101
|
Abstract
DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.
Collapse
|
102
|
Liu J, Zimmer K, Rusch DB, Paranjape N, Podicheti R, Tang H, Calvi BR. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila. Nucleic Acids Res 2015; 43:8746-61. [PMID: 26227968 PMCID: PMC4605296 DOI: 10.1093/nar/gkv766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/16/2015] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kurt Zimmer
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Neha Paranjape
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
103
|
Ge XQ, Han J, Cheng EC, Yamaguchi S, Shima N, Thomas JL, Lin H. Embryonic Stem Cells License a High Level of Dormant Origins to Protect the Genome against Replication Stress. Stem Cell Reports 2015; 5:185-94. [PMID: 26190528 PMCID: PMC4618655 DOI: 10.1016/j.stemcr.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/27/2022] Open
Abstract
Maintaining genomic integrity during DNA replication is essential for stem cells. DNA replication origins are licensed by the MCM2–7 complexes, with most of them remaining dormant. Dormant origins (DOs) rescue replication fork stalling in S phase and ensure genome integrity. However, it is not known whether DOs exist and play important roles in any stem cell type. Here, we show that embryonic stem cells (ESCs) contain more DOs than tissue stem/progenitor cells such as neural stem/progenitor cells (NSPCs). Partial depletion of DOs does not affect ESC self-renewal but impairs their differentiation, including toward the neural lineage. However, reduction of DOs in NSPCs impairs their self-renewal due to accumulation of DNA damage and apoptosis. Furthermore, mice with reduced DOs show abnormal neurogenesis and semi-embryonic lethality. Our results reveal that ESCs are equipped with more DOs to better protect against replicative stress than tissue-specific stem/progenitor cells. ESCs possess more dormant origins than tissue stem/progenitor cells The greater number of dormant origins in ESCs effectively protects genome integrity Reduction of dormant origins impairs ESC differentiation, but not self-renewal Reduction of dormant origins severely affects neurogenesis and embryonic viability
Collapse
Affiliation(s)
- Xin Quan Ge
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jinah Han
- Yale Cardiovascular Research Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ee-Chun Cheng
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Satoru Yamaguchi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jean-Leon Thomas
- Yale Cardiovascular Research Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; SIAIS and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
104
|
Sugimoto N, Maehara K, Yoshida K, Yasukouchi S, Osano S, Watanabe S, Aizawa M, Yugawa T, Kiyono T, Kurumizaka H, Ohkawa Y, Fujita M. Cdt1-binding protein GRWD1 is a novel histone-binding protein that facilitates MCM loading through its influence on chromatin architecture. Nucleic Acids Res 2015; 43:5898-911. [PMID: 25990725 PMCID: PMC4499137 DOI: 10.1093/nar/gkv509] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
Efficient pre-replication complex (pre-RC) formation on chromatin templates is crucial for the maintenance of genome integrity. However, the regulation of chromatin dynamics during this process has remained elusive. We found that a conserved protein, GRWD1 (glutamate-rich WD40 repeat containing 1), binds to two representative replication origins specifically during G1 phase in a CDC6- and Cdt1-dependent manner, and that depletion of GRWD1 reduces loading of MCM but not CDC6 and Cdt1. Furthermore, chromatin immunoprecipitation coupled with high-throughput sequencing (Seq) revealed significant genome-wide co-localization of GRWD1 with CDC6. We found that GRWD1 has histone-binding activity. To investigate the effect of GRWD1 on chromatin architecture, we used formaldehyde-assisted isolation of regulatory elements (FAIRE)-seq or FAIRE-quantitative PCR analyses, and the results suggest that GRWD1 regulates chromatin openness at specific chromatin locations. Taken together, these findings suggest that GRWD1 may be a novel histone-binding protein that regulates chromatin dynamics and MCM loading at replication origins.
Collapse
Affiliation(s)
- Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Faculty of Medicine, Division of Epigenetics, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shuhei Yasukouchi
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoko Osano
- Division of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shinya Watanabe
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahiro Aizawa
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Yugawa
- Division of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tohru Kiyono
- Division of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasuyuki Ohkawa
- Faculty of Medicine, Division of Epigenetics, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
105
|
Sequeira-Mendes J, Gutierrez C. Links between genome replication and chromatin landscapes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:38-51. [PMID: 25847096 DOI: 10.1111/tpj.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 05/07/2023]
Abstract
Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
106
|
Stengel KR, Hiebert SW. Class I HDACs Affect DNA Replication, Repair, and Chromatin Structure: Implications for Cancer Therapy. Antioxid Redox Signal 2015; 23:51-65. [PMID: 24730655 PMCID: PMC4492608 DOI: 10.1089/ars.2014.5915] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The contribution of epigenetic alterations to cancer development and progression is becoming increasingly clear, prompting the development of epigenetic therapies. Histone deacetylase inhibitors (HDIs) represent one of the first classes of such therapy. Two HDIs, Vorinostat and Romidepsin, are broad-spectrum inhibitors that target multiple histone deacetylases (HDACs) and are FDA approved for the treatment of cutaneous T-cell lymphoma. However, the mechanism of action and the basis for the cancer-selective effects of these inhibitors are still unclear. RECENT ADVANCES While the anti-tumor effects of HDIs have traditionally been attributed to their ability to modify gene expression after the accumulation of histone acetylation, recent studies have identified the effects of HDACs on DNA replication, DNA repair, and genome stability. In addition, the HDIs available in the clinic target multiple HDACs, making it difficult to assign either their anti-tumor effects or their associated toxicities to the inhibition of a single protein. However, recent studies in mouse models provide insights into the tissue-specific functions of individual HDACs and their involvement in mediating the effects of HDI therapy. CRITICAL ISSUES Here, we describe how altered replication contributes to the efficacy of HDAC-targeted therapies as well as discuss what knowledge mouse models have provided to our understanding of the specific functions of class I HDACs, their potential involvement in tumorigenesis, and how their disruption may contribute to toxicities associated with HDI treatment. FUTURE DIRECTIONS Impairment of DNA replication by HDIs has important therapeutic implications. Future studies should assess how best to exploit these findings for therapeutic gain.
