101
|
Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. Int J Mol Sci 2022; 23:ijms231810211. [PMID: 36142122 PMCID: PMC9499172 DOI: 10.3390/ijms231810211] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer treatment with ionizing radiation (IR) is a well-established and effective clinical method to fight different types of tumors and is a palliative treatment to cure metastatic stages. Approximately half of all cancer patients undergo radiotherapy (RT) according to clinical protocols that employ two types of ionizing radiation: sparsely IR (i.e., X-rays) and densely IR (i.e., protons). Most cancer cells irradiated with therapeutic doses exhibit radio-induced cytotoxicity in terms of cell proliferation arrest and cell death by apoptosis. Nevertheless, despite the more tailored advances in RT protocols in the last few years, several tumors show a relatively high percentage of RT failure and tumor relapse due to their radioresistance. To counteract this extremely complex phenomenon and improve clinical protocols, several factors associated with radioresistance, of both a molecular and cellular nature, must be considered. Tumor genetics/epigenetics, tumor microenvironment, tumor metabolism, and the presence of non-malignant cells (i.e., fibroblast-associated cancer cells, macrophage-associated cancer cells, tumor-infiltrating lymphocytes, endothelial cells, cancer stem cells) are the main factors important in determining the tumor response to IR. Here, we attempt to provide an overview of how such factors can be taken advantage of in clinical strategies targeting radioresistant tumors.
Collapse
|
102
|
Bai S, Taylor S, Jamalruddin MA, McGonigal S, Grimley E, Yang D, Bernstein KA, Buckanovich RJ. Targeting Therapeutic Resistance and Multinucleate Giant Cells in CCNE1-Amplified HR-Proficient Ovarian Cancer. Mol Cancer Ther 2022; 21:1473-1484. [PMID: 35732503 PMCID: PMC9452459 DOI: 10.1158/1535-7163.mct-21-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Approximately 20% of high-grade serous ovarian cancers (HGSOC) have CCNE1 amplification. CCNE1-amplified tumors are homologous recombination (HR) proficient and resistant to standard therapies. Therapy resistance is associated with increased numbers of polyploid giant cancer cells (PGCC). We sought to identify new therapeutic approaches for patients with CCNE1-amplified tumors. Using TCGA data, we find that the mTOR, HR, and DNA checkpoint pathways are enriched in CCNE1-amplified ovarian cancers. Furthermore, Interactome Mapping Analysis linked the mTOR activity with upregulation of HR and DNA checkpoint pathways. Indeed, we find that mTOR inhibitors (mTORi) downregulate HR/checkpoint genes in CCNE1-amplified tumors. As CCNE1-amplified tumors are dependent on the HR pathway for viability, mTORi proved selectively effective in CCNE1-amplified tumors. Similarly, via downregulation of HR genes, mTORi increased CCNE1-amplifed HGSOC response to PARPi. In contrast, overexpression of HR/checkpoint proteins (RAD51 or ATR), induced resistance to mTORi. In vivo, mTORi alone potently reduced CCNE1-amplified tumor growth and the combination of mTORi and PARPi increased response and tumor eradication. Tumors treated with mTORi demonstrated a significant reduction in ALDH+ PGCCs. Finally, as a proof of principle, we identified three patients with CCNE1 amplified tumors who were treated with an mTORi. All three obtained clinical benefits from the therapy. Our studies and clinical experience indicate mTORi are a potential therapeutic approach for patients with CCNE1-amplified tumors.
Collapse
Affiliation(s)
- Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Taylor
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohd Azrin Jamalruddin
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara A. Bernstein
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronald J. Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
103
|
Epigenetic Alterations under Oxidative Stress in Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6439097. [PMID: 36071870 PMCID: PMC9444469 DOI: 10.1155/2022/6439097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene expression, including DNA methylation and histone modifications, provides finely tuned responses for cells that undergo cellular environment changes. Abundant evidences have demonstrated the detrimental role of oxidative stress in various human pathogenesis since oxidative stress results from the imbalance between reactive oxygen species (ROS) accumulation and antioxidant defense system. Stem cells can self-renew themselves and meanwhile have the potential to differentiate into many other cell types. As some studies have described the effects of oxidative stress on homeostasis and cell fate decision of stem cells, epigenetic alterations have emerged crucial for mediating the stem cell behaviours under oxidative stress. Here, we review recent findings on the oxidative effects on DNA and histone modifications in stem cells. We propose that epigenetic alterations and oxidative stress may influence each other in stem cells.
Collapse
|
104
|
Lee M, Geitgey DK, Hamilton JAG, Boss JM, Scharer CD, Spangle JM, Haynes KA, Henry CJ. Adipocyte-mediated epigenomic instability in human T-ALL cells is cytotoxic and phenocopied by epigenetic-modifying drugs. Front Cell Dev Biol 2022; 10:909557. [PMID: 36060800 PMCID: PMC9438935 DOI: 10.3389/fcell.2022.909557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The world’s population with obesity is reaching pandemic levels. If current trends continue, it is predicted that there will be 1.5 billion people with obesity by 2030. This projection is alarming due to the association of obesity with numerous diseases including cancer, with recent studies demonstrating a positive association with acute myeloid leukemia (AML) and B cell acute lymphoblastic leukemia (B-ALL). Interestingly, several epidemiological studies suggest the converse relationship may exist in patients with T cell acute lymphoblastic leukemia (T-ALL). To determine the relationship between obesity and T-ALL development, we employed the diet-induced obesity (DIO) murine model and cultured human T-ALL cells in adipocyte-conditioned media (ACM), bone marrow stromal cell-conditioned media, stromal conditioned media (SCM), and unconditioned media to determine the functional impact of increased adiposity on leukemia progression. Whereas only 20% of lean mice transplanted with T-ALL cells survived longer than 3 months post-inoculation, 50%–80% of obese mice with leukemia survived over this same period. Furthermore, culturing human T-ALL cells in ACM resulted in increased histone H3 acetylation (K9/K14/K18/K23/K27) and methylation (K4me3 and K27me3) posttranslational modifications (PTMs), which preceded accelerated cell cycle progression, DNA damage, and cell death. Adipocyte-mediated epigenetic changes in human T-ALL cells were recapitulated with the H3K27 demethylase inhibitor GSK-J4 and the pan-HDAC inhibitor vorinostat. These drugs were also highly cytotoxic to human T-ALL cells at low micromolar concentrations. In summary, our data support epidemiological studies demonstrating that adiposity suppresses T-ALL pathogenesis. We present data demonstrating that T-ALL cell death in adipose-rich microenvironments is induced by epigenetic modifications, which are not tolerated by leukemia cells. Similarly, GSK-J4 and vorinostat treatment induced epigenomic instability and cytotoxicity profiles that phenocopied the responses of human T-ALL cells to ACM, which provides additional support for the use of epigenetic modifying drugs as a treatment option for T-ALL.
Collapse
Affiliation(s)
- Miyoung Lee
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Delaney K. Geitgey
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Jamie A. G. Hamilton
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer M. Spangle
- Winship Cancer Institute, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Karmella A. Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Curtis J. Henry
- Department of Pediatrics, Emory University School of Medicine and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Winship Cancer Institute, Atlanta, GA, United States
- *Correspondence: Curtis J. Henry,
| |
Collapse
|
105
|
Porcine Enteric Coronavirus PEDV Induces the ROS-ATM and Caspase7-CAD-γH2AX Signaling Pathways to Foster Its Replication. Viruses 2022; 14:v14081782. [PMID: 36016404 PMCID: PMC9413700 DOI: 10.3390/v14081782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
DNA damage response (DDR) is an evolutionarily conserved mechanism by which eukaryotic cells sense DNA lesions caused by intrinsic and extrinsic stimuli, including virus infection. Although interactions between DNA viruses and DDR have been extensively studied, how RNA viruses, especially coronaviruses, regulate DDR remains unknown. A previous study showed that the porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the Coronaviridae family, induces DDR in infected cells. However, the underlying mechanism was unclear. This study showed that PEDV activates the ATM-Chk2 signaling, while inhibition of ATM or Chk2 dampens the early stage of PEDV infection. Additionally, we found that PEDV-activated ATM signaling correlates with intracellular ROS production. Interestingly, we showed that, unlike the typical γH2AX foci, PEDV infection leads to a unique γH2AX staining pattern, including phase I (nuclear ring staining), II (pan-nuclear staining), and III (co-staining with apoptotic bodies), which highly resembles the apoptosis process. Furthermore, we demonstrated that PEDV-induced H2AX phosphorylation depends on the activation of caspase-7 and caspase-activated DNAse (CAD), but not ATM-Chk2. Finally, we showed that the knockdown of H2AX attenuates PEDV replication. Taken together, we conclude that PEDV induces DDR through the ROS-ATM and caspase7-CAD-γH2AX signaling pathways to foster its early replication.
