101
|
PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol 2012; 19:603-8. [PMID: 22635249 DOI: 10.1038/nsmb.2309] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/24/2012] [Indexed: 12/20/2022]
Abstract
Polyadenylated mRNAs are typically more strongly repressed by microRNAs (miRNAs) than their nonadenylated counterparts. Using a Drosophila melanogaster cell-free translation system, we found that this effect is mediated by the poly(A)-binding protein (PABP). miRNA repression was positively correlated with poly(A) tail length, but this stimulatory effect on repression was lost when translation was repressed by the tethered GW182 silencing domain rather than the miRNA-induced silencing complex (miRISC) itself. These findings are mechanistically explained by a notable function of PABP: it promotes association of miRISC with miRNA-regulated mRNAs. We also found that PABP association with mRNA rapidly diminished with miRISC recruitment and before detectable deadenylation. We integrated these data into a revised model for the function of PABP and the poly(A) tail in miRNA-mediated translational repression.
Collapse
|
102
|
Poly(A)-binding protein facilitates translation of an uncapped/nonpolyadenylated viral RNA by binding to the 3' untranslated region. J Virol 2012; 86:7836-49. [PMID: 22593149 DOI: 10.1128/jvi.00538-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5' cap and a 3' poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3' untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3'CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3'CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3'CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3' UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3'CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3'CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3' UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3'CITE as substitutes for the 3' poly(A) tail and the 5' cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA.
Collapse
|
103
|
Vasquez-Rifo A, Jannot G, Armisen J, Labouesse M, Bukhari SIA, Rondeau EL, Miska EA, Simard MJ. Developmental characterization of the microRNA-specific C. elegans Argonautes alg-1 and alg-2. PLoS One 2012; 7:e33750. [PMID: 22448270 PMCID: PMC3309000 DOI: 10.1371/journal.pone.0033750] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/16/2012] [Indexed: 11/24/2022] Open
Abstract
The genes alg-1 and alg-2 (referred to as “alg-1/2”) encode the Argonaute proteins affiliated to the microRNA (miRNA) pathway in C. elegans. Bound to miRNAs they form the effector complex that effects post-transcriptional gene silencing. In order to define biological features important to understand the mode of action of these Argonautes, we characterize aspects of these genes during development. We establish that alg-1/2 display an overlapping spatio-temporal expression profile and shared association to a miRNAs set, but with gene-specific predominant expression in various cells and increased relative association to defined miRNAs. Congruent with their spatio-temporal coincidence and regardless of alg-1/2 drastic post-embryonic differences, only loss of both genes leads to embryonic lethality. Embryos without zygotic alg-1/2 predominantly arrest during the morphogenetic process of elongation with defects in the epidermal-muscle attachment structures. Altogether our results highlight similarities and specificities of the alg-1/2 likely to be explained at different cellular and molecular levels.
Collapse
Affiliation(s)
- Alejandro Vasquez-Rifo
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
| | - Guillaume Jannot
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
| | - Javier Armisen
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
- Wellcome Trust Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michel Labouesse
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
- Development and Stem Cells Program, IGBMC, CNRS (UMR7104), INSERM (U964), Université de Strasbourg, BP10142, Illkirch, France
| | - Syed Irfan Ahmad Bukhari
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
| | - Evelyne L. Rondeau
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
| | - Eric A. Miska
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
- Wellcome Trust Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Martin J. Simard
- Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
104
|
Bhayani MK, Calin GA, Lai SY. Functional relevance of miRNA sequences in human disease. Mutat Res 2012; 731:14-9. [PMID: 22085809 PMCID: PMC11774304 DOI: 10.1016/j.mrfmmm.2011.10.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/31/2011] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA) processing in the cytoplasm produces a miRNA duplex containing the forward, miRNA strand and the reverse, miRNA strand, which was thought to be degraded. However, recent evidence is challenging this dogma that miRNA is simply a non-functional byproduct of miRNA biogenesis. We present a comprehensive review of evidence that miRNA plays a significant role in cellular function and assembled a table outlining all of the publications before September 2011 that have reported on miRNA activity in human disease. Furthermore, we will present unexpected diagnostic and therapeutic implications due to the active miRNA status.
Collapse
Affiliation(s)
- Mihir K. Bhayani
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - George A. Calin
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Stephen Y. Lai
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
105
|
Abstract
PURPOSE OF REVIEW This review aims to describe the recent findings obtained on the regulation of ion transport by microRNAs in physiological and pathological situations in different organs and organisms. RECENT FINDINGS The number of ion channels or transporters can be regulated by increasing or decreasing the transcription and/or translation of the corresponding genes. In this context, a new class of regulators of gene expression has emerged as an important modulator of ion transport. microRNAs are short noncoding RNAs which inhibit gene expression by enhancing the degradation or inhibiting the translation of their targets. Most of the studies published so far describe their roles during embryonic development and tumorigenesis. However, recent studies have started to unravel how microRNA-mediated modulation of ion transport could contribute not only to the development of pathological states, such as heart disease, but also to the osmotic regulation of various organisms. SUMMARY The contribution of microRNAs to the regulation of ion transport has only begun to be unraveled, mostly in cardiomyocytes. Only a few studies have focused on the kidney but they strongly suggest that microRNAs could play an important role in the regulation of renal ion transport in response to variation in daily food intake.
Collapse
|
106
|
Fukaya T, Tomari Y. PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro. EMBO J 2011; 30:4998-5009. [PMID: 22117217 DOI: 10.1038/emboj.2011.426] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/07/2011] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs silence their complementary target genes via formation of the RNA-induced silencing complex (RISC) that contains an Argonaute (Ago) protein at its core. It was previously proposed that GW182, an Ago-associating protein, directly binds to poly(A)-binding protein (PABP) and interferes with its function, leading to silencing of the target mRNAs. Here we show that Drosophila Ago1-RISC induces silencing via two independent pathways: shortening of the poly(A) tail and pure repression of translation. Our data suggest that although PABP generally modulates poly(A) length and translation efficiency, neither PABP function nor GW182-PABP interaction is a prerequisite for these two silencing pathways. Instead, we propose that each of the multiple functional domains within GW182 has a potential for silencing, and yet they need to act together in the context of full-length GW182 to exert maximal silencing.