Collapse
Affiliation(s)
- Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
107
|
Suchyta M, Miotto B, McGarry TJ. An inactive geminin mutant that binds cdt1. Genes (Basel) 2015; 6:252-66. [PMID: 25988259 PMCID: PMC4488664 DOI: 10.3390/genes6020252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/27/2022] Open
Abstract
The initiation of DNA replication is tightly regulated in order to ensure that the genome duplicates only once per cell cycle. In vertebrate cells, the unstable regulatory protein Geminin prevents a second round of DNA replication by inhibiting the essential replication factor Cdt1. Cdt1 recruits mini-chromosome maintenance complex (MCM2-7), the replication helicase, into the pre-replication complex (pre-RC) at origins of DNA replication. The mechanism by which Geminin inhibits MCM2-7 loading by Cdt1 is incompletely understood. The conventional model is that Geminin sterically hinders a direct physical interaction between Cdt1 and MCM2-7. Here, we describe an inactive missense mutant of Geminin, GemininAWA, which binds to Cdt1 with normal affinity yet is completely inactive as a replication inhibitor even when added in vast excess. In fact, GemininAWA can compete with GemininWT for binding to Cdt1 and prevent it from inhibiting DNA replication. GemininAWA does not inhibit the loading of MCM2-7 onto DNA in vivo, and in the presence of GemininAWA, nuclear DNA is massively over-replicated within a single S phase. We conclude that Geminin does not inhibit MCM loading by simple steric interference with a Cdt1-MCM2-7 interaction but instead works by a non-steric mechanism, possibly by inhibiting the histone acetyltransferase HBO1.
Collapse
Affiliation(s)
- Marissa Suchyta
- Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University Chicago, IL 60610, USA.
| | - Benoit Miotto
- Epigenetics and Cell Fate, Sorbonne Paris Cité, University Paris Diderot, UMR 7216 CNRS, Paris 75013, France.
| | - Thomas J McGarry
- Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University Chicago, IL 60610, USA.
- George Wahlen Veterans Affairs Medical Center, Room 2E 24, 500 Foothill Drive, Salt Lake City, UT 84103, USA.
| |
Collapse
|
108
|
Yang XJ. MOZ and MORF acetyltransferases: Molecular interaction, animal development and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1818-26. [PMID: 25920810 DOI: 10.1016/j.bbamcr.2015.04.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
Lysine residues are subject to many forms of covalent modification and one such modification is acetylation of the ε-amino group. Initially identified on histone proteins in the 1960s, lysine acetylation is now considered as an important form of post-translational modification that rivals phosphorylation. However, only about a dozen of human lysine acetyltransferases have been identified. Among them are MOZ (monocytic leukemia zinc finger protein; a.k.a. MYST3 and KAT6A) and its paralog MORF (a.k.a. MYST4 and KAT6B). Although there is a distantly related protein in Drosophila and sea urchin, these two enzymes are vertebrate-specific. They form tetrameric complexes with BRPF1 (bromodomain- and PHD finger-containing protein 1) and two small non-catalytic subunits. These two acetyltransferases and BRPF1 play key roles in various developmental processes; for example, they are important for development of hematopoietic and neural stem cells. The human KAT6A and KAT6B genes are recurrently mutated in leukemia, non-hematologic malignancies, and multiple developmental disorders displaying intellectual disability and various other abnormalities. In addition, the BRPF1 gene is mutated in childhood leukemia and adult medulloblastoma. Therefore, these two acetyltransferases and their partner BRPF1 are important in animal development and human disease.
Collapse
Affiliation(s)
- Xiang-Jiao Yang
- The Rosalind & Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada.
| |
Collapse
|
109
|
Bailly A, Perrin A, Bou Malhab LJ, Pion E, Larance M, Nagala M, Smith P, O'Donohue MF, Gleizes PE, Zomerdijk J, Lamond AI, Xirodimas DP. The NEDD8 inhibitor MLN4924 increases the size of the nucleolus and activates p53 through the ribosomal-Mdm2 pathway. Oncogene 2015; 35:415-26. [PMID: 25867069 DOI: 10.1038/onc.2015.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/10/2015] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
The ubiquitin-like molecule NEDD8 is essential for viability, growth and development, and is a potential target for therapeutic intervention. We found that the small molecule inhibitor of NEDDylation, MLN4924, alters the morphology and increases the surface size of the nucleolus in human and germline cells of Caenorhabditis elegans in the absence of nucleolar fragmentation. SILAC proteomics and monitoring of rRNA production, processing and ribosome profiling shows that MLN4924 changes the composition of the nucleolar proteome but does not inhibit RNA Pol I transcription. Further analysis demonstrates that MLN4924 activates the p53 tumour suppressor through the RPL11/RPL5-Mdm2 pathway, with characteristics of nucleolar stress. The study identifies the nucleolus as a target of inhibitors of NEDDylation and provides a mechanism for p53 activation upon NEDD8 inhibition. It also indicates that targeting the nucleolar proteome without affecting nucleolar transcription initiates the required signalling events for the control of cell cycle regulators.
Collapse
Affiliation(s)
- A Bailly
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| | - A Perrin
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| | - L J Bou Malhab
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| | - E Pion
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| | - M Larance
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland/UK
| | - M Nagala
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland/UK
| | - P Smith
- Millennium Pharmaceuticals Inc., Cambridge, MA, USA
| | - M-F O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, UMR CNRS 5099, Bâtiment IBCG, Toulouse, France
| | - P-E Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, UMR CNRS 5099, Bâtiment IBCG, Toulouse, France
| | - J Zomerdijk
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland/UK
| | - A I Lamond
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland/UK
| | - D P Xirodimas
- Centre de Recherche de Biochimie Macromoléculaire-UMR 5237, CNRS, Montpellier, France
| |
Collapse
|
110
|
Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol 2015; 35:2059-72. [PMID: 25848090 DOI: 10.1128/mcb.01413-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
Setd8 is the sole histone methyltransferase in mammals capable of monomethylating histone H4 lysine 20 (H4K20me1). Setd8 is expressed at significantly higher levels in erythroid cells than any other cell or tissue type, suggesting that Setd8 has an erythroid-cell-specific function. To test this hypothesis, stable Setd8 knockdown was established in extensively self-renewing erythroblasts (ESREs), a well-characterized, nontransformed model of erythroid maturation. Knockdown of Setd8 resulted in impaired erythroid maturation characterized by a delay in hemoglobin accumulation, larger mean cell area, persistent ckit expression, incomplete nuclear condensation, and lower rates of enucleation. Setd8 knockdown did not alter ESRE proliferation or viability or result in accumulation of DNA damage. Global gene expression analyses following Setd8 knockdown demonstrated that in erythroid cells, Setd8 functions primarily as a repressor. Most notably, Gata2 expression was significantly higher in knockdown cells than in control cells and Gata2 knockdown rescued some of the maturation impairments associated with Setd8 disruption. Setd8 occupies critical regulatory elements in the Gata2 locus, and knockdown of Setd8 resulted in loss of H4K20me1 and gain of H4 acetylation at the Gata2 1S promoter. These results suggest that Setd8 is an important regulator of erythroid maturation that works in part through repression of Gata2 expression.
