101
|
Chen P, Dong L, Hu M, Wang YZ, Xiao X, Zhao Z, Yan J, Wang PY, Reinberg D, Li M, Li W, Li G. Functions of FACT in Breaking the Nucleosome and Maintaining Its Integrity at the Single-Nucleosome Level. Mol Cell 2018; 71:284-293.e4. [DOI: 10.1016/j.molcel.2018.06.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
|
102
|
Oikawa D, Shiota M, Tokunaga F, Wanibuchi H. Generation of Rat Monoclonal Antibodies Specific for DZIP3. Monoclon Antib Immunodiagn Immunother 2018; 37:153-157. [PMID: 29812999 DOI: 10.1089/mab.2018.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DAZ interacting zinc finger 3 (DZIP3), an RNA-binding RING-type ubiquitin ligase, has been reported to be involved in multiple physiological functions, including the regulation of chemokine- or estradiol-induced gene expression, self-renewal, and maintaining pluripotency in mouse embryonic stem cells. However, the precise cellular functions of DZIP3 remain elusive. In this study, we report the establishment of DZIP3-specific monoclonal antibodies (MAbs), using the rat medial iliac lymph node method. In immunoblotting analyses, our antibodies detected endogenous human and mouse DZIP3. In addition, immunoprecipitation analyses revealed the availability of these antibodies for human or mouse DZIP3. Thus, these MAbs will be available to elucidate cellular functions of DZIP3.
Collapse
Affiliation(s)
- Daisuke Oikawa
- 1 Department of Pathobiochemistry, Osaka City University Graduate School of Medicine , Osaka, Japan
| | - Masayuki Shiota
- 2 Research Support Platform, Osaka City University Graduate School of Medicine , Osaka, Japan
| | - Fuminori Tokunaga
- 1 Department of Pathobiochemistry, Osaka City University Graduate School of Medicine , Osaka, Japan .,2 Research Support Platform, Osaka City University Graduate School of Medicine , Osaka, Japan
| | - Hideki Wanibuchi
- 2 Research Support Platform, Osaka City University Graduate School of Medicine , Osaka, Japan .,3 Department of Molecular Pathology, Osaka City University Graduate School of Medicine , Osaka, Japan
| |
Collapse
|
103
|
Brockdorff N. Polycomb complexes in X chromosome inactivation. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2017.0021. [PMID: 28947664 PMCID: PMC5627167 DOI: 10.1098/rstb.2017.0021] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Identifying the critical RNA binding proteins (RBPs) that elicit Xist mediated silencing has been a key goal in X inactivation research. Early studies implicated the Polycomb proteins, a family of factors linked to one of two major multiprotein complexes, PRC1 and PRC2 (Wang 2001 Nat. Genet.28, 371–375 (doi:10.1038/ng574); Silva 2003 Dev. Cell4, 481–495 (doi:10.1016/S1534-5807(03)00068-6); de Napoles 2004 Dev. Cell7, 663–676 (doi:10.1016/j.devcel.2004.10.005); Plath 2003 Science300, 131–135 (doi:10.1126/science.1084274)). PRC1 and PRC2 complexes catalyse specific histone post-translational modifications (PTMs), ubiquitylation of histone H2A at position lysine 119 (H2AK119u1) and methylation of histone H3 at position lysine 27 (H3K27me3), respectively, and accordingly, these modifications are highly enriched over the length of the inactive X chromosome (Xi). A key study proposed that PRC2 subunits bind directly to Xist RNA A-repeat element, a region located at the 5′ end of the transcript known to be required for Xist mediated silencing (Zhao 2008 Science322, 750–756 (doi:10.1126/science.1163045)). Subsequent recruitment of PRC1 was assumed to occur via recognition of PRC2 mediated H3K27me3 by the CBX subunit of PRC1, as has been shown to be the case at other Polycomb target loci (Cao 2002 Science298, 1039–1043 (doi:10.1126/science.1076997)). More recently, several reports have questioned aspects of the prevailing view, both in relation to the mechanism for Polycomb recruitment by Xist RNA and the contribution of the Polycomb pathway to Xist mediated silencing. In this article I provide an overview of our recent progress towards resolving these discrepancies. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
104
|
Dattani A, Sridhar D, Aziz Aboobaker A. Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Semin Cell Dev Biol 2018; 87:79-94. [PMID: 29694837 DOI: 10.1016/j.semcdb.2018.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/21/2018] [Indexed: 12/11/2022]
Abstract
Planarian flatworms possess pluripotent stem cells (neoblasts) that are able to differentiate into all cell types that constitute the adult body plan. Consequently, planarians possess remarkable regenerative capabilities. Transcriptomic studies have revealed that gene expression is coordinated to maintain neoblast pluripotency, and ensure correct lineage specification during differentiation. But as yet they have not revealed how this regulation of expression is controlled. In this review, we propose that planarians represent a unique and effective system to study the epigenetic regulation of these processes in an in vivo context. We consolidate evidence suggesting that although DNA methylation is likely present in some flatworm lineages, it does not regulate neoblast function in Schmidtea mediterranea. A number of phenotypic studies have documented the role of histone modification and chromatin remodelling complexes in regulating distinct neoblast processes, and we focus on four important examples of planarian epigenetic regulators: Nucleosome Remodeling Deacetylase (NuRD) complex, Polycomb Repressive Complex (PRC), the SET1/MLL methyltransferases, and the nuclear PIWI/piRNA complex. Given the recent advent of ChIP-seq in planarians, we propose future avenues of research that will identify the genomic targets of these complexes allowing for a clearer picture of how neoblast processes are coordinated at the epigenetic level. These insights into neoblast biology may be directly relevant to mammalian stem cells and disease. The unique biology of planarians will also allow us to investigate how extracellular signals feed into epigenetic regulatory networks to govern concerted neoblast responses during regenerative polarity, tissue patterning, and remodelling.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| | - Divya Sridhar
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| |
Collapse
|
105
|
Wen Y, Cai J, Hou Y, Huang Z, Wang Z. Role of EZH2 in cancer stem cells: from biological insight to a therapeutic target. Oncotarget 2018; 8:37974-37990. [PMID: 28415635 PMCID: PMC5514966 DOI: 10.18632/oncotarget.16467] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications in cancer stem cells largely result in phenotypic and functional heterogeneity in many solid tumors. Increasing evidence indicates that enhancer of zeste homolog 2 (EZH2), the catalytic subunit of Polycomb repressor complex 2, is highly expressed in cancer stem cells of numerous malignant tumors and has a critical function in cancer stem cell expansion and maintenance. Here, we review up-to-date information regarding EZH2 expression patterns, functions, and molecular mechanisms in cancer stem cells in various malignant tumors and discuss the therapeutic potential of targeting EZH2 in tumors.
Collapse
Affiliation(s)
- Yiping Wen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaya Hou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
106
|
Zhao Q, Qian Q, Cao D, Yang J, Gui T, Shen K. Role of BMI1 in epithelial ovarian cancer: investigated via the CRISPR/Cas9 system and RNA sequencing. J Ovarian Res 2018; 11:31. [PMID: 29685168 PMCID: PMC5911954 DOI: 10.1186/s13048-018-0406-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
Background B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) might be an appropriate biomarker in the management of epithelial ovarian cancer (EOC). However, the biological role of BMI1 and its relevant molecular mechanism needs further elaboration. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is an excellent genome-editing tool and is scarcely used in EOC studies. Methods We first applied CRISPR/Cas9 technique to silence BMI1 in EOC cells; thereafter we accomplished various in vivo and in vitro experiments to detect biological behaviors of ovarian cancer cells, including MTT, flow cytometry, Transwell, real-time polymerase chain reaction and western blotting assays, etc.; eventually, we used RNA sequencing to reveal the underlying molecular traits driven by BMI1 in EOC. Results We successfully shut off the expression of BMI1 in EOC cells using CRISPR/Cas9 system, providing an ideal cellular model for investigations of target gene. Silencing BMI1 could reduce cell growth and metastasis, promote cell apoptosis, and enhance the platinum sensitivity of EOC cells. BMI1 might alter extracellular matrix structure and angiogenesis of tumor cells through regulating Focal adhesion and PI3K/AKT pathways. Conclusion BMI1 is a potential biomarker in EOC management, especially for tumor progression and chemo-resistance. Molecular traits, including BMI1 and core genes in Focal adhesion and PI3K/AKT pathways, might be alternatives as therapeutic targets for EOC. Electronic supplementary material The online version of this article (10.1186/s13048-018-0406-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianying Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, China.,Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiuhong Qian
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, China.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, China.