Collapse
Affiliation(s)
- Takashi Fukaya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
107
|
Vasudevan S. Posttranscriptional upregulation by microRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:311-30. [PMID: 22072587 DOI: 10.1002/wrna.121] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs are small non-coding RNA guide molecules that regulate gene expression via association with effector complexes and sequence-specific recognition of target sites on other RNAs; misregulated microRNA expression and functions are linked to a variety of tumors, developmental disorders, and immune disease. MicroRNAs have primarily been demonstrated to mediate posttranscriptional downregulation of expression; translational repression, and deadenylation-dependent decay of messages through partially complementary microRNA target sites in mRNA untranslated regions (UTRs). However, an emerging assortment of studies, discussed in this review, reveal that microRNAs and their associated protein complexes (microribonucleoproteins or microRNPs) can additionally function to posttranscriptionally stimulate gene expression by direct and indirect mechanisms. These reports indicate that microRNA-mediated effects can be selective, regulated by the RNA sequence context, and associated with RNP factors and cellular conditions. Like repression, translation upregulation by microRNAs has been observed to range from fine-tuning effects to significant alterations in expression. These studies uncover remarkable, new abilities of microRNAs and associated microRNPs in gene expression control and underscore the importance of regulation, in cis and trans, in directing appropriate microRNP responses.
Collapse
|
108
|
Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat Struct Mol Biol 2011; 18:1153-8. [PMID: 21926993 DOI: 10.1038/nsmb.2125] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 07/13/2011] [Indexed: 11/09/2022]
Abstract
Drosophila melanogaster has two Dicer proteins with specialized functions. Dicer-1 liberates miRNA-miRNA* duplexes from precursor miRNAs (pre-miRNAs), whereas Dicer-2 processes long double-stranded RNAs into small interfering RNA duplexes. It was recently demonstrated that Dicer-2 is rendered highly specific for long double-stranded RNA substrates by inorganic phosphate and a partner protein R2D2. However, it remains unclear how Dicer-1 exclusively recognize pre-miRNAs. Here we show that fly Dicer-1 recognizes the single-stranded terminal loop structure of pre-miRNAs through its N-terminal helicase domain, checks the loop size and measures the distance between the 3' overhang and the terminal loop. This unique mechanism allows fly Dicer-1 to strictly inspect the authenticity of pre-miRNA structures.
Collapse
|
109
|
Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B, Mikkola HK, Lowry WE. Defining the nature of human pluripotent stem cell progeny. Cell Res 2011; 22:178-93. [PMID: 21844894 DOI: 10.1038/cr.2011.133] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types, it is unknown how closely in vitro development mirrors that which occurs in vivo. To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny, and whether either makes cells that are analogous to tissue-derived cells, we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts. Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural, hepatic, and mesenchymal lineages, and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny. However, when compared to a tissue-derived counterpart, the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development, regardless of the type of cell generated. While pluripotent genes (OCT4, SOX2, REX1, and NANOG) appeared to be silenced immediately upon differentiation from hPSCs, genes normally unique to early embryos (LIN28A, LIN28B, DPPA4, and others) were not fully silenced in hPSC derivatives. These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs are reflective of very early human development (< 6 weeks). These findings provide support for the idea that hPSCs can serve as useful in vitro models of early human development, but also raise important issues for disease modeling and the clinical application of hPSC derivatives.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Choe J, Cho H, Chi SG, Kim YK. Ago2/miRISC-mediated inhibition of CBP80/20-dependent translation and thereby abrogation of nonsense-mediated mRNA decay require the cap-associating activity of Ago2. FEBS Lett 2011; 585:2682-7. [DOI: 10.1016/j.febslet.2011.07.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/19/2011] [Accepted: 07/28/2011] [Indexed: 02/04/2023]
|
111
|
The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc Natl Acad Sci U S A 2011; 108:E655-62. [PMID: 21795609 DOI: 10.1073/pnas.1107198108] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Local control of mRNA translation has been proposed as a mechanism for regulating synapse-specific plasticity associated with long-term memory. We show here that glomerulus-selective plasticity of Drosophila multiglomerular local interneurons observed during long-term olfactory habituation (LTH) requires the Ataxin-2 protein (Atx2) to function in uniglomerular projection neurons (PNs) postsynaptic to local interneurons (LNs). PN-selective knockdown of Atx2 selectively blocks LTH to odorants to which the PN responds and in addition selectively blocks LTH-associated structural and functional plasticity in odorant-responsive glomeruli. Atx2 has been shown previously to bind DEAD box helicases of the Me31B family, proteins associated with Argonaute (Ago) and microRNA (miRNA) function. Robust transdominant interactions of atx2 with me31B and ago1 indicate that Atx2 functions with miRNA-pathway components for LTH and associated synaptic plasticity. Further direct experiments show that Atx2 is required for miRNA-mediated repression of several translational reporters in vivo. Together, these observations (i) show that Atx2 and miRNA components regulate synapse-specific long-term plasticity in vivo; (ii) identify Atx2 as a component of the miRNA pathway; and (iii) provide insight into the biological function of Atx2 that is of potential relevance to spinocerebellar ataxia and neurodegenerative disease.
Collapse
|
112
|
Abstract
MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3′ untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| |
Collapse
|
113
|
Wang X, Liu XS. Systematic Curation of miRBase Annotation Using Integrated Small RNA High-Throughput Sequencing Data for C. elegans and Drosophila. Front Genet 2011; 2:25. [PMID: 22303321 PMCID: PMC3268580 DOI: 10.3389/fgene.2011.00025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 05/16/2011] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of 20–23 nucleotide small RNAs that regulate gene expression post-transcriptionally in animals and plants. Annotation of miRNAs by the miRNA database (miRBase) has largely relied on computational approaches. As a result, many miRBase entries lack experimental validation, and discrepancies between miRBase annotation and actual miRNA sequences are often observed. In this study, we integrated the small RNA sequencing (smRNA-seq) datasets in Caenorhabditis elegans and Drosophila melanogaster and devised an analytical pipeline coupled with detailed manual inspection to curate miRNA annotation systematically in miRBase. Our analysis reveals 19 (17.0%) and 51 (31.3%) miRNAs entries with detectable smRNA-seq reads have mature sequence discrepancies in C. elegans and D. melanogaster, respectively. These discrepancies frequently occur either for conserved miRNA families whose mature sequences were predicted according to their homologous counterparts in other species or for miRNAs whose precursor miRNA (pre-miRNA) hairpins produce an abundance of multiple miRNA isoforms or variants. Our analysis shows that while Drosophila pre-miRNAs, on average, produce less than 60% accurate mature miRNA reads in addition to their 5′ and 3′ variant isoforms, the precision of miRNA processing in C. elegans is much higher, at over 90%. Based on the revised miRNA sequences, we analyzed expression patterns of the more conserved (MC) and less conserved (LC) miRNAs and found that, whereas MC miRNAs are often co-expressed at multiple developmental stages, LC miRNAs tend to be expressed specifically at fewer stages.
