101
|
Feu S, Unzueta F, Llopis A, Semple JI, Ercilla A, Guaita-Esteruelas S, Jaumot M, Freire R, Agell N. OZF is a Claspin-interacting protein essential to maintain the replication fork progression rate under replication stress. FASEB J 2020; 34:6907-6919. [PMID: 32267586 DOI: 10.1096/fj.201901926r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
DNA replication is essential for cell proliferation and is one of the cell cycle stages where DNA is more vulnerable. Replication stress is a prominent property of tumor cells and an emerging target for cancer therapy. Although it is not directly involved in nucleotide incorporation, Claspin is a protein with relevant functions in DNA replication. It harbors a DNA-binding domain that interacts preferentially with branched or forked DNA molecules. It also acts as a platform for the interaction of proteins related to DNA damage checkpoint activation, DNA repair, DNA replication origin firing, and fork progression. In order to find new proteins potentially involved in the regulation of DNA replication, we performed a two-hybrid screen to discover new Claspin-binding proteins. This system allowed us to identify the zinc-finger protein OZF (ZNF146) as a new Claspin-interacting protein. OZF is also present at replication forks and co-immunoprecipitates not only with Claspin but also with other replisome components. Interestingly, OZF depletion does not affect DNA replication in a normal cell cycle, but its depletion induces a reduction in the fork progression rate under replication stress conditions. Our results suggest that OZF is a Claspin-binding protein with a specific function in fork progression under replication stress.
Collapse
Affiliation(s)
- Sonia Feu
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Fernando Unzueta
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Alba Llopis
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | - Amaia Ercilla
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sandra Guaita-Esteruelas
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Jaumot
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, FIISC, La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain.,Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Neus Agell
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
102
|
Reed DR, Alexandrow MG. Myc and the Replicative CMG Helicase: The Creation and Destruction of Cancer: Myc Over-Activation of CMG Helicases Drives Tumorigenesis and Creates a Vulnerability in CMGs for Therapeutic Intervention. Bioessays 2020; 42:e1900218. [PMID: 32080866 PMCID: PMC8223603 DOI: 10.1002/bies.201900218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replicative Cdc45-MCM-GINS (CMG) helicases. Excessive stimulation of CMG helicases by Myc mismanages CMG function by diminishing the number of reserve CMGs necessary for fidelity of DNA replication and recovery from replicative stresses. One potential outcome of these events is the creation of DNA damage that alters genomic structure/function, thereby acting as a driver for tumorigenesis and tumor heterogeneity. Intriguingly, another potential outcome of this Myc-induced CMG helicase over-activation is the creation of a vulnerability in cancer whereby tumor cells specifically lack enough unused reserve CMG helicases to recover from fork-stalling drugs commonly used in chemotherapy. This review provides molecular and clinical support for this provocative hypothesis that excessive activation of CMG helicases by Myc may not only drive tumorigenesis, but also confer an exploitable "reserve CMG helicase vulnerability" that supports developing innovative CMG-focused therapeutic approaches for cancer management.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
103
|
Yang L, Zhao H, Yin X, Liang H, Zheng Z, Shen Q, Hu W. Exploring cisplatin resistance in ovarian cancer through integrated bioinformatics approach and overcoming chemoresistance with sanguinarine. Am J Transl Res 2020; 12:923-939. [PMID: 32269724 PMCID: PMC7137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Ovarian cancer is refractory in response towards platinum-based chemotherapy, and resistance frequently develops. We attempted to identify the driving pathways in cisplatin-resistant ovarian cancer and develop targeted therapies to overcome this resistance. Using an integrated bioinformatics approach, a GSE15372 database from NCBI's Gene Expression Omnibus database was obtained for identifying differentially expressed genes (DEGs), in which 535 DEGs were found (407 up-regulated and 128 down-regulated) in association with ovarian cancer cisplatin-resistance. Gene ontology and pathway enrichment analyses further found that aberrant activation of EGFR/ErbB2 signaling was the driving event in resistant cells. A network of dysregulated genes was built based on these identified DEGs and protein-protein interaction network, which led to the identification of 7 potential inhibitors based on screening a 77 small molecule natural product library. Sanguinarine, alone and in combination with cisplatin, was found to significantly suppress the proliferation of wt/resistant ovarian cancer cells in vitro and the growth of parental and resistant ovarian xenograft tumors in vivo. Our study suggests that EGFR/ErbB2 activation is one of the driving pathways in developing cisplatin-resistance in ovarian cancer, and that sanguinarine has the potential to be developed as an effective therapy to overcome this therapeutic resistance.