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, China.
| |
Collapse
|
107
|
McKenzie C, Tan J, Macia L, Mackay CR. The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol Rev 2018; 278:277-295. [PMID: 28658542 DOI: 10.1111/imr.12556] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Dietary and bacterial metabolites influence immune responses. This raises the question whether the increased incidence of allergies, asthma, some autoimmune diseases, cardiovascular disease, and others might relate to intake of unhealthy foods, and the decreased intake of dietary fiber. In recent years, new knowledge on the molecular mechanisms underpinning a 'diet-gut microbiota-physiology axis' has emerged to substantiate this idea. Fiber is fermented to short chain fatty acids (SCFAs), particularly acetate, butyrate, and propionate. These metabolites bind 'metabolite-sensing' G-protein-coupled receptors such as GPR43, GPR41, and GPR109A. These receptors play fundamental roles in the promotion of gut homeostasis and the regulation of inflammatory responses. For instance, these receptors and their metabolites influence Treg biology, epithelial integrity, gut homeostasis, DC biology, and IgA antibody responses. The SCFAs also influence gene transcription in many cells and tissues, through their inhibition of histone deacetylase expression or function. Contained in this mix is the gut microbiome, as commensal bacteria in the gut have the necessary enzymes to digest dietary fiber to SCFAs, and dysbiosis in the gut may affect the production of SCFAs and their distribution to tissues throughout the body. SCFAs can epigenetically modify DNA, and so may be one mechanism to account for diseases with a 'developmental origin', whereby in utero or post-natal exposure to environmental factors (such as nutrition of the mother) may account for disease later in life. If the nutrition-gut microbiome-physiology axis does underpin at least some of the Western lifestyle influence on asthma and allergies, then there is tremendous scope to correct this with healthy foodstuffs, probiotics, and prebiotics.
Collapse
Affiliation(s)
- Craig McKenzie
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Jian Tan
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Laurence Macia
- Nutritional Immunometabolism Node Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
108
|
Tumes DJ, Papadopoulos M, Endo Y, Onodera A, Hirahara K, Nakayama T. Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunol Rev 2018; 278:8-19. [PMID: 28658556 DOI: 10.1111/imr.12560] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An estimated 300 million people currently suffer from asthma, which causes approximately 250 000 deaths a year. Allergen-specific T-helper (Th) cells produce cytokines that induce many of the hallmark features of asthma including airways hyperreactivity, eosinophilic and neutrophilic inflammation, mucus hypersecretion, and airway remodeling. Cytokine-producing Th subsets including Th1 (IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17), Th22 (IL-22), and T regulatory (IL-10) cells have all been suggested to play a role in the development of asthma. Th differentiation involves genetic regulation of gene expression through the concerted action of cytokines, transcription factors, and epigenetic regulators. We describe how Th differentiation and plasticity is regulated by epigenetic histone and DNA modifications, with a focus on the regulation of histone methylation by members of the polycomb and trithorax complexes. In addition, we outline environmental influences that could influence epigenetic regulation of Th cells and discuss the potential to regulate Th plasticity and function through drugs targeting the epigenetic machinery. It is also becoming apparent that epigenetic regulation of allergen-specific memory Th cells may be important in the development and persistence of chronic allergies. Finally, we describe how epigenetic modifiers regulate cytokine memory in Th cells and describe recently identified hybrid, plastic, and pathogenic memory Th subsets the context of allergic asthma.
Collapse
Affiliation(s)
- Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
109
|
Gwak J, Shin JY, Lee K, Hong SK, Oh S, Goh SH, Kim WS, Ju BG. SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells. Oncotarget 2018; 7:48250-48264. [PMID: 27340776 PMCID: PMC5217015 DOI: 10.18632/oncotarget.10198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/04/2016] [Indexed: 12/12/2022] Open
Abstract
Metastatic prostate cancer is the leading cause of morbidity and mortality in men. In this study, we found that expression level of SFMBT2 is altered during prostate cancer progression and has been associated with the migration and invasion of prostate cancer cells. The expression level of SFMBT2 is high in poorly metastatic prostate cancer cells compared to highly metastatic prostate cancer cells. We also found that SFMBT2 knockdown elevates MMP-2, MMP-3, MMP-9, and MMP-26 expression, leading to increased cell migration and invasion in LNCaP and VCaP cells. SFMBT2 interacts with YY1, RNF2, N-CoR and HDAC1/3, as well as repressive histone marks such as H3K9me2, H4K20me2, and H2AK119Ub which are associated with transcriptional repression. In addition, SFMBT2 knockdown decreased KAI1 gene expression through up-regulation of N-CoR gene expression. Expression of SFMBT2 in prostate cancer was strongly associated with clinicopathological features. Patients having higher Gleason score (≥ 8) had substantially lower SFMBT2 expression than patients with lower Gleason score. Moreover, tail vein or intraprostatic injection of SFMBT2 knockdown LNCaP cells induced metastasis. Taken together, our findings suggest that regulation of SFMBT2 may provide a new therapeutic strategy to control prostate cancer metastasis as well as being a potential biomarker of metastatic prostate cancer.
Collapse
Affiliation(s)
- Jungsug Gwak
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Jee Yoon Shin
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Kwanghyun Lee
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Soon Ki Hong
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Sung-Ho Goh
- Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Won Sun Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Bong Gun Ju
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
110
|
Jiang XX, Liu Y, Li H, Gao Y, Mu R, Guo J, Zhang J, Yang YM, Xiao F, Liu B, Wang C, Shen B, Chen SY, Li Z, Yang G. MYSM1/miR-150/FLT3 inhibits B1a cell proliferation. Oncotarget 2018; 7:68086-68096. [PMID: 27590507 PMCID: PMC5356540 DOI: 10.18632/oncotarget.11738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023] Open
Abstract
The aberrant expansion of B1a cells has been observed in several murine autoimmune disease models; however, the mechanism of such proliferation of B1a cells is still limited. Here, we identify that Myb Like, SWIRM And MPN Domains 1 (MYSM1), a histone H2A deubiquitinase, plays an intrinsic role in the proliferation of B1a cells where MYSM1 deficiency results in the increased proliferation of B1a cells in mice. We demonstrate that MYSM1 recruits c-Myc to the promoter of miR-150 and stimulates the transcription of miR-150. Our further investigation shows that miR-150 decreases FMS-like tyrosine kinase 3 (FLT3) in B1a cells. In agreement with our animal studies, the percentage of FLT3+ B1 cells in Systemic Lupus Erythematosus (SLE) patients is significantly higher than healthy control. Thus, this study uncovers a novel pathway MYSM1/miR-150/FLT3 that inhibits proliferation of B1a, which may be involved in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Xiao-Xia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Hong Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Yan-Mei Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | - Bing Liu
- 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanguo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
111
|
BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes. Proc Natl Acad Sci U S A 2018; 115:1316-1321. [PMID: 29367421 DOI: 10.1073/pnas.1715467115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Missense mutations that disrupt the RING domain of the tumor suppressor gene BRCA1 lead to increased risk of breast and ovarian cancer. The BRCA1 RING domain is a ubiquitin ligase, whose structure and function rely critically on forming a heterodimer with BARD1, which also harbors a RING domain. The function of the BARD1 RING domain is unknown. In families severely affected with breast cancer, we identified inherited BARD1 missense mutations Cys53Trp, Cys71Tyr, and Cys83Arg that alter three zinc-binding residues of the BARD1 RING domain. Each of these mutant BARD1 proteins retained the ability to form heterodimeric complexes with BRCA1 to make an active ubiquitin ligase, but the mutant BRCA1/BARD1 complexes were deficient in binding to nucleosomes and in ubiquitylating histone H2A. The BARD1 mutations also caused loss of transcriptional repression of BRCA1-regulated estrogen metabolism genes CYP1A1 and CYP3A4; breast epithelial cells edited to create heterozygous loss of BARD1 showed significantly higher expression of CYP1A1 and CYP3A4 Reintroduction of wild-type BARD1 into these cells restored CYP1A1 and CYP3A4 transcription to normal levels, but introduction of the cancer-predisposing BARD1 RING mutants failed to do so. These results indicate that an intact BARD1 RING domain is critical to BRCA1/BARD1 binding to nucleosomes and hence to ubiquitylation of histone H2A and also critical to transcriptional repression of BRCA1-regulated genes active in estrogen metabolism.