Collapse
Affiliation(s)
- Xiangfeng Wang
- School of Plant Sciences, University of Arizona Tucson, AZ, USA
| | | |
Collapse
|
114
|
The ribosomal protein RACK1 is required for microRNA function in both C. elegans and humans. EMBO Rep 2011; 12:581-6. [PMID: 21525958 PMCID: PMC3128278 DOI: 10.1038/embor.2011.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/13/2011] [Accepted: 03/23/2011] [Indexed: 01/16/2023] Open
Abstract
RACK1, a constituent of the ribosomal 40S subunit, is required for the association of miRISC with translating ribosomes. This suggests that RACK1 contributes to recruit miRISC to the site of translation and supports a post-initiation mode of miRNA-mediated gene repression. Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA–Argonaute complex—or miRNA-induced silencing complex (miRISC)—can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S subunit, receptor for activated C-kinase (RACK1), is important for miRNA-mediated gene regulation in animals. In vivo studies demonstrate that RACK1 interacts with components of the miRISC in nematodes and mammals. In both systems, the alteration of RACK1 expression alters miRNA function and impairs the association of the miRNA complex with the translating ribosomes. Our data indicate that RACK1 can contribute to the recruitment of miRISC to the site of translation, and support a post-initiation mode of miRNA-mediated gene repression.
Collapse
|
115
|
Frank F, Fabian MR, Stepinski J, Jemielity J, Darzynkiewicz E, Sonenberg N, Nagar B. Structural analysis of 5'-mRNA-cap interactions with the human AGO2 MID domain. EMBO Rep 2011; 12:415-20. [PMID: 21475248 DOI: 10.1038/embor.2011.48] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/15/2022] Open
Abstract
In RNA silencing, microRNA (miRNA)-mediated translational repression occurs through mechanisms that do not invoke messenger-RNA (mRNA) target cleavage by Argonaute proteins. The nature of these mechanisms is unclear, but several recent studies have proposed that a direct interaction between the mRNA-cap and the middle (MID) domain of Argonautes is involved. Here, we present crystallographic and NMR data demonstrating that cap analogues do not bind significantly to the isolated MID domain of human Argonaute 2 (hAGO2) and are found in the miRNA 5'-nucleotide binding site in an implausible binding mode. Additionally, in vitro pull-down experiments with full-length hAGO2 indicate that the interaction with cap analogues is nonspecific.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | | | | | | | | | | | | |
Collapse
|
116
|
Ricci EP, Limousin T, Soto-Rifo R, Allison R, Pöyry T, Decimo D, Jackson RJ, Ohlmann T. Activation of a microRNA response in trans reveals a new role for poly(A) in translational repression. Nucleic Acids Res 2011; 39:5215-31. [PMID: 21385827 PMCID: PMC3130266 DOI: 10.1093/nar/gkr086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Here, we report that the untreated rabbit reticulocyte lysate contains over 300 different endogenous microRNAs together with the major components of the RNA-induced silencing complex and thus can be used as a model in vitro system to study the effects of microRNAs on gene expression. By using this system, we were able to show that microRNA hybridization to its target resulted in a very rapid and strong inhibition of expression that was exerted exclusively at the level of translation initiation with no involvement of transcript degradation or deadenylation. Moreover, we demonstrate that the magnitude of microRNA-induced repression can only be recapitulated in the context of a competitive translating environment. By using a wide spectrum of competitor cellular and viral RNAs, we could further show that competition was not exerted at the level of general components of the translational machinery, but relied exclusively on the presence of the poly(A) tail with virtually no involvement of the cap structure.
Collapse
Affiliation(s)
- Emiliano P Ricci
- Ecole Normale Supérieure de Lyon, Unité de Virologie Humaine, IFR 128, Lyon, F-69364 France
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 2011; 12:99-110. [PMID: 21245828 DOI: 10.1038/nrg2936] [Citation(s) in RCA: 1763] [Impact Index Per Article: 125.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite their widespread roles as regulators of gene expression, important questions remain about target regulation by microRNAs. Animal microRNAs were originally thought to repress target translation, with little or no influence on mRNA abundance, whereas the reverse was thought to be true in plants. Now, however, it is clear that microRNAs can induce mRNA degradation in animals and, conversely, translational repression in plants. Recent studies have made important advances in elucidating the relative contributions of these two different modes of target regulation by microRNAs. They have also shed light on the specific mechanisms of target silencing, which, although it differs fundamentally between plants and animals, shares some common features between the two kingdoms.
Collapse
|
118
|
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) act with the Argonaute family of proteins to regulate target messenger RNAs (mRNAs) posttranscriptionally. SiRNAs typically induce endonucleolytic cleavage of mRNA with near-perfect complementarity. For targets with less complementarity, both translational repression and mRNA destabilization mechanisms have been implicated in miRNA-mediated gene repression, although the timing, coupling, and relative importance of these events have not been determined. Here, we review gene-specific and global approaches that probe miRNA function and mechanism, looking for a unifying model. More systematic analyses of the molecular specificities of the core components coupled with analysis of the relative timing of the different events will ultimately shed light on the mechanism of miRNA-mediated repression.
Collapse
Affiliation(s)
- Sergej Djuranovic
- Howard Hughes Medical Institute (HHMI), Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
119
|
Pagano JM, Clingman CC, Ryder SP. Quantitative approaches to monitor protein-nucleic acid interactions using fluorescent probes. RNA (NEW YORK, N.Y.) 2011; 17:14-20. [PMID: 21098142 PMCID: PMC3004055 DOI: 10.1261/rna.2428111] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sequence-specific recognition of nucleic acids by proteins is required for nearly every aspect of gene expression. Quantitative binding experiments are a useful tool to measure the ability of a protein to distinguish between multiple sequences. Here, we describe the use of fluorophore-labeled oligonucleotide probes to quantitatively monitor protein/nucleic acid interactions. We review two complementary experimental methods, fluorescence polarization and fluorescence electrophoretic mobility shift assays, that enable the quantitative measurement of binding affinity. We also present two strategies for post-synthetic end-labeling of DNA or RNA oligonucleotides with fluorescent dyes. The approaches discussed here are efficient and sensitive, providing a safe and accessible alternative to the more commonly used radio-isotopic methods.