Collapse
|
111
|
Rondinelli B, Schwerer H, Antonini E, Gaviraghi M, Lupi A, Frenquelli M, Cittaro D, Segalla S, Lemaitre JM, Tonon G. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res 2015; 43:2560-74. [PMID: 25712104 PMCID: PMC4357704 DOI: 10.1093/nar/gkv090] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA replication is a tightly regulated process that initiates from multiple replication origins and leads to the faithful transmission of the genetic material. For proper DNA replication, the chromatin surrounding origins needs to be remodeled. However, remarkably little is known on which epigenetic changes are required to allow the firing of replication origins. Here, we show that the histone demethylase KDM5C/JARID1C is required for proper DNA replication at early origins. JARID1C dictates the assembly of the pre-initiation complex, driving the binding to chromatin of the pre-initiation proteins CDC45 and PCNA, through the demethylation of the histone mark H3K4me3. Fork activation and histone H4 acetylation, additional early events involved in DNA replication, are not affected by JARID1C downregulation. All together, these data point to a prominent role for JARID1C in a specific phase of DNA replication in mammalian cells, through its demethylase activity on H3K4me3.
Collapse
Affiliation(s)
- Beatrice Rondinelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Hélène Schwerer
- Laboratory of Stem Cell and Genome Plasticity in Development and Aging, Institute of Regenerative Medicine and Biotherapies, INSERM U1183, Montpellier University, Montpellier, France
| | - Elena Antonini
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Alessio Lupi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Jean-Marc Lemaitre
- Laboratory of Stem Cell and Genome Plasticity in Development and Aging, Institute of Regenerative Medicine and Biotherapies, INSERM U1183, Montpellier University, Montpellier, France
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
112
|
Ma Y, Kanakousaki K, Buttitta L. How the cell cycle impacts chromatin architecture and influences cell fate. Front Genet 2015; 6:19. [PMID: 25691891 PMCID: PMC4315090 DOI: 10.3389/fgene.2015.00019] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 01/17/2023] Open
Abstract
Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Kiriaki Kanakousaki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
113
|
Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins. Methods Mol Biol 2015; 1288:289-303. [PMID: 25827886 DOI: 10.1007/978-1-4939-2474-5_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Of critical importance to many of the events underlying transcriptional control of gene expression are modifications to core and linker histones that regulate the accessibility of trans-acting factors to the DNA substrate within the context of chromatin. Likewise, control over the initiation of DNA replication, as well as the ability of the replication machinery to proceed during elongation through the multiple levels of chromatin condensation that are likely to be encountered, is known to involve the creation of chromatin accessibility. In the latter case, chromatin access will likely need to be a transient event so as to prevent total genomic unraveling of the chromatin that would be deleterious to cells. While there are many molecular and biochemical approaches in use to study histone changes and their relationship to transcription and chromatin accessibility, few techniques exist that allow a molecular dissection of the events underlying DNA replication control as it pertains to chromatin changes and accessibility. Here, we outline a novel experimental strategy for addressing the ability of specific proteins to induce large-scale chromatin unfolding (decondensation) in vivo upon site-specific targeting to an engineered locus. Our laboratory has used this powerful system in novel ways to directly address the ability of DNA replication proteins to create chromatin accessibility, and have incorporated modifications to the basic approach that allow for a molecular genetic analysis of the mechanisms and associated factors involved in causing chromatin decondensation by a protein of interest. Alternative approaches involving co-expression of other proteins (competitors or stimulators), concurrent drug treatments, and analysis of co-localizing histone modifications are also addressed, all of which are illustrative of the utility of this experimental system for extending basic findings to physiologically relevant mechanisms. Although used by our group to analyze mechanisms underlying DNA replication associated chromatin accessibility, this unique and powerful experimental system has the propensity to be a valuable tool for understanding chromatin remodeling mechanisms orchestrated by other cellular processes such as DNA repair, recombination, mitotic chromosome condensation, or other chromosome dynamics involving chromatin alterations and accessibility.
Collapse
|
114
|
Wozniak GG, Strahl BD. Hitting the ‘mark’: Interpreting lysine methylation in the context of active transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1353-61. [DOI: 10.1016/j.bbagrm.2014.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 12/31/2022]
|
115
|
Wang RH, Lahusen TJ, Chen Q, Xu X, Jenkins LMM, Leo E, Fu H, Aladjem M, Pommier Y, Appella E, Deng CX. SIRT1 deacetylates TopBP1 and modulates intra-S-phase checkpoint and DNA replication origin firing. Int J Biol Sci 2014; 10:1193-202. [PMID: 25516717 PMCID: PMC4261203 DOI: 10.7150/ijbs.11066] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022] Open
Abstract
SIRT1, the mammalian homolog of yeast Sir2, is a founding member of a family of 7 protein and histone deacetylases that are involved in numerous biological functions. Previous studies revealed that SIRT1 deficiency results in genome instability, which eventually leads to cancer formation, yet the underlying mechanism is unclear. To investigate this, we conducted a proteomics study and found that SIRT1 interacted with many proteins involved in replication fork protection and origin firing. We demonstrated that loss of SIRT1 resulted in increased replication origin firing, asymmetric fork progression, defective intra-S-phase checkpoint, and chromosome damage. Mechanistically, SIRT1 deacetylates and affects the activity of TopBP1, which plays an essential role in DNA replication fork protection and replication origin firing. Our study demonstrated that ectopic over-expression of the deacetylated form of TopBP1 in SIRT1 mutant cells repressed replication origin firing, while the acetylated form of TopBP1 lost this function. Thus, SIRT1 acts upstream of TopBP1 and plays an essential role in maintaining genome stability by modulating DNA replication fork initiation and the intra-S-phase cell cycle checkpoint.
Collapse
Affiliation(s)
- Rui-Hong Wang
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA; ; 4. Faculty of Health Sciences, University of Macau, Macau, SAR of People's Republic of China
| | - Tyler J Lahusen
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Qiang Chen
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Xiaoling Xu
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA; ; 4. Faculty of Health Sciences, University of Macau, Macau, SAR of People's Republic of China
| | - Lisa M Miller Jenkins
- 2. Laboratory of Cell Biology, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Elisabetta Leo
- 3. Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Haiqing Fu
- 3. Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Mirit Aladjem
- 3. Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Yves Pommier
- 3. Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Ettore Appella
- 2. Laboratory of Cell Biology, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | - Chu-Xia Deng
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA; ; 4. Faculty of Health Sciences, University of Macau, Macau, SAR of People's Republic of China
| |
Collapse
|
116
|
Wu M, Lu W, Santos RE, Frattini MG, Kelly TJ. Geminin inhibits a late step in the formation of human pre-replicative complexes. J Biol Chem 2014; 289:30810-30821. [PMID: 25231993 PMCID: PMC4215257 DOI: 10.1074/jbc.m114.552935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The initial step in initiation of eukaryotic DNA replication involves the assembly of pre-replicative complexes (pre-RCs) at origins of replication during the G1 phase of the cell cycle. In metazoans initiation is inhibited by the regulatory factor Geminin. We have purified the human pre-RC proteins, studied their interactions in vitro with each other and with origin DNA, and analyzed the effects of HsGeminin on formation of DNA-protein complexes. The formation of an initial complex containing the human origin recognition complex (HsORC), HsCdt1, HsCdc6, and origin DNA is cooperative, involving all possible binary interactions among the components. Maximal association of HsMCM2-7, a component of the replicative helicase, requires HsORC, HsCdc6, HsCdt1, and ATP, and is driven by interactions of HsCdt1 and HsCdc6 with multiple HsMCM2-7 subunits. Formation of stable complexes, resistant to high salt, requires ATP hydrolysis. In the absence of HsMCM proteins, HsGeminin inhibits the association of HsCdt1 with DNA or with HsORC-HsCdc6-DNA complexes. However, HsGeminin does not inhibit recruitment of HsMCM2-7 to DNA to form complexes containing all of the pre-RC proteins. In fact, HsGeminin itself is a component of such complexes, and interacts directly with the HsMcm3 and HsMcm5 subunits of HsMCM2-7, as well as with HsCdt1. Although HsGeminin does not prevent the initial formation of DNA-protein complexes containing the pre-RC proteins, it strongly inhibits the formation of stable pre-RCs that are resistant to high salt. We suggest that bound HsGeminin prevents transition of the pre-RC to a state that is competent for initiation of DNA replication.