Collapse
|
112
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
113
|
Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N, Cerase A, Castello A, Mohammed S, Moindrot B, Nesterova TB, Brockdorff N. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing. Mol Cell 2017; 68:955-969.e10. [PMID: 29220657 PMCID: PMC5735038 DOI: 10.1016/j.molcel.2017.11.013] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/15/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023]
Abstract
The Polycomb-repressive complexes PRC1 and PRC2 play a key role in chromosome silencing induced by the non-coding RNA Xist. Polycomb recruitment is initiated by the PCGF3/5-PRC1 complex, which catalyzes chromosome-wide H2A lysine 119 ubiquitylation, signaling recruitment of other PRC1 complexes, and PRC2. However, the molecular mechanism for PCGF3/5-PRC1 recruitment by Xist RNA is not understood. Here we define the Xist RNA Polycomb Interaction Domain (XR-PID), a 600 nt sequence encompassing the Xist B-repeat element. Deletion of XR-PID abolishes Xist-dependent Polycomb recruitment, in turn abrogating Xist-mediated gene silencing and reversing Xist-induced chromatin inaccessibility. We identify the RNA-binding protein hnRNPK as the principal XR-PID binding factor required to recruit PCGF3/5-PRC1. Accordingly, synthetically tethering hnRNPK to Xist RNA lacking XR-PID is sufficient for Xist-dependent Polycomb recruitment. Our findings define a key pathway for Polycomb recruitment by Xist RNA, providing important insights into mechanisms of chromatin modification by non-coding RNA. A 600 nt element in Xist RNA, XR-PID, is required for Polycomb recruitment Deletion of XR-PID abrogates Xist-mediated chromosome silencing hnRNPK binds XR-PID to recruit the Polycomb-initiating complex PCGF3/5-PRC1 Tethering hnRNPK to Xist RNA bypasses the requirement for XR-PID
Collapse
Affiliation(s)
- Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Chloë Roustan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Burcu Anil Kirmizitas
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Nicolae Solcan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrea Cerase
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Posttranscriptional Networks in Infection and Cell Cycle Progression, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Proteomics Technology Development and Application, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Benoît Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
114
|
Liu S, Jiang M, Wang W, Liu W, Song X, Ma Z, Zhang S, Liu L, Liu Y, Cao X. Nuclear RNF2 inhibits interferon function by promoting K33-linked STAT1 disassociation from DNA. Nat Immunol 2017; 19:41-52. [DOI: 10.1038/s41590-017-0003-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
115
|
Liu X, Kumar M, Yang L, Molkentine DP, Valdecanas D, Yu S, Meyn RE, Heymach JV, Skinner HD. BAP1 Is a Novel Target in HPV-Negative Head and Neck Cancer. Clin Cancer Res 2017; 24:600-607. [PMID: 29113987 DOI: 10.1158/1078-0432.ccr-17-1573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/03/2017] [Accepted: 11/03/2017] [Indexed: 02/05/2023]
Abstract
Purpose: This study examined the potential role of the nuclear deubiquitinating enzyme BRCA1-associated protein-1 (BAP1) in radioresistance in head and neck squamous cell cancer (HNSCC).Experimental Design: We overexpressed, knocked down, and rescued BAP1 expression in six HNSCC cell lines, three human papillomavirus (HPV)-negative and three HPV-positive, and examined the effects on radiosensitivity in vitro and in an HNSCC mouse xenograft model. Radiosensitivity was assessed by clonogenic cell survival and tumor growth delay assays; changes in protein expression were analyzed by immunofluorescence staining and Western blotting. We also analyzed The Cancer Genome Atlas HNSCC database to test for associations between BAP1 expression and outcome in patients.Results: Overexpression of BAP1 induced radioresistance in both cell lines and xenograft models; conversely, BAP1 knockdown led to increased ubiquitination of histone H2A, which has been implicated in DNA repair. We further found that BAP1 depletion suppressed the assembly of constitutive BRCA1 foci, which are associated with homologous recombination (HR), but had minimal effect on γ-H2AX foci and did not affect proteins associated with nonhomologous end joining, suggesting that BAP1 affects radiosensitivity in HNSCC by modifying HR. Finally, in patients with HNSCC, overexpression of BAP1 was associated with higher failure rates after radiotherapy.Conclusions: BAP1 can induce radioresistance in HNSCC cells, possibly via deubiquitination of H2Aub and modulation of HR, and was associated with poor outcomes in patients with HNSCC. BAP1 may be a potential therapeutic target in HNSCC. Clin Cancer Res; 24(3); 600-7. ©2017 AACR.
Collapse
Affiliation(s)
- Xiyou Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Manish Kumar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liangpeng Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David P Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Valdecanas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shiying Yu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Raymond E Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heath D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
116
|
Zhang Z, Jones AE, Wu W, Kim J, Kang Y, Bi X, Gu Y, Popov IK, Renfrow MB, Vassylyeva MN, Vassylyev DG, Giles KE, Chen D, Kumar A, Fan Y, Tong Y, Liu CF, An W, Chang C, Luo J, Chow LT, Wang H. Role of remodeling and spacing factor 1 in histone H2A ubiquitination-mediated gene silencing. Proc Natl Acad Sci U S A 2017; 114:E7949-E7958. [PMID: 28855339 PMCID: PMC5617306 DOI: 10.1073/pnas.1711158114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Posttranslational histone modifications play important roles in regulating chromatin-based nuclear processes. Histone H2AK119 ubiquitination (H2Aub) is a prevalent modification and has been primarily linked to gene silencing. However, the underlying mechanism remains largely obscure. Here we report the identification of RSF1 (remodeling and spacing factor 1), a subunit of the RSF complex, as a H2Aub binding protein, which mediates the gene-silencing function of this histone modification. RSF1 associates specifically with H2Aub, but not H2Bub nucleosomes, through a previously uncharacterized and obligatory region designated as ubiquitinated H2A binding domain. In human and mouse cells, genes regulated by RSF1 overlap significantly with those controlled by RNF2/Ring1B, the subunit of Polycomb repressive complex 1 (PRC1) which catalyzes the ubiquitination of H2AK119. About 82% of H2Aub-enriched genes, including the classic PRC1 target Hox genes, are bound by RSF1 around their transcription start sites. Depletion of H2Aub levels by Ring1B knockout results in a significant reduction of RSF1 binding. In contrast, RSF1 knockout does not affect RNF2/Ring1B or H2Aub levels but leads to derepression of H2Aub target genes, accompanied by changes in H2Aub chromatin organization and release of linker histone H1. The action of RSF1 in H2Aub-mediated gene silencing is further demonstrated by chromatin-based in vitro transcription. Finally, RSF1 and Ring1 act cooperatively to regulate mesodermal cell specification and gastrulation during Xenopus early embryonic development. Taken together, these data identify RSF1 as a H2Aub reader that contributes to H2Aub-mediated gene silencing by maintaining a stable nucleosome pattern at promoter regions.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Amanda E Jones
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Wei Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinman Kim
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90033
| | - Yue Kang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobao Bi
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Yue Gu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ivan K Popov
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Marina N Vassylyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dmitry G Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Keith E Giles
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dongquan Chen
- Division of Preventive Medicine, University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ashwath Kumar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Yuhong Fan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada M5G 1L7
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Woojin An
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90033
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294;
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Louise T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294;
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
117
|
Jullien J, Vodnala M, Pasque V, Oikawa M, Miyamoto K, Allen G, David SA, Brochard V, Wang S, Bradshaw C, Koseki H, Sartorelli V, Beaujean N, Gurdon J. Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways. Mol Cell 2017; 65:873-884.e8. [PMID: 28257702 PMCID: PMC5344684 DOI: 10.1016/j.molcel.2017.01.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/05/2017] [Accepted: 01/24/2017] [Indexed: 12/22/2022]
Abstract
Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos. Identification of genes resistant to direct transcriptional reprogramming Determination of resistant gene sensitivity to 11 chromatin modifier combinations USP21 removes resistance through its H2AK119 deubiquitylation activity USP21 improves the reprogramming of gene expression in two-cell-stage mouse embryos
Collapse
Affiliation(s)
- Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
| | - Munender Vodnala
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama 649-6493, Japan
| | - George Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Sarah Anne David
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Vincent Brochard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Stan Wang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Charles Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Laboratory for Developmental Genetics, North Research Building, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
118
|
RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage. Mol Cell 2017; 66:458-472.e5. [PMID: 28525740 DOI: 10.1016/j.molcel.2017.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/22/2016] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
Abstract
Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response.