Collapse
Affiliation(s)
- John M Pagano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
120
|
Ameres SL, Hung JH, Xu J, Weng Z, Zamore PD. Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. RNA (NEW YORK, N.Y.) 2011; 17:54-63. [PMID: 21106652 PMCID: PMC3004066 DOI: 10.1261/rna.2498411] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 10/28/2010] [Indexed: 05/14/2023]
Abstract
In flies, 22-23-nucleotide (nt) microRNA duplexes typically contain mismatches and begin with uridine, so they bind Argonaute1 (Ago1), whereas 21-nt siRNA duplexes are perfectly paired and begin with cytidine, promoting their loading into Ago2. A subset of Drosophila endogenous siRNAs-the hairpin-derived hp-esiRNAs-are born as mismatched duplexes that often begin with uridine. These would be predicted to load into Ago1, yet accumulate at steady-state bound to Ago2. In vitro, such hp-esiRNA duplexes assemble into Ago1. In vivo, they encounter complementary target mRNAs that trigger their tailing and trimming, causing Ago1-loaded hp-esiRNAs to be degraded. In contrast, Ago2-associated hp-esiRNAs are 2'-O-methyl modified at their 3' ends, protecting them from tailing and trimming. Consequently, the steady-state distribution of esiRNAs reflects not only their initial sorting between Ago1 and Ago2 according to their duplex structure, length, and first nucleotide, but also the targeted destruction of the single-stranded small RNAs after their loading into an Argonaute protein.
Collapse
Affiliation(s)
- Stefan L Ameres
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
121
|
Abstract
Drosophila microRNAs (miRNAs) and small interfering RNAs (siRNAs) are generally produced by different Dicer enzymes (Dcr-1 and Dcr-2) and sorted to functionally distinct Argonaute effectors (AGO1 and AGO2). However, there is cross talk between these pathways, as highlighted by the recognition that Drosophila miRNA* strands (the partner strands of mature miRNAs) are generated by Dcr-1 but are preferentially sorted to AGO2. Here, we show that a component of the siRNA loading complex, R2D2, is essential both to load endogenously encoded siRNAs (endo-siRNAs) into AGO2 and to prevent endo-siRNAs from binding to AGO1. Northern blot analysis and deep sequencing showed that in the r2d2 mutant, all classes of endo-siRNAs were unable to load AGO2 and instead accumulated in the AGO1 complex. Such redirection was specific to endo-siRNAs and was not observed with miRNA* strands. We observed functional consequences of altered sorting in RNA interference (RNAi) mutants, since endo-siRNAs generated from cis-natural antisense transcripts (cis-NAT-siRNA) exhibited evidence for biased maturation as single strands in AGO1 according to thermodynamic asymmetry and a hairpin-derived endo-siRNA formed cleavage-competent complexes with AGO1 upon mutation of r2d2. Finally, we demonstrated a direct role for the R2D2/Dcr-2 heterodimer in sensing central mismatch positions that direct miRNA* strands to AGO2. Together, these data reveal new roles of R2D2 in organizing small RNA networks in Drosophila.
Collapse
|
122
|
Abstract
Small RNAs directly or indirectly impact nearly every biological process in eukaryotic cells. To perform their myriad roles, not only must precise small RNA species be generated, but they must also be loaded into specific effector complexes called RNA-induced silencing complexes (RISCs). Argonaute proteins form the core of RISCs and different members of this large family have specific expression patterns, protein binding partners and biochemical capabilities. In this Review, we explore the mechanisms that pair specific small RNA strands with their partner proteins, with an eye towards the substantial progress that has been recently made in understanding the sorting of the major small RNA classes - microRNAs (miRNAs) and small interfering RNAs (siRNAs) - in plants and animals.
Collapse
Affiliation(s)
- Benjamin Czech
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
123
|
Jeske M, Moritz B, Anders A, Wahle E. Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels. EMBO J 2010; 30:90-103. [PMID: 21081899 DOI: 10.1038/emboj.2010.283] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/12/2010] [Indexed: 12/23/2022] Open
Abstract
The nanos (nos) mRNA encodes the posterior determinant of the Drosophila embryo. Translation of the RNA is repressed throughout most of the embryo by the protein Smaug binding to Smaug recognition elements (SREs) in the 3' UTR. Translation is locally activated at the posterior pole by Oskar. This paper reports that the SREs govern the time- and ATP-dependent assembly of an exceedingly stable repressed ribonucleoprotein particle (RNP) in embryo extract. Repression can be virtually complete. Smaug and its co-repressor Cup as well as Trailer hitch and the DEAD box protein Me31B are part of the repressed RNP. The initiation factor eIF4G is specifically displaced, and 48S pre-initiation complex formation is inhibited. However, later steps in translation initiation are also sensitive to SRE-dependent inhibition. These data confirm several previously untested predictions of a current model for Cup-dependent repression but also suggest that the Cup model by itself is insufficient to explain translational repression of the nos RNA. In the embryo extract, recombinant Oskar relieves translational repression and deadenylation by preventing Smaug's binding to the SREs.
Collapse
Affiliation(s)
- Mandy Jeske
- Institute of Biochemistry and Biotechnology, General Biochemistry, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | |
Collapse
|
124
|
Abstract
MicroRNAs (miRNAs) are ∼22nt long, non-coding RNAs that guide post-transcriptional gene silencing of their target genes and regulate diverse biological processes including cancer. miRNAs do not act alone, but require assembly into RNA-induced silencing complex (RISC). In this review, we summarize how miRNAs are produced, assembled into RISC, and regulate target mRNAs, and discuss how the miRNA pathway is involved in cancer.
Collapse
Affiliation(s)
- Pieter Bas Kwak
- Institute of Molecular and Cellular Biosciences Department of Medical Genome Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
125
|
Barron N, Sanchez N, Kelly P, Clynes M. MicroRNAs: tiny targets for engineering CHO cell phenotypes? Biotechnol Lett 2010; 33:11-21. [PMID: 20872159 DOI: 10.1007/s10529-010-0415-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022]
Abstract
The ability of microRNAs to influence gene expression is now recognized as a fundamental layer of regulation within the cell. MicroRNAs have a major impact on most biological processes and have generated considerable interest as potential biomarkers as well as therapeutic or engineering targets. In this review we provide a brief overview of their biogenesis, genomic organization and mode of action, followed by a description of the methods and approaches to studying their expression. We go on to consider some of the approaches to utilizing them as tools and their potential application in the bioprocessing area, with particular emphasis on Chinese hamster ovary cell engineering.
Collapse
Affiliation(s)
- Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | | | | | | |
Collapse
|
126
|
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11:597-610. [PMID: 20661255 DOI: 10.1038/nrg2843] [Citation(s) in RCA: 3647] [Impact Index Per Article: 243.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.