Collapse
|
106
|
Zhang K, Wu Q, Liu W, Wang Y, Zhao L, Chen J, Liu H, Liu S, Li J, Zhang W, Zhan Q. FAM135B sustains the reservoir of Tip60-ATM assembly to promote DNA damage response. Clin Transl Med 2022; 12:e945. [PMID: 35979619 PMCID: PMC9386324 DOI: 10.1002/ctm2.945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recently, the mechanism by which cells adapt to intrinsic and extrinsic stresses has received considerable attention. Tat-interactive protein 60-kDa/ataxia-telangiectasia-mutated (TIP60/ATM) axis-mediated DNA damage response (DDR) is vital for maintaining genomic integrity. METHODS Protein levels were detected by western blot, protein colocalisation was examined by immunofluorescence (IF) and protein interactions were measured by co-immunoprecipitation, proximity ligation assay and GST pull-down assays. Flow cytometry, comet assay and IF assays were used to explore the biological functions of sequence similarity 135 family member B (FAM135B) in DDR. Xenograft tumour, FAM135B transgenic mouse models and immunohistochemistry were utilised to confirm in vitro observations. RESULTS We identified a novel DDR regulator FAM135B which could protect cancer cells from genotoxic stress in vitro and in vivo. The overexpression of FAM135B promoted the removal of γH2AX and 53BP1 foci, whereas the elimination of FAM135B attenuated these effects. Consistently, our findings revealed that FAM135B could promote homologous recombination and non-homologous end-joining repairs. Further study demonstrated that FAM135B physically bound to the chromodomain of TIP60 and improved its histone acetyltransferase activity. Moreover, FAM135B enhanced the interactions between TIP60 and ATM under resting conditions. Intriguingly, the protein levels of FAM135B dramatically decreased following DNA damage stress but gradually increased during the DNA repair period. Thus, we proposed a potential DDR mechanism where FAM135B sustains a reservoir of pre-existing TIP60-ATM assemblies under resting conditions. Once cancer cells suffer DNA damage, FAM135B is released from TIP60, and the functioning pre-assembled TIP60-ATM complex participates in DDR. CONCLUSIONS We characterised FAM135B as a novel DDR regulator and further elucidated the role of the TIP60-ATM axis in response to DNA damage, which suggests that targeting FAM135B in combination with radiation therapy or chemotherapy could be a potentially effective approach for cancer treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Wenzhong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Lianmei Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
| | - Haoyu Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Siqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Department of OncologyCancer InstitutePeking University Shenzhen HospitalShenzhen Peking University‐Hong Kong University of Science and Technology (PKU‐HKUST) Medical CenterShenzhenChina
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijingChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijingChina
- Department of OncologyCancer InstitutePeking University Shenzhen HospitalShenzhen Peking University‐Hong Kong University of Science and Technology (PKU‐HKUST) Medical CenterShenzhenChina
- Peking University International Cancer InstituteBeijingChina
| |
Collapse
|
107
|
Liang RP, Zhang XX, Zhao J, Lu QW, Zhu RT, Wang WJ, Li J, Bo K, Zhang CX, Sun YL. RING finger and WD repeat domain 3 regulates proliferation and metastasis through the Wnt/β-catenin signalling pathways in hepatocellular carcinoma. World J Gastroenterol 2022; 28:3435-3454. [PMID: 36158256 PMCID: PMC9346462 DOI: 10.3748/wjg.v28.i27.3435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/16/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) exhibits high invasiveness and mortality rates, and the molecular mechanisms of HCC have gained increasing research interest. The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development. Recent studies have shown the potential of the protein RING finger and WD repeat domain 3 (RFWD3) that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers. AIM To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways. METHODS RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues. Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines. After verifying the silencing efficiency, Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis. Subsequently, cell migration and invasion were assessed by wound healing and transwell assays. In addition, transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis. Next, we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype. Finally, the microarray, ingenuity pathway analysis, and western blot analysis were used to analyze the regulatory network underlying HCC. RESULTS Compared with adjacent tissues, RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage (P < 0.05), which indicated a poor prognosis state. RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis, decreased growth, and inhibited the migration in shRNAi cells compared with those in shCtrl cells (P < 0.05). Furthermore, the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration. Moreover, the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines. Finally, gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway. CONCLUSION We provide evidence for the expression and function of RFWD3 in HCC. RFWD3 affects the prognosis, proliferation, invasion, and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Ruo-Peng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiao-Xue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jie Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qin-Wei Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rong-Tao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wei-Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Kai Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chi-Xian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yu-Ling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
108
|
Xie M, Ma N, Bai N, Yang L, Yang X, Zhang KQ, Yang J. PKC-SWI6 signaling regulates asexual development, cell wall integrity, stress response, and lifestyle transition in the nematode-trapping fungus Arthrobotrys oligospora. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2455-2471. [PMID: 35829807 DOI: 10.1007/s11427-022-2118-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 10/17/2022]
Abstract
Predatory fungi possess intricate signal transduction systems that regulate their development and support successful infection of the host. Herein, we characterized three components of the cell wall integrity-controlling pathway, namely protein kinase C (AoPKC), SLT2-MAPK (AoSLT2), and SWI6 (AoSWI6), in a representative nematode-trapping fungus Arthrobotrys oligospora, using gene disruption and multi-omics approaches. The phenotypic traits (such as mycelia development, conidiation, stress response, and trap morphogenesis) and metabolic profiles of ΔAopkc and ΔAoswi6 mutants were similar but differed from those of the ΔAoslt2 mutants. Transcriptomic analysis indicated that the genes differentially expressed in the absence of Aoswi6 were involved in DNA replication, repair, and recombination during trap formation. Moreover, the yeast two-hybrid assay showed that AoPKC interacted with AoSWI6, suggesting that in A. oligospora, PKC can directly regulate SWI6, bypassing the SLT2 signaling cascade. Conclusively, our findings deepen our understanding of the regulatory mechanism of asexual development and lifestyle switching in nematode-trapping fungi.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.,School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong, 675000, China
| | - Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.,Yunnan Center for Disease Control and Prevention, Kunming, 650022, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
109
|
Cao L, Chen Q, Gu H, Li Y, Cao W, Liu Y, Qu J, Hou Y, Chen J, Zhang E, He J, Cai Z. Chidamide and venetoclax synergistically exert cytotoxicity on multiple myeloma by upregulating BIM expression. Clin Epigenetics 2022; 14:84. [PMID: 35799216 PMCID: PMC9264603 DOI: 10.1186/s13148-022-01306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Multiple myeloma (MM) is the second most common hematologic malignancy with almost all patients eventually having relapse or refractory MM (RRMM), thus novel drugs or combination therapies are needed for improved prognosis. Chidamide and venetoclax, which target histone deacetylase and BCL2, respectively, are two promising agents for the treatment of RRMM. Results Herein, we found that chidamide and venetoclax synergistically exert an anti-myeloma effect in vitro in human myeloma cell lines (HMCLs) with a combination index (CI) < 1. Moreover, the synergistic anti-myeloma effect of these two drugs was demonstrated in primary MM cells and MM xenograft mice. Mechanistically, co-exposure to chidamide and venetoclax led to cell cycle arrest at G0/G1 and a sharp increase in DNA double-strand breaks. In addition, the combination of chidamide and venetoclax resulted in BCL-XL downregulation and BIM upregulation, and the latter protein was proved to play a critical role in sensitizing HMCLs to co-treatment. Conclusion In conclusion, these results proved the high therapeutic potential of venetoclax and chidamide combination in curing MM, representing a potent and alternative salvage therapy for the treatment of RRMM. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01306-7.
Collapse
Affiliation(s)
- Liqin Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Huiyao Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Yifan Hou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jing Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd, Hangzhou, 310003, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| |
Collapse
|
110
|
Ju MK, Lee JR, Choi Y, Park SY, Sul HJ, Chung HJ, An S, Lee S, Jung E, Kim B, Choi BY, Kim BJ, Kim HS, Lim H, Kang HS, Soh JS, Myung K, Kim KC, Cho JW, Seo J, Kim TM, Lee JY, Kim Y, Kim H, Zang DY. PWWP2B promotes DNA end resection and homologous recombination. EMBO Rep 2022; 23:e53492. [PMID: 35582821 PMCID: PMC9253748 DOI: 10.15252/embr.202153492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2023] Open
Abstract
Genome instability is one of the leading causes of gastric cancers. However, the mutational landscape of driver genes in gastric cancer is poorly understood. Here, we investigate somatic mutations in 25 Korean gastric adenocarcinoma patients using whole-exome sequencing and show that PWWP2B is one of the most frequently mutated genes. PWWP2B mutation correlates with lower cancer patient survival. We find that PWWP2B has a role in DNA double-strand break repair. As a nuclear protein, PWWP2B moves to sites of DNA damage through its interaction with UHRF1. Depletion of PWWP2B enhances cellular sensitivity to ionizing radiation (IR) and impairs IR-induced foci formation of RAD51. PWWP2B interacts with MRE11 and participates in homologous recombination via promoting DNA end-resection. Taken together, our data show that PWWP2B facilitates the recruitment of DNA repair machinery to sites of DNA damage and promotes HR-mediated DNA double-strand break repair. Impaired PWWP2B function might thus cause genome instability and promote gastric cancer development.
