PMID: 25093388 PMCID: PMC4147584 DOI: 10.3390/toxins6082310] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/16/2022] Open
Abstract
Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.
Collapse
Affiliation(s)
- Jia Wen
- Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, TN 37996, USA.
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, TN 37996, USA.
| |
Collapse
|
103
|
Bobrovskyy M, Vanderpool CK. The small RNA SgrS: roles in metabolism and pathogenesis of enteric bacteria. Front Cell Infect Microbiol 2014; 4:61. [PMID: 24847473 PMCID: PMC4021124 DOI: 10.3389/fcimb.2014.00061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/22/2014] [Indexed: 11/13/2022] Open
Abstract
Bacteria adapt to ever-changing habitats through specific responses to internal and external stimuli that result in changes in gene regulation and metabolism. One internal metabolic cue affecting such changes in Escherichia coli and related enteric species is cytoplasmic accumulation of phosphorylated sugars such as glucose-6-phosphate or the non-metabolizable analog α-methylglucoside-6-phosphate. This “glucose-phosphate stress” triggers a dedicated stress response in γ-proteobacteria including several enteric pathogens. The major effector of this stress response is a small RNA (sRNA), SgrS. In E. coli and Salmonella, SgrS regulates numerous mRNA targets via base pairing interactions that result in alterations in mRNA translation and stability. Regulation of target mRNAs allows cells to reduce import of additional sugars and increase sugar efflux. SgrS is an unusual sRNA in that it also encodes a small protein, SgrT, which inhibits activity of the major glucose transporter. The two functions of SgrS, base pairing and production of SgrT, reduce accumulation of phosphorylated sugars and thereby relieve stress and promote growth. Examination of SgrS homologs in many enteric species suggests that SgrS has evolved to regulate distinct targets in different organisms. For example, in Salmonella, SgrS base pairs with sopD mRNA and represses production of the encoded effector protein, suggesting that SgrS may have a specific role in the pathogenesis of some γ-proteobacteria. In this review, we outline molecular mechanisms involved in SgrS regulation of its target mRNAs. We also discuss the response to glucose-phosphate stress in terms of its impact on metabolism, growth physiology, and pathogenesis.
Collapse
Affiliation(s)
- Maksym Bobrovskyy
- Department of Microbiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
104
|
Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X. RNase III: Genetics and function; structure and mechanism. Annu Rev Genet 2014; 47:405-31. [PMID: 24274754 DOI: 10.1146/annurev-genet-110711-155618] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNase III is a global regulator of gene expression in Escherichia coli that is instrumental in the maturation of ribosomal and other structural RNAs. We examine here how RNase III itself is regulated in response to growth and other environmental changes encountered by the cell and how, by binding or processing double-stranded RNA (dsRNA) intermediates, RNase III controls the expression of genes. Recent insight into the mechanism of dsRNA binding and processing, gained from structural studies of RNase III, is reviewed. Structural studies also reveal new cleavage sites in the enzyme that can generate longer 3' overhangs.
Collapse
Affiliation(s)
- Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702; , , , , , , ,
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
Small regulatory RNAs (sRNAs) that act by base-pairing were first discovered in so-called accessory DNA elements—plasmids, phages, and transposons—where they control replication, maintenance, and transposition. Since 2001, a huge body of work has been performed to predict and identify sRNAs in a multitude of bacterial genomes. The majority of chromosome-encoded sRNAs have been investigated in E. coli and other Gram-negative bacteria. However, during the past five years an increasing number of sRNAs were found in Gram-positive bacteria. Here, we outline our current knowledge on chromosome-encoded sRNAs from low-GC Gram-positive species that act by base-pairing, i.e., an antisense mechanism. We will focus on sRNAs with known targets and defined regulatory mechanisms with special emphasis on Bacillus subtilis.
Collapse
Affiliation(s)
- Sabine Brantl
- Friedrich-Schiller-Universität Jena; Biologisch-Pharmazeutische Fakultät; AG Bakteriengenetik; Philosophenweg 12; Jena, Germany
| | - Reinhold Brückner
- Mikrobiologie; TU Kaiserslautern; Paul-Ehrlich-Str. 23; D-67663 Kaiserslautern, Germany
| |
Collapse
|
106
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
107
|
A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc Natl Acad Sci U S A 2014; 111:E501-10. [PMID: 24474799 DOI: 10.1073/pnas.1315152111] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phase variation of hypermutable simple sequence repeats (SSRs) is a widespread and stochastic mechanism to generate phenotypic variation within a population and thereby contributes to host adaptation of bacterial pathogens. Although several examples of SSRs that affect transcription or coding potential have been reported, we now show that a SSR also impacts small RNA-mediated posttranscriptional regulation. Based on in vitro and in vivo analyses, we demonstrate that a variable homopolymeric G-repeat in the leader of the TlpB chemotaxis receptor mRNA of the human pathogen Helicobacter pylori is directly targeted by a small RNA (sRNA), RepG (Regulator of polymeric G-repeats). Whereas RepG sRNA is highly conserved, the tlpB G-repeat length varies among diverse H. pylori strains, resulting in strain-specific RepG-mediated tlpB regulation. Based on modification of the G-repeat length within one strain, we demonstrate that the G-repeat length determines posttranscriptional regulation and can mediate both repression and activation of tlpB through RepG. In vitro translation assays show that this regulation occurs at the translational level and that RepG influences tlpB translation dependent on the G-repeat length. In contrast to the digital ON-OFF switches through frame-shift mutations within coding sequences, such modulation of posttranscriptional regulation allows for a gradual control of gene expression. This connection to sRNA-mediated posttranscriptional regulation might also apply to other genes with SSRs, which could be targeting sites of cis- or trans-encoded sRNAs, and thereby could facilitate host adaptation through sRNA-mediated fine-tuning of virulence gene expression.
Collapse
|
108
|
van Heesch S, van Iterson M, Jacobi J, Boymans S, Essers PB, de Bruijn E, Hao W, MacInnes AW, Cuppen E, Simonis M. Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol 2014; 15:R6. [PMID: 24393600 PMCID: PMC4053777 DOI: 10.1186/gb-2014-15-1-r6] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/07/2014] [Indexed: 02/04/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) form an abundant class of transcripts, but the function of the majority of them remains elusive. While it has been shown that some lncRNAs are bound by ribosomes, it has also been convincingly demonstrated that these transcripts do not code for proteins. To obtain a comprehensive understanding of the extent to which lncRNAs bind ribosomes, we performed systematic RNA sequencing on ribosome-associated RNA pools obtained through ribosomal fractionation and compared the RNA content with nuclear and (non-ribosome bound) cytosolic RNA pools. Results The RNA composition of the subcellular fractions differs significantly from each other, but lncRNAs are found in all locations. A subset of specific lncRNAs is enriched in the nucleus but surprisingly the majority is enriched in the cytosol and in ribosomal fractions. The ribosomal enriched lncRNAs include H19 and TUG1. Conclusions Most studies on lncRNAs have focused on the regulatory function of these transcripts in the nucleus. We demonstrate that only a minority of all lncRNAs are nuclear enriched. Our findings suggest that many lncRNAs may have a function in cytoplasmic processes, and in particular in ribosome complexes.