Collapse
Affiliation(s)
- Min Wu
- Program in Molecular Biology and Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Wenyan Lu
- Program in Molecular Biology and Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Ruth E Santos
- Program in Molecular Biology and Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Mark G Frattini
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065.
| | - Thomas J Kelly
- Program in Molecular Biology and Memorial Sloan-Kettering Cancer Center, New York, New York 10065.
| |
Collapse
|
117
|
Abstract
Histone modifiers like acetyltransferases, methyltransferases, and demethylases are critical regulators of most DNA-based nuclear processes, de facto controlling cell cycle progression and cell fate. These enzymes perform very precise post-translational modifications on specific histone residues, which in turn are recognized by different effector modules/proteins. We now have a better understanding of how these enzymes exhibit such specificity. As they often reside in multisubunit complexes, they use associated factors to target their substrates within chromatin structure and select specific histone mark-bearing nucleosomes. In this review, we cover the current understanding of how histone modifiers select their histone targets. We also explain how different experimental approaches can lead to conflicting results about the histone specificity and function of these enzymes.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du CHU de Québec-Axe Oncologie, Hôtel-Dieu de Québec, Quebec City, Quebec G1R 2J6, Canada
| |
Collapse
|
118
|
Abstract
The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC's diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer.
Collapse
Affiliation(s)
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, New York 10032 Department of Genetics and Development, Columbia University, New York, New York 10032
| |
Collapse
|
119
|
Raynaud C, Mallory AC, Latrasse D, Jégu T, Bruggeman Q, Delarue M, Bergounioux C, Benhamed M. Chromatin meets the cell cycle. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2677-89. [PMID: 24497647 DOI: 10.1093/jxb/ert433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The cell cycle is one of the most comprehensively studied biological processes, due primarily to its significance in growth and development, and its deregulation in many human disorders. Studies using a diverse set of model organisms, including yeast, worms, flies, frogs, mammals, and plants, have greatly expanded our knowledge of the cell cycle and have contributed to the universally accepted view of how the basic cell cycle machinery is regulated. In addition to the oscillating activity of various cyclin-dependent kinase (CDK)-cyclin complexes, a plethora of proteins affecting various aspects of chromatin dynamics has been shown to be essential for cell proliferation during plant development. Furthermore, it was reported recently that core cell cycle regulators control gene expression by modifying histone patterns. This review focuses on the intimate relationship between the cell cycle and chromatin. It describes the dynamics and functions of chromatin structures throughout cell cycle progression and discusses the role of heterochromatin as a barrier against re-replication and endoreduplication. It also proposes that core plant cell cycle regulators control gene expression in a manner similar to that described in mammals. At present, our challenge in plants is to define the complete set of effectors and actors that coordinate cell cycle progression and chromatin structure and to understand better the functional interplay between these two processes.
Collapse
Affiliation(s)
- Cécile Raynaud
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Allison C Mallory
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - David Latrasse
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Teddy Jégu
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Quentin Bruggeman
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR8618 Université Paris-Sud XI, 91405 Orsay, France
| |
Collapse
|
120
|
Doenecke D. Chromatin dynamics from S-phase to mitosis: contributions of histone modifications. Cell Tissue Res 2014; 356:467-75. [PMID: 24816984 DOI: 10.1007/s00441-014-1873-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
This review focuses on the major protein moiety of chromosomes, i.e., the histone proteins, on the contribution of their posttranslational modification to structural and functional chromatin dynamics, on the acetylation and methylation of lysine residues, and on the phosphorylation of serine or threonine with respect to various steps during the cell cycle.
Collapse
Affiliation(s)
- Detlef Doenecke
- Department for Molecular Biology, Georg August University, Göttingen, Germany,
| |
Collapse
|
121
|
Singh J. Role of DNA replication in establishment and propagation of epigenetic states of chromatin. Semin Cell Dev Biol 2014; 30:131-43. [PMID: 24794003 DOI: 10.1016/j.semcdb.2014.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
DNA replication is the fundamental process of duplication of the genetic information that is vital for survival of all living cells. The basic mechanistic steps of replication initiation, elongation and termination are conserved among bacteria, lower eukaryotes, like yeast and metazoans. However, the details of the mechanisms are different. Furthermore, there is a close coordination between chromatin assembly pathways and various components of replication machinery whereby DNA replication is coupled to "chromatin replication" during cell cycle. Thereby, various epigenetic modifications associated with different states of gene expression in differentiated cells and the related chromatin structures are faithfully propagated during the cell division through tight coupling with the DNA replication machinery. Several examples are found in lower eukaryotes like budding yeast and fission yeast with close parallels in metazoans.