Collapse
Affiliation(s)
- Min Kyung Ju
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
| | - Joo Rak Lee
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
| | - Yeonsong Choi
- Department of Biomedical EngineeringUlsan National Institute of Science and TechnologyUlsanKorea
| | - Seon Young Park
- Department of Biological SciencesResearch Institute of Women’s HealthSookmyung Women's UniversitySeoulKorea
| | - Hee Jung Sul
- Hallym Translational Research InstituteHallym University Sacred Heart HospitalAnyang‐siKorea
| | - Hee Jin Chung
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
| | - Soyeong An
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
| | - Semin Lee
- Department of Biomedical EngineeringUlsan National Institute of Science and TechnologyUlsanKorea
| | - Eunyoung Jung
- Department of Biological SciencesResearch Institute of Women’s HealthSookmyung Women's UniversitySeoulKorea
| | - Bohyun Kim
- Hallym Translational Research InstituteHallym University Sacred Heart HospitalAnyang‐siKorea
| | - Bo Youn Choi
- Hallym Translational Research InstituteHallym University Sacred Heart HospitalAnyang‐siKorea
| | - Bum Jun Kim
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Hyeong Su Kim
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Hyun Lim
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Ho Suk Kang
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Jae Seung Soh
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Kyungjae Myung
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- Center for Genomic Integrity Institute for Basic Science (IBS)UlsanKorea
| | - Kab Choong Kim
- Department of SurgeryHallym University Medical CenterHallym University College of MedicineAnyang‐siKorea
| | - Ji Woong Cho
- Department of SurgeryHallym University Medical CenterHallym University College of MedicineAnyang‐siKorea
| | - Jinwon Seo
- Department of PathologyHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| | - Tae Moon Kim
- Center for Genomic Integrity Institute for Basic Science (IBS)UlsanKorea
| | - Ja Yil Lee
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- Center for Genomic Integrity Institute for Basic Science (IBS)UlsanKorea
| | - Yonghwan Kim
- Department of Biological SciencesResearch Institute of Women’s HealthSookmyung Women's UniversitySeoulKorea
| | - Hongtae Kim
- Department of Biological SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- Center for Genomic Integrity Institute for Basic Science (IBS)UlsanKorea
| | - Dae Young Zang
- Hallym Translational Research InstituteHallym University Sacred Heart HospitalAnyang‐siKorea
- Department of Internal MedicineHallym University Sacred Heart HospitalHallym University College of MedicineAnyang‐siKorea
| |
Collapse
|
111
|
Model-based translation of DNA damage signaling dynamics across cell types. PLoS Comput Biol 2022; 18:e1010264. [PMID: 35802572 PMCID: PMC9269748 DOI: 10.1371/journal.pcbi.1010264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
Interindividual variability in DNA damage response (DDR) dynamics may evoke differences in susceptibility to cancer. However, pathway dynamics are often studied in cell lines as alternative to primary cells, disregarding variability. To compare DDR dynamics in the cell line HepG2 with primary human hepatocytes (PHHs), we developed a HepG2-based computational model that describes the dynamics of DDR regulator p53 and targets MDM2, p21 and BTG2. We used this model to generate simulations of virtual PHHs and compared the results to those for PHH donor samples. Correlations between baseline p53 and p21 or BTG2 mRNA expression in the absence and presence of DNA damage for HepG2-derived virtual samples matched the moderately positive correlations observed for 50 PHH donor samples, but not the negative correlations between p53 and its inhibitor MDM2. Model parameter manipulation that affected p53 or MDM2 dynamics was not sufficient to accurately explain the negative correlation between these genes. Thus, extrapolation from HepG2 to PHH can be done for some DDR elements, yet our analysis also reveals a knowledge gap within p53 pathway regulation, which makes such extrapolation inaccurate for the regulator MDM2. This illustrates the relevance of studying pathway dynamics in addition to gene expression comparisons to allow reliable translation of cellular responses from cell lines to primary cells. Overall, with our approach we show that dynamical modeling can be used to improve our understanding of the sources of interindividual variability of pathway dynamics. Susceptibility to develop cancer varies among people, partially due to differences in genetic background. Ideally, healthy human-derived cells are used to investigate intracellular signaling pathways and their interindividual variability contributing to cancer susceptibility. Because cells from healthy human tissue are difficult to obtain and culture for periods longer than a few days, cell lines are often used as substitute. However, it is unclear to what extent signaling dynamics in cell lines represent dynamics in healthy human tissue. We asked whether we could reproduce interindividual variability in DNA damage response gene expression in a set of 50 human liver cell donors. Therefore, we built a mathematical model that simulates temporal expression dynamics of the DNA damage response in the HepG2 liver cell line upon chemical activation and used the simulations to create virtual donors. Our virtual donors displayed similar relations between genes as the samples from human donors, provided that we adjusted the strength of specific molecular interactions. Thus, our approach can be used to examine the applicability of widely used cell systems to healthy human tissue in terms of their dynamic responses.
Collapse
|
112
|
Jiang K, Ding Y, Dong C, Shan F, Guo K, Zhang J, Zhang F. BCLAF1, a functional partner of BACH1, participates in DNA damage response. DNA Repair (Amst) 2022; 118:103371. [DOI: 10.1016/j.dnarep.2022.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
|
113
|
Saeed N, Mahjabeen I, Hakim F, Hussain MZ, Mehmood A, Nisar A, Ahmed MW, Kayani MA. Role of Chk1 gene in molecular classification and prognosis of gastric cancer using immunohistochemistry and LORD-Q assay. Future Oncol 2022; 18:2827-2841. [PMID: 35762179 DOI: 10.2217/fon-2021-1546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: The aim of the current study was to assess the prognostic value of the Chk1 gene in the DNA damage response pathway in gastric cancer (GC). Methods: Expression levels of the Chk1 were measured in 220 GC tumor tissues and adjacent healthy/noncancerous tissues using real-time PCR and immunohistochemical staining. Genomic instability in GC patients was measured using the long-run real-time PCR technique for DNA-damage quantification assay and comet assay. Results: Significantly downregulated expression of Chk1 was observed at the mRNA level (p < 0.0001) and protein level (p < 0.0001). Significantly increased frequency of lesions/10 kb and comets was observed in tumor tissues compared with control tissues. Conclusion: The data suggest that downregulated expression of Chk1 and positive Heliobacter pylori infection status may have prognostic significance in GC.
Collapse
Affiliation(s)
- Nadia Saeed
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Farzana Hakim
- Department of Biochemistry, Foundation University Medical College, Islamabad, Pakistan
| | | | - Azhar Mehmood
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Asif Nisar
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Malik Waqar Ahmed
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan.,Pakistan Institute of Rehabilitation Sciences (PIRS), Isra University Islamabad Campus, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer genetics and epigenetic lab, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| |
Collapse
|
114
|
Zhang T, Wang Z, Liu M, Liu L, Yang X, Zhang Y, Bie J, Li Y, Ren M, Song C, Wang W, Tan H, Luo J. Acetylation dependent translocation of EWSR1 regulates CHK2 alternative splicing in response to DNA damage. Oncogene 2022; 41:3694-3704. [PMID: 35732801 DOI: 10.1038/s41388-022-02383-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022]
Abstract
Ewing sarcoma breakpoint region 1 (EWSR1) is a member of FET (FUS/EWSR1/TAF15) RNA-binding family of proteins. The Ewing sarcoma oncoprotein EWS-FLI1 has been extensively studied, while much less is known about EWSR1 itself, especially the potential role of EWSR1 in response to DNA damage. Here, we found that UV irradiation induces acetylation of EWSR1, which is required for its nucleoli translocation. We identified K423, K432, K438, K640, and K643 as the major acetylation sites, p300/CBP and HDAC3/HDAC10 as the major acetyltransferases and deacetylases, respectively. Mechanically, UV-induced EWSR1 acetylation repressed its interaction with spliceosomal component U1C, which caused abnormal splicing of CHK2, suppressing the activity of CHK2 in response to UV irradiation. Taken together, our findings uncover acetylation as a novel regulatory modification of EWSR1, and is essential for its function in DNA damage response.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.,Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Zhe Wang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Lu Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Yang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Mengmeng Ren
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Wengong Wang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Hongyu Tan
- Department of Anesthesiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China. .,Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
115
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
116
|
The small nonstructural protein NP1 of human bocavirus 1 directly interacts with Ku70 and RPA70 and facilitates viral DNA replication. PLoS Pathog 2022; 18:e1010578. [PMID: 35653410 PMCID: PMC9197078 DOI: 10.1371/journal.ppat.1010578] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/14/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Human bocavirus 1 (HBoV1), a member of the genus Bocaparvovirus of the family Parvoviridae, causes acute respiratory tract infections in young children. Well-differentiated pseudostratified human airway epithelium cultured at an air-liquid interface (HAE-ALI) is an ideal in vitro culture model to study HBoV1 infection. Unique to other parvoviruses, bocaparvoviruses express a small nonstructured protein NP1 of ~25 kDa from an open reading frame (ORF) in the center of the viral genome. NP1 plays an important role in viral DNA replication and pre-mRNA processing. In this study, we performed an affinity purification assay to identify HBoV1 NP1-inteacting proteins. We identified that Ku70 and RPA70 directly interact with the NP1 at a high binding affinity, characterized with an equilibrium dissociation constant (KD) of 95 nM and 122 nM, respectively. Furthermore, we mapped the key NP1-interacting domains of Ku70 at aa266-439 and of RPA70 at aa181-422. Following a dominant negative strategy, we revealed that the interactions of Ku70 and RPA70 with NP1 play a significant role in HBoV1 DNA replication not only in an in vitro viral DNA replication assay but also in HBoV1-infected HAE-ALI cultures. Collectively, our study revealed a novel mechanism by which HBoV1 NP1 enhances viral DNA replication through its direct interactions with Ku70 and RPA70.