Collapse
|
109
|
Yang Q, Figueroa-Bossi N, Bossi L. Translation enhancing ACA motifs and their silencing by a bacterial small regulatory RNA. PLoS Genet 2014; 10:e1004026. [PMID: 24391513 PMCID: PMC3879156 DOI: 10.1371/journal.pgen.1004026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023] Open
Abstract
GcvB is an archetypal multi-target small RNA regulator of genes involved in amino acid uptake or metabolism in enteric bacteria. Included in the GcvB regulon is the yifK locus, encoding a conserved putative amino acid transporter. GcvB inhibits yifK mRNA translation by pairing with a sequence immediately upstream from the Shine-Dalgarno motif. Surprisingly, we found that some target sequence mutations that disrupt pairing, and thus were expected to relieve repression, actually lower yifK expression and cause it not to respond to GcvB variants carrying the corresponding compensatory changes. Work prompted by these observations revealed that the GcvB target sequence in yifK mRNA includes elements that stimulate translation initiation. Replacing each base of an ACA trinucleotide near the center of the target sequence, by any other base, caused yifK expression to decrease. Effects were additive, with some triple replacements causing up to a 90% reduction. The enhancer activity did not require the ACA motif to be strictly positioned relative to the Shine-Dalgarno sequence, nor did it depend on a particular spacing between the latter and the initiating AUG. The dppA mRNA, another GcvB target, contains four ACA motifs at the target site. Quite strikingly, replacement of all four ACAs by random trinucleotide sequences yielded variants showing over 100-fold reduction in expression, virtually inactivating the gene. Altogether, these data identify the ACA motif as a translation-enhancing module and show that GcvB's ability to antagonize the enhancer function in target mRNAs is quintessential to the regulatory effectiveness of this sRNA.
Collapse
Affiliation(s)
- Qi Yang
- Centre de Génétique Moléculaire du CNRS, Associé à l'Université Paris-Sud, Gif-sur-Yvette, France
| | - Nara Figueroa-Bossi
- Centre de Génétique Moléculaire du CNRS, Associé à l'Université Paris-Sud, Gif-sur-Yvette, France
| | - Lionello Bossi
- Centre de Génétique Moléculaire du CNRS, Associé à l'Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
110
|
Duval M, Korepanov A, Fuchsbauer O, Fechter P, Haller A, Fabbretti A, Choulier L, Micura R, Klaholz BP, Romby P, Springer M, Marzi S. Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol 2013; 11:e1001731. [PMID: 24339747 PMCID: PMC3858243 DOI: 10.1371/journal.pbio.1001731] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022] Open
Abstract
Regulation of translation initiation is well appropriate to adapt cell growth in response to stress and environmental changes. Many bacterial mRNAs adopt structures in their 5' untranslated regions that modulate the accessibility of the 30S ribosomal subunit. Structured mRNAs interact with the 30S in a two-step process where the docking of a folded mRNA precedes an accommodation step. Here, we used a combination of experimental approaches in vitro (kinetic of mRNA unfolding and binding experiments to analyze mRNA-protein or mRNA-ribosome complexes, toeprinting assays to follow the formation of ribosomal initiation complexes) and in vivo (genetic) to monitor the action of ribosomal protein S1 on the initiation of structured and regulated mRNAs. We demonstrate that r-protein S1 endows the 30S with an RNA chaperone activity that is essential for the docking and the unfolding of structured mRNAs, and for the correct positioning of the initiation codon inside the decoding channel. The first three OB-fold domains of S1 retain all its activities (mRNA and 30S binding, RNA melting activity) on the 30S subunit. S1 is not required for all mRNAs and acts differently on mRNAs according to the signals present at their 5' ends. This work shows that S1 confers to the ribosome dynamic properties to initiate translation of a large set of mRNAs with diverse structural features.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| | - Alexey Korepanov
- CNRS UPR9073, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Olivier Fuchsbauer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| | - Pierre Fechter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| | - Andrea Haller
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, Innsbruck, Austria
| | - Attilio Fabbretti
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, Camerino, Italy
| | - Laurence Choulier
- CNRS UMR 7213, Université de Strasbourg, Faculté de pharmacie, Illkirch, France
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold Franzens University, Innsbruck, Austria
| | - Bruno P. Klaholz
- Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, UMR 7104-CNRS, U964-INSERM, Illkirch, France; and Université de Strasbourg, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| | - Mathias Springer
- CNRS UPR9073, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire-CNRS, Strasbourg, France
| |
Collapse
|
111
|
Espah Borujeni A, Channarasappa AS, Salis HM. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 2013; 42:2646-59. [PMID: 24234441 PMCID: PMC3936740 DOI: 10.1093/nar/gkt1139] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ribosome's interactions with mRNA govern its translation rate and the effects of post-transcriptional regulation. Long, structured 5' untranslated regions (5' UTRs) are commonly found in bacterial mRNAs, though the physical mechanisms that determine how the ribosome binds these upstream regions remain poorly defined. Here, we systematically investigate the ribosome's interactions with structured standby sites, upstream of Shine-Dalgarno sequences, and show that these interactions can modulate translation initiation rates by over 100-fold. We find that an mRNA's translation initiation rate is controlled by the amount of single-stranded surface area, the partial unfolding of RNA structures to minimize the ribosome's binding free energy penalty, the absence of cooperative binding and the potential for ribosomal sliding. We develop a biophysical model employing thermodynamic first principles and a four-parameter free energy model to accurately predict the ribosome's translation initiation rates for 136 synthetic 5' UTRs with large structures, diverse shapes and multiple standby site modules. The model predicts and experiments confirm that the ribosome can readily bind distant standby site modules that support high translation rates, providing a physical mechanism for observed context effects and long-range post-transcriptional regulation.
Collapse
Affiliation(s)
- Amin Espah Borujeni
- Department of Chemical Engineering, Penn State University, University Park, PA 16802, USA and Department of Agricultural and Biological Engineering, Penn State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
112
|
Wen J, Won D, Fozo EM. The ZorO-OrzO type I toxin-antitoxin locus: repression by the OrzO antitoxin. Nucleic Acids Res 2013; 42:1930-46. [PMID: 24203704 PMCID: PMC3919570 DOI: 10.1093/nar/gkt1018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Type I toxin–antitoxin loci consist of two genes: a small, hydrophobic, potentially toxic protein, and a small RNA (sRNA) antitoxin. The sRNA represses toxin gene expression by base pairing to the toxin mRNA. A previous bioinformatics search predicted a duplicated type I locus within Escherichia coli O157:H7 (EHEC), which we have named the gene pairs zorO-orzO and zorP-orzP. We show that overproduction of the zorO gene is toxic to E. coli; co-expression of the sRNA OrzO can neutralize this toxicity, confirming that the zorO-orzO pair is a true type I toxin–antitoxin locus. However, OrzO is unable to repress zorO in a strain deleted for RNase III, indicating that repression requires cleavage of the target mRNA. Sequence analysis and mutagenesis studies have elucidated a nucleotide sequence region (V1) that allows differential recognition of the zorO mRNA by OrzO and not OrzP, and a specific single nucleotide within the V1 of OrzO that is critical for repression of zorO. Although there are 18 nt of complementarity between the OrzO sRNA and the zorO mRNA, not all base pairing interactions are needed for repression; however, the amount needed is dependent on whether there is continuous or discontinuous complementarity to the target mRNA.
Collapse
Affiliation(s)
- Jia Wen
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
113
|
Chappell J, Takahashi MK, Meyer S, Loughrey D, Watters KE, Lucks J. The centrality of RNA for engineering gene expression. Biotechnol J 2013; 8:1379-95. [PMID: 24124015 PMCID: PMC4033574 DOI: 10.1002/biot.201300018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 12/25/2022]
Abstract
Synthetic biology holds promise as both a framework for rationally engineering biological systems and a way to revolutionize how we fundamentally understand them. Essential to realizing this promise is the development of strategies and tools to reliably and predictably control and characterize sophisticated patterns of gene expression. Here we review the role that RNA can play towards this goal and make a case for why this versatile, designable, and increasingly characterizable molecule is one of the most powerful substrates for engineering gene expression at our disposal. We discuss current natural and synthetic RNA regulators of gene expression acting at key points of control – transcription, mRNA degradation, and translation. We also consider RNA structural probing and computational RNA structure predication tools as a way to study RNA structure and ultimately function. Finally, we discuss how next-generation sequencing methods are being applied to the study of RNA and to the characterization of RNA's many properties throughout the cell.