Collapse
Affiliation(s)
- Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | | |
Collapse
|
127
|
James V, Zhang Y, Foxler DE, de Moor CH, Kong YW, Webb TM, Self TJ, Feng Y, Lagos D, Chu CY, Rana TM, Morley SJ, Longmore GD, Bushell M, Sharp TV. LIM-domain proteins, LIMD1, Ajuba, and WTIP are required for microRNA-mediated gene silencing. Proc Natl Acad Sci U S A 2010; 107:12499-504. [PMID: 20616046 PMCID: PMC2906597 DOI: 10.1073/pnas.0914987107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In recent years there have been major advances with respect to the identification of the protein components and mechanisms of microRNA (miRNA) mediated silencing. However, the complete and precise repertoire of components and mechanism(s) of action remain to be fully elucidated. Herein we reveal the identification of a family of three LIM domain-containing proteins, LIMD1, Ajuba and WTIP (Ajuba LIM proteins) as novel mammalian processing body (P-body) components, which highlight a novel mechanism of miRNA-mediated gene silencing. Furthermore, we reveal that LIMD1, Ajuba, and WTIP bind to Ago1/2, RCK, Dcp2, and eIF4E in vivo, that they are required for miRNA-mediated, but not siRNA-mediated gene silencing and that all three proteins bind to the mRNA 5' m(7)GTP cap-protein complex. Mechanistically, we propose the Ajuba LIM proteins interact with the m(7)GTP cap structure via a specific interaction with eIF4E that prevents 4EBP1 and eIF4G interaction. In addition, these LIM-domain proteins facilitate miRNA-mediated gene silencing by acting as an essential molecular link between the translationally inhibited eIF4E-m(7)GTP-5(')cap and Ago1/2 within the miRISC complex attached to the 3'-UTR of mRNA, creating an inhibitory closed-loop complex.
Collapse
Affiliation(s)
- Victoria James
- School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Yining Zhang
- School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Daniel E. Foxler
- School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Cornelia H. de Moor
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Yi Wen Kong
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Thomas M. Webb
- School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Tim J. Self
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Yungfeng Feng
- Washington University School of Medicine, Campus Box 8086, Room 770 McDonnell Sciences Building, 660 South Euclid Avenue, St. Louis, MO 63110
| | - Dimitrios Lagos
- Cancer Research UK Viral Oncology Group, University College London Cancer Institute, Paul O’Gorman Building, Huntley Street, University College London, London WC1E 6BT, United Kingdom
| | - Chia-Ying Chu
- Institute of Zoology, School of Life Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tariq M. Rana
- Program for RNA Biology, Sandford–Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Simon J. Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Gregory D. Longmore
- Washington University School of Medicine, Campus Box 8086, Room 770 McDonnell Sciences Building, 660 South Euclid Avenue, St. Louis, MO 63110
| | - Martin Bushell
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Tyson V. Sharp
- School of Biomedical Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
128
|
Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD. Target RNA-directed trimming and tailing of small silencing RNAs. Science 2010; 328:1534-9. [PMID: 20558712 PMCID: PMC2902985 DOI: 10.1126/science.1187058] [Citation(s) in RCA: 459] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In Drosophila, microRNAs (miRNAs) typically guide Argonaute1 to repress messenger RNA (mRNA), whereas small interfering RNAs (siRNAs) guide Argonaute2 to destroy viral and transposon RNA. Unlike siRNAs, miRNAs rarely form extensive numbers of base pairs to the mRNAs they regulate. We find that extensive complementarity between a target RNA and an Argonaute1-bound miRNA triggers miRNA tailing and 3'-to-5' trimming. In flies, Argonaute2-bound small RNAs--but not those bound to Argonaute1--bear a 2'-O-methyl group at their 3' ends. This modification blocks target-directed small RNA remodeling: In flies lacking Hen1, the enzyme that adds the 2'-O-methyl group, Argonaute2-associated siRNAs are tailed and trimmed. Target complementarity also affects small RNA stability in human cells. These results provide an explanation for the partial complementarity between animal miRNAs and their targets.
Collapse
Affiliation(s)
- Stefan L. Ameres
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Michael D. Horwich
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jui-Hung Hung
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jia Xu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Megha Ghildiyal
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D. Zamore
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
129
|
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation and Stability by microRNAs. Annu Rev Biochem 2010; 79:351-79. [PMID: 20533884 DOI: 10.1146/annurev-biochem-060308-103103] [Citation(s) in RCA: 2427] [Impact Index Per Article: 161.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marc Robert Fabian
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec, H3G 1Y6, Canada;
| | - Witold Filipowicz
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland;
| |
Collapse
|
130
|
Vectors and parameters that enhance the efficacy of RNAi-mediated gene disruption in transgenic Drosophila. Proc Natl Acad Sci U S A 2010; 107:11435-40. [PMID: 20534445 DOI: 10.1073/pnas.1006689107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole-genome transgenic RNAi libraries permit systematic genetic screens in individual tissues of Drosophila. However, there is a high incidence of nonspecific phenotypes because of off-target effects. To minimize such effects, it is essential to obtain a deeper understanding of the specificity of action of RNAi. Here, in vivo assays are used to determine the minimum, contiguous nucleotide pairing required between an siRNA and a target mRNA to generate a phenotype. We observe that as few as 16 nucleotides of contiguous homology are sufficient to attenuate gene activity. This finding provides an explanation for the high incidence of off-target effects observed in RNAi-based genetic screens. Toward improving the efficacy of RNAi-induced phenotypes in vivo, we describe siRNA expression vectors that allow coexpression of one or more siRNAs with a fluorescent reporter gene in cultured cells or transgenic flies. This expression system makes use of the small intron from the ftz segmentation gene to provide efficient processing of synthetic siRNAs from a reporter transcript. These studies provide a foundation for the specific and effective use of gene silencing in transgenic Drosophila.
Collapse
|
131
|
Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 2010; 39:292-9. [PMID: 20605501 DOI: 10.1016/j.molcel.2010.05.015] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/10/2010] [Accepted: 05/13/2010] [Indexed: 01/25/2023]
Abstract
Small silencing RNAs--small interfering RNAs (siRNAs) or microRNAs (miRNAs)--direct posttranscriptional gene silencing of their mRNA targets as guides for the RNA-induced silencing complex (RISC). Both siRNAs and miRNAs are born double stranded. Surprisingly, loading these small RNA duplexes into Argonaute proteins, the core components of RISC, requires ATP, whereas separating the two small RNA strands within Argonaute does not. Here we show that the Hsc70/Hsp90 chaperone machinery is required to load small RNA duplexes into Argonaute proteins, but not for subsequent strand separation or target cleavage. We envision that the chaperone machinery uses ATP and mediates a conformational opening of Ago proteins so that they can receive bulky small RNA duplexes. Our data suggest that the chaperone machinery may serve as the driving force for the RISC assembly pathway.