Collapse
|
119
|
Kim SY, Yang CS, Lee HM, Kim JK, Kim YS, Kim YR, Kim JS, Kim TS, Yuk JM, Dufour CR, Lee SH, Kim JM, Choi HS, Giguère V, Jo EK. ESRRA (estrogen-related receptor α) is a key coordinator of transcriptional and post-translational activation of autophagy to promote innate host defense. Autophagy 2017; 14:152-168. [PMID: 28841353 PMCID: PMC5846564 DOI: 10.1080/15548627.2017.1339001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
The orphan nuclear receptor ESRRA (estrogen-related receptor α) is a key regulator of energy homeostasis and mitochondrial function. Macroautophagy/autophagy, an intracellular degradation process, is a critical innate effector against intracellular microbes. Here, we demonstrate that ESRRA is required for the activation of autophagy to promote innate antimicrobial defense against mycobacterial infection. AMP-activated protein kinase pathway and SIRT1 (sirtuin 1) activation led to induction of ESRRA, which is essential for autophagosome formation, in bone marrow-derived macrophages. ESRRA enhanced the transcriptional activation of numerous autophagy-related (Atg) genes containing ERR response elements in their promoter regions. Furthermore, ESRRA, operating in a feed-forward loop with SIRT1, was required for autophagy activation through deacetylation of ATG5, BECN1, and ATG7. Importantly, ESRRA deficiency resulted in a decrease of phagosomal maturation and antimicrobial responses against mycobacterial infection. Thus, we identify ESRRA as a critical activator of autophagy via both transcriptional and post-translational control to promote antimicrobial host responses.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Department of Microbiology, Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, College of Science and Technology, Hanyang University, Ansan, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Yi-Sak Kim
- Department of Microbiology, Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ye-Ram Kim
- Department of Molecular and Life Science, College of Science and Technology, Hanyang University, Ansan, South Korea
| | - Jae-Sung Kim
- Department of Molecular and Life Science, College of Science and Technology, Hanyang University, Ansan, South Korea
| | - Tae Sung Kim
- Department of Microbiology, Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, South Korea
| | | | - Sang-Hee Lee
- Institute of Molecular Biology & Genetics, Seoul National University, Seoul, South Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Vincent Giguère
- Goodman Cancer Research Center, McGill University, Montréal, Canada
| | - Eun-Kyeong Jo
- Department of Microbiology, Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
120
|
Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell 2017; 171:34-57. [DOI: 10.1016/j.cell.2017.08.002] [Citation(s) in RCA: 611] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
|
121
|
Simoes da Silva CJ, Fereres S, Simón R, Busturia A. Drosophila SCE/dRING E3-ligase inhibits apoptosis in a Dp53 dependent manner. Dev Biol 2017; 429:81-91. [DOI: 10.1016/j.ydbio.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/22/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
122
|
Abstract
Information encoded in DNA is interpreted, modified, and propagated as chromatin. The diversity of inputs encountered by eukaryotic genomes demands a matching capacity for transcriptional outcomes provided by the combinatorial and dynamic nature of epigenetic processes. Advances in genome editing, visualization technology, and genome-wide analyses have revealed unprecedented complexity of chromatin pathways, offering explanations to long-standing questions and presenting new challenges. Here, we review recent findings, exemplified by the emerging understanding of crossregulatory interactions within chromatin, and emphasize the pathologic outcomes of epigenetic misregulation in cancer.
Collapse
|
123
|
Srivastava A, McGrath B, Bielas SL. Histone H2A Monoubiquitination in Neurodevelopmental Disorders. Trends Genet 2017; 33:566-578. [PMID: 28669576 PMCID: PMC5562288 DOI: 10.1016/j.tig.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022]
Abstract
Covalent histone modifications play an essential role in gene regulation and cellular specification required for multicellular organism development. Monoubiquitination of histone H2A (H2AUb1) is a reversible transcriptionally repressive mark. Exchange of histone H2A monoubiquitination and deubiquitination reflects the succession of transcriptional profiles during development required to produce cellular diversity from pluripotent cells. Germ-line pathogenic variants in components of the H2AUb1 regulatory axis are being identified as the genetic basis of congenital neurodevelopmental disorders. Here, we review the human genetics findings coalescing on molecular mechanisms that alter the genome-wide distribution of this histone modification required for development.