Collapse
Affiliation(s)
- James Chappell
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|
114
|
Bobrovskyy M, Vanderpool CK. Regulation of bacterial metabolism by small RNAs using diverse mechanisms. Annu Rev Genet 2013; 47:209-32. [PMID: 24016191 DOI: 10.1146/annurev-genet-111212-133445] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria live in many dynamic environments with alternating cycles of feast or famine that have resulted in the evolution of mechanisms to quickly alter their metabolic capabilities. Such alterations often involve complex regulatory networks that modulate expression of genes involved in nutrient uptake and metabolism. A great number of protein regulators of metabolism have been characterized in depth. However, our ever-increasing understanding of the roles played by RNA regulators has revealed far greater complexity to regulation of metabolism in bacteria. Here, we review the mechanisms and functions of selected bacterial RNA regulators and discuss their importance in modulating nutrient uptake as well as primary and secondary metabolic pathways.
Collapse
Affiliation(s)
- Maksym Bobrovskyy
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; ,
| | | |
Collapse
|
115
|
Abstract
Type I toxin–antitoxin systems encoded on bacterial chromosomes became the focus of research during the past years. However, little is known in terms of structural requirements, kinetics of interaction with their targets and regulatory mechanisms of the antitoxin RNAs. Here, we present a combined in vitro and in vivo analysis of the bsrG/SR4 type I toxin–antitoxin system from Bacillus subtilis. The secondary structures of SR4 and bsrG mRNA and of the SR4/bsrG RNA complex were determined, apparent binding rate constants calculated and functional segments required for complex formation narrowed down. The initial contact between SR4 and its target was shown to involve the SR4 terminator loop and loop 3 of bsrG mRNA. Additionally, a contribution of the stem of SR4 stem-loop 3 to target binding was found. On SR4/bsrG complex formation, a 4 bp double-stranded region sequestering the bsrG Shine Dalgarno (SD) sequence was extended to 8 bp. Experimental evidence was obtained that this extended region caused translation inhibition of bsrG mRNA. Therefore, we conclude that SR4 does not only promote degradation of the toxin mRNA but also additionally inhibit its translation. This is the first case of a dual-acting antitoxin RNA.
Collapse
Affiliation(s)
| | - Sabine Brantl
- *To whom correspondence should be addressed. Tel: +49 3641 949570; Fax: +49 3641 949302;
| |
Collapse
|
116
|
The genome organization of Thermotoga maritima reflects its lifestyle. PLoS Genet 2013; 9:e1003485. [PMID: 23637642 PMCID: PMC3636130 DOI: 10.1371/journal.pgen.1003485] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 03/13/2013] [Indexed: 01/01/2023] Open
Abstract
The generation of genome-scale data is becoming more routine, yet the subsequent analysis of omics data remains a significant challenge. Here, an approach that integrates multiple omics datasets with bioinformatics tools was developed that produces a detailed annotation of several microbial genomic features. This methodology was used to characterize the genome of Thermotoga maritima—a phylogenetically deep-branching, hyperthermophilic bacterium. Experimental data were generated for whole-genome resequencing, transcription start site (TSS) determination, transcriptome profiling, and proteome profiling. These datasets, analyzed in combination with bioinformatics tools, served as a basis for the improvement of gene annotation, the elucidation of transcription units (TUs), the identification of putative non-coding RNAs (ncRNAs), and the determination of promoters and ribosome binding sites. This revealed many distinctive properties of the T. maritima genome organization relative to other bacteria. This genome has a high number of genes per TU (3.3), a paucity of putative ncRNAs (12), and few TUs with multiple TSSs (3.7%). Quantitative analysis of promoters and ribosome binding sites showed increased sequence conservation relative to other bacteria. The 5′UTRs follow an atypical bimodal length distribution comprised of “Short” 5′UTRs (11–17 nt) and “Common” 5′UTRs (26–32 nt). Transcriptional regulation is limited by a lack of intergenic space for the majority of TUs. Lastly, a high fraction of annotated genes are expressed independent of growth state and a linear correlation of mRNA/protein is observed (Pearson r = 0.63, p<2.2×10−16 t-test). These distinctive properties are hypothesized to be a reflection of this organism's hyperthermophilic lifestyle and could yield novel insights into the evolutionary trajectory of microbial life on earth. Genomic studies have greatly benefited from the advent of high-throughput technologies and bioinformatics tools. Here, a methodology integrating genome-scale data and bioinformatics tools is developed to characterize the genome organization of the hyperthermophilic, phylogenetically deep-branching bacterium Thermotoga maritima. This approach elucidates several features of the genome organization and enables comparative analysis of these features across diverse taxa. Our results suggest that the genome of T. maritima is reflective of its hyperthermophilic lifestyle. Ultimately, constraints imposed on the genome have negative impacts on regulatory complexity and phenotypic diversity. Investigating the genome organization of Thermotogae species will help resolve various causal factors contributing to the genome organization such as phylogeny and environment. Applying a similar analysis of the genome organization to numerous taxa will likely provide insights into microbial evolution.
Collapse
|
117
|
Lalaouna D, Simoneau-Roy M, Lafontaine D, Massé E. Regulatory RNAs and target mRNA decay in prokaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:742-7. [PMID: 23500183 DOI: 10.1016/j.bbagrm.2013.02.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
Recent advances in prokaryote genetics have highlighted the important and complex roles of small regulatory RNAs (sRNAs). Although blocking mRNA translation is often the main function of sRNAs, these molecules can also induce the degradation of target mRNAs using a mechanism that drastically differs from eukaryotic RNA interference (RNAi). Whereas RNAi relies on RNase III-like machinery that is specific to double-strand RNAs, sRNA-mediated mRNA degradation in Escherichia coli and Samonella typhimurium depends on RNase E, a single-strand specific endoribonuclease. Surprisingly, the latest descriptions of sRNA-mediated mRNA degradation in various bacteria suggest a variety of previously unsuspected mechanisms. In this review, we focus on recently characterized mechanisms in which sRNAs can bind to target mRNAs to induce decay. These new mechanisms illustrate how sRNAs and mRNA structures, including riboswitches, act cooperatively with protein partners to initiate the decay of mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
118
|
Weel-Sneve R, Kristiansen KI, Odsbu I, Dalhus B, Booth J, Rognes T, Skarstad K, Bjørås M. Single transmembrane peptide DinQ modulates membrane-dependent activities. PLoS Genet 2013; 9:e1003260. [PMID: 23408903 PMCID: PMC3567139 DOI: 10.1371/journal.pgen.1003260] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
The functions of several SOS regulated genes in Escherichia coli are still unknown, including dinQ. In this work we characterize dinQ and two small RNAs, agrA and agrB, with antisense complementarity to dinQ. Northern analysis revealed five dinQ transcripts, but only one transcript (+44) is actively translated. The +44 dinQ transcript translates into a toxic single transmembrane peptide localized in the inner membrane. AgrB regulates dinQ RNA by RNA interference to counteract DinQ toxicity. Thus the dinQ-agr locus shows the classical features of a type I TA system and has many similarities to the tisB-istR locus. DinQ overexpression depolarizes the cell membrane and decreases the intracellular ATP concentration, demonstrating that DinQ can modulate membrane-dependent processes. Augmented DinQ strongly inhibits marker transfer by Hfr conjugation, indicating a role in recombination. Furthermore, DinQ affects transformation of nucleoid morphology in response to UV damage. We hypothesize that DinQ is a transmembrane peptide that modulates membrane-dependent activities such as nucleoid compaction and recombination. Exposure of the bacterium Escherichia coli to DNA damaging agents induces the SOS response, which up-regulates gene functions involved in numerous cellular processes such as DNA repair, cell division, and replication. Most of the SOS regulated genes in E. coli have been characterized, but still there are several genes of unknown function. One of these uncharacterized genes is dinQ. In this work we characterize dinQ and two novel small RNAs, agrA and agrB, that regulate expression of dinQ. The DinQ peptide is localized in the inner membrane as a single transmembrane peptide of 27 amino acids. Small proteins of less than 50 amino acids are important in cellular processes such as regulation, signalling, and antibacterial action. Here we demonstrate that DinQ modulates recombination and transformation of nucleoid morphology in response to UV damage. Our results provide new insights into small hydrophobic peptides that could regulate important DNA metabolic processes dependent on the inner membrane of the cell.