Collapse
Affiliation(s)
- Jagmohan Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
| |
Collapse
|
122
|
Siriwardana NS, Meyer R, Havasi A, Dominguez I, Panchenko MV. Cell cycle-dependent chromatin shuttling of HBO1-JADE1 histone acetyl transferase (HAT) complex. Cell Cycle 2014; 13:1885-901. [PMID: 24739512 PMCID: PMC4111752 DOI: 10.4161/cc.28759] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HAT HBO1 interacts with 2 isoforms of JADE1: JADE1S and JADE1L. JADE1 promotes acetylation of nucleosomal histones by HBO1. HBO1–JADE1 complex facilitates cell proliferation by unclear mechanisms. Here we report intracellular chromatin shuttling of HBO1–JADE1 complex during mitosis coupled to phosphorylation of JADE1. In interphase of dividing cells JADE1S was localized to the nucleus and associated with chromatin. As cells approached mitosis, specifically prophase, JADE1S dissociated from chromatin and associated with cytoplasm. JADE1S chromatin re-association began in telophase and paralleled nuclear envelope membrane reassembly. By early G1, JADE1S was re-associated with chromatin and localized to the nucleus. Importantly, cytoplasmic but not chromatin-associated JADE1 protein was phosphorylated. Mass-Spectrometric analysis of JADE1S protein isolated from G2/M-arrested cells identified 6 phosphorylated amino acid residues: S89, T92, S102, S121, S392, and T468, including 3 novel sites. Temporally, JADE1S phosphorylation and dephosphorylation during mitosis correlated with JADE1S chromatin dissociation and recruitment. JADE1S chromatin recruitment was accompanied by the global histone H4 acetylation. Pharmacological inhibitor of Aurora A kinase prevented JADE1S protein band shift and chromatin dissociation, suggesting regulatory function for phosphorylation. In vivo experiments supported our in vitro results. In mouse kidneys, JADE1S transiently accumulated in the cytoplasm of tubular epithelial cells during kidney regeneration. The transient increase in the number of cells with cytoplasmic JADE1S directly correlated with activation of tubular cell proliferation and inversely correlated with the number of cells with nuclear JADE1S staining, supporting biological role of HBO1–JADE1 shuttling during organ regeneration.
Collapse
Affiliation(s)
| | - Rosana Meyer
- Department of Pathology; Boston University School of Medicine; Boston, MA USA
| | - Andrea Havasi
- Renal Section; Department of Medicine; Boston Medical Center; Boston, MA USA
| | - Isabel Dominguez
- Hematology-Oncology Section; Department of Medicine; Boston University School of Medicine; Boston, MA USA
| | - Maria V Panchenko
- Department of Pathology; Boston University School of Medicine; Boston, MA USA
| |
Collapse
|
123
|
Abstract
While large portions of the mammalian genome are known to replicate sequentially in a distinct, tissue-specific order, recent studies suggest that the inactive X chromosome is duplicated rapidly via random, synchronous DNA synthesis at numerous adjacent regions. The rapid duplication of the inactive X chromosome was observed in high-resolution studies visualizing DNA replication patterns in the nucleus, and by allele-specific DNA sequencing studies measuring the extent of DNA synthesis. These studies conclude that inactive X chromosomes complete replication earlier than previously thought and suggest that the strict order of DNA replication detected in the majority of genomic regions is not preserved in non-transcribed, "silent" chromatin. These observations alter current concepts about the regulation of DNA replication in non-transcribed portions of the genome in general and in the inactive X-chromosome in particular.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
124
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
125
|
Laget S, Miotto B, Chin HG, Estève PO, Roberts RJ, Pradhan S, Defossez PA. MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress. Epigenetics 2014; 9:546-56. [PMID: 24434851 PMCID: PMC4121365 DOI: 10.4161/epi.27695] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress induces genome-wide remodeling of the chromatin structure. In this study, we identify Methyl-CpG Binding Protein 4 (MBD4), a multifunctional enzyme involved in DNA demethylation, base excision repair, and gene expression regulation, as an essential factor in response to oxidative stress. We provide evidence that MBD4 is upregulated at the protein level upon oxidative stress, and that MBD4 is essential for cell survival following oxidative stress. In these cells, MBD4 and DNMT1 are recruited at sites of oxidation-induced DNA damage, where we speculate they participate in DNA repair. MBD4 and DNMT1 also share genomic targets in unstressed cells. Using genome-wide analysis of MBD4 binding sites, we identified new targets potentially co-regulated by MBD4 and DNA methylation. We identified two new binding sites for MBD4 and DNMT1 at methylated CpG islands of CDKN1A/p21 and MSH4, where they synergistically mediate transcriptional repression. Our study provides evidence that the interaction between DNMT1 and MBD4 is involved in controlling gene expression and responding to oxidative stress.
Collapse
Affiliation(s)
- Sophie Laget
- Université Paris Diderot; Sorbonne Paris Cité; Epigenetics and Cell Fate; UMR 7216 CNRS; Paris, France; New England Biolabs; Ipswich, MA USA
| | - Benoit Miotto
- Université Paris Diderot; Sorbonne Paris Cité; Epigenetics and Cell Fate; UMR 7216 CNRS; Paris, France
| | | | | | | | | | - Pierre-Antoine Defossez
- Université Paris Diderot; Sorbonne Paris Cité; Epigenetics and Cell Fate; UMR 7216 CNRS; Paris, France
| |
Collapse
|
126
|
Desvoyes B, Fernández-Marcos M, Sequeira-Mendes J, Otero S, Vergara Z, Gutierrez C. Looking at plant cell cycle from the chromatin window. FRONTIERS IN PLANT SCIENCE 2014; 5:369. [PMID: 25120553 PMCID: PMC4110626 DOI: 10.3389/fpls.2014.00369] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/11/2014] [Indexed: 05/03/2023]
Abstract
The cell cycle is defined by a series of complex events, finely coordinated through hormonal, developmental and environmental signals, which occur in a unidirectional manner and end up in producing two daughter cells. Accumulating evidence reveals that chromatin is not a static entity throughout the cell cycle. In fact, there are many changes that include nucleosome remodeling, histone modifications, deposition and exchange, among others. Interestingly, it is possible to correlate the occurrence of several of these chromatin-related events with specific processes necessary for cell cycle progression, e.g., licensing of DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of replication origins in S-phase, the G2-specific transcription of genes required for mitosis or the chromatin packaging occurring in mitosis. Therefore, an emerging view is that chromatin dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we review the main features of several key chromatin events that occur at defined times throughout the cell cycle and discuss whether they are actually controlling the transit through specific cell cycle stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Crisanto Gutierrez
- *Correspondence: Crisanto Gutierrez, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Nicolas Cabrera 1, Cantoblanco, Madrid 28049, Spain e-mail:
| |
Collapse
|
127
|
Sherstyuk VV, Shevchenko AI, Zakian SM. Epigenetic landscape for initiation of DNA replication. Chromosoma 2013; 123:183-99. [PMID: 24337246 DOI: 10.1007/s00412-013-0448-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
Abstract
The key genetic process of DNA replication is initiated at specific sites referred to as replication origins. In eukaryotes, origins of DNA replication are not specified by a defined nucleotide sequence. Recent studies have shown that the structural context and topology of DNA sequence, chromatin features, and its transcriptional activity play an important role in origin choice. During differentiation and development, significant changes in chromatin organization and transcription occur, influencing origin activity and choice. In the last few years, a number of different genome-wide studies have broadened the understanding of replication origin regulation. In this review, we discuss the epigenetic factors and mechanisms that modulate origin choice and firing.