Collapse
|
132
|
Gu S, Kay MA. How do miRNAs mediate translational repression? SILENCE 2010; 1:11. [PMID: 20459656 PMCID: PMC2881910 DOI: 10.1186/1758-907x-1-11] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 05/07/2010] [Indexed: 01/12/2023]
Abstract
Micro(mi)RNAs regulate gene expression by what are believed to be related but separate mechanistic processes. The relative contribution that each process plays, their mechanistic overlap, and the degree by which they regulate complex genetic networks is still being unraveled. One process by which miRNAs inhibit gene expression occurs through translational repression. In recent years, there has been a plethora of studies published, which have resulted in various molecular models of how miRNAs impair translation. At first evaluation, it appears that these models are quite different and incompatible with one another. In this paper, we focus on possible explanations for the various interpretations of these data sets, and provide a model that we believe is consistent with many of the observations published to date.
Collapse
Affiliation(s)
- Shuo Gu
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
133
|
Abstract
miRNAs post-transcriptionally regulate gene expression in many eukaryotes and thereby affect a wide range of biological processes. GW182 is a key factor in translation repression and mRNA degradation by miRNAs. In this study we investigate the potential interaction of GW182 and translation or mRNA degradation factors in Drosophila S2 cells. We have identified the decapping activator HP at as a novel factor co-purifying with GW182. Furthermore, we show that the C-terminal domain of GW182, important for gene silencing, is sufficient to form a complex with HP at. Our findings implicate a potential interaction of the miRNA effector component GW182 with the decapping machinery.
Collapse
Affiliation(s)
- Elisabeth Jäger
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria
| | - Silke Dorner
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria
| |
Collapse
|
134
|
Abstract
The coding sequence of a protein must contain the information required for the canonical amino acid sequence. However, the redundancy of the genetic code creates potential for embedding other types of information within coding regions as well. In a genome-wide computational screen for functional motifs within coding regions based on evolutionary conservation, highly conserved motifs included some expected motifs, some novel motifs and coding region target sites for known microRNAs, which are generally presumed to target 3' untranslated regions (UTRs) (www.SiteSifter.org). We report here an analysis of published proteomics experiments that further support a functional role for coding region microRNA binding sites, though the effects are weaker than for sites in the 3' UTR. We also demonstrate a positional bias with greater conservation for sites at the end of the coding region, and the beginning and end of the 3' UTR. An increased effectiveness of microRNA binding sites at the 3' end of transcripts could reflect proximity to the poly(A) tail or interactions with the 5' terminal 7mGpppN "cap", which is physically adjacent to this region once the message is circularized. The effectiveness of 3' UTR sites could reflect a cooperative role for RNA binding proteins. Finally, increased microRNA conservation near the stop codon suggests to us the possible involvement of proteins that execute nonsense-mediated decay, since this process is activated by tagging of termination codons with factors that induce transcript degradation.
Collapse
|
135
|
Kawamata T, Tomari Y. Making RISC. Trends Biochem Sci 2010; 35:368-76. [PMID: 20395147 DOI: 10.1016/j.tibs.2010.03.009] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
It is well established that 20- to 30-nt small RNAs, including small interfering RNAs, microRNAs and Piwi-interacting RNAs, play crucial roles in regulating gene expression and control a surprisingly diverse array of biological processes. These small RNAs cannot work alone: they must form effector ribonucleoprotein complexes - RNA-induced silencing complexes (RISCs) - to exert their function. Thus, RISC assembly is a key process in small RNA-mediated silencing. Recent biochemical analyses of RISC assembly, together with new structural studies of Argonaute, the core protein component of RISC, suggest a revised view of how mature RISC, which contains single-stranded guide RNA, is built from small RNAs that are born double-stranded.
Collapse
Affiliation(s)
- Tomoko Kawamata
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
136
|
Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Dev Biol 2010; 340:355-68. [DOI: 10.1016/j.ydbio.2010.01.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 12/26/2022]
|
137
|
Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 2010; 21:1462-9. [PMID: 20237157 PMCID: PMC2861606 DOI: 10.1091/mbc.e09-10-0885] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cancer drug geldanamycin, an HSP90 inhibitor, decreases the stability of key components of the miRNA regulatory pathway, the efficacy of siRNAs, and the formation of P-bodies without affecting endogenous miRNA function. Key components of the miRNA-mediated gene regulation pathway are localized in cytoplasmic processing bodies (P-bodies). Mounting evidence suggests that the presence of microscopic P-bodies are not always required for miRNA-mediated gene regulation. Here we have shown that geldanamycin, a well-characterized HSP90 inhibitor, abolishes P-bodies and significantly reduces Argonaute and GW182 protein levels but does not affect the miRNA level and the efficiency of miRNA-mediated gene repression; however, it significantly impairs siRNA loading and the efficacy of exogenous siRNA. Our data suggests that HSP90 protein chaperones Argonautes before binding RNA and may facilitate efficient loading of small RNA.
Collapse
Affiliation(s)
- Michael Johnston
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
138
|
Hernández G, Altmann M, Lasko P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci 2010; 35:63-73. [DOI: 10.1016/j.tibs.2009.10.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 02/08/2023]
|
139
|
Okamura K, Liu N, Lai EC. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 2010; 36:431-44. [PMID: 19917251 DOI: 10.1016/j.molcel.2009.09.027] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/01/2009] [Accepted: 08/18/2009] [Indexed: 01/08/2023]
Abstract
In Drosophila, miRNA strands are predominantly sorted into AGO1 to regulate seed-matched target transcripts, while their partner miRNA* strands are thought to be mostly degraded. Here, we report that Drosophila Argonautes exhibit different strand preferences for miRNA duplexes, and that in particular, many miRNA* species accumulate in the RNAi effector AGO2. AGO2-loaded miRNA* species require canonical RNAi factors for their accumulation, are efficiently 3' modified, and are preferentially active on extensively matched target transcripts. Differential miRNA/miRNA* sorting profiles are correlated with specific central mismatches. In vitro assays revealed an active role for Watson-Crick base-pairing at positions 9 and 10 in promoting strand selection by AGO2, with little reciprocal effect on strand selection by AGO1. We conclude that miRNA strand selection and sorting are actually linked processes that stem from distinct loading preferences of AGO proteins and that independent sorting of duplex strands is a general feature of Drosophila microRNA genes.