Collapse
Affiliation(s)
- Lihua Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Kunming Medical UniversityKunming, Yunnan Province, P. R. China
| | - Hongbo Zhao
- Institute of Molecular and Clinical Medicine, Kunming Medical UniversityKunming, Yunnan Province, P. R. China
| | - Xueqin Yin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Kunming Medical UniversityKunming, Yunnan Province, P. R. China
| | - Hong Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Kunming Medical UniversityKunming, Yunnan Province, P. R. China
| | - Zhi Zheng
- Department of Internal Medicine 5 Division, Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer CenterNanchang 330029, P. R. China
| | - Qiang Shen
- Department of Genetics & Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences CenterNew Orleans, LA 70112, USA
| | - Wanqin Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Kunming Medical UniversityKunming, Yunnan Province, P. R. China
| |
Collapse
|
104
|
Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O'Donnell ME. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nat Commun 2020; 11:688. [PMID: 32019936 PMCID: PMC7000775 DOI: 10.1038/s41467-020-14577-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
High-resolution structures have not been reported for replicative helicases at a replication fork at atomic resolution, a prerequisite to understanding the unwinding mechanism. The eukaryotic replicative CMG (Cdc45, Mcm2-7, GINS) helicase contains a Mcm2-7 motor ring, with the N-tier ring in front and the C-tier motor ring behind. The N-tier ring is structurally divided into a zinc finger (ZF) sub-ring followed by the oligosaccharide/oligonucleotide-binding (OB) fold ring. Here we report the cryo-EM structure of CMG on forked DNA at 3.9 Å, revealing that parental DNA enters the ZF sub-ring and strand separation occurs at the bottom of the ZF sub-ring, where the lagging strand is blocked and diverted sideways by OB hairpin-loops of Mcm3, Mcm4, Mcm6, and Mcm7. Thus, instead of employing a specific steric exclusion process, or even a separation pin, unwinding is achieved via a "dam-and-diversion tunnel" mechanism that does not require specific protein-DNA interaction. The C-tier motor ring contains spirally configured PS1 and H2I loops of Mcms 2, 3, 5, 6 that translocate on the spirally-configured leading strand, and thereby pull the preceding DNA segment through the diversion tunnel for strand separation.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,DNA Replication Laboratory, The Rockefeller University, New York, NY, USA
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Dan Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, NY, USA
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,DNA Replication Laboratory, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
105
|
MCMs in Cancer: Prognostic Potential and Mechanisms. Anal Cell Pathol (Amst) 2020; 2020:3750294. [PMID: 32089988 PMCID: PMC7023756 DOI: 10.1155/2020/3750294] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Enabling replicative immortality and uncontrolled cell cycle are hallmarks of cancer cells. Minichromosome maintenance proteins (MCMs) exhibit helicase activity in replication initiation and play vital roles in controlling replication times within a cell cycle. Overexpressed MCMs are detected in various cancerous tissues and cancer cell lines. Previous studies have proposed MCMs as promising proliferation markers in cancers, while the prognostic values remain controversial and the underlying mechanisms remain unascertained. This review provides an overview of the significant findings regarding the cellular and tumorigenic functions of the MCM family. Besides, current evidence of the prognostic roles of MCMs is retrospectively reviewed. This work also offers insight into the mechanisms of MCMs prompting carcinogenesis and adverse prognosis, providing information for future research. Finally, MCMs in liver cancer are specifically discussed, and future perspectives are provided.