Collapse
Affiliation(s)
- Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian McGrath
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA; Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
124
|
Lee HG, Kim J, Suh MC, Seo PJ. The MIEL1 E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Stems. PLANT & CELL PHYSIOLOGY 2017; 58:1249-1259. [PMID: 28838126 DOI: 10.1093/pcp/pcx065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/24/2017] [Indexed: 05/08/2023]
Abstract
Cuticular wax is an important hydrophobic layer that covers the plant aerial surface. Cuticular wax biosynthesis is shaped by multiple layers of regulation. In particular, a pair of R2R3-type MYB transcription factors, MYB96 and MYB30, are known to be the main participants in cuticular wax accumulation. Here, we report that the MYB30-INTERACTING E3 LIGASE 1 (MIEL1) E3 ubiquitin ligase controls the protein stability of the two MYB transcription factors and thereby wax biosynthesis in Arabidopsis. MIEL1-deficient miel1 mutants exhibit increased wax accumulation in stems, with up-regulation of wax biosynthetic genes targeted by MYB96 and MYB30. Genetic analysis reveals that wax accumulation of the miel1 mutant is compromised by myb96 or myb30 mutation, but MYB96 is mainly epistatic to MIEL1, playing a predominant role in cuticular wax deposition. These observations indicate that the MIEL1-MYB96 module is important for balanced cuticular wax biosynthesis in developing inflorescence stems.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
125
|
Smith RJ, Rao-Bhatia A, Kim TH. Signaling and epigenetic mechanisms of intestinal stem cells and progenitors: insight into crypt homeostasis, plasticity, and niches. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017. [PMID: 28644919 DOI: 10.1002/wdev.281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rapid turnover of intestinal epithelial cells is maintained by a small number of stem cells located in pocket-like gland structures called crypts. While our understanding of the identity and function of intestinal stem cells (ISCs) has rapidly progressed, epigenetic and transcriptional regulation in crypt stem cell and progenitor pools remains an active field of investigation. Surrounded by various types of cells in the stroma, crypt progenitors display high levels of plasticity, harboring the ability to interconvert in the face of epithelial damage. Recent studies analyzing epigenetic patterns of intestinal epithelial cells have provided evidence that plasticity is maintained by a broadly permissive epigenomic state, wherein cell-lineage specification is directed through activation of signaling pathways and transcription factor (TF) expression. New studies also have shown that the ISC niche, which is comprised of surrounding epithelial and mesenchymal tissues, plays a crucial role in supporting the maintenance and differentiation of stem cells by providing contextual information in the form of signaling cascades, such as Wnt, Notch, and Hippo. These cascades ultimately govern TF expression to promote early cell-lineage decisions in both crypt stem cells and progenitors. Highlighting recent studies investigating signaling, transcriptional, and epigenetic mechanisms of intestinal epithelial cells, we will discuss the mechanisms underlying crypt homeostasis, plasticity, and niches. WIREs Dev Biol 2017, 6:e281. doi: 10.1002/wdev.281 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ryan J Smith
- Program of Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Abilasha Rao-Bhatia
- Program of Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tae-Hee Kim
- Program of Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
126
|
Kudrin RA, Mironov AA, Stavrovskaya ED. Chromatin and Polycomb: Biology and bioinformatics. Mol Biol 2017. [DOI: 10.1134/s0026893316060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
127
|
Connelly KE, Dykhuizen EC. Compositional and functional diversity of canonical PRC1 complexes in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:233-245. [PMID: 28007606 DOI: 10.1016/j.bbagrm.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022]
Abstract
The compositional complexity of Polycomb Repressive Complex 1 (PRC1) increased dramatically during vertebrate evolution. What is considered the "canonical" PRC1 complex consists of four subunits originally identified as regulators of body segmentation in Drosophila. In mammals, each of these four canonical subunits consists of two to six paralogs that associate in a combinatorial manner to produce over a hundred possible distinct PRC1 complexes with unknown function. Genetic studies have begun to define the phenotypic roles for different PRC1 paralogs; however, relating these phenotypes to unique biochemical and transcriptional function for the different paralogs has been challenging. In this review, we attempt to address how the compositional diversity of canonical PRC1 complexes relates to unique roles for individual PRC1 paralogs in transcriptional regulation. This review focuses primarily on PRC1 complex composition, genome targeting, and biochemical function.
Collapse
Affiliation(s)
- Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
128
|
Ubiquitin utilizes an acidic surface patch to alter chromatin structure. Nat Chem Biol 2016; 13:105-110. [PMID: 27870837 PMCID: PMC5161692 DOI: 10.1038/nchembio.2235] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023]
Abstract
Ubiquitylation of histone H2B, associated with gene activation, leads to chromatin decompaction through an unknown mechanism. We used a hydrogen-deuterium exchange strategy coupled with nuclear magnetic resonance spectroscopy to map the ubiquitin surface responsible for its structural effects on chromatin. Our studies revealed that a previously uncharacterized acidic patch on ubiquitin comprising residues Glu16 and Glu18 is essential for decompaction. These residues mediate promiscuous electrostatic interactions with the basic histone proteins, potentially positioning the ubiquitin moiety as a dynamic “wedge” that prevents the intimate association of neighboring nucleosomes. Using two independent cross-linking strategies and an oligomerization assay, we also showed that ubiquitin-ubiquitin contacts occur in the chromatin environment and are important for the solubilization of the chromatin polymers. Our work highlights a novel, chromatin-related aspect of the “ubiquitin code”, and sheds light on how the information rich ubiquitin modification can orchestrate different biochemical outcomes using different surface features.
Collapse
|
129
|
Pandey A, Goru SK, Kadakol A, Malek V, Sharma N, Gaikwad AB. H2AK119 monoubiquitination regulates Angiotensin II receptor mediated macrophage infiltration and renal fibrosis in type 2 diabetic rats. Biochimie 2016; 131:68-76. [PMID: 27693081 DOI: 10.1016/j.biochi.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022]
Abstract
Monocyte chemoattractant protein (MCP-1) and transforming growth factor-β (TGF-β1)-markers of inflammation and fibrosis, are central to type 2 diabetic nephropathy (T2DN) progression. The epigenetic basis of their expression has also been explored to certain extent. H2A lysine 119 monoubiquitination (H2AK119Ub), a repressive chromatin mark regulates progression of hyperglycaemia induced fibrosis in glomerular mesangial cells. However, how H2AK119Ub affects the expression of MCP-1 and TGF-β1 and their regulation by Angiotensin II receptor subtypes remains unknown. In the current study, we aimed to study the effect of Angiotensin II receptors' blockade on the macrophage infiltration and histone modifications occurring at the promoter region of Mcp1 and Tgfb1in high fat diet fed and low dose streptozotocin treated male Wistar rats. Hereby, we present the first report delineating a distinct link between H2AK119Ub and macrophage infiltration and fibrosis i.e. the enrichment of H2AUb at Mcp1 and Tgfb1 promoter region was found to reduce drastically in the T2DN which could be significantly reversed by Telmisartan and was further elevated by PD123319. We could conclude that the Angiotensin II mediated macrophage infiltration in T2DN is regulated at least partially by H2AK119Ub through both AT1 and AT2 receptors, which to the best of our knowledge, presents the first report for the regulation of Mcp1 by H2AK119Ub. Thus an approach targeting AT1R blockade and AT2R activation accompanied by an epigenetic modulator may be more suitable to ameliorate the macrophage infiltration and fibrosis associated with T2DN.
Collapse
Affiliation(s)
- Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
130
|
Kang MK, Mehrazarin S, Park NH, Wang CY. Epigenetic gene regulation by histone demethylases: emerging role in oncogenesis and inflammation. Oral Dis 2016; 23:709-720. [PMID: 27514027 DOI: 10.1111/odi.12569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Histone N-terminal tails of nucleosomes are the sites of complex regulation of gene expression through post-translational modifications. Among these modifications, histone methylation had long been associated with permanent gene inactivation until the discovery of Lys-specific demethylase (LSD1), which is responsible for dynamic gene regulation. There are more than 30 members of the Lys demethylase (KDM) family, and with exception of LSD1 and LSD2, all other KDMs possess the Jumonji C (JmjC) domain exhibiting demethylase activity and require unique cofactors, for example, Fe(II) and α-ketoglutarate. These cofactors have been targeted when devising KDM inhibitors, which may yield therapeutic benefit. KDMs and their counterpart Lys methyltransferases (KMTs) regulate multiple biological processes, including oncogenesis and inflammation. KDMs' functional interactions with retinoblastoma (Rb) and E2 factor (E2F) target promoters illustrate their regulatory role in cell cycle progression and oncogenesis. Recent findings also demonstrate the control of inflammation and immune functions by KDMs, such as KDM6B that regulates the pro-inflammatory gene expression and CD4+ T helper (Th) cell lineage determination. This review will highlight the mechanisms by which KDMs and KMTs regulate the target gene expression and how epigenetic mechanisms may be applied to our understanding of oral inflammation.
Collapse
Affiliation(s)
- M K Kang
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - S Mehrazarin
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA
| | - N-H Park
- Shapiro Laboratory of Viral Oncology and Aging Research, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - C-Y Wang
- Laboratory of Molecular Signaling, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
131
|
Zhao Q, Gui T, Qian Q, Li L, Shen K. B-cell-specific Moloney murine leukemia virus integration site 1: potential stratification factor and therapeutic target for epithelial ovarian cancer. Onco Targets Ther 2016; 9:5203-8. [PMID: 27578986 PMCID: PMC5001671 DOI: 10.2147/ott.s109443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer, a vexing challenge for clinical management, still lacks biomarkers for early diagnosis, precise stratification, and prognostic evaluation of patients. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), a member of the polycomb group of proteins, engages in diverse cellular processes, including proliferation, differentiation, senescence, and stem cell renewal. In addition, BMI1, as a cancer stem-cell marker, participates in tumorigenesis through various pathways. Rewardingly, recent studies have also revealed a relationship between BMI1 expression and the clinical grade/stage, therapy response, and survival outcome in a majority of human malignancies, including epithelial ovarian cancer. Therefore, BMI1 might serve as a potential stratification factor and treatment target for epithelial ovarian cancer, pending evidence from further investigations.