Collapse
Affiliation(s)
- Ragnhild Weel-Sneve
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Knut Ivan Kristiansen
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- * E-mail: (KIK); (MB)
| | - Ingvild Odsbu
- Department of Cell Biology, Institute for Cancer Research, University of Oslo and Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Biochemistry, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - James Booth
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Torbjørn Rognes
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, University of Oslo and Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Magnar Bjørås
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Biochemistry, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- * E-mail: (KIK); (MB)
| |
Collapse
|
119
|
Johnson E, Srivastava R. Volatility in mRNA secondary structure as a design principle for antisense. Nucleic Acids Res 2013; 41:e43. [PMID: 23161691 PMCID: PMC3562002 DOI: 10.1093/nar/gks902] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 11/28/2022] Open
Abstract
Designing effective antisense sequences is a formidable problem. A method for predicting efficacious antisense holds the potential to provide fundamental insight into this biophysical process. More practically, such an understanding increases the chance of successful antisense design as well as saving considerable time, money and labor. The secondary structure of an mRNA molecule is believed to be in a constant state of flux, sampling several different suboptimal states. We hypothesized that particularly volatile regions might provide better accessibility for antisense targeting. A computational framework, GenAVERT was developed to evaluate this hypothesis. GenAVERT used UNAFold and RNAforester to generate and compare the predicted suboptimal structures of mRNA sequences. Subsequent analysis revealed regions that were particularly volatile in terms of intramolecular hydrogen bonding, and thus potentially superior antisense targets due to their high accessibility. Several mRNA sequences with known natural antisense target sites as well as artificial antisense target sites were evaluated. Upon comparison, antisense sequences predicted based upon the volatility hypothesis closely matched those of the naturally occurring antisense, as well as those artificial target sites that provided efficient down-regulation. These results suggest that this strategy may provide a powerful new approach to antisense design.
Collapse
Affiliation(s)
- Erik Johnson
- Department of Chemical, Materials and Biomolecular Engineering, University of
Connecticut, Storrs, CT 06269 and Program in Head and Neck Cancer and Oral
Oncology, Neag Comprehensive Cancer Center, University of Connecticut Health Center,
Farmington, CT 06030, USA
| | - Ranjan Srivastava
- Department of Chemical, Materials and Biomolecular Engineering, University of
Connecticut, Storrs, CT 06269 and Program in Head and Neck Cancer and Oral
Oncology, Neag Comprehensive Cancer Center, University of Connecticut Health Center,
Farmington, CT 06030, USA
| |
Collapse
|
120
|
New insights into small RNA-dependent translational regulation in prokaryotes. Trends Genet 2013; 29:92-8. [DOI: 10.1016/j.tig.2012.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/14/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022]
|
121
|
Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 2013; 340:73-85. [DOI: 10.1111/1574-6968.12074] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/24/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Christopher F. Schuster
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Lehrbereich Mikrobielle Genetik; Eberhard Karls Universität Tübingen; Waldhäuser Str. 70/8; Tübingen; Germany
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Lehrbereich Mikrobielle Genetik; Eberhard Karls Universität Tübingen; Waldhäuser Str. 70/8; Tübingen; Germany
| |
Collapse
|
122
|
Fozo EM. New type I toxin-antitoxin families from "wild" and laboratory strains of E. coli: Ibs-Sib, ShoB-OhsC and Zor-Orz. RNA Biol 2012. [PMID: 23182878 DOI: 10.4161/rna.22568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Type I toxin-antitoxin loci consist of two genes: one encodes a small, toxic protein and the second encodes a small RNA antitoxin that represses toxin gene expression. These pairs were first described on plasmids where they regulate plasmid maintenance. However, recent discoveries have found novel type I loci, with no homology to plasmid sequences, in the chromosome of Escherichia coli and closely related species. The Ibs-Sib, ShoB-OhsC and Zor-Orz loci are examples of these new loci. For these toxic proteins, much more is known about how their expression is regulated than their biological function. Although all are found in E. coli and closely related bacteria, there is great variation among species as to which loci they possess. Herein, I discuss how these sRNA antitoxins prevent toxin production and how the distribution of these loci across species may be providing insights into their true function.
Collapse
Affiliation(s)
- Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee USA.
| |
Collapse
|
123
|
Wagner EGH, Unoson C. The toxin-antitoxin system tisB-istR1: Expression, regulation, and biological role in persister phenotypes. RNA Biol 2012; 9:1513-9. [PMID: 23093802 DOI: 10.4161/rna.22578] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromosomally encoded toxin-antitoxin (TA) systems are abundantly present in bacteria and archaea. They have become a hot topic in recent years, because-after many frustrating years of searching for biological functions-some are now known to play roles in persister formation. Persister cells represent a subset of a bacterial population that enters a dormant state and thus becomes refractory to the action of antibiotics. TA modules come in several different flavors, regarding the nature of their gene products, their molecular mechanisms of regulation, their cellular targets, and probably their role in physiology. This review will primarily focus on the SOS-associated tisB/istR1 system in Escherichia coli and discuss its nuts and bolts as well as its effect in promoting a subpopulation phenotype that likely benefits long-term survival of a stressed population.
Collapse
Affiliation(s)
- E Gerhart H Wagner
- Department of Cell and Molecular Biology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
124
|
Steinbrecher T, Prock S, Reichert J, Wadhwani P, Zimpfer B, Bürck J, Berditsch M, Elstner M, Ulrich A. Peptide-lipid interactions of the stress-response peptide TisB that induces bacterial persistence. Biophys J 2012; 103:1460-9. [PMID: 23062338 PMCID: PMC3471478 DOI: 10.1016/j.bpj.2012.07.060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/29/2012] [Accepted: 07/23/2012] [Indexed: 11/20/2022] Open
Abstract
The bacterial stress-response peptide TisB in Escherichia coli has been suggested to dissipate the transmembrane potential, such that the depletion of ATP levels induces the formation of dormant persister cells which can eventually form biofilms. We studied the structure and membrane interactions of TisB to find out whether it forms pores or other proton-selective channels. Circular dichroism revealed an amphiphilic α-helical structure when reconstituted in lipid vesicles, and oriented circular dichroism showed that the helix assumes a transmembrane alignment. The addition of TisB to dye-loaded vesicles caused leakage only at very high peptide concentration, notably with a Hill coefficient of 2, which suggests that dimers must be involved. Coarse-grained molecular dynamics simulations showed that membrane binding of monomeric TisB is rapid and spontaneous, and transmembrane insertion is energetically feasible. When TisB oligomers are assembled as transmembrane pores, these channels collapse during the simulations, but transmembrane dimers are found to be stable. Given the pattern of charges on the amphiphilic TisB helix, we postulate that antiparallel dimers could be assembled via a ladder of salt bridges. This electrostatic charge-zipper could enable protons to pass along a wire of trapped water molecules across the hydrophobic membrane.