Collapse
|
106
|
Ercilla A, Feu S, Aranda S, Llopis A, Brynjólfsdóttir SH, Sørensen CS, Toledo LI, Agell N. Acute hydroxyurea-induced replication blockade results in replisome components disengagement from nascent DNA without causing fork collapse. Cell Mol Life Sci 2020; 77:735-749. [PMID: 31297568 PMCID: PMC11104804 DOI: 10.1007/s00018-019-03206-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
During S phase, replication forks can encounter several obstacles that lead to fork stalling, which if persistent might result in fork collapse. To avoid this collapse and to preserve the competence to restart, cells have developed mechanisms that maintain fork stability upon replication stress. In this study, we aimed to understand the mechanisms involved in fork stability maintenance in non-transformed human cells by performing an isolation of proteins on nascent DNA-mass spectrometry analysis in hTERT-RPE cells under different replication stress conditions. Our results show that acute hydroxyurea-induced replication blockade causes the accumulation of large amounts of single-stranded DNA at the fork. Remarkably, this results in the disengagement of replisome components from nascent DNA without compromising fork restart. Notably, Cdc45-MCM-GINS helicase maintains its integrity and replisome components remain associated with chromatin upon acute hydroxyurea treatment, whereas replisome stability is lost upon a sustained replication stress that compromises the competence to restart.
Collapse
Affiliation(s)
- Amaia Ercilla
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Centre for Chromosome Stability (CCS), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Sonia Feu
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Alba Llopis
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | | | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Luis Ignacio Toledo
- Centre for Chromosome Stability (CCS), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Neus Agell
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
107
|
McDaniel SL, Hollatz AJ, Branstad AM, Gaskill MM, Fox CA, Harrison MM. Tissue-Specific DNA Replication Defects in Drosophila melanogaster Caused by a Meier-Gorlin Syndrome Mutation in Orc4. Genetics 2020; 214:355-367. [PMID: 31818869 PMCID: PMC7017028 DOI: 10.1534/genetics.119.302938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Meier-Gorlin syndrome is a rare recessive disorder characterized by a number of distinct tissue-specific developmental defects. Genes encoding members of the origin recognition complex (ORC) and additional proteins essential for DNA replication (CDC6, CDT1, GMNN, CDC45, MCM5, and DONSON) are mutated in individuals diagnosed with MGS. The essential role of ORC is to license origins during the G1 phase of the cell cycle, but ORC has also been implicated in several nonreplicative functions. Because of its essential role in DNA replication, ORC is required for every cell division during development. Thus, it is unclear how the Meier-Gorlin syndrome mutations in genes encoding ORC lead to the tissue-specific defects associated with the disease. To begin to address these issues, we used Cas9-mediated genome engineering to generate a Drosophila melanogaster model of individuals carrying a specific Meier-Gorlin syndrome mutation in ORC4 along with control strains. Together these strains provide the first metazoan model for an MGS mutation in which the mutation was engineered at the endogenous locus along with precisely defined control strains. Flies homozygous for the engineered MGS allele reach adulthood, but with several tissue-specific defects. Genetic analysis revealed that this Orc4 allele was a hypomorph. Mutant females were sterile, and phenotypic analyses suggested that defects in DNA replication was an underlying cause. By leveraging the well-studied Drosophila system, we provide evidence that a disease-causing mutation in Orc4 disrupts DNA replication, and we propose that in individuals with MGS defects arise preferentially in tissues with a high-replication demand.