Collapse
Affiliation(s)
- Qianying Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Qiuhong Qian
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong, People's Republic of China
| | - Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| |
Collapse
|
132
|
Polycomb Group Protein Pcgf6 Acts as a Master Regulator to Maintain Embryonic Stem Cell Identity. Sci Rep 2016; 6:26899. [PMID: 27247273 PMCID: PMC4888081 DOI: 10.1038/srep26899] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/10/2016] [Indexed: 01/15/2023] Open
Abstract
The polycomb repressive complex 1 (PRC1) is a multi-subunit complex that plays critical roles in the epigenetic modulation of gene expression. Here, we show that the PRC1 component polycomb group ring finger 6 (Pcgf6) is required to maintain embryonic stem cell (ESC) identity. In contrast to canonical PRC1, Pcgf6 acts as a positive regulator of transcription and binds predominantly to promoters bearing active chromatin marks. Pcgf6 is expressed at high levels in ESCs, and knockdown reduces the expression of the core ESC regulators Oct4, Sox2, and Nanog. Conversely, Pcgf6 overexpression prevents downregulation of these factors and impairs differentiation. In addition, Pcgf6 enhanced reprogramming in both mouse and human somatic cells. The genomic binding profile of Pcgf6 is highly similar to that of trithorax group proteins, but not of PRC1 or PRC2 complexes, suggesting that Pcgf6 functions atypically in ESCs. Our data reveal novel roles for Pcgf6 in directly regulating Oct4, Nanog, Sox2, and Lin28 expression to maintain ESC identity.
Collapse
|
133
|
Entrevan M, Schuettengruber B, Cavalli G. Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 2016; 26:511-525. [PMID: 27198635 DOI: 10.1016/j.tcb.2016.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes.
Collapse
Affiliation(s)
- Marianne Entrevan
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
134
|
Groh BS, Yan F, Smith MD, Yu Y, Chen X, Xiong Y. The antiobesity factor WDTC1 suppresses adipogenesis via the CRL4WDTC1 E3 ligase. EMBO Rep 2016; 17:638-47. [PMID: 27113764 PMCID: PMC5341520 DOI: 10.15252/embr.201540500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 11/09/2022] Open
Abstract
WDTC1/Adp encodes an evolutionarily conserved suppressor of lipid accumulation. While reduced WDTC1 expression is associated with obesity in mice and humans, its cellular function is unknown. Here, we demonstrate that WDTC1 is a component of a DDB1-CUL4-ROC1 (CRL4) E3 ligase. Using 3T3-L1 cell culture model of adipogenesis, we show that disrupting the interaction between WDTC1 and DDB1 leads to a loss of adipogenic suppression by WDTC1, increased triglyceride accumulation and adipogenic gene expression. We show that the CRL4(WDTC) (1) complex promotes histone H2AK119 monoubiquitylation, thus suggesting a role for this complex in transcriptional repression during adipogenesis. Our results identify a biochemical role for WDTC1 and extend the functional range of the CRL4 complex to the suppression of fat accumulation.
Collapse
Affiliation(s)
- Beezly S Groh
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew D Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yanbao Yu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Yue Xiong
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
135
|
Crea F, Venalainen E, Ci X, Cheng H, Pikor L, Parolia A, Xue H, Nur Saidy NR, Lin D, Lam W, Collins C, Wang Y. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics 2016; 8:721-31. [PMID: 27096814 DOI: 10.2217/epi.16.6] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is the most lethal prostatic neoplasm. NEPC is thought to originate from the transdifferentiation of AR-positive adenocarcinoma cells. We have previously shown that an epigenetic/noncoding interactome (ENI) orchestrates cancer cells' plasticity, thereby allowing the emergence of metastatic, drug-resistant neoplasms. The primary objective of this manuscript is to discuss evidence indicating that some components of the ENI (Polycomb genes, miRNAs) play a key role in NEPC initiation and progression. Long noncoding RNAs represent vast and largely unexplored component of the ENI. Their role in NEPC has not been investigated. We show preliminary evidence indicating that a lncRNA (MIAT) is selectively upregulated in NEPCs and might interact with Polycomb genes. Our results indicate that long noncoding RNAs can be exploited as new biomarkers and therapeutic targets for NEPC.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Department of Life Health & Chemical Sciences, The Open University, Milton Keynes, UK
| | - Erik Venalainen
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Xinpei Ci
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hongwei Cheng
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Larissa Pikor
- Genetics Unit, Integrative Oncology, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Abhijit Parolia
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Hui Xue
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Nur Ridzwan Nur Saidy
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Dong Lin
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wan Lam
- Genetics Unit, Integrative Oncology, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
136
|
Dreer M, Fertey J, van de Poel S, Straub E, Madlung J, Macek B, Iftner T, Stubenrauch F. Interaction of NCOR/SMRT Repressor Complexes with Papillomavirus E8^E2C Proteins Inhibits Viral Replication. PLoS Pathog 2016; 12:e1005556. [PMID: 27064408 PMCID: PMC4827801 DOI: 10.1371/journal.ppat.1005556] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
Infections with high-risk human papillomaviruses (HR-HPV) such as HPV16 and 31 can lead to ano-genital and oropharyngeal cancers and HPV types from the beta genus have been implicated in the development of non-melanoma skin cancer. HPV replicate as nuclear extrachromosomal plasmids at low copy numbers in undifferentiated cells. HPV16 and 31 mutants have indicated that these viruses express an E8^E2C protein which negatively regulates genome replication. E8^E2C shares the DNA-binding and dimerization domain (E2C) with the essential viral replication activator E2 and the E8 domain replaces the replication/transcription activation domain of E2. The HR-HPV E8 domain is required for inhibiting viral transcription and the replication of the viral origin mediated by viral E1 and E2 proteins. We show now that E8^E2C also limits replication of HPV1, a mu-PV and HPV8, a beta-PV, in normal human keratinocytes. Proteomic analyses identified all NCoR/SMRT corepressor complex components (HDAC3, GPS2, NCoR, SMRT, TBL1 and TBLR1) as co-precipitating host cell proteins for HPV16 and 31 E8^E2C proteins. Co-immunoprecipitation and co-localization experiments revealed that NCoR/SMRT components interact with HPV1, 8, 16 and 31 E8^E2C proteins in an E8-dependent manner. SiRNA knock-down experiments confirm that NCoR/SMRT components are critical for both the inhibition of transcription and HPV origin replication by E8^E2C proteins. Furthermore, a dominant-negative NCoR fragment activates transcription and replication only from HPV16 and 31 wt but not from mutant genomes encoding NCoR/SMRT-binding deficient E8^E2C proteins. In summary, our data suggest that the repressive function of E8^E2C is highly conserved among HPV and that it is mediated by an E8-dependent interaction with NCoR/SMRT complexes. Our data also indicate for the first time that NCoR/SMRT complexes not only are involved in inhibiting cellular and viral transcription but also in controlling the replication of HPV origins. Human papillomaviruses (HPV) have been shown to cause ano-genital and oropharyngeal cancers and have been also implicated in non-melanoma skin cancer. HPV have a two-stage replication cycle: in undifferentiated keratinocytes only a low level of genome replication without virus production can be observed whereas in differentiated keratinocytes high-level genome replication and virus production takes place. Previous studies have suggested that some HPV encode an E8^E2C protein that limits genome replication in undifferentiated cells. We now demonstrate that E8^E2C proteins from phylogenetically diverse HPV types interact with NCoR/SMRT corepressor complexes to limit viral transcription and genome replication. While NCoR/SMRT complexes are known to mediate the transcription repression functions of a wide variety of host transcription factors, this is the first evidence that NCoR/SMRT proteins also are involved in the repression of the replication of viral origins.