Collapse
Affiliation(s)
- Thomas Steinbrecher
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sebastian Prock
- Institute of Organic Chemistry and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Reichert
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benjamin Zimpfer
- Institute of Organic Chemistry and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marina Berditsch
- Institute of Organic Chemistry and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Organic Chemistry and Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
125
|
Jäger D, Pernitzsch SR, Richter AS, Backofen R, Sharma CM, Schmitz RA. An archaeal sRNA targeting cis- and trans-encoded mRNAs via two distinct domains. Nucleic Acids Res 2012; 40:10964-79. [PMID: 22965121 PMCID: PMC3510493 DOI: 10.1093/nar/gks847] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report on the characterization and target analysis of the small (s)RNA162 in the methanoarchaeon Methanosarcina mazei. Using a combination of genetic approaches, transcriptome analysis and computational predictions, the bicistronic MM2441-MM2440 mRNA encoding the transcription factor MM2441 and a protein of unknown function was identified as a potential target of this sRNA, which due to processing accumulates as three stabile 5′ fragments in late exponential growth. Mobility shift assays using various mutants verified that the non-structured single-stranded linker region of sRNA162 (SLR) base-pairs with the MM2440-MM2441 mRNA internally, thereby masking the predicted ribosome binding site of MM2441. This most likely leads to translational repression of the second cistron resulting in dis-coordinated operon expression. Analysis of mutant RNAs in vivo confirmed that the SLR of sRNA162 is crucial for target interactions. Furthermore, our results indicate that sRNA162-controlled MM2441 is involved in regulating the metabolic switch between the carbon sources methanol and methylamine. Moreover, biochemical studies demonstrated that the 5′ end of sRNA162 targets the 5′-untranslated region of the cis-encoded MM2442 mRNA. Overall, this first study of archaeal sRNA/mRNA-target interactions unraveled that sRNA162 acts as an antisense (as)RNA on cis- and trans-encoded mRNAs via two distinct domains, indicating that cis-encoded asRNAs can have larger target regulons than previously anticipated.
Collapse
Affiliation(s)
- Dominik Jäger
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
126
|
de Almeida Ribeiro E, Beich-Frandsen M, Konarev PV, Shang W, Večerek B, Kontaxis G, Hämmerle H, Peterlik H, Svergun DI, Bläsi U, Djinović-Carugo K. Structural flexibility of RNA as molecular basis for Hfq chaperone function. Nucleic Acids Res 2012; 40:8072-84. [PMID: 22718981 PMCID: PMC3439903 DOI: 10.1093/nar/gks510] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/05/2012] [Accepted: 05/09/2012] [Indexed: 12/22/2022] Open
Abstract
In enteric bacteria, many small regulatory RNAs (sRNAs) associate with the RNA chaperone host factor Q (Hfq) and often require the protein for regulation of target mRNAs. Previous studies suggested that the hexameric Escherichia coli Hfq (Hfq(Ec)) binds sRNAs on the proximal site, whereas the distal site has been implicated in Hfq-mRNA interactions. Employing a combination of small angle X-ray scattering, nuclear magnetic resonance and biochemical approaches, we report the structural analysis of a 1:1 complex of Hfq(Ec) with a 34-nt-long subsequence of a natural substrate sRNA, DsrA (DsrA(34)). This sRNA is involved in post-transcriptional regulation of the E. coli rpoS mRNA encoding the stationary phase sigma factor RpoS. The molecular envelopes of Hfq(Ec) in complex with DsrA(34) revealed an overall asymmetric shape of the complex in solution with the protein maintaining its doughnut-like structure, whereas the extended DsrA(34) is flexible and displays an ensemble of different spatial arrangements. These results are discussed in terms of a model, wherein the structural flexibility of RNA ligands bound to Hfq stochastically facilitates base pairing and provides the foundation for the RNA chaperone function inherent to Hfq.
Collapse
Affiliation(s)
- Euripedes de Almeida Ribeiro
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Mads Beich-Frandsen
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Petr V. Konarev
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Weifeng Shang
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Branislav Večerek
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Georg Kontaxis
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Hermann Hämmerle
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Herwig Peterlik
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Dmitri I. Svergun
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Udo Bläsi
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria, EMBL-Hamburg c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany, Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
127
|
Gurnev PA, Ortenberg R, Dörr T, Lewis K, Bezrukov SM. Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Lett 2012; 586:2529-34. [PMID: 22728134 PMCID: PMC3498054 DOI: 10.1016/j.febslet.2012.06.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/16/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
We studied membrane activity of the bacterial peptide TisB involved in persister cell formation. TisB and its analogs form multi-state ion-conductive pores in planar lipid bilayers with all states displaying similar anionic selectivity. TisB analogs differing by ±1 elementary charges show corresponding changes in selectivity. Probing TisB pores with poly-(ethylene glycol)s reveals only restricted partitioning even for the smallest polymers, suggesting that the pores are characterized by a relatively small diameter. These findings allow us to suggest that TisB forms clusters of narrow pores that are essential for its mechanism of action.
Collapse
Affiliation(s)
- Philip A Gurnev
- Program in Physical Biology, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
128
|
Antisense RNA that affects Rhodopseudomonas palustris quorum-sensing signal receptor expression. Proc Natl Acad Sci U S A 2012; 109:12141-6. [PMID: 22778415 DOI: 10.1073/pnas.1200243109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quorum sensing in the bacterium Rhodopseudomonas palustris involves the RpaI signal synthase, which produces p-coumaroyl-homoserine lactone (pC-HSL) and RpaR, which is a pC-HSL-dependent transcriptional activator. There is also an antisense rpaR transcript (asrpaR) of unknown function. Recent RNAseq studies have revealed that bacterial antisense RNAs are abundant, but little is known about the function of these molecules. Because asrpaR expression is quorum sensing dependent, we sought to characterize its production and function. We show that asrpaR is approximately 300-600 bases and is produced in response to pC-HSL and RpaR. There is an RpaR-binding site centered 51.5 bp from the mapped asrpaR transcript start site. We show that asrpaR overexpression reduces RpaR levels, rpaI expression, and pC-HSL production. We also generated an asrpaR mutant, which shows elevated RpaR levels, and elevated rpaI expression. Thus, asrpaR inhibits rpaR translation, and this inhibition results in suppression of RpaR-dependent rpaI expression and, thus, pC-HSL production. The R. palustris asrpaR represents an antisense RNA for which an activity can be measured and for which a distinct regulatory circuit related to a function is elucidated. It also represents yet another subtle regulatory layer for acyl-homoserine lactone quorum-sensing signal-responsive transcription factors.
Collapse
|
129
|
Multiple activities of RNA-binding proteins S1 and Hfq. Biochimie 2012; 94:1544-53. [DOI: 10.1016/j.biochi.2012.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 01/16/2023]
|
130
|
Lioliou E, Sharma CM, Caldelari I, Helfer AC, Fechter P, Vandenesch F, Vogel J, Romby P. Global regulatory functions of the Staphylococcus aureus endoribonuclease III in gene expression. PLoS Genet 2012; 8:e1002782. [PMID: 22761586 PMCID: PMC3386247 DOI: 10.1371/journal.pgen.1002782] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 05/09/2012] [Indexed: 11/18/2022] Open
Abstract
RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III. Control of mRNA stability is crucial for bacteria to survive and rapidly adapt to environmental changes and stress conditions. The molecular players and the degradation pathways involved in these adaptive processes are poorly understood in Staphylococcus aureus. The universally conserved double-strand-specific endoribonuclease III (RNase III) in S. aureus is known to repress the synthesis of several virulence factors and was recently implicated in genome-wide mRNA processing mediated by antisense transcripts. We present here the first global map of direct RNase III targets in S. aureus. Deep sequencing was used to identify RNAs associated with epitope-tagged wild-type RNase III and two catalytically impaired but binding-competent mutant proteins in vivo. Experimental validation revealed an unexpected variety of structured RNA transcripts as novel RNase III substrates. In addition to rRNA operon maturation, autoregulation, degradation of structured RNAs, and antisense regulation, we propose novel mechanisms by which RNase III increases mRNA translation. Overall, this study shows that RNase III has a broad function in gene regulation of S. aureus. We can now address more specifically the roles of this universally conserved enzyme in gene regulation in response to stress and during host infection.