Collapse
|
117
|
Aengenvoort J, Sekeres M, Proksch P, Fritz G. Targeting Mechanisms of the DNA Damage Response (DDR) and DNA Repair by Natural Compounds to Improve cAT-Triggered Tumor Cell Death. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113567. [PMID: 35684504 PMCID: PMC9182506 DOI: 10.3390/molecules27113567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Recently, we identified secalonic acid F (SA), 5-epi-nakijiquinone Q (NQ) and 5-epi-ilimaquinone (IQ) as natural compounds (NC) affecting mechanisms of the DNA damage response (DDR). Here, we further characterized their effects on DDR, DNA repair and cytotoxicity if used in mono- and co-treatment with conventional anticancer therapeutics (cAT) (cisplatin (Cis), doxorubicin (Doxo)) in vitro. All three NC influence the phosphorylation level of selected DDR-related factors (i.e., pCHK1, pKAP1, pP53, pRPA32) in mono- and/or co-treatment. Both SA and NQ attenuate the Cis- and Doxo-induced G2/M-phase arrest and effectively stimulate caspase-mediated apoptosis. Notably, SA impacts DNA repair as reflected by enhanced steady-state levels of Cis-(1,2-GpG)-DNA adducts and Doxo-induced DNA double-strand breaks (DSB). Moreover, SA decreased the mRNA and protein expression of the homologous recombination (HR)-related DSB repair factors RAD51 and BRCA1. Both SA and NQ promote Cis- and Doxo-induced cytotoxicity in an additive to synergistic manner (CI ≤ 1.0). Summarizing, we conclude that SA promotes cAT-driven caspase-dependent cell death by interfering with DSB repair and DDR-related checkpoint control mechanisms. Hence, SA is considered as the most promising lead compound to evaluate its therapeutic window in forthcoming pre-clinical in vivo studies.
Collapse
Affiliation(s)
- Jana Aengenvoort
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (J.A.); (M.S.)
| | - Marlena Sekeres
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (J.A.); (M.S.)
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany;
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany; (J.A.); (M.S.)
- Correspondence: ; Tel.: +49-211-8113022
| |
Collapse
|
118
|
Chen Y, Luo Y, Tian Q, Zeng D. miR-103 Derived from Bone Marrow Mesenchymal Stem Cell (BMSC) Retards the Chemo-Resistance Through Targeted-Regulation of TP53 Regulated Inhibitor of Apoptosis 1 (TRIAP1) in Breast Cancer. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The chemo-resistance was one of the major reasons for the treatment failure for breast cancer. Our study aimed to discuss the action of miR-103 derived from BMSC on retarding the chemo-resistance through targeted-regulating TRIAP1 in breast cancer. The cisplatin-resistant breast cancer
cells were cultivated and transfected with si-RNA targeting miR-103 followed by analysis of cell invasion, migration and apoptosis by Transwell. MiR-103 target gene was analyzed with bioinformatics method and dual-luciferase reporter assay. TRIAP1 expression was measured by Western Blot. The
cell apoptosis was reduced when miR-103 expression was restrained along with enhanced cell proliferation. The co-cultivation with BMSC in vitro could upregulate TRIAP1 expression in breast cancer cells. In cells transfected with si-miR-103, the expression of TRIAP1 was reduced, cell
apoptosis was increased and invasion was decreased. In conclusion, the chemo-resistance is induced and the malignant invasion of breast cancer cells is retarded by co-cultivation with mikR-103 derived from BMSC which might be through regulating the expression of TRIAP.
Collapse
Affiliation(s)
- Yihua Chen
- Department of Pathology, The General Hospital of Western Military Command, Chengdu, Sichuan, 610000, China
| | - Yan Luo
- Department of Pathology, The General Hospital of Western Military Command, Chengdu, Sichuan, 610000, China
| | - Qiang Tian
- Department of Pathology, The General Hospital of Western Military Command, Chengdu, Sichuan, 610000, China
| | - Dongmei Zeng
- Department of Pathology, The General Hospital of Western Military Command, Chengdu, Sichuan, 610000, China
| |
Collapse
|
119
|
Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol 2022; 924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
120
|
Multiplexed-Based Assessment of DNA Damage Response to Chemotherapies Using Cell Imaging Cytometry. Int J Mol Sci 2022; 23:ijms23105701. [PMID: 35628514 PMCID: PMC9145608 DOI: 10.3390/ijms23105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The current methods for measuring the DNA damage response (DDR) are relatively labor-intensive and usually based on Western blotting, flow cytometry, and/or confocal immunofluorescence analyses. They require many cells and are often limited to the assessment of a single or few proteins. Here, we used the Celigo® image cytometer to evaluate the cell response to DNA-damaging agents based on a panel of biomarkers associated with the main DDR signaling pathways. We investigated the cytostatic or/and the cytotoxic effects of these drugs using simultaneous propidium iodide and calcein-AM staining. We also describe new dedicated multiplexed protocols to investigate the qualitative (phosphorylation) or the quantitative changes of eleven DDR markers (H2AX, DNA-PKcs, ATR, ATM, CHK1, CHK2, 53BP1, NBS1, RAD51, P53, P21). The results of our study clearly show the advantage of using this methodology because the multiplexed-based evaluation of these markers can be performed in a single experiment using the standard 384-well plate format. The analyses of multiple DDR markers together with the cell cycle status provide valuable insights into the mechanism of action of investigational drugs that induce DNA damage in a time- and cost-effective manner due to the low amounts of antibodies and reagents required.
Collapse
|
121
|
Flippot R, Patrikidou A, Aldea M, Colomba E, Lavaud P, Albigès L, Naoun N, Blanchard P, Terlizzi M, Garcia C, Bernard-Tessier A, Fuerea A, Di Palma M, Escudier B, Loriot Y, Baciarello G, Fizazi K. PARP Inhibition, a New Therapeutic Avenue in Patients with Prostate Cancer. Drugs 2022; 82:719-733. [PMID: 35511402 DOI: 10.1007/s40265-022-01703-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Up to 25% of patients with metastatic prostate cancer present with germline or somatic DNA damage repair alterations, some of which are associated with aggressive disease and poor outcomes. New data have brought poly(ADP-ribose) polymerase (PARP) inhibitors into sharp focus in the treatment of metastatic castrate-resistant prostate cancer (mCRPC). Olaparib improved survival after at least one new hormonal therapy (NHT) in a cohort of patients harboring BRCA1, BRCA2 or ATM mutations in the PROfound trial, while rucaparib, talazoparib and niraparib demonstrated compelling activity in phase II trials. While patients with prostate cancer and BRCA1 or BRCA2 mutations may derive greatest benefit of PARP inhibition, the magnitude of benefit seems much lower in the context of most other homologous recombination gene mutations. Several PARP inhibitors are currently developed in combination with conventional therapy, including chemotherapy, NHT, and alpha-particle emitters, at different disease stages. Herein, we review the rationale for PARP inhibition in patients with prostate cancer, discuss the impact of PARP inhibitors on outcomes, and explore underlying challenges for future developments.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Anna Patrikidou
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Mihaela Aldea
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Emeline Colomba
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Pernelle Lavaud
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Laurence Albigès
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Natacha Naoun
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Pierre Blanchard
- Department of Radiation Oncology, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Mario Terlizzi
- Department of Radiation Oncology, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Camilo Garcia
- Department of Nuclear Medicine, Paris Saclay University, Gustave Roussy, Villejuif, France
| | - Alice Bernard-Tessier
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Alina Fuerea
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Mario Di Palma
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Bernard Escudier
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | - Yohann Loriot
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France
| | | | - Karim Fizazi
- Department of Cancer Medicine, Paris Saclay University, Gustave Roussy, 114 rue Edouard Vaillant, 94 800, Villejuif, France.
| |
Collapse
|
122
|
Gozzi K, Salinas R, Nguyen VD, Laub MT, Schumacher MA. ssDNA is an allosteric regulator of the C. crescentus SOS-independent DNA damage response transcription activator, DriD. Genes Dev 2022; 36:618-633. [PMID: 35618312 PMCID: PMC9186387 DOI: 10.1101/gad.349541.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022]
Abstract
DNA damage repair systems are critical for genomic integrity. However, they must be coordinated with DNA replication and cell division to ensure accurate genomic transmission. In most bacteria, this coordination is mediated by the SOS response through LexA, which triggers a halt in cell division until repair is completed. Recently, an SOS-independent damage response system was revealed in Caulobacter crescentus. This pathway is controlled by the transcription activator, DriD, but how DriD senses and signals DNA damage is unknown. To address this question, we performed biochemical, cellular, and structural studies. We show that DriD binds a specific promoter DNA site via its N-terminal HTH domain to activate transcription of genes, including the cell division inhibitor didA A structure of the C-terminal portion of DriD revealed a WYL motif domain linked to a WCX dimerization domain. Strikingly, we found that DriD binds ssDNA between the WYL and WCX domains. Comparison of apo and ssDNA-bound DriD structures reveals that ssDNA binding orders and orients the DriD domains, indicating a mechanism for ssDNA-mediated operator DNA binding activation. Biochemical and in vivo studies support the structural model. Our data thus reveal the molecular mechanism underpinning an SOS-independent DNA damage repair pathway.