Collapse
Affiliation(s)
- Vladimir V Sherstyuk
- Russian Academy of Sciences, Siberian Branch, Institute of Cytology and Genetics, pr. Akad. Lavrentieva 10, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
128
|
Iizuka M, Susa T, Takahashi Y, Tamamori-Adachi M, Kajitani T, Okinaga H, Fukusato T, Okazaki T. Histone acetyltransferase Hbo1 destabilizes estrogen receptor α by ubiquitination and modulates proliferation of breast cancers. Cancer Sci 2013; 104:1647-55. [PMID: 24125069 DOI: 10.1111/cas.12303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/25/2022] Open
Abstract
The estrogen receptor (ER) is a key molecule for growth of breast cancers. It has been a successful target for treatment of breast cancers. Elucidation of the ER expression mechanism is of importance for designing therapeutics for ER-positive breast cancers. However, the detailed mechanism of ER stability is still unclear. Here, we report that histone acetyltransferase Hbo1 promotes destabilization of estrogen receptor α (ERα) in breast cancers through lysine 48-linked ubiquitination. The acetyltransferase activity of Hbo1 is linked to its activity for ERα ubiquitination. Depletion of Hbo1 and anti-estrogen treatment displayed a potent growth suppression of breast cancer cell line. Hbo1 modulated transcription by ERα. Mutually exclusive expression of Hbo1 and ERα was observed in roughly half of the human breast tumors examined in the present study. Modulation of ER stability by Hbo1 in breast cancers may provide a novel therapeutic possibility.
Collapse
Affiliation(s)
- Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Li B, Su T, Ferrari R, Li JY, Kurdistani SK. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells. Epigenetics 2013; 9:257-67. [PMID: 24172870 DOI: 10.4161/epi.26870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.
Collapse
Affiliation(s)
- Bing Li
- Department of Biological Chemistry; University of California; Los Angeles, CA USA
| | - Trent Su
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Division of Oral Biology and Medicine; School of Dentistry; University of California; Los Angeles, CA USA
| | - Roberto Ferrari
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Jing-Yu Li
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry; University of California; Los Angeles, CA USA; Molecular Biology Institute; University of California; Los Angeles, CA USA; Department of Pathology and Laboratory Medicine; University of California; Los Angeles, CA USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| |
Collapse
|
130
|
Abstract
The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901
| | | |
Collapse
|
131
|
Lalonde ME, Avvakumov N, Glass KC, Joncas FH, Saksouk N, Holliday M, Paquet E, Yan K, Tong Q, Klein BJ, Tan S, Yang XJ, Kutateladze TG, Côté J. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev 2013; 27:2009-24. [PMID: 24065767 PMCID: PMC3792477 DOI: 10.1101/gad.223396.113] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022]
Abstract
Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Nikita Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | | | - France-Hélène Joncas
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Nehmé Saksouk
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Michael Holliday
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Eric Paquet
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Kezhi Yan
- The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Québec H3A 1A1, Canada
| | | | | | - Song Tan
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania University, University Park, Pennsylvania 16802, USA
| | - Xiang-Jiao Yang
- The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Québec H3A 1A1, Canada
- Department of Medicine, McGill University Health Center, Montreal, Québec H3A 1A1, Canada
| | - Tatiana G. Kutateladze
- Department of Pharmacology
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| |
Collapse
|
132
|
Taylor EM, Bonsu NM, Price RJ, Lindsay HD. Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts. Nucleic Acids Res 2013; 41:7725-37. [PMID: 23788677 PMCID: PMC3763540 DOI: 10.1093/nar/gkt549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022] Open
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) has a well-established role in epigenetic regulation through the recognition of various histone marks and interaction with chromatin-modifying proteins. However, its function in regulating cell cycle progression remains poorly understood and has been largely attributed to a role in transcriptional regulation. In this study we have used Xenopus laevis egg extracts to analyse Uhrf1 function in DNA replication in the absence of transcriptional influences. We demonstrate that removal of Uhrf1 inhibits chromosomal replication in this system. We further show that this requirement for Uhrf1, or an associated factor, occurs at an early stage of DNA replication and that the consequences of Uhrf1 depletion are not solely due to its role in loading Dnmt1 onto newly replicated DNA. We describe the pattern of Uhrf1 chromatin association before the initiation of DNA replication and show that this reflects functional requirements both before and after origin licensing. Our data demonstrate that the removal of Xenopus Uhrf1 influences the chromatin association of key replication proteins and reveal Uhrf1 as an important new factor required for metazoan DNA replication.
Collapse
Affiliation(s)
- Elaine M. Taylor
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Nicola M. Bonsu
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - R. Jordan Price
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Howard D. Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| |
Collapse
|
133
|
Abstract
DNA replication is tightly controlled in eukaryotic cells to ensure that an exact copy of the genetic material is inherited by both daughter cells. Oscillating waves of cyclin-dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C) activities provide a binary switch that permits the replication of each chromosome exactly once per cell cycle. Work from several organisms has revealed a conserved strategy whereby inactive replication complexes are assembled onto DNA during periods of low CDK and high APC activity but are competent to execute genome duplication only when these activities are reversed. Periods of high CDK and low APC/C serve an essential function by blocking reassembly of replication complexes, thereby preventing rereplication. Higher eukaryotes have evolved additional CDK-independent mechanisms for preventing rereplication.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | |
Collapse
|
134
|
Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet 2013; 29:449-60. [DOI: 10.1016/j.tig.2013.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/27/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022]
|
135
|
Abstract
The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.
Collapse
Affiliation(s)
- David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
136
|
Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013; 27:1662-79. [PMID: 23884606 DOI: 10.1101/gad.218966.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Chen X, Liu G, Leffak M. Activation of a human chromosomal replication origin by protein tethering. Nucleic Acids Res 2013; 41:6460-74. [PMID: 23658226 PMCID: PMC3711443 DOI: 10.1093/nar/gkt368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences.
Collapse
Affiliation(s)
- Xiaomi Chen
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | |
Collapse
|
138
|
Abstract
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication ("origin licensing") to active DNA synthesis ("origin firing"). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells.
Collapse
Affiliation(s)
- Lindsay F Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
139
|
Méchali M, Yoshida K, Coulombe P, Pasero P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev 2013; 23:124-31. [PMID: 23541525 DOI: 10.1016/j.gde.2013.02.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
In the genome of eukaryotic cells, DNA synthesis is initiated at multiple sites called origins of DNA replication. Origins must fire only once per cell cycle and how this is achieved is now well understood. However, little is known about the mechanisms that determine when and where replication initiates in a given cell. A large body of evidence indicates that origins are not equal in terms of efficiency and timing of activation. Origin usage also changes concomitantly with the different cell differentiation programs. As DNA replication occurs in the context of chromatin, initiation could be influenced by multiple parameters, such as nucleosome positioning, histone modifications, and three-dimensional (3D) organization of the nucleus. This view is supported by recent genome-wide studies showing that DNA replication profiles are shaped by genetic and epigenetic processes that act both at the local and global levels to regulate origin function in eukaryotic cells.