Collapse
Affiliation(s)
- Efthimia Lioliou
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | | | - Isabelle Caldelari
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Anne-Catherine Helfer
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Pierre Fechter
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - François Vandenesch
- Inserm U851, Centre National de Référence des Staphylocoques, Université de Lyon, Lyon, France
| | - Jörg Vogel
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany
- * E-mail: (JV); (PR)
| | - Pascale Romby
- Architecture et Réactivité de l′ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
- * E-mail: (JV); (PR)
| |
Collapse
|
131
|
Desnoyers G, Massé E. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev 2012; 26:726-39. [PMID: 22474262 DOI: 10.1101/gad.182493.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The RNA chaperone Hfq is mostly known to help small regulatory RNAs (sRNAs) interact with target mRNAs to block initiating ribosomes. In this model, whereas the sRNA is directly competing with initiating 30S ribosomal subunits, Hfq plays only an indirect role, allowing optimal sRNA-mRNA pairing. Here we report that Hfq is recruited by a sRNA, Spot42, to bind to a precise AU-rich region in the vicinity of the translation initiation region (TIR) of sdhC mRNA and competes directly with 30S ribosomal subunits. We show that the sRNA Spot42 binds sdhC too far upstream of the TIR to directly repress translation initiation in vitro and in vivo. Contrary to the canonical model of sRNA regulation, this suggests a new mechanism where Hfq is directly involved in the translational repression of the target mRNA and where the sRNA acts only as a recruitment factor.
Collapse
Affiliation(s)
- Guillaume Desnoyers
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | |
Collapse
|
132
|
Salmonella biofilm development depends on the phosphorylation status of RcsB. J Bacteriol 2012; 194:3708-22. [PMID: 22582278 DOI: 10.1128/jb.00361-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium.
Collapse
|
133
|
Ortega AD, Gonzalo-Asensio J, García-del Portillo F. Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. RNA Biol 2012; 9:469-88. [PMID: 22336761 DOI: 10.4161/rna.19317] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Small non-coding regulatory RNAs (sRNAs) have been studied in many bacterial pathogens during infection. However, few studies have focused on how intracellular pathogens modulate sRNA expression inside eukaryotic cells. Here, we monitored expression of all known sRNAs of Salmonella enterica serovar Typhimurium (S. Typhimurium) in bacteria located inside fibroblasts, a host cell type in which this pathogen restrains growth. sRNA sequences known in S. Typhimurium and Escherichia coli were searched in the genome of S. Typhimurium virulent strain SL1344, the subject of this study. Expression of 84 distinct sRNAs was compared in extra- and intracellular bacteria. Non-proliferating intracellular bacteria upregulated six sRNAs, including IsrA, IsrG, IstR-2, RyhB-1, RyhB-2 and RseX while repressed the expression of the sRNAs DsrA, GlmZ, IsrH-1, IsrI, SraL, SroC, SsrS(6S) and RydC. Interestingly, IsrH-1 was previously reported as an sRNA induced by S. Typhimurium inside macrophages. Kinetic analyses unraveled changing expression patterns for some sRNAs along the infection. InvR and T44 expression dropped after an initial induction phase while IstR-2 was induced exclusively at late infection times (> 6 h). Studies focused on the Salmonella-specific sRNA RyhB-2 revealed that intracellular bacteria use this sRNA to regulate negatively YeaQ, a cis-encoded protein of unknown function. RyhB-2, together with RyhB-1, contributes to attenuate intracellular bacterial growth. To our knowledge, these data represent the first comprehensive study of S. Typhimurium sRNA expression in intracellular bacteria and provide the first insights into sRNAs that may direct pathogen adaptation to a non-proliferative state inside the host cell.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | |
Collapse
|
134
|
Holmqvist E, Unoson C, Reimegård J, Wagner EGH. A mixed double negative feedback loop between the sRNA MicF and the global regulator Lrp. Mol Microbiol 2012; 84:414-27. [PMID: 22324810 DOI: 10.1111/j.1365-2958.2012.07994.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Roughly 10% of all genes in Escherichia coli are controlled by the global transcription factor Lrp, which responds to nutrient availability. Bioinformatically, we identified lrp as one of several putative targets for the sRNA MicF, which is transcriptionally downregulated by Lrp. Deleting micF results in higher Lrp levels, while overexpression of MicF inhibits Lrp synthesis. This effect is by antisense; mutations in the predicted interaction region relieve MicF-dependent repression of Lrp synthesis, and regulation is restored by compensatory mutations. In vitro, MicF sterically interferes with initiation complex formation and inhibits lrp mRNA translation. In vivo, MicF indirectly activates genes in the Lrp regulon by repressing Lrp, and causes severely impaired growth in minimal medium, a phenotype characteristic of lrp deletion strains. The double negative feedback between MicF and Lrp may promote a switch for adequate Lrp-dependent adaptation to nutrient availability. Lrp adds to the growing list of transcription factors that are targeted by sRNAs, thus indicating that perhaps the majority of all bacterial genes may be directly or indirectly controlled by sRNAs.
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, S-75124 Uppsala, Sweden. SciLifeLab, Uppsala, Sweden
| | | | | | | |
Collapse
|
135
|
Jahn N, Preis H, Wiedemann C, Brantl S. BsrG/SR4 from Bacillus subtilis--the first temperature-dependent type I toxin-antitoxin system. Mol Microbiol 2012; 83:579-98. [PMID: 22229825 DOI: 10.1111/j.1365-2958.2011.07952.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, we describe bsrG/SR4, a novel type I toxin-antitoxin system from the SPβ prophage region of the Bacillus subtilis chromosome. The 294-nucleotide bsrG RNA encodes a 38-amino-acid toxin, whereas SR4 is a 180-nucleotide antisense RNA that acts as the antitoxin. Both genes overlap by 123 nucleotides. BsrG expression increases at the onset of stationary phase. The sr4 promoter is 6- to 10-fold stronger than the bsrG promoter. Deletion of sr4 stabilizes bsrG mRNA and causes cell lysis on agar plates, which is due to the BsrG peptide and not the bsrG mRNA. SR4 overexpression could compensate cell lysis caused by overexpression of bsrG. SR4 interacts with the 3' UTR of bsrG RNA, thereby promoting its degradation. RNase III cleaves the bsrG RNA/SR4 duplex at position 185 of bsrG RNA, but is not essential for the function of the toxin-antitoxin system. Endoribonuclease Y and 3'-5' exoribonuclease R participate in the degradation of both bsrG RNA and SR4, whereas PnpA processes three SR4 precursors to the mature RNA. A heat shock at 48°C results in faster degradation and, therefore, significantly decreased amounts of bsrG RNA.
Collapse
Affiliation(s)
- Natalie Jahn
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena, Germany
| | | | | | | |
Collapse
|
136
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
137
|
Vockenhuber MP, Suess B. Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region. MICROBIOLOGY-SGM 2011; 158:424-435. [PMID: 22075028 DOI: 10.1099/mic.0.054205-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcriptional regulation of primary and secondary metabolism is well-studied in Streptomyces coelicolor, a model organism for antibiotic production and cell differentiation. In contrast, little is known about post-transcriptional regulation and the potential functions of small non-coding RNAs (sRNAs) in this Gram-positive, GC-rich soil bacterium. Here, we report the identification and characterization of scr5239, an sRNA highly conserved in the genus Streptomyces. The sRNA is 159 nt long, composed of five stem-loops, and encoded in the intergenic region between SCO5238 and SCO5239. scr5239 expression is constitutive under several stress and growth conditions but dependent on the nitrogen supply. scr5239 decreases the production of the antibiotic actinorhodin, and represses expression of the extracellular agarase dagA at the post-transcriptional level by direct base pairing to the coding region 33 nt downstream of the ribosome-binding site.