Collapse
Affiliation(s)
- Kevin Gozzi
- Department of Biology, Massachusetts Institute of Technology. Cambridge, Massachusetts 02139, USA
| | - Raul Salinas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology. Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
123
|
Konopka A, Atkin JD. DNA Damage, Defective DNA Repair, and Neurodegeneration in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:786420. [PMID: 35572138 PMCID: PMC9093740 DOI: 10.3389/fnagi.2022.786420] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is under constant attack from both endogenous and exogenous sources, and when damaged, specific cellular signalling pathways respond, collectively termed the “DNA damage response.” Efficient DNA repair processes are essential for cellular viability, although they decline significantly during aging. Not surprisingly, DNA damage and defective DNA repair are now increasingly implicated in age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS affects both upper and lower motor neurons in the brain, brainstem and spinal cord, leading to muscle wasting due to denervation. DNA damage is increasingly implicated in the pathophysiology of ALS, and interestingly, the number of DNA damage or repair proteins linked to ALS is steadily growing. This includes TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein that is present in a pathological form in almost all (97%) cases of ALS. Hence TDP-43 pathology is central to neurodegeneration in this condition. Fused in Sarcoma (FUS) bears structural and functional similarities to TDP-43 and it also functions in DNA repair. Chromosome 9 open reading frame 72 (C9orf72) is also fundamental to ALS because mutations in C9orf72 are the most frequent genetic cause of both ALS and related condition frontotemporal dementia, in European and North American populations. Genetic variants encoding other proteins involved in the DNA damage response (DDR) have also been described in ALS, including FUS, SOD1, SETX, VCP, CCNF, and NEK1. Here we review recent evidence highlighting DNA damage and defective DNA repair as an important mechanism linked to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka,
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Julie D. Atkin,
| |
Collapse
|
124
|
Prevention of anticancer therapy-induced neurotoxicity: putting DNA damage in perspective. Neurotoxicology 2022; 91:1-10. [PMID: 35487345 DOI: 10.1016/j.neuro.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe side effect of conventional cancer therapeutics (cAT) that significantly impacts the quality of life of tumor patients. The molecular mechanisms of CIPN are incompletely understood and there are no effective preventive or therapeutic measures available to date. Here, we present a brief overview of the current knowledge about mechanisms underlying CIPN and discuss DNA damage-related stress responses as feasible targets for the prevention of CIPN. In addition, we discuss that the nematode Caenorhabditis elegans is a useful 3R-conform model organism to further elucidate molecular mechanisms of CIPN and to identify novel lead compounds protecting from cAT-triggered neuropathy.
Collapse
|
125
|
HiIDDD: a high-throughput imaging pipeline for the quantitative detection of DNA damage in primary human immune cells. Sci Rep 2022; 12:6335. [PMID: 35428779 PMCID: PMC9022135 DOI: 10.1038/s41598-022-10018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
DNA damage is a prominent biomarker for numerous diseases, including cancer, as well as for the aging process. Detection of DNA damage routinely relies on traditional microscopy or cytometric methods. However, these techniques are typically of limited throughput and are not ideally suited for large-scale longitudinal and population studies that require analysis of large sample sets. We have developed HiIDDD (High-throughput Immune cell DNA Damage Detection), a robust, quantitative and single-cell assay that measures DNA damage by high-throughput imaging using the two major DNA damage markers 53BP1 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upgamma$$\end{document}γ-H2AX. We demonstrate sensitive detection with low inter-assay variability of DNA damage in various types of freshly isolated and cryopreserved primary human immune cells, including CD4 + and CD8 + T cells, B cells and monocytes. As proof of principle, we demonstrate parallel batch processing of several immune cell types from multiple donors. We find common patterns of DNA damage in multiple immune cell types of donors of varying ages, suggesting that immune cell properties are specific to individuals. These results establish a novel high-throughput assay for the evaluation of DNA damage in large-scale studies.
Collapse
|
126
|
Mattola S, Salokas K, Aho V, Mäntylä E, Salminen S, Hakanen S, Niskanen EA, Svirskaite J, Ihalainen TO, Airenne KJ, Kaikkonen-Määttä M, Parrish CR, Varjosalo M, Vihinen-Ranta M. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog 2022; 18:e1010353. [PMID: 35395063 PMCID: PMC9020740 DOI: 10.1371/journal.ppat.1010353] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/20/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication. Parvoviruses are small, nonenveloped DNA viruses, that besides being noteworthy pathogens in many animal species, including humans, are also being developed as vectors for gene and cancer therapy. Canine parvovirus is an autonomously replicating parvovirus that encodes two nonstructural proteins, NS1 and NS2. NS1 is required for viral DNA replication and packaging, as well as gene expression. However, very little is known about the function of NS2. Our studies indicate that NS2 serves a previously undefined important function in chromatin modification and DNA damage responses. Therefore, it appears that although both NS1 and NS2 are needed for a productive infection they play very different roles in the process.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Julija Svirskaite
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari J. Airenne
- Kuopio Center for Gene and Cell Therapy (KCT), Kuopio, Finland
| | | | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, University of Cornell, Ithaca, New York, United States of America
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- * E-mail:
| |
Collapse
|
127
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
128
|
Nakahata S, Komoto T, Fujii M, Awazu A. Mathematical model of chromosomal dynamics during DNA double strand break repair in budding yeast. Biophys Physicobiol 2022; 19:1-12. [PMID: 35749629 PMCID: PMC9160732 DOI: 10.2142/biophysico.bppb-v19.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
During the repair of double-strand breaks (DSBs) in DNA, active mobilizations for conformational changes in chromosomes have been widely observed in eukaryotes, from yeast to animal and plant cells. DSB-damaged loci in the yeast genome showed increased mobility and relocation to the nuclear periphery. However, the driving forces behind DSB-induced chromatin dynamics remain unclear. In this study, mathematical models of normal and DSB-damaged yeast chromosomes were developed to simulate their structural dynamics. The effects of histone degradation in the whole nucleus and the change in the physical properties of damaged loci due to the binding of SUMOylated repair proteins were considered in the model of DSB-induced chromosomes based on recent experimental results. The simulation results reproduced DSB-induced changes to structural and dynamical features by which the combination of whole nuclear histone degradation and the rigid structure formation of repair protein accumulations on damaged loci were suggested to be primary contributors to the process by which damaged loci are relocated to the nuclear periphery.
Collapse
Affiliation(s)
- Shinjiro Nakahata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tetsushi Komoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Fujii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
129
|
Park JW, Park JE, Kim SR, Sim MK, Kang CM, Kim KS. Metformin alleviates ionizing radiation-induced senescence by restoring BARD1-mediated DNA repair in human aortic endothelial cells. Exp Gerontol 2022; 160:111706. [DOI: 10.1016/j.exger.2022.111706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
|
130
|
Suzuki T, Hirokawa T, Maeda A, Harata S, Watanabe K, Yanagita T, Ushigome H, Nakai N, Maeda Y, Shiga K, Ogawa R, Mitsui A, Kimura M, Matsuo Y, Takahashi H, Takiguchi S. ATR inhibitor AZD6738 increases the sensitivity of colorectal cancer cells to 5‑fluorouracil by inhibiting repair of DNA damage. Oncol Rep 2022; 47:78. [PMID: 35191521 PMCID: PMC8892626 DOI: 10.3892/or.2022.8289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Abstract
The repair of DNA damage caused by chemotherapy in cancer cells occurs mainly at two cell cycle checkpoints (G1 and G2) and is a factor contributing to chemoresistance. Most colorectal cancers harbor mutations in p53, the main pathway involved in the G1 checkpoint, and thus, are particularly dependent on the G2 checkpoint for DNA repair. The present study examined the effect of AZD6738, a specific inhibitor of ataxia telangiectasia mutated and rad3‑related (ATR) involved in the G2 checkpoint, combined with 5‑fluorouracil (5‑FU), a central chemotherapeutic agent, on colorectal cancer cells. Since 5‑FU has a DNA‑damaging effect, its combination with AZD6738 is likely to enhance the therapeutic effect. The effects of the AZD6738/5‑FU combination were evaluated in various colorectal cancer cells (HT29, SW480, HCT116 and DLD‑1 cells) by flow cytometry (HT29 cells), western blotting (HT29 cells) and water‑soluble tetrazolium 1 assays (HT29, SW480, HCT116 and DLD‑1 cells), as well as in an experimental animal model (HT29 cells). In vitro, the AZD6738/5‑FU combination increased the number of mitotic cells according to flow cytometry, decreased the checkpoint kinase 1 phosphorylation levels and increased cleaved caspase‑3 and phosphorylated form of H2A.X variant histone levels according to western blotting, and decreased the proliferation rate of four colon cancer cell lines according to cell viability experiments. In vivo, xenografted colorectal cancer cells treated with the AZD6738/5‑FU combination exhibited a marked decrease in proliferation compared with the 5‑FU alone group. The present results suggested that AZD6738 enhanced the effect of 5‑FU in p53‑mutated colorectal cancer.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takahisa Hirokawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
- Department of Gastroenterological Surgery, Kariya Toyota General Hospital, Kariya, Aichi 448-8505, Japan
| | - Anri Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shinnosuke Harata
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kaori Watanabe
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hajime Ushigome
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Nozomi Nakai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yuzo Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University West Medical Center, Nagoya, Aichi 462-8508, Japan
| | - Masahiro Kimura
- Department of Gastroenterological Surgery, Nagoya City University East Medical Center, Nagoya, Aichi 464-8547, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
131
|
Cattrini C, Caffo O, De Giorgi U, Mennitto A, Gennari A, Olmos D, Castro E. Apalutamide, Darolutamide and Enzalutamide for Nonmetastatic Castration-Resistant Prostate Cancer (nmCRPC): A Critical Review. Cancers (Basel) 2022; 14:1792. [PMID: 35406564 PMCID: PMC8997634 DOI: 10.3390/cancers14071792] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Nonmetastatic castration-resistant prostate cancer (nmCRPC) represents a condition in which patients with prostate cancer show biochemical progression during treatment with androgen-deprivation therapy (ADT) without signs of radiographic progression according to conventional imaging. The SPARTAN, ARAMIS and PROSPER trials showed that apalutamide, darolutamide and enzalutamide, respectively, prolong metastasis-free survival (MFS) and overall survival (OS) of nmCRPC patients with a short PSA doubling time, and these antiandrogens have been recently introduced in clinical practice as a new standard of care. No direct comparison of these three agents has been conducted to support treatment choice. In addition, a significant proportion of nmCRPC on conventional imaging is classified as metastatic with new imaging modalities such as the prostate-specific membrane antigen positron emission tomography (PSMA-PET). Some experts posit that these "new metastatic" patients should be treated as mCRPC, resizing the impact of nmCRPC trials, whereas other authors suggest that they should be treated as nmCRPC patients, based on the design of pivotal trials. This review discusses the most convincing evidence regarding the use of novel antiandrogens in patients with nmCRPC and the implications of novel imaging techniques for treatment selection.