Collapse
Affiliation(s)
- Marcel Méchali
- Institute of Human Genetics, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
140
|
Fatoba ST, Tognetti S, Berto M, Leo E, Mulvey CM, Godovac-Zimmermann J, Pommier Y, Okorokov AL. Human SIRT1 regulates DNA binding and stability of the Mcm10 DNA replication factor via deacetylation. Nucleic Acids Res 2013; 41:4065-79. [PMID: 23449222 PMCID: PMC3627603 DOI: 10.1093/nar/gkt131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The eukaryotic DNA replication initiation factor Mcm10 is essential for both replisome assembly and function. Human Mcm10 has two DNA-binding domains, the conserved internal domain (ID) and the C-terminal domain (CTD), which is specific to metazoans. SIRT1 is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that belongs to the sirtuin family. It is conserved from yeast to human and participates in cellular controls of metabolism, longevity, gene expression and genomic stability. Here we report that human Mcm10 is an acetylated protein regulated by SIRT1, which binds and deacetylates Mcm10 both in vivo and in vitro, and modulates Mcm10 stability and ability to bind DNA. Mcm10 and SIRT1 appear to act synergistically for DNA replication fork initiation. Furthermore, we show that the two DNA-binding domains of Mcm10 are modulated in distinct fashion by acetylation/deacetylation, suggesting an integrated regulation mechanism. Overall, our study highlights the importance of protein acetylation for DNA replication initiation and progression, and suggests that SIRT1 may mediate a crosstalk between cellular circuits controlling metabolism and DNA synthesis.
Collapse
Affiliation(s)
- Samuel T Fatoba
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Zou C, Chen Y, Smith RM, Snavely C, Li J, Coon TA, Chen BB, Zhao Y, Mallampalli RK. SCF(Fbxw15) mediates histone acetyltransferase binding to origin recognition complex (HBO1) ubiquitin-proteasomal degradation to regulate cell proliferation. J Biol Chem 2013; 288:6306-16. [PMID: 23319590 DOI: 10.1074/jbc.m112.426882] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone acetyltransferase binding to origin recognition complex (HBO1) plays a crucial role in DNA replication licensing and cell proliferation, yet its molecular regulation in cells is relatively unknown. Here an uncharacterized protein, Fbxw15, directly interacts with HBO1, a labile protein (t½ = ∼3 h), to mediate its ubiquitination (Lys(338)) and degradation in the cytoplasm. Fbxw15-mediated HBO1 depletion required mitogen-activated protein kinase 1 (Mek1), which was sufficient to trigger HBO1 phosphorylation and degradation in cells. Mek1 ability to produce HBO1 degradation was blocked by Fbxw15 silencing. Lipopolysaccharide induced HBO1 degradation, an effect abrogated by Fbxw15 or Mek1 cellular depletion. Modulation of Fbxw15 levels was able to differentially regulate histone H3K14 acetylation and cellular proliferation by altering HBO1 levels. These studies authenticate Fbxw15 as a ubiquitin E3 ligase subunit that mediates endotoxin-induced HBO1 depletion in cells, thereby controlling cell replicative capacity.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Song B, Liu XS, Rice S, Kuang S, Elzey BD, Konieczny SF, Ratliff TL, Hazbun T, Chiorean EG, Liu X. Plk1 phosphorylation of orc2 and hbo1 contributes to gemcitabine resistance in pancreatic cancer. Mol Cancer Ther 2013; 12:58-68. [PMID: 23188630 PMCID: PMC3732037 DOI: 10.1158/1535-7163.mct-12-0632] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although gemcitabine is the standard chemotherapeutic drug for treatment of pancreatic cancer, almost all patients eventually develop resistance to this agent. Previous studies identified Polo-like kinase 1 (Plk1) as the mediator of gemcitabine resistance, but the molecular mechanism remains unknown. In this study, we show that Plk1 phosphorylation of Orc2 and Hbo1 mediates the resistance to gemcitabine. We show that the level of Plk1 expression positively correlates with gemcitabine resistance, both in pancreatic cancer cells and xenograft tumors. Overexpression of Plk1 increases gemcitabine resistance, while inhibition of Plk1 sensitizes pancreatic cancer cells to gemcitabine treatment. To validate our findings, we show that inhibition of Plk1 sensitizes tumors to gemcitabine treatment in a mouse xenograft study. Mechanistically, we find that Plk1 phosphorylation of Orc2 maintains DNA replication on gemcitabine treatment. Furthermore, Plk1 phosphorylation of Hbo1 transcriptionally increases cFos expression and consequently elevates its target multidrug resistance 1 (MDR1), which was previously reported to confer chemotherapeutic drug resistance. Knockdown of cFos or MDR1 sensitizes gemcitabine-resistant cells to gemcitabine treatment. Finally, pancreatic cancer cells expressing Plk1-unphosphorylatable mutants of Orc2 or Hbo1 are more sensitive to gemcitabine than cells expressing wild-type Orc2 or Hbo1. In short, our study provides a mechanism for Plk1-mediated gemcitabine resistance, suggesting that Plk1 is a promising target for treatment of gemcitabine-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Bing Song
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - X. Shawn Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Steven Rice
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Bennett D. Elzey
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Stephen F. Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Timothy L. Ratliff
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| | - Tony Hazbun
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Elena G. Chiorean
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
143
|
Sanchez MDLP, Costas C, Sequeira-Mendes J, Gutierrez C. Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 2012; 4:a010140. [PMID: 23209151 PMCID: PMC3504439 DOI: 10.1101/cshperspect.a010140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
144
|
Havasi A, Haegele JA, Gall JM, Blackmon S, Ichimura T, Bonegio RG, Panchenko MV. Histone acetyl transferase (HAT) HBO1 and JADE1 in epithelial cell regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:152-62. [PMID: 23159946 DOI: 10.1016/j.ajpath.2012.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/09/2012] [Accepted: 09/20/2012] [Indexed: 12/31/2022]
Abstract
HBO1 acetylates lysine residues of histones and is involved in DNA replication and gene transcription. Two isoforms of JADE1, JADE1S and JADE1L, bind HBO1 and promote acetylation of histones in chromatin context. We characterized the role of JADE1-HBO1 complexes in vitro and in vivo during epithelial cell replication. Down-regulation of JADE1 by siRNA diminished the rate of DNA synthesis in cultured cells, decreased endogenous HBO1 protein expression, and prevented chromatin recruitment of replication factor Mcm7, demonstrating that JADE1 is required for cell proliferation. We used a murine model of acute kidney injury to examine expression of HBO1-JADE1S/L in injured and regenerating epithelial tissue. In control kidneys, JADE1S, JADE1L, and HBO1 were expressed in nuclei of proximal and distal tubular epithelial cells. Ischemia and reperfusion injury resulted in an initial decrease in JADE1S, JADE1L, and HBO1 protein levels, which returned to baseline during renal recovery. HBO1 and JADE1S recovered as cell proliferation reached its maximum, whereas JADE1L recovered after bulk proliferation had ceased. The temporal expression of JADE1S correlated with the acetylation of histone H4 on lysines 5 and 12, but not with acetylation of histone H3 on lysine 14, demonstrating that the JADE1S-HBO1 complex specifically marks H4 during epithelial cell proliferation. These data implicate JADE1-HBO1 complex in acute kidney injury and suggest distinct roles for JADE1 isoforms during epithelial cell recovery.