Collapse
Affiliation(s)
- Marcel Dreer
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Jasmin Fertey
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Saskia van de Poel
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Elke Straub
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Johannes Madlung
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
| | - Frank Stubenrauch
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Division of Experimental Virology, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
137
|
Lim KH, Song MH, Baek KH. Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint. Cell Mol Life Sci 2016; 73:1439-55. [PMID: 26762302 PMCID: PMC11108577 DOI: 10.1007/s00018-015-2129-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 09/29/2022]
Abstract
All organs consisting of single cells are consistently maintaining homeostasis in response to stimuli such as free oxygen, DNA damage, inflammation, and microorganisms. The cell cycle of all mammalian cells is regulated by protein expression in the right phase to respond to proliferation and apoptosis signals. Post-translational modifications (PTMs) of proteins by several protein-editing enzymes are associated with cell cycle regulation by their enzymatic functions. Ubiquitination, one of the PTMs, is also strongly related to cell cycle regulation by protein degradation or signal transduction. The importance of deubiquitinating enzymes (DUBs), which have a reversible function for ubiquitination, has recently suggested that the function of DUBs is also important for determining the fate of proteins during cell cycle processing. This article reviews and summarizes the diverse roles of DUBs, including DNA damage, cell cycle processing, and regulation of histone proteins, and also suggests the possibility for therapeutic targets.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Myoung-Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea.
| |
Collapse
|
138
|
Chen DH, Huang Y, Ruan Y, Shen WH. The evolutionary landscape of PRC1 core components in green lineage. PLANTA 2016; 243:825-46. [PMID: 26729480 DOI: 10.1007/s00425-015-2451-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/16/2015] [Indexed: 05/20/2023]
Abstract
The origin and evolution of plant PRC1 core components. Polycomb repressive complex1 (PRC1) plays critical roles in epigenetic silencing of homeotic genes and determination of cell fate. Animal PRC1 has been well investigated for a long time, whereas plant PRC1 was just confirmed in recent years. It is enigmatic whether PRC1 core components in plants share a common ancestor with those in animals. We evaluated the origin of plant PRC1 RING-finger proteins (RING1 and BMI1) through comparing with the homologs in some representative unikonts and using BMI1- and RING1-like proteins as reciprocal outgroup, finding both PRC1 RING-finger proteins have the earliest origin in mosses, similar to LHP1. Additionally, the gene structure, copy number, and domain organization were analyzed to deeply understand the evolutionary history of plant PRC1 complex. In conclusion, PRC1 RING-finger proteins have independent origins in plants and animals, but convergent evolution might attribute to the conservation of PRC1 complex in plants and animals. Plant LHP1 as the homolog of non-PRC1 protein HP1 was recruited to fulfill the role of Pc counterpart. Gene duplication followed by functional divergence makes a great contribution to evolutionary progress of PRC1 in green plants.
Collapse
Affiliation(s)
- Dong-hong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.
| | - Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.
| | - Wen-Hui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| |
Collapse
|
139
|
Nakata S, Watanabe T, Nakagawa K, Takeda H, Ito A, Fujimuro M. The dynamics of histone H2A ubiquitination in HeLa cells exposed to rapamycin, ethanol, hydroxyurea, ER stress, heat shock and DNA damage. Biochem Biophys Res Commun 2016; 472:46-52. [DOI: 10.1016/j.bbrc.2016.02.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
|
140
|
Gu Y, Jones AE, Yang W, Liu S, Dai Q, Liu Y, Swindle CS, Zhou D, Zhang Z, Ryan TM, Townes TM, Klug CA, Chen D, Wang H. The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function. Proc Natl Acad Sci U S A 2016; 113. [DOI: www.pnas.org/cgi/doi/10.1073/pnas.1517041113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023] Open
Abstract
Significance
Polycomb repressive complex 1 (PRC1) represents an important epigenetic regulator, which exerts its effect on gene expression via histone H2A ubiquitination (ubH2A). We developed a conditional
Usp16
knockout mouse model and demonstrated that
Usp16
is indispensable for hematopoiesis and hematopoietic stem cell (HSC) lineage commitment. We identified Usp16 to be a H2A deubiquitinase that counterbalances the PRC1 ubiquitin ligase to control ubH2A level in the hematopoietic system. Conditional
Usp16
deletion led to altered expression of many regulators of chromatin organization and hematopoiesis. In addition, Usp16 maintains normal HSC cell cycle status via repressing the expression of
Cdkn1a
, which encodes p21cip1, an inhibitor of cell cycle entry. This study provides novel insights into the epigenetic mechanism that regulates hematopoiesis and HSC function.
Collapse
Affiliation(s)
- Yue Gu
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Amanda E. Jones
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Wei Yang
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Shanrun Liu
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qian Dai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yudong Liu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - C. Scott Swindle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dewang Zhou
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Zhuo Zhang
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Thomas M. Ryan
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tim M. Townes
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christopher A. Klug
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Dongquan Chen
- Division of Preventive Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
141
|
Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2015; 16:35-50. [DOI: 10.1038/nri.2015.8] [Citation(s) in RCA: 364] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function. Proc Natl Acad Sci U S A 2015; 113:E51-60. [PMID: 26699484 DOI: 10.1073/pnas.1517041113] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.
Collapse
|
143
|
Illingworth RS, Moffat M, Mann AR, Read D, Hunter CJ, Pradeepa MM, Adams IR, Bickmore WA. The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development. Genes Dev 2015; 29:1897-902. [PMID: 26385961 PMCID: PMC4579347 DOI: 10.1101/gad.268151.115] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polycomb-repressive complex 1 (PRC1) and PRC2 maintain repression at many developmental genes in mouse embryonic stem cells and are required for early development. However, it is still unclear how they are targeted and how they function. We show that the ability of RING1B, a core component of PRC1, to ubiquitinate histone H2A is dispensable for early mouse embryonic development and much of the gene repression activity of PRC1. Our data support a model in which PRC1 and PRC2 reinforce each other's binding but suggest that the key functions of PRC1 lie beyond the enzymatic capabilities of RING1B.
Collapse
Affiliation(s)
- Robert S Illingworth
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| | - Michael Moffat
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| | - Abigail R Mann
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| | - David Read
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| | - Chris J Hunter
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| | - Madapura M Pradeepa
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| | - Ian R Adams
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| | - Wendy A Bickmore
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH42XU, United Kingdom
| |
Collapse
|
144
|
Bondarenko MT, Maluchenko NV, Valieva ME, Gerasimova NS, Kulaeva OI, Georgiev PG, Studitsky VM. Structure and function of histone chaperone FACT. Mol Biol 2015. [DOI: 10.1134/s0026893315060023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
145
|
Liang SC, Hartwig B, Perera P, Mora-García S, de Leau E, Thornton H, de Alves FL, Rapsilber J, Yang S, James GV, Schneeberger K, Finnegan EJ, Turck F, Goodrich J. Kicking against the PRCs - A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2. PLoS Genet 2015; 11:e1005660. [PMID: 26642436 PMCID: PMC4671723 DOI: 10.1371/journal.pgen.1005660] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity. Transposons are parasitic genetic elements that proliferate within their hosts’ genomes. Because rampant transposition is usually deleterious, hosts have evolved ways to inhibit the activity of transposons. In plants, this genome defence is provided by the Polycomb group (PcG) proteins and/or the DNA methylation machinery, which repress the transcription of transposase genes. We identified the Arabidopsis ALP1 gene through its role in opposing gene silencing mediated by PcG genes. ALP1 is an ancient gene in land plants and has evolved from a domesticated transposase. Unexpectedly, we find that the ALP1 protein is present in a conserved complex of PcG proteins that inhibit transcription by methylating the histone proteins that package DNA. ALP1 likely inhibits the activity of this PcG complex by blocking its interaction with accessory proteins that stimulate its activity. We suggest that the inhibition of the PcG by a transposase may originally have evolved as a means for transposons to evade surveillance by their hosts, and that subsequently hosts may have exploited this as a means to regulate PcG activity. Our work illustrates how transposons can be friend or fiend, and raises the question of whether other transposases will also be found to inhibit their host’s regulatory machinery.