Collapse
Affiliation(s)
- Carlo Cattrini
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, 38122 Trento, Italy;
| | - Ugo De Giorgi
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Alessia Mennitto
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| | - Alessandra Gennari
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| | - David Olmos
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Elena Castro
- Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- UGCI Medical Oncology, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, 29010 Málaga, Spain
| |
Collapse
|
132
|
The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet 2022; 38:598-612. [PMID: 35346511 DOI: 10.1016/j.tig.2022.02.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.
Collapse
|
133
|
Interactions between miRNAs and Double-Strand Breaks DNA Repair Genes, Pursuing a Fine-Tuning of Repair. Int J Mol Sci 2022; 23:ijms23063231. [PMID: 35328651 PMCID: PMC8954595 DOI: 10.3390/ijms23063231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of DNA damage is a crucial process for the correct maintenance of genetic information, thus, allowing the proper functioning of cells. Among the different types of lesions occurring in DNA, double-strand breaks (DSBs) are considered the most harmful type of lesion, which can result in significant loss of genetic information, leading to diseases, such as cancer. DSB repair occurs through two main mechanisms, called non-homologous end joining (NHEJ) and homologous recombination repair (HRR). There is evidence showing that miRNAs play an important role in the regulation of genes acting in NHEJ and HRR mechanisms, either through direct complementary binding to mRNA targets, thus, repressing translation, or by targeting other genes involved in the transcription and activity of DSB repair genes. Therefore, alteration of miRNA expression has an impact on the ability of cells to repair DSBs, which, in turn, affects cancer therapy sensitivity. This latter gives account of the importance of miRNAs as regulators of NHEJ and HRR and places them as a promising target to improve cancer therapy. Here, we review recent reports demonstrating an association between miRNAs and genes involved in NHEJ and HRR. We employed the Web of Science search query TS (“gene official symbol/gene aliases*” AND “miRNA/microRNA/miR-”) and focused on articles published in the last decade, between 2010 and 2021. We also performed a data analysis to represent miRNA–mRNA validated interactions from TarBase v.8, in order to offer an updated overview about the role of miRNAs as regulators of DSB repair.
Collapse
|
134
|
Zhu S, Zhang Z, Zhang H, Liu Z, Liu M, Liu Q, Zang L, Wang L, Ji J, Wu B, Sun L, Zhang Z, Cao H, Wang Y, Wang H, Shang Z, Niu Y. DNA-repair status should be assessed in treatment-emergent neuroendocrine prostate cancer before platinum-based therapy. Prostate 2022; 82:464-474. [PMID: 35037281 DOI: 10.1002/pros.24292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study sought to provide contemporary data from a multi-institution with respect to DNA-repair genes (DRGs) status and its impact on effects of platinum-based chemotherapy in treatment-emergent neuroendocrine prostate cancer (t-NEPC), for which little data exist. PATIENTS AND METHODS All patients were retrospectively collected with eligible biopsied tissues for targeted next generation sequencing (NGS). The main outcomes were radiologic progression-free survival and overall survival according to Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS Among the 43 NEPC patients, 13/43 (30%) harbored homozygous deletions, deleterious mutations, or both in DRGs. Eleven patients (11/13, 85%) with DRGs aberrations had effective response, including 7 patients with BRCA1/2 defects and 2 with mismatch repair-deficient caused by MSH2 alterations. While significantly fewer responders (30%) were detected in patients without DRGs aberrations (odds ratio = 12.83, p = 0.003). Compared with patients without genomic DRGs aberrations, the hazard ratio (HR) for radiologic progression in those with DRGs defects was 0.42 (95% confidence interval [CI]: 0.19-0.93), and the HR for death was 0.65 (95% CI: 0.24-1.72). The most common adverse event of Grade 3 or 4 was anemia, as noted in 7 patients (16%). CONCLUSION The DRGs status is therapeutically meaningful in t-NEPC. Given the potential responses to platinum-based chemotherapy, our findings support the clinical use of NGS in t-NEPC patients to identify DRGs aberrations.
Collapse
Affiliation(s)
- Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hui Zhang
- Department of Nephrology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Zihao Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Min Liu
- Department of Urology, Zibo Central Hospital, Zibo, Shandong, China
| | - Qing Liu
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Zang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junpeng Ji
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Bo Wu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Libin Sun
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhenting Zhang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Heran Cao
- Department of Urology, Shijiazhuang People's Hospital, The No. 1 Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
135
|
Swift ML, Azizkhan-Clifford J. DNA damage-induced sumoylation of Sp1 induces its interaction with RNF4 and degradation in S phase to remove 53BP1 from DSBs and permit HR. DNA Repair (Amst) 2022; 111:103289. [DOI: 10.1016/j.dnarep.2022.103289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023]
|
136
|
Lihui X, Xiaojie Q, Hao Y, Jialiang C, Jinming G, Ying C. Albicanol modulates oxidative stress and the p53 axis to suppress profenofos induced genotoxicity in grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 122:325-333. [PMID: 35143987 DOI: 10.1016/j.fsi.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The organophosphorus pesticide profenofos (PFF) is widely used as an environmental contaminant, and it can remain in water bodies causing serious harm to aquatic organisms. Albicanol is a sesquiterpenoid with potent antioxidant and antagonistic activities against heavy metal toxicity. However, the mechanism of PFF induced genotoxicity in fish hepatocytes and the role Albicanol can play in this process are unknown. In this study, the model was established by treating grass carp hepatocytes with PFF (150 μM) and/or Albicanol (5 × 10-5 μg mL-1) for 24 h. The results showed that PFF exposure arrested L8824 cells in the G1-S phase. PFF caused the increase of MDA level in L8824 cells, while the decrease of SOD, CAT and T-AOC levels caused oxidative stress. Elevated levels of γH2AX, tail moment, tail length, % DNA and 8-OHdG indicated that PFF caused DNA damage in L8824 cells. PFF inhibited the expression levels of cell cycle related regulatory genes (cyclin A, cyclin D, cyclin E, CDK2 and CDK4) by upregulating p53/p21 genes and activating the p53 signaling pathway. Albicanol was used to significantly reduce the above effects caused by PFF exposure on hepatocytes in grass carp. Albicanol could reduce the increase in the proportion of cells in the G1-S phase caused by PFF. In summary, Albicanol could inhibit the genotoxicity of L8824 cells resulted from PFF exposure by decreasing oxidative stress and the p53 pathway.
Collapse
Affiliation(s)
- Xuan Lihui
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Qiu Xiaojie
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Hao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chu Jialiang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guo Jinming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chang Ying
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
137
|
Gai X, Xin D, Wu D, Wang X, Chen L, Wang Y, Ma K, Li Q, Li P, Yu X. Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response. Cell Res 2022; 32:254-268. [PMID: 34980897 PMCID: PMC8888703 DOI: 10.1038/s41422-021-00597-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), DNA damage repair factors are recruited to DNA lesions and form nuclear foci. However, the underlying molecular mechanism remains largely elusive. Here, by analyzing the localization of DSB repair factors in the XY body and DSB foci, we demonstrate that pre-ribosomal RNA (pre-rRNA) mediates the recruitment of DSB repair factors around DNA lesions. Pre-rRNA exists in the XY body, a DSB repair hub, during meiotic prophase, and colocalizes with DSB repair factors, such as MDC1, BRCA1 and TopBP1. Moreover, pre-rRNA-associated proteins and RNAs, such as ribosomal protein subunits, RNase MRP and snoRNAs, also localize in the XY body. Similar to those in the XY body, pre-rRNA and ribosomal proteins also localize at DSB foci and associate with DSB repair factors. RNA polymerase I inhibitor treatment that transiently suppresses transcription of rDNA but does not affect global protein translation abolishes foci formation of DSB repair factors as well as DSB repair. The FHA domain and PST repeats of MDC1 recognize pre-rRNA and mediate phase separation of DSB repair factors, which may be the molecular basis for the foci formation of DSB repair factors during DSB response.
Collapse
Affiliation(s)
- Xiaochen Gai
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Di Xin
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Duo Wu
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xin Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Linlin Chen
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Yiqing Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Kai Ma
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Qilin Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Peng Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. .,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
138
|
Ming X, Bo Z, Miao Y, Chen H, Bao C, Sun L, Xi R, Zhong Q, Zhao P, Jung YS, Qian Y. Pseudorabies virus kinase UL13 phosphorylates H2AX to foster viral replication. FASEB J 2022; 36:e22221. [PMID: 35199383 DOI: 10.1096/fj.202101360rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
The DNA damage response (DDR) pathway is critical for maintaining genomic integrity and sustaining organismal development. Viruses can either utilize or circumvent the DDR to facilitate their replication. Pseudorabies virus (PRV) infection was shown to induce apoptosis via stimulating DDR. However, the underlying mechanisms have not been fully explored to date. This study showed that PRV infection robustly activates the ATM and DNA-PK signaling pathways shortly after infection. However, inhibition of ATM, but not DNA-PK, could dampen PRV replication in cells. Importantly, we found that PRV-encoded serine/threonine kinase UL13 interacts with and subsequently phosphorylates H2AX. Furthermore, we found that UL13 deletion largely attenuates PRV neuroinvasiveness and virulence in vivo. In addtion, we showed that UL13 contributes to H2AX phosphorylation upon PRV infection both in vitro and in vivo, but does not affect ATM phosphorylation. Finally, we showed that knockdown of H2AX reduces PRV replication, while this reduction can be further enhanced by deletion of UL13. Taken together, we conclude that PRV-encoded kinase UL13 regulates DNA damage marker γH2AX and UL13-mediated H2AX phosphorylation plays a pivotal role in efficient PRV replication and progeny production.