Collapse
Affiliation(s)
- Andrea Havasi
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Li Y, Xiao H, de Renty C, Jaramillo-Lambert A, Han Z, DePamphilis ML, Brown KJ, Zhu W. The involvement of acidic nucleoplasmic DNA-binding protein (And-1) in the regulation of prereplicative complex (pre-RC) assembly in human cells. J Biol Chem 2012; 287:42469-79. [PMID: 23093411 DOI: 10.1074/jbc.m112.404277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2-7 onto chromatin during late mitosis of the cell cycle. MCM2-7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G(1) phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2-7 to facilitate the assembly of MCM2-7 onto chromatin at replication origins in late mitosis and G(1) phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G(1) phase cells. Thus, human And-1 facilitates loading of the MCM2-7 helicase onto chromatin during the assembly of pre-RC.
Collapse
Affiliation(s)
- Yongming Li
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Shen Z, Prasanth SG. Emerging players in the initiation of eukaryotic DNA replication. Cell Div 2012; 7:22. [PMID: 23075259 PMCID: PMC3520825 DOI: 10.1186/1747-1028-7-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/12/2012] [Indexed: 12/23/2022] Open
Abstract
Faithful duplication of the genome in eukaryotes requires ordered assembly of a multi-protein complex called the pre-replicative complex (pre-RC) prior to S phase; transition to the pre-initiation complex (pre-IC) at the beginning of DNA replication; coordinated progression of the replisome during S phase; and well-controlled regulation of replication licensing to prevent re-replication. These events are achieved by the formation of distinct protein complexes that form in a cell cycle-dependent manner. Several components of the pre-RC and pre-IC are highly conserved across all examined eukaryotic species. Many of these proteins, in addition to their bona fide roles in DNA replication are also required for other cell cycle events including heterochromatin organization, chromosome segregation and centrosome biology. As the complexity of the genome increases dramatically from yeast to human, additional proteins have been identified in higher eukaryotes that dictate replication initiation, progression and licensing. In this review, we discuss the newly discovered components and their roles in cell cycle progression.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S, Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
147
|
Rizzardi LF, Dorn ES, Strahl BD, Cook JG. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Genetics 2012; 192:371-84. [PMID: 22851644 PMCID: PMC3454870 DOI: 10.1534/genetics.112.142349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 12/18/2022] Open
Abstract
DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.
Collapse
Affiliation(s)
- Lindsay F. Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Elizabeth S. Dorn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brian D. Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, and
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
148
|
Swarnalatha M, Singh AK, Kumar V. The epigenetic control of E-box and Myc-dependent chromatin modifications regulate the licensing of lamin B2 origin during cell cycle. Nucleic Acids Res 2012; 40:9021-35. [PMID: 22772991 PMCID: PMC3467044 DOI: 10.1093/nar/gks617] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/11/2012] [Accepted: 05/31/2012] [Indexed: 12/27/2022] Open
Abstract
Recent genome-wide mapping of the mammalian replication origins has suggested the role of transcriptional regulatory elements in origin activation. However, the nature of chromatin modifications associated with such trans-factors or epigenetic marks imprinted on cis-elements during the spatio-temporal regulation of replication initiation remains enigmatic. To unveil the molecular underpinnings, we studied the human lamin B2 origin that spatially overlaps with TIMM 13 promoter. We observed an early G(1)-specific occupancy of c-Myc that facilitated the loading of mini chromosome maintenance protein (MCM) complex during subsequent mid-G(1) phase rather stimulating TIMM 13 gene expression. Investigations on the Myc-induced downstream events suggested a direct interaction between c-Myc and histone methyltransferase mixed-lineage leukemia 1 that imparted histone H3K4me3 mark essential for both recruitment of acetylase complex HBO1 and hyperacetylation of histone H4. Contemporaneously, the nucleosome remodeling promoted the loading of MCM proteins at the origin. These chromatin modifications were under the tight control of active demethylation of E-box as evident from methylation profiling. The active demethylation was mediated by the Ten-eleven translocation (TET)-thymine DNA glycosylase-base excision repair (BER) pathway, which facilitated spatio-temporal occupancy of Myc. Intriguingly, the genome-wide 43% occurrence of E-box among the human origins could support our hypothesis that epigenetic control of E-box could be a molecular switch for the licensing of early replicating origins.
Collapse
Affiliation(s)
| | | | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
149
|
McConnell KH, Dixon M, Calvi BR. The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development 2012; 139:3880-90. [PMID: 22951641 DOI: 10.1242/dev.083576] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follicle cells as a model to investigate how chromatin modifiers regulate origins in a developmental context. We find that the histone acetyltransferase (HAT) Chameau (Chm) binds to amplicon origins and is partially required for their function. Depletion of Chm had relatively mild effects on origins during gene amplification and genomic replication compared with previous knockdown of its ortholog HBO1 in human cells, which has severe effects on origin function. We show that another HAT, CBP (Nejire), also binds amplicon origins and is partially required for amplification. Knockdown of Chm and CBP together had a more severe effect on nucleosome acetylation and amplicon origin activity than knockdown of either HAT alone, suggesting that these HATs collaborate in origin regulation. In addition to their local function at the origin, we show that Chm and CBP also globally regulate the developmental transition of follicle cells into the amplification stages of oogenesis. Our results reveal a complexity of origin epigenetic regulation by multiple HATs during development and suggest that chromatin modifiers are a nexus that integrates differentiation and DNA replication programs.
Collapse
|
150
|
Maity AK, Saha P. The histone acetyl transferase LdHAT1 fromLeishmania donovaniis regulated by S-phase cell cycle kinase. FEMS Microbiol Lett 2012; 336:57-63. [DOI: 10.1111/j.1574-6968.2012.02656.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anup Kumar Maity
- Crystallography and Molecular Biology Division; Saha Institute of Nuclear Physics; Kolkata; India
| | - Partha Saha
- Crystallography and Molecular Biology Division; Saha Institute of Nuclear Physics; Kolkata; India
| |
Collapse
|