Collapse
Affiliation(s)
- Shih Chieh Liang
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Hartwig
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Pumi Perera
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Santiago Mora-García
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Erica de Leau
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry Thornton
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Flavia Lima de Alves
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Juri Rapsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Suxin Yang
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | | | - Franziska Turck
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
- * E-mail: (FT); (JG)
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (FT); (JG)
| |
Collapse
|
146
|
Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. SCIENCE ADVANCES 2015; 1:e1500737. [PMID: 26665172 PMCID: PMC4672759 DOI: 10.1126/sciadv.1500737] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/17/2015] [Indexed: 05/14/2023]
Abstract
The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Gloria Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, Barcelona 08010, Spain
- Corresponding author. E-mail:
| |
Collapse
|
147
|
Bi X, Yang R, Feng X, Rhodes D, Liu CF. Semisynthetic UbH2A reveals different activities of deubiquitinases and inhibitory effects of H2A K119 ubiquitination on H3K36 methylation in mononucleosomes. Org Biomol Chem 2015; 14:835-9. [PMID: 26615908 DOI: 10.1039/c5ob02323h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a genetically incorporated azidonorleucine for ubiquitin installation, we prepared multi-milligram quantities of H2AK119ub (ubH2A). With a native isopeptide linkage, the synthetic ubH2A was used to study the activity of deubiquitinases and crosstalk between H2A ubiquitination and H3K36 methylation in the context of chemically defined mononucleosomes.
Collapse
Affiliation(s)
- Xiaobao Bi
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | | | | | |
Collapse
|
148
|
Schult D, Hölsken A, Siegel S, Buchfelder M, Fahlbusch R, Kreitschmann-Andermahr I, Buslei R. EZH2 is highly expressed in pituitary adenomas and associated with proliferation. Sci Rep 2015; 5:16965. [PMID: 26593398 PMCID: PMC4655333 DOI: 10.1038/srep16965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a core epigenetic regulator, playing a crucial role in cell cycle regulation. The protein is known to be associated with proliferation and worse outcome in several tumor entities. In this study, we immunohistochemically investigated the expression pattern of EZH2 in a large cohort of pituitary tumors. These results were correlated with clinical features and double immunofluorescence stainings (DIS) were conducted to evaluate co-expression of EZH2 and proliferation marker Ki-67. Furthermore, we analyzed the effect of EZH2 inhibition on cell proliferation in vitro using the pituitary cell line AtT-20. While in the normal anterior pituitary EZH2 was almost absent, the cohort of tumors showed enhanced expression levels (p ≤ 0.0005). This was positively associated with Ki-67 indices (r = 0.834, p ≤ 0.0005) and DIF confirmed a predominant co-expression of both markers. In vitro experiments revealed a significant (p ≤ 0.05) decrease of tumor cell proliferation using the EZH2 inhibitor GSK126. Our results further support that epigenetic events are involved in the pathogenesis and biology of pituitary adenomas (PA). Therefore, EZH2 may function as a new potential target for therapeutic interventions in PA.
Collapse
Affiliation(s)
- David Schult
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen
| | - Annett Hölsken
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen
| | - Sonja Siegel
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen.,Department of Neurosurgery, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen
| | - Rudolf Fahlbusch
- Department of Neurosurgery, International Neuroscience Institute, Rudolf-Pichlmayr-Straße 4, 30625 Hannover
| | - Ilonka Kreitschmann-Andermahr
- Department of Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen.,Department of Neurosurgery, University of Duisburg-Essen, Hufelandstraße 55, 45122 Essen
| | - Rolf Buslei
- Institute of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen
| |
Collapse
|
149
|
Dzip3 regulates developmental genes in mouse embryonic stem cells by reorganizing 3D chromatin conformation. Sci Rep 2015; 5:16567. [PMID: 26568260 PMCID: PMC4645096 DOI: 10.1038/srep16567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/16/2015] [Indexed: 11/09/2022] Open
Abstract
In mouse embryonic stem (mES) cells, ubiquitylation of histone H2A lysine 119 represses a large number of developmental genes and maintains mES cell pluripotency. It has been suggested that a number of H2A ubiquitin ligases as well as deubiquitylases and related peptide fragments contribute to a delicate balance between self-renewal and multi-lineage differentiation in mES cells. Here, we tested whether known H2A ubiquitin ligases and deubiquitylases are involved in mES cell regulation and discovered that Dzip3, the E3 ligase of H2AK119, represses differentiation-inducible genes, as does Ring1B. The two sets of target genes partially overlapped but had different spectra. We found that Dzip3 represses gene expression by orchestrating changes in 3D organization, in addition to regulating ubiquitylation of H2A. Our results shed light on the epigenetic mechanism of transcriptional regulation, which depends on 3D chromatin reorganization to regulate mES cell differentiation.
Collapse
|
150
|
Purcell DJ, Chauhan S, Jimenez-Stinson D, Elliott KR, Tsewang TD, Lee YH, Marples B, Lee DY. Novel CARM1-Interacting Protein, DZIP3, Is a Transcriptional Coactivator of Estrogen Receptor-α. Mol Endocrinol 2015; 29:1708-19. [PMID: 26505218 DOI: 10.1210/me.2015-1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is known to promote estrogen receptor (ER)α-mediated transcription in breast cancer cells. To further characterize the regulation of ERα-mediated transcription by CARM1, we screened CARM1-interacting proteins by yeast two-hybrid. Here, we have identified an E3 ubiquitin ligase, DAZ (deleted in azoospermia)-interacting protein 3 (DZIP3), as a novel CARM1-binding protein. DZIP3-dependent ubiquitination of histone H2A has been associated with repression of transcription. However, ERα reporter gene assays demonstrated that DZIP3 enhanced ERα-mediated transcription and cooperated synergistically with CARM1. Interaction with CARM1 was observed with the E3 ligase RING domain of DZIP3. The methyltransferase activity of CARM1 partially contributed to the synergy with DZIP3 for transcription activation, but the E3 ubiquitin ligase activity of DZIP3 was dispensable. DZIP3 also interacted with the C-terminal activation domain 2 of glucocorticoid receptor-interacting protein 1 (GRIP1) and enhanced the interaction between GRIP1 and CARM1. Depletion of DZIP3 by small interfering RNA in MCF7 cells reduced estradiol-induced gene expression of ERα target genes, GREB1 and pS2, and DZIP3 was recruited to the estrogen response elements of the same ERα target genes. These results indicate that DZIP3 is a novel coactivator of ERα target gene expression.
Collapse
Affiliation(s)
- Daniel J Purcell
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Swati Chauhan
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Diane Jimenez-Stinson
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Kathleen R Elliott
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Tenzin D Tsewang
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Young-Ho Lee
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - Brian Marples
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| | - David Y Lee
- Section of Radiation Oncology (D.J.P., S.C., D.J.-S., K.R.E., T.D.T., D.Y.L.), Division of Hematology-Oncology, Department of Internal Medicine, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131; Department of Biochemistry (Y.-H.L.), Keck School of Medicine, University of Southern California. Los Angeles, California 90089; and Department of Radiation Oncology (B.M.), William Beaumont Hospital, Royal Oak, Michigan 48073
| |
Collapse
|