Collapse
Affiliation(s)
- Michael-Paul Vockenhuber
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Beatrix Suess
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
138
|
Abstract
The Ribosome Binding Site (RBS) Calculator is a design method for predicting and controlling translation initiation and protein expression in bacteria. The method can predict the rate of translation initiation for every start codon in an mRNA transcript. The method may also optimize a synthetic RBS sequence to achieve a targeted translation initiation rate. Using the RBS Calculator, a protein coding sequence's translation rate may be rationally controlled across a 100,000+ fold range. We begin by providing an overview of the potential biotechnology applications of the RBS Calculator, including the optimization of synthetic metabolic pathways and genetic circuits. We then detail the definitions, methodologies, and algorithms behind the RBS Calculator's thermodynamic model and optimization method. Finally, we outline a protocol for precisely measuring steady-state fluorescent protein expression levels. These methods and protocols provide a clear explanation of the RBS Calculator and its uses.
Collapse
Affiliation(s)
- Howard M Salis
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
139
|
Abstract
A substantial amount of antisense transcription is a hallmark of gene expression in eukaryotes. However, antisense transcription was first demonstrated in bacteria almost 50 years ago. The transcriptomes of bacteria as different as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Synechocystis sp. strain PCC6803, Mycoplasma pneumoniae, Sinorhizobium meliloti, Geobacter sulfurreducens, Vibrio cholerae, Chlamydia trachomatis, Pseudomonas syringae, and Staphylococcus aureus have now been reported to contain antisense RNA (asRNA) transcripts for a high percentage of genes. Bacterial asRNAs share functional similarities with trans-acting regulatory RNAs, but in addition, they use their own distinct mechanisms. Among their confirmed functional roles are transcription termination, codegradation, control of translation, transcriptional interference, and enhanced stability of their respective target transcripts. Here, we review recent publications indicating that asRNAs occur as frequently in simple unicellular bacteria as they do in higher organisms, and we provide a comprehensive overview of the experimentally confirmed characteristics of asRNA actions and intimately linked quantitative aspects. Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated. Thus, the functional impact of asRNAs should be considered when developing new strategies against pathogenic bacteria and when optimizing bacterial strains for biotechnology.
Collapse
|
140
|
Silva IJ, Saramago M, Dressaire C, Domingues S, Viegas SC, Arraiano CM. Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:818-36. [PMID: 21976285 DOI: 10.1002/wrna.94] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Inês Jesus Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
141
|
Liu Y, Dong J, Wu N, Gao Y, Zhang X, Mu C, Shao N, Fan M, Yang G. The production of extracellular proteins is regulated by ribonuclease III via two different pathways in Staphylococcus aureus. PLoS One 2011; 6:e20554. [PMID: 21655230 PMCID: PMC3105085 DOI: 10.1371/journal.pone.0020554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/05/2011] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus ribonuclease III belongs to the enzyme family known to degrade double-stranded RNAs. It has previously been reported that RNase III cannot influence cell growth but regulates virulence gene expression in S. aureus. Here we constructed an RNase III inactivation mutant (Δrnc) from S. aureus 8325-4. It was found that the extracellular proteins of Δrnc were decreased. Furthermore, we explored how RNase III regulated the production of the extracellular proteins in S. aureus. We found during the lag phase of the bacterial growth cycle RNase III could influence the extracellular protein secretion via regulating the expression of secY2, one component of accessory secretory (sec) pathway. After S. aureus cells grew to exponential phase, RNase III can regulate the expression of extracellular proteins by affecting the level of RNAIII. Further investigation showed that the mRNA stability of secY2 and RNAIII was affected by RNase III. Our results suggest that RNase III could regulate the pathogenicity of S. aureus by influencing the level of extracellular proteins via two different ways respectively at different growth phases.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Na Wu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Xin Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Chunhua Mu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ming Fan
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
142
|
Olejniczak M. Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance. Biochemistry 2011; 50:4427-40. [PMID: 21510661 DOI: 10.1021/bi102043f] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of nine noncoding regulatory RNAs (sRNAs) to the E. coli Hfq protein was compared using a high-throughput double filter retention assay. Despite the fact that these sRNAs have different lengths, sequences and secondary structures their Hfq binding affinities were surprisingly uniform. The analysis of sRNAs binding to Hfq mutants showed that the proximal face of Hfq, known as the binding site for DsrA RNA, is a universal sRNA binding site. Moreover, all sRNAs bound Hfq with similar association rates limited only by the rate of diffusion, while the rates of dissociation, measured in the dilution experiments, were uniformly slow. Despite that, the data showed that there was a hierarchy of sRNAs in regard to their performance in competition for access to Hfq and in their ability to facilitate the dissociation of other sRNAs from Hfq. The sRNAs also differed in their salt dependence of binding to this protein. Overall, the results suggest that despite the uniform binding of different sRNAs to the same site on Hfq their exchange on this protein is dependent on the identities of the competing sRNAs.
Collapse
Affiliation(s)
- Mikołaj Olejniczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14, Poznań, Poland.
| |
Collapse
|
143
|
Garza-Sánchez F, Schaub RE, Janssen BD, Hayes CS. tmRNA regulates synthesis of the ArfA ribosome rescue factor. Mol Microbiol 2011; 80:1204-19. [PMID: 21435036 DOI: 10.1111/j.1365-2958.2011.07638.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translation of mRNA lacking an in-frame stop codon leads to ribosome arrest at the 3' end of the transcript. In bacteria, the tmRNA quality control system recycles these stalled ribosomes and tags the incomplete nascent chains for degradation. Although ubiquitous in eubacteria, the ssrA gene encoding tmRNA is not essential for the viability of Escherichia coli and other model bacterial species. ArfA (YhdL) is a mediator of tmRNA-independent ribosome rescue that is essential for the viability of E. coliΔssrA mutants. Here, we demonstrate that ArfA is synthesized from truncated mRNA and therefore regulated by tmRNA tagging activity. RNase III cleaves a hairpin structure within the arfA-coding sequence to produce transcripts that lack stop codons. In the absence of tmRNA tagging, truncated ArfA chains are released from the ribosome. The truncated ArfAΔ18 protein (which lacks 18 C-terminal residues) is functional in ribosome rescue and supports ΔssrA cell viability when expressed from the arfA locus. Other proteobacterial arfA genes also encode hairpins, and transcripts from Dickeya dadantii and Salmonella typhimurium are cleaved by RNase III when expressed in E. coli. Thus, synthesis of ArfA from truncated mRNA appears to be a general mechanism to regulate alternative ribosome rescue activity.
Collapse
Affiliation(s)
- Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | | | | | | |
Collapse
|
144
|
Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS, Backofen R, Williams P, Hüttenhofer A, Haas D, Bläsi U. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 2011; 80:868-85. [PMID: 21375594 DOI: 10.1111/j.1365-2958.2011.07620.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr Bohrgasse 9, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Luo X, Nerlick S, An W, King ML. Xenopus germline nanos1 is translationally repressed by a novel structure-based mechanism. Development 2011; 138:589-98. [PMID: 21205802 DOI: 10.1242/dev.056705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The translational repressor Nanos is expressed in the germline and stem cell populations of jellyfish as well as humans. Surprisingly, we observed that unlike other mRNAs, synthetic nanos1 RNA translates very poorly if at all after injection into Xenopus oocytes. The current model of simple sequestration of nanos1 within germinal granules is insufficient to explain this observation and suggests that a second level of repression must be operating. We find that an RNA secondary structural element immediately downstream of the AUG start site is both necessary and sufficient to prevent ribosome scanning in the absence of a repressor. Accordingly, repression is relieved by small in-frame insertions before this secondary structure, or translational control element (TCE), that provide the 15 nucleotides required for ribosome entry. nanos1 is translated shortly after fertilization, pointing to the existence of a developmentally regulated activator. Oocyte extracts were rendered fully competent for nanos1 translation after the addition of a small amount of embryo extract, confirming the presence of an activator. Misexpression of Nanos1 in oocytes from unlocalized RNA results in abnormal development, highlighting the importance of TCE-mediated translational repression. Although found in prokaryotes, steric hindrance as a mechanism for negatively regulating translation is novel for a eukaryotic RNA. These observations unravel a new mode of nanos1 regulation at the post-transcriptional level that is essential for normal development.