Collapse
Affiliation(s)
- Katsutomo Okamura
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
140
|
Hierarchical rules for Argonaute loading in Drosophila. Mol Cell 2010; 36:445-56. [PMID: 19917252 DOI: 10.1016/j.molcel.2009.09.028] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/20/2009] [Accepted: 08/28/2009] [Indexed: 11/23/2022]
Abstract
Drosophila Argonaute-1 and Argonaute-2 differ in function and small RNA content. AGO2 binds to siRNAs, whereas AGO1 is almost exclusively occupied by microRNAs. MicroRNA duplexes are intrinsically asymmetric, with one strand, the miR strand, preferentially entering AGO1 to recognize and regulate the expression of target mRNAs. The other strand, miR*, has been viewed as a byproduct of microRNA biogenesis. Here, we show that miR*s are often loaded as functional species into AGO2. This indicates that each microRNA precursor can potentially produce two mature small RNA strands that are differentially sorted within the RNAi pathway. miR* biogenesis depends upon the canonical microRNA pathway, but loading into AGO2 is mediated by factors traditionally dedicated to siRNAs. By inferring and validating hierarchical rules that predict differential AGO loading, we find that intrinsic determinants, including structural and thermodynamic properties of the processed duplex, regulate the fate of each RNA strand within the RNAi pathway.
Collapse
|
141
|
Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA (NEW YORK, N.Y.) 2010; 16:43-56. [PMID: 19917635 PMCID: PMC2802036 DOI: 10.1261/rna.1972910] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 05/19/2023]
Abstract
In flies, small silencing RNAs are sorted between Argonaute1 (Ago1), the central protein component of the microRNA (miRNA) pathway, and Argonaute2 (Ago2), which mediates RNA interference. Extensive double-stranded character-as is found in small interfering RNAs (siRNAs)-directs duplexes into Ago2, whereas central mismatches, like those found in miRNA/miRNA* duplexes, direct duplexes into Ago1. Central to this sorting decision is the affinity of the small RNA duplex for the Dcr-2/R2D2 heterodimer, which loads small RNAs into Ago2. Here, we show that while most Drosophila miRNAs are bound to Ago1, miRNA* strands accumulate bound to Ago2. Like siRNA loading, efficient loading of miRNA* strands in Ago2 favors duplexes with a paired central region and requires both Dcr-2 and R2D2. Those miRNA and miRNA* sequences bound to Ago2, like siRNAs diced in vivo from long double-stranded RNA, typically begin with cytidine, whereas Ago1-bound miRNA and miRNA* disproportionately begin with uridine. Consequently, some pre-miRNA generate two or more isoforms from the same side of the stem that differentially partition between Ago1 and Ago2. Our findings provide the first genome-wide test for the idea that Drosophila small RNAs are sorted between Ago1 and Ago2 according to their duplex structure and the identity of their first nucleotide.
Collapse
Affiliation(s)
- Megha Ghildiyal
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School,Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
142
|
Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y. ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 2009; 17:17-23. [PMID: 19966796 DOI: 10.1038/nsmb.1733] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/13/2009] [Indexed: 12/21/2022]
Abstract
The assembly of RNA-induced silencing complex (RISC) is a key process in small RNA-mediated gene silencing. In humans, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are incorporated into RISCs containing the Argonaute (AGO) subfamily proteins Ago1-4. Previous studies have proposed that, unlike Drosophila melanogaster RISC assembly pathways, human RISC assembly is coupled with dicing and is independent of ATP. Here we show by careful reexamination that, in humans, RISC assembly and dicing are uncoupled, and ATP greatly facilitates RISC loading of small-RNA duplexes. Moreover, all four human AGO proteins show remarkably similar structural preferences for small-RNA duplexes: central mismatches promote RISC loading, and seed or 3'-mid (guide position 12-15) mismatches facilitate unwinding. All these features of human AGO proteins are highly reminiscent of fly Ago1 but not fly Ago2.
Collapse
Affiliation(s)
- Mayuko Yoda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
143
|
Pager CT, Wehner KA, Fuchs G, Sarnow P. MicroRNA-mediated gene silencing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:187-210. [PMID: 20374742 DOI: 10.1016/s1877-1173(09)90005-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MicroRNAs are 20-21 nucleotides-long noncoding RNAs that function as posttranscriptional regulators of gene expression in a variety of organisms ranging from plants to mammalian cells. These regulators are encoded by approximately 800 genes in the mammalian genome and target half of the mRNAs in mammalian cells. While the biogenesis of microRNAs is fairly well understood, the mechanism by which target genes are regulated remains controversial. The recent discoveries that viruses encode microRNAs or subvert host cell microRNAs has enhanced our knowledge about biological functions of microRNAs during disease and has suggested that microRNAs could be used as targets in antiviral gene therapy. This review will provide a brief history of microRNA research, discuss the biogenesis and mechanisms of microRNAs, and summarize findings that have employed inhibitors of microRNA miR-122 to treat hepatitis C virus-induced liver disease.
Collapse
Affiliation(s)
- Cara T Pager
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
144
|
Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol Cell 2009; 35:881-8. [PMID: 19782035 DOI: 10.1016/j.molcel.2009.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/13/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022]
Abstract
Understanding the molecular mechanism(s) of how miRNAs repress mRNA translation is a fundamental challenge in RNA biology. Here we use a validated cell-free system from Drosophila embryos to investigate how miR2 inhibits translation initiation. By screening a library of chemical m7GpppN cap structure analogs, we identified defined modifications of the triphosphate backbone that augment miRNA-mediated inhibition of translation initiation but are "neutral" toward general cap-dependent translation. Interestingly, these caps also augment inhibition by 4E-BP. Kinetic dissection of translational repression and miR2-induced deadenylation shows that both processes proceed largely independently, with establishment of the repressed state involving a slow step. Our data demonstrate a primary role for the m7GpppN cap structure in miRNA-mediated translational inhibition, implicate structural determinants outside the core eIF4E-binding region in this process, and suggest that miRNAs may target cap-dependent translation through a mechanism related to the 4E-BP class of translational regulators.
Collapse
|
145
|
Lin JC, Tarn WY. RNA-binding motif protein 4 translocates to cytoplasmic granules and suppresses translation via argonaute2 during muscle cell differentiation. J Biol Chem 2009; 284:34658-65. [PMID: 19801630 DOI: 10.1074/jbc.m109.032946] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA-binding motif protein 4 (RBM4) plays multiple roles in mRNA metabolism, including translation control. RBM4 suppresses cap-dependent translation but activates internal ribosome entry site-mediated translation. Because of its high expression level in muscle and heart, we investigated the function of RBM4 in myoblast cells. Here, we demonstrate that RBM4 is phosphorylated and translocates to the cytoplasm in mouse C2C12 cells upon cell differentiation. Notably, RBM4 is transiently deposited into cytoplasmic granules containing microtubule assembly factors as well as poly(A)(+) RNAs. Moreover, RBM4 colocalizes with the components of micro-ribonucleoproteins, including the Argonaute2 (Ago2) protein, during muscle cell differentiation. RBM4 interacts directly with Ago2 and may recruit Ago2 to suppress translation of target mRNAs. Furthermore, RBM4 selectively associates with muscle cell-specific microRNAs and potentiates their translation repression activity by promoting micro-ribonucleoprotein association with target mRNAs. Altogether, our results suggest that RBM4 translocates to the cytoplasm and participates in translation suppression during muscle cell differentiation.