Collapse
Affiliation(s)
- Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zongyi Bo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yurun Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenyi Bao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liumei Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rui Xi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiuping Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| |
Collapse
|
139
|
Shao L, Ning K, Wang J, Cheng F, Wang S, Qiu J. The Large Nonstructural Protein (NS1) of Human Bocavirus 1 Directly Interacts with Ku70, Which Plays an Important Role in Virus Replication in Human Airway Epithelia. J Virol 2022; 96:e0184021. [PMID: 34878919 PMCID: PMC8865542 DOI: 10.1128/jvi.01840-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Human bocavirus 1 (HBoV1), an autonomous human parvovirus, causes acute respiratory tract infections in young children. HBoV1 infects well-differentiated (polarized) human airway epithelium cultured at an air-liquid interface (HAE-ALI). HBoV1 expresses a large nonstructural protein, NS1, that is essential for viral DNA replication. HBoV1 infection of polarized human airway epithelial cells induces a DNA damage response (DDR) that is critical to viral DNA replication involving DNA repair with error-free Y-family DNA polymerases. HBoV1 NS1 or the isoform NS1-70 per se induces a DDR. In this study, using the second-generation proximity-dependent biotin identification (BioID2) approach, we identified that Ku70 is associated with the NS1-BioID2 pulldown complex through a direct interaction with NS1. Biolayer interferometry (BLI) assay determined a high binding affinity of NS1 with Ku70, which has an equilibrium dissociation constant (KD) value of 0.16 μM and processes the strongest interaction at the C-terminal domain. The association of Ku70 with NS1 was also revealed during HBoV1 infection of HAE-ALI. Knockdown of Ku70 and overexpression of the C-terminal domain of Ku70 significantly decreased HBoV1 replication in HAE-ALI. Thus, our study provides, for the first time, a direct interaction of parvovirus large nonstructural protein NS1 with Ku70. IMPORTANCE Parvovirus infection induces a DNA damage response (DDR) that plays a pivotal role in viral DNA replication. The DDR includes activation of ATM (ataxia telangiectasia mutated), ATR (ATM- and RAD3-related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit). The large nonstructural protein (NS1) often plays a role in the induction of DDR; however, how the DDR is induced during parvovirus infection or simply by the NS1 is not well studied. Activation of DNA-PKcs has been shown as one of the key DDR pathways in DNA replication of HBoV1. We identified that HBoV1 NS1 directly interacts with Ku70, but not Ku80, of the Ku70/Ku80 heterodimer at high affinity. This interaction is also important for HBoV1 replication in HAE-ALI. We propose that the interaction of NS1 with Ku70 recruits the Ku70/Ku80 complex to the viral DNA replication center, which activates DNA-PKcs and facilitates viral DNA replication.
Collapse
Affiliation(s)
- Liting Shao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jianke Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
140
|
Glioblastoma recurrent cells switch between ATM and ATR pathway as an alternative strategy to survive radiation stress. Med Oncol 2022; 39:50. [PMID: 35150325 DOI: 10.1007/s12032-022-01657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
Primary treatment modality for glioblastoma (GBM) post-surgery is radiation therapy. Due to increased DNA damage repair capacity of resistant residual GBM cells, recurrence is inevitable in glioblastoma and unfortunately the recurrent tumours are resistant to the conventional therapy. Here we used our previously described in vitro radiation survival model generated from primary GBM patient samples and cell lines, which recapitulates the clinical scenario of therapy resistance and relapse. Using the parent and recurrent GBM cells from these models, we show that similar to parent GBM, the recurrent GBM cells also elicit a competent DNA damage response (DDR) post irradiation. However, the use of apical DNA damage repair sensory kinase (ATM and/or ATR) is different in the recurrent cells compared to parent cells. Consistently, we demonstrate that there is a differential clonogenic response of parent and recurrent GBM cells to the ATM and ATR kinase inhibitors with recurrent samples switching between these sensory kinases for survival emphasizing on the underlying heterogeneity within and across GBM samples. Taken together, here we report that recurrent tumours utilize an alternate DDR kinase to overcome radiation induced DNA damage. Since there is no effective treatment specifically for recurred GBM patients, these findings provide a rationale for developing newer treatment option to sensitize recurrent GBM samples by detecting in clinics the ability of cells to activate a DNA damage repair kinase different from their parent counterparts.
Collapse
|
141
|
Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis 2022; 13:103-128. [PMID: 35111365 PMCID: PMC8782554 DOI: 10.14336/ad.2021.0927] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a prominent risk factor for cardiovascular diseases, which is the leading cause of death around the world. Recently, cellular senescence has received potential attention as a promising target in preventing cardiovascular diseases, including acute myocardial infarction, atherosclerosis, cardiac aging, pressure overload-induced hypertrophy, heart regeneration, hypertension, and abdominal aortic aneurysm. Here, we discuss the mechanisms underlying cellular senescence and describe the involvement of senescent cardiovascular cells (including cardiomyocytes, endothelial cells, vascular smooth muscle cells, fibroblasts/myofibroblasts and T cells) in age-related cardiovascular diseases. Then, we highlight the targets (SIRT1 and mTOR) that regulating cellular senescence in cardiovascular disorders. Furthermore, we review the evidence that senescent cells can exert both beneficial and detrimental implications in cardiovascular diseases on a context-dependent manner. Finally, we summarize the emerging pro-senescent or anti-senescent interventions and discuss their therapeutic potential in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
142
|
Cheng M, Wang Q, Chen L, Zhao D, Tang J, Xu J, He Z. LncRNA UCA1/miR-182-5p/MGMT axis modulates glioma cell sensitivity to TMZ through MGMT-related DNA damage pathways. Hum Pathol 2022; 123:59-73. [DOI: 10.1016/j.humpath.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022]
|
143
|
Bieńkowski M, Tomasik B, Braun M, Jassem J. PARP inhibitors for metastatic castration-resistant prostate cancer: Biological rationale and current evidence. Cancer Treat Rev 2022; 104:102359. [DOI: 10.1016/j.ctrv.2022.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022]
|
144
|
Yttrium chloride-induced cytotoxicity and DNA damage response via ROS generation and inhibition of Nrf2/PPARγ pathways in H9c2 cardiomyocytes. Arch Toxicol 2022; 96:767-781. [PMID: 35088107 DOI: 10.1007/s00204-022-03225-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022]
Abstract
Increasing exploration of rare-earth elements (REEs) has resulted in a high REEs' exposure risk. Owing to their persistence and accumulation of REEs in the environment, their adverse effects have caused widespread concern. However, limited toxicological data are available for the adverse effects of yttrium (Y) and its underlying mechanisms of action. In the present study, H9c2 cardiomyocytes were used in vitro model to investigate the cardiotoxicity of yttrium chloride (YCl3). Results show that YCl3 treatment resulted in reactive oxygen species (ROS) overproduction, decrease in ∆Ψm, and DNA damage. Mechanistically, we detected expression levels of protein in response to cellular DNA damage and antioxidative defense. Results indicated that the phosphorylation of histone H2AX remarkably increased in a dose-dependent manner. At a high YCl3-exposure concentration (120 μM), specific DNA damage sensors ATM/ATR-Chk1/Chk2 were significantly decreased. The protein levels of key antioxidant genes Nrf2/PPARγ/HO-1 were also remarkably inhabited. Additionally, the antioxidant N-acetyl-L-cysteine (NAC) pretreatment promoted the activation of antioxidative defense Nrf2/PPARγ signaling pathways, and prevented the production of cellular ROS, thus protecting the DNA from cleavage. Altogether, our findings suggest that YCl3 can induce DNA damage through causing intracellular ROS overproduction and inhibition of antioxidative defense, leading to cytotoxicity in H9c2 cardiomyocytes.
Collapse
|
145
|
Ramos F, Durán L, Sánchez M, Campos A, Hernández-Villamor D, Antequera F, Clemente-Blanco A. Genome-wide sequencing analysis of Sgs1, Exo1, Rad51, and Srs2 in DNA repair by homologous recombination. Cell Rep 2022; 38:110201. [PMID: 35021102 DOI: 10.1016/j.celrep.2021.110201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Homologous recombination is essential to maintain genome stability in response to DNA damage. Here, we have used genome-wide sequencing to quantitatively analyze at nucleotide resolution the dynamics of DNA end resection, re-synthesis, and gene conversion at a double-strand break. Resection initiates asymmetrically in an MRX-independent manner before proceeding steadily in both directions. Sgs1, Exo1, Rad51, and Srs2 differently regulate the rate and symmetry of early and late resection. Exo1 also ensures the coexistence of resection and re-synthesis, while Srs2 guarantees a constant and symmetrical DNA re-polymerization. Gene conversion is MMR independent, spans only a minor fraction of the resected region, and its unidirectionality depends on Srs2. Finally, these repair factors prevent the development of alterations remote from the DNA lesion, such as subtelomeric instability, duplication of genomic regions, and over-replication of Ty elements. Altogether, this approach allows a quantitative analysis and a direct genome-wide visualization of DNA repair by homologous recombination.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Laura Durán
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Mar Sánchez
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Adrián Campos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - David Hernández-Villamor
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain
| | - Francisco Antequera
- Functional Organization of the Eukaryotic Genome Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain.