Collapse
Affiliation(s)
- Xueting Luo
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
146
|
Fender A, Elf J, Hampel K, Zimmermann B, Wagner EGH. RNAs actively cycle on the Sm-like protein Hfq. Genes Dev 2010; 24:2621-6. [PMID: 21123649 DOI: 10.1101/gad.591310] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hfq, a protein required for small RNA (sRNA)-mediated regulation in bacteria, binds RNA with low-nanomolar K(d) values and long half-lives of complexes (>100 min). This cannot be reconciled with the 1- 2-min response time of regulation in vivo. We show that RNAs displace each other on Hfq on a short time scale by RNA concentration-driven (active) cycling. Already at submicromolar concentrations of competitor RNA, half-lives of RNA-Hfq complexes are ≈1 min. We propose that competitor RNA associates transiently with RNA-Hfq complexes, RNAs exchange binding sites, and one of the RNAs eventually dissociates. This solves the "strong binding-high turnover" paradox and permits efficient use of the Hfq pool.
Collapse
Affiliation(s)
- Aurélie Fender
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
147
|
Viegas SC, Silva IJ, Saramago M, Domingues S, Arraiano CM. Regulation of the small regulatory RNA MicA by ribonuclease III: a target-dependent pathway. Nucleic Acids Res 2010; 39:2918-30. [PMID: 21138960 PMCID: PMC3074148 DOI: 10.1093/nar/gkq1239] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicA is a trans-encoded small non-coding RNA, which downregulates porin-expression in stationary-phase. In this work, we focus on the role of endoribonucleases III and E on Salmonella typhimurium sRNA MicA regulation. RNase III is shown to regulate MicA in a target-coupled way, while RNase E is responsible for the control of free MicA levels in the cell. We purified both Salmonella enzymes and demonstrated that in vitro RNase III is only active over MicA when in complex with its targets (whether ompA or lamB mRNAs). In vivo, MicA is demonstrated to be cleaved by RNase III in a coupled way with ompA mRNA. On the other hand, RNase E is able to cleave unpaired MicA and does not show a marked dependence on its 5′ phosphorylation state. The main conclusion of this work is the existence of two independent pathways for MicA turnover. Each pathway involves a distinct endoribonuclease, having a different role in the context of the fine-tuned regulation of porin levels. Cleavage of MicA by RNase III in a target-dependent fashion, with the concomitant decay of the mRNA target, strongly resembles the eukaryotic RNAi system, where RNase III-like enzymes play a pivotal role.
Collapse
Affiliation(s)
- Sandra C Viegas
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
148
|
Resch A, Većerek B, Palavra K, Bläsi U. Requirement of the CsdA DEAD-box helicase for low temperature riboregulation of rpoS mRNA. RNA Biol 2010; 7:796-802. [PMID: 21045550 DOI: 10.4161/rna.7.6.13768] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ribosome binding site of Escherichia coli rpoS mRNA, encoding the stationary sigma-factor RpoS, is sequestered by an inhibitory stem-loop structure (iss). Translational activation of rpoS mRNA at low temperature and during exponential growth includes Hfq-facilitated duplex formation between rpoS and the small regulatory RNA DsrA as well as a concomitant re-direction of RNAse III cleavage in the 5´-untranslated region of rpoS upon DsrA·rpoS annealing. In this way, DsrA-mediated regulation does not only activate rpoS translation by disrupting the inhibitory secondary structure but also stabilizes the rpoS transcript. Although minor structural changes by Hfq have been observed in rpoS mRNA, a prevailing question concerns unfolding of the iss in rpoS at low growth temperature. Here, we have identified the DEAD-box helicase CsdA as an ancillary factor required for low temperature activation of RpoS synthesis by DsrA. The lack of RpoS synthesis observed in the csdA mutant strain at low growth temperature could be attributed to a lack of duplex formation between rpoS and DsrA, showing that at low temperature the sole action of Hfq is not sufficient to permit DsrA·rpoS annealing. An interactome study has previously indicated an association between Hfq and CsdA. However, immunological assays did not reveal a physical interaction between Hfq and CsdA. These findings add to a model, wherein Hfq binds upstream of the rpoS iss and presents DsrA in a conformation receptive to annealing. Melting of the iss by CsdA may then permit DsrA·rpoS duplex formation, and consequently rpoS translation.
Collapse
Affiliation(s)
- Armin Resch
- Department of Microbiology, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
149
|
Mok WWK, Patel NH, Li Y. Decoding toxicity: deducing the sequence requirements of IbsC, a type I toxin in Escherichia coli. J Biol Chem 2010; 285:41627-36. [PMID: 20980267 DOI: 10.1074/jbc.m110.149179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacterial genomes encode a collection of small peptides that are deleterious to their hosts when overexpressed. The physiological relevance of the majority of these peptides is unknown at present, although many of them have been implicated in regulatory processes important for cell survival and adaptability. One peptide that is of particular interest to us is a 19-amino acid proteic toxin, coined IbsC, whose production is repressed by SibC, an RNA antitoxin. Together, IbsC and SibC constitute a type I toxin-antitoxin (TA) pair. To better understand the function of IbsC and to decipher the sequence determinants for its toxic phenotype, we carried out extensive sequence analyses of the peptide. We generated a series of truncation and single amino acid deletion mutants to determine the minimal sequence required for toxicity. We further probed into functionally relevant amino acids with a comprehensive set of IbsC mutants produced using a systematic sequence randomization strategy. We found that IbsC remained toxic in the presence of multiple deletions and single amino acid substitutions, despite being well-conserved in Escherichia coli and across other Gram-negative bacteria. The toxicity of this peptide was determined to be dependent on a stretch of highly hydrophobic residues near its center. Our results defined sequence-function relationship of IbsC and offered additional insights into properties common to membrane-targeting type I toxins in E. coli and related species.
Collapse
Affiliation(s)
- Wendy W K Mok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
150
|
Göpel Y, Lüttmann D, Heroven AK, Reichenbach B, Dersch P, Görke B. Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Res 2010; 39:1294-309. [PMID: 20965974 PMCID: PMC3045617 DOI: 10.1093/nar/gkq986] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Small RNAs GlmY and GlmZ compose a cascade that feedback-regulates synthesis of enzyme GlmS in Enterobacteriaceae. Here, we analyzed the transcriptional regulation of glmY/glmZ from Yersinia pseudotuberculosis, Salmonella typhimurium and Escherichia coli, as representatives for other enterobacterial species, which exhibit similar promoter architectures. The GlmY and GlmZ sRNAs of Y. pseudotuberculosis are transcribed from σ54-promoters that require activation by the response regulator GlrR through binding to three conserved sites located upstream of the promoters. This also applies to glmY/glmZ of S. typhimurium and glmY of E. coli, but as a difference additional σ70-promoters overlap the σ54-promoters and initiate transcription at the same site. In contrast, E. coli glmZ is transcribed from a single σ70-promoter. Thus, transcription of glmY and glmZ is controlled by σ54 and the two-component system GlrR/GlrK (QseF/QseE) in Y. pseudotuberculosis and presumably in many other Enterobacteria. However, in a subset of species such as E. coli this relationship is partially lost in favor of σ70-dependent transcription. In addition, we show that activity of the σ54-promoter of E. coli glmY requires binding of the integration host factor to sites upstream of the promoter. Finally, evidence is provided that phosphorylation of GlrR increases its activity and thereby sRNA expression.
Collapse
Affiliation(s)
- Yvonne Göpel
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|