Collapse
Affiliation(s)
- Jung-Chun Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
146
|
The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol 2009; 29:6220-31. [PMID: 19797087 DOI: 10.1128/mcb.01081-09] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GW182 family proteins are essential in animal cells for microRNA (miRNA)-mediated gene silencing, yet the molecular mechanism that allows GW182 to promote translational repression and mRNA decay remains largely unknown. Previous studies showed that while the GW182 N-terminal domain interacts with Argonaute proteins, translational repression and degradation of miRNA targets are promoted by a bipartite silencing domain comprising the GW182 middle and C-terminal regions. Here we show that the GW182 C-terminal region is required for GW182 to release silenced mRNPs; moreover, GW182 dissociates from miRNA targets at a step of silencing downstream of deadenylation, indicating that GW182 is required to initiate but not to maintain silencing. In addition, we show that the GW182 bipartite silencing domain competes with eukaryotic initiation factor 4G for binding to PABPC1. The GW182-PABPC1 interaction is also required for miRNA target degradation; accordingly, we observed that PABPC1 associates with components of the CCR4-NOT deadenylase complex. Finally, we show that PABPC1 overexpression suppresses the silencing of miRNA targets. We propose a model in which the GW182 silencing domain promotes translational repression, at least in part, by interfering with mRNA circularization and also recruits the deadenylase complex through the interaction with PABPC1.
Collapse
|
147
|
Curry S, Kotik-Kogan O, Conte MR, Brick P. Getting to the end of RNA: structural analysis of protein recognition of 5' and 3' termini. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:653-66. [PMID: 19619683 DOI: 10.1016/j.bbagrm.2009.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
The specific recognition by proteins of the 5' and 3' ends of RNA molecules is an important facet of many cellular processes, including RNA maturation, regulation of translation initiation and control of gene expression by degradation and RNA interference. The aim of this review is to survey recent structural analyses of protein binding domains that specifically bind to the extreme 5' or 3' termini of RNA. For reasons of space and because their interactions are also governed by catalytic considerations, we have excluded enzymes that modify the 5' and 3' extremities of RNA. It is clear that there is enormous structural diversity among the proteins that have evolved to bind to the ends of RNA molecules. Moreover, they commonly exhibit conformational flexibility that appears to be important for binding and regulation of the interaction. This flexibility has sometimes complicated the interpretation of structural results and presents significant challenges for future investigations.
Collapse
Affiliation(s)
- Stephen Curry
- Biophysics Section, Blackett Laboratory, Imperial College, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | |
Collapse
|
148
|
Beilharz TH, Humphreys DT, Clancy JL, Thermann R, Martin DIK, Hentze MW, Preiss T. microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS One 2009; 4:e6783. [PMID: 19710908 PMCID: PMC2728509 DOI: 10.1371/journal.pone.0006783] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/24/2009] [Indexed: 12/11/2022] Open
Abstract
Animal microRNAs (miRNAs) typically regulate gene expression by binding to partially complementary target sites in the 3' untranslated region (UTR) of messenger RNA (mRNA) reducing its translation and stability. They also commonly induce shortening of the mRNA 3' poly(A) tail, which contributes to their mRNA decay promoting function. The relationship between miRNA-mediated deadenylation and translational repression has been less clear. Using transfection of reporter constructs carrying three imperfectly matching let-7 target sites in the 3' UTR into mammalian cells we observe rapid target mRNA deadenylation that precedes measureable translational repression by endogenous let-7 miRNA. Depleting cells of the argonaute co-factors RCK or TNRC6A can impair let-7-mediated repression despite ongoing mRNA deadenylation, indicating that deadenylation alone is not sufficient to effect full repression. Nevertheless, the magnitude of translational repression by let-7 is diminished when the target reporter lacks a poly(A) tail. Employing an antisense strategy to block deadenylation of target mRNA with poly(A) tail also partially impairs translational repression. On the one hand, these experiments confirm that tail removal by deadenylation is not strictly required for translational repression. On the other hand they show directly that deadenylation can augment miRNA-mediated translational repression in mammalian cells beyond stimulating mRNA decay. Taken together with published work, these results suggest a dual role of deadenylation in miRNA function: it contributes to translational repression as well as mRNA decay and is thus critically involved in establishing the quantitatively appropriate physiological response to miRNAs.
Collapse
Affiliation(s)
- Traude H. Beilharz
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Biotechnology & Biomolecular Sciences and St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - David T. Humphreys
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Jennifer L. Clancy
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Rolf Thermann
- European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg, Germany
| | - David I. K. Martin
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W. Hentze
- European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg, Germany
| | - Thomas Preiss
- Molecular Genetics Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Biotechnology & Biomolecular Sciences and St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
149
|
Kawamata T, Seitz H, Tomari Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 2009; 16:953-60. [PMID: 19684602 DOI: 10.1038/nsmb.1630] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/03/2009] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) regulate expression of their target mRNAs through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) family protein as a core component. In Drosophila melanogaster, miRNAs are generally sorted into Ago1-containing RISC (Ago1-RISC). We established a native gel system that can biochemically dissect the Ago1-RISC assembly pathway. We found that miRNA-miRNA* duplexes are loaded into Ago1 as double-stranded RNAs in an ATP-dependent fashion. In contrast, unexpectedly, unwinding of miRNA-miRNA* duplexes is a passive process that does not require ATP or slicer activity of Ago1. Central mismatches direct miRNA-miRNA* duplexes into pre-Ago1-RISC, whereas mismatches in the seed or guide strand positions 12-15 promote conversion of pre-Ago1-RISC into mature Ago1-RISC. Our findings show that unwinding of miRNAs is a precise mirror-image process of target recognition, and both processes reflect the unique geometry of RNAs in Ago proteins.
Collapse
Affiliation(s)
- Tomoko Kawamata
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
150
|
Eulalio A, Tritschler F, Izaurralde E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA (NEW YORK, N.Y.) 2009; 15:1433-42. [PMID: 19535464 PMCID: PMC2714752 DOI: 10.1261/rna.1703809] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa.
Collapse
Affiliation(s)
- Ana Eulalio
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|