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González 2, Salamanca 37007, Spain.
| |
Collapse
|
146
|
Chicken blastoderms and primordial germ cells possess a higher expression of DNA repair genes and lower expression of apoptosis genes to preserve their genome stability. Sci Rep 2022; 12:49. [PMID: 34997179 PMCID: PMC8741993 DOI: 10.1038/s41598-021-04417-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
DNA is susceptible to damage by various sources. When the DNA is damaged, the cell repairs the damage through an appropriate DNA repair pathway. When the cell fails to repair DNA damage, apoptosis is initiated. Although several genes are involved in five major DNA repair pathways and two major apoptosis pathways, a comprehensive understanding of those gene expression is not well-understood in chicken tissues. We performed whole-transcriptome sequencing (WTS) analysis in the chicken embryonic fibroblasts (CEFs), stage X blastoderms, and primordial germ cells (PGCs) to uncover this deficiency. Stage X blastoderms mostly consist of undifferentiated progenitor (pluripotent) cells that have the potency to differentiate into all cell types. PGCs are also undifferentiated progenitor cells that later differentiate into male and female germ cells. CEFs are differentiated and abundant somatic cells. Through WTS analysis, we identified that the DNA repair pathway genes were expressed more highly in blastoderms and high in PGCs than CEFs. Besides, the apoptosis pathway genes were expressed low in blastoderms and PGCs than CEFs. We have also examined the WTS-based expression profiling of candidate pluripotency regulating genes due to the conserved properties of blastoderms and PGCs. In the results, a limited number of pluripotency genes, especially the core transcriptional network, were detected higher in both blastoderms and PGCs than CEFs. Next, we treated the CEFs, blastoderm cells, and PGCs with hydrogen peroxide (H2O2) for 1 h to induce DNA damage. Then, the H2O2 treated cells were incubated in fresh media for 3–12 h to observe DNA repair. Subsequent analyses in treated cells found that blastoderm cells and PGCs were more likely to undergo apoptosis along with the loss of pluripotency and less likely to undergo DNA repair, contrasting with CEFs. These properties of blastoderms and PGCs should be necessary to preserve genome stability during the development of early embryos and germ cells, respectively.
Collapse
|
147
|
Jabeen G, Ahmad MH, Aslam M, Riaz S, Hayat A, Nawaz MH. N-Doped graphene quantum dots (N-GQDs) as fluorescent probes for detection of UV induced DNA damage. RSC Adv 2022; 12:22458-22464. [PMID: 36105959 PMCID: PMC9366598 DOI: 10.1039/d2ra04462e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
UV induced DNA damage can lead to the development of skin cancer, skin aging and cell death. In this study, we fabricated a fluorescence-based biosensor that can be applied to the detection of DNA damage caused by UV radiation with the help of nitrogen doped graphene quantum dots (N-GQDs) as the probe material. In this paper, N-GQDs with good fluorescence efficiency have been synthesized by the hydrothermal method and were used as a fluorescent probe for the detection of UV damaged DNA. The fluorescence intensity of N-GQDs was quenched by the static quenching of UV damaged DNA through the formation of a N-GQD/UV damaged DNA complex. Moreover, the effects of different values of pH, NaCl and glucose on analytical performances of the sensor were also studied. Thus, using a fluorescence based approach, we demonstrated a quite simple, rapid, and inexpensive biosensor for the detection of DNA damage caused by UV radiation. UV induced DNA damage can lead to the development of skin cancer, skin aging and cell death.![]()
Collapse
Affiliation(s)
- Gulshan Jabeen
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Muhammad Hassan Ahmad
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| |
Collapse
|
148
|
Fabry LAR, Triantafyllopoulou A. [The role of the response to DNA damage in granulomatous diseases]. Z Rheumatol 2022; 81:881-887. [PMID: 36006470 PMCID: PMC9732071 DOI: 10.1007/s00393-022-01260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
Granulomas are organized aggregates of immune cells, which are formed in response to a persistent stimulus and are found in various rheumatic diseases, including sarcoidosis, rheumatoid arthritis and granulomatosis with polyangiitis. The core of granulomas contains a multitude of different macrophage subtypes, including multinucleated macrophages and foam cells. The mechanisms which induce the formation of granulomas are not well understood; however, recent data show that the DNA damage response regulates granuloma macrophage differentiation.
Collapse
Affiliation(s)
- Lea A R Fabry
- Medizinische Klinik m.S. Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
- Deutsches Rheuma Forschungszentrum, ein Institut der Leibniz Gemeinschaft, Berlin, Deutschland.
| | - Antigoni Triantafyllopoulou
- Medizinische Klinik m.S. Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
- Deutsches Rheuma Forschungszentrum, ein Institut der Leibniz Gemeinschaft, Berlin, Deutschland.
| |
Collapse
|
149
|
Martinez-Pastor B, Silveira GG, Clarke TL, Chung D, Gu Y, Cosentino C, Davidow LS, Mata G, Hassanieh S, Salsman J, Ciccia A, Bae N, Bedford MT, Megias D, Rubin LL, Efeyan A, Dellaire G, Mostoslavsky R. Assessing kinetics and recruitment of DNA repair factors using high content screens. Cell Rep 2021; 37:110176. [PMID: 34965416 PMCID: PMC8763642 DOI: 10.1016/j.celrep.2021.110176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/08/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022] Open
Abstract
Repair of genetic damage is coordinated in the context of chromatin, so cells dynamically modulate accessibility at DNA breaks for the recruitment of DNA damage response (DDR) factors. The identification of chromatin factors with roles in DDR has mostly relied on loss-of-function screens while lacking robust high-throughput systems to study DNA repair. In this study, we have developed two high-throughput systems that allow the study of DNA repair kinetics and the recruitment of factors to double-strand breaks in a 384-well plate format. Using a customized gain-of-function open-reading frame library ("ChromORFeome" library), we identify chromatin factors with putative roles in the DDR. Among these, we find the PHF20 factor is excluded from DNA breaks, affecting DNA repair by competing with 53BP1 recruitment. Adaptable for genetic perturbations, small-molecule screens, and large-scale analysis of DNA repair, these resources can aid our understanding and manipulation of DNA repair.
Collapse
Affiliation(s)
- Barbara Martinez-Pastor
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.
| | - Giorgia G Silveira
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas L Clarke
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yuchao Gu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Claudia Cosentino
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Lance S Davidow
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Gadea Mata
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Sylvana Hassanieh
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Narkhyun Bae
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D.Anderson Cancer Center, University of Texas, Smithville, TX 78957, USA
| | - Diego Megias
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alejo Efeyan
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
150
|
Shift in G1-Checkpoint from ATM-Alone to a Cooperative ATM Plus ATR Regulation with Increasing Dose of Radiation. Cells 2021; 11:cells11010063. [PMID: 35011623 PMCID: PMC8750242 DOI: 10.3390/cells11010063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
The current view of the involvement of PI3-kinases in checkpoint responses after DNA damage is that ATM is the key regulator of G1-, S- or G2-phase checkpoints, that ATR is only partly involved in the regulation of S- and G2-phase checkpoints and that DNA-PKcs is not involved in checkpoint regulation. However, further analysis of the contributions of these kinases to checkpoint responses in cells exposed to ionizing radiation (IR) recently uncovered striking integrations and interplays among ATM, ATR and DNA-PKcs that adapt not only to the phase of the cell cycle in which cells are irradiated, but also to the load of DNA double-strand breaks (DSBs), presumably to optimize their processing. Specifically, we found that low IR doses in G2-phase cells activate a G2-checkpoint that is regulated by epistatically coupled ATM and ATR. Thus, inhibition of either kinase suppresses almost fully its activation. At high IR doses, the epistatic ATM/ATR coupling relaxes, yielding to a cooperative regulation. Thus, single-kinase inhibition suppresses partly, and only combined inhibition suppresses fully G2-checkpoint activation. Interestingly, DNA-PKcs integrates with ATM/ATR in G2-checkpoint control, but functions in its recovery in a dose-independent manner. Strikingly, irradiation during S-phase activates, independently of dose, an exclusively ATR-dependent G2 checkpoint. Here, ATM couples with DNA-PKcs to regulate checkpoint recovery. In the present work, we extend these studies and investigate organization and functions of these PI3-kinases in the activation of the G1 checkpoint in cells irradiated either in the G0 or G1 phase. We report that ATM is the sole regulator of the G1 checkpoint after exposure to low IR doses. At high IR doses, ATM remains dominant, but contributions from ATR also become detectable and are associated with limited ATM/ATR-dependent end resection at DSBs. Under these conditions, only combined ATM + ATR inhibition fully abrogates checkpoint and resection. Contributions of DNA-PKcs and CHK2 to the regulation of the G1 checkpoint are not obvious in these experiments and may be masked by the endpoint employed for checkpoint analysis and perturbations in normal progression through the cell cycle of cells exposed to DNA-PKcs inhibitors. The results broaden our understanding of organization throughout the cell cycle and adaptation with increasing IR dose of the ATM/ATR/DNA-PKcs module to regulate checkpoint responses. They emphasize notable similarities and distinct differences between G1-, G2- and S-phase checkpoint regulation that may guide DSB processing decisions.
Collapse
|