Collapse
Affiliation(s)
- Stephen L McDaniel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Allison J Hollatz
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Anna M Branstad
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Marissa M Gaskill
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Catherine A Fox
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
108
|
Knapp KM, Sullivan R, Murray J, Gimenez G, Arn P, D'Souza P, Gezdirici A, Wilson WG, Jackson AP, Ferreira C, Bicknell LS. Linked-read genome sequencing identifies biallelic pathogenic variants in DONSON as a novel cause of Meier-Gorlin syndrome. J Med Genet 2019; 57:195-202. [PMID: 31784481 PMCID: PMC7042968 DOI: 10.1136/jmedgenet-2019-106396] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022]
Abstract
Material Linked-read whole genome sequencing (WGS) presents a new opportunity for cost-efficient singleton sequencing in place of traditional trio-based designs while generating informative-phased variants, effective for recessive disorders when parental DNA is unavailable. Methods We have applied linked-read WGS to identify novel causes of Meier-Gorlin syndrome (MGORS), a condition recognised by short stature, microtia and patella hypo/aplasia. There are eight genes associated with MGORS to date, all encoding essential components involved in establishing and initiating DNA replication. Results Our successful phasing of linked-read data led to the identification of biallelic rare variants in four individuals (24% of our cohort) in DONSON, a recently established DNA replication fork surveillance factor. The variants include five novel missense and one deep intronic variant. All were demonstrated to be deleterious to function; the missense variants all disrupted the nuclear localisation of DONSON, while the intronic variant created a novel splice site that generated an out-of-frame transcript with no residual canonical transcript produced. Conclusion Variants in DONSON have previously been associated with extreme microcephaly, short stature and limb anomalies and perinatal lethal microcephaly-micromelia syndrome. Our novel genetic findings extend the complicated spectrum of phenotypes associated with DONSON variants and promote novel hypotheses for the role of DONSON in DNA replication. While our findings reiterate that MGORS is a disorder of DNA replication, the pathophysiology is obviously complex. This successful identification of a novel disease gene for MGORS highlights the utility of linked-read WGS as a successful technology to be considered in the genetic studies of recessive conditions.
Collapse
Affiliation(s)
- Karen M Knapp
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rosie Sullivan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jennie Murray
- MRC HGU, Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Pamela Arn
- Nemours Children's Clinic, Jacksonville, Florida, USA
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - William G Wilson
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Andrew P Jackson
- MRC HGU, Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Carlos Ferreira
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
109
|
Gao Y, Yang W. Different mechanisms for translocation by monomeric and hexameric helicases. Curr Opin Struct Biol 2019; 61:25-32. [PMID: 31783299 DOI: 10.1016/j.sbi.2019.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022]
Abstract
Helicases are ATP-dependent motor proteins that translocate along single-stranded or double-stranded nucleic acids to alter base-pairing structures or molecular interactions. Helicases can be divided to monomeric and hexameric types, each with distinct ternary structures, nucleic acid-binding modes, and translocation mechanisms. It is well established that monomeric helicases translocate by the inchworm mechanism. Recent structures of different superfamilies of hexameric helicases reveal that they use a hand-over hand mechanism for translocation. Structures of bacteriophage T7 replisome illustrate how helicase and polymerase cooperatively catalyze DNA unwinding. In this review, we survey structures of monomeric and hexameric helicases and compare different mechanisms for translocation.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77030, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
110
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
111
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
112
|
Bleichert F. Mechanisms of replication origin licensing: a structural perspective. Curr Opin Struct Biol 2019; 59:195-204. [PMID: 31630057 DOI: 10.1016/j.sbi.2019.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022]
Abstract
The duplication of chromosomal DNA is a key cell cycle event that involves the controlled, bidirectional assembly of the replicative machinery. In a tightly regulated, multi-step reaction, replicative helicases and other components of the DNA synthesis apparatus are recruited to replication start sites. Although the molecular approaches for assembling this machinery vary between the different domains of life, a common theme revolves around the use of ATP-dependent initiation factors to recognize and remodel origins and to load replicative helicases in a bidirectional manner onto DNA. This review summarizes recent advances in understanding the mechanisms of replication initiation in eukaryotes, focusing on how the replicative helicase is loaded in this system.
Collapse
|
113
|
Yuan Z, Georgescu R, Santos RDLA, Zhang D, Bai L, Yao NY, Zhao G, O'Donnell ME, Li H. Ctf4 organizes sister replisomes and Pol α into a replication factory. eLife 2019; 8:47405. [PMID: 31589141 PMCID: PMC6800005 DOI: 10.7554/elife.47405] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
The current view is that eukaryotic replisomes are independent. Here we show that Ctf4 tightly dimerizes CMG helicase, with an extensive interface involving Psf2, Cdc45, and Sld5. Interestingly, Ctf4 binds only one Pol α-primase. Thus, Ctf4 may have evolved as a trimer to organize two helicases and one Pol α-primase into a replication factory. In the 2CMG–Ctf43–1Pol α-primase factory model, the two CMGs nearly face each other, placing the two lagging strands toward the center and two leading strands out the sides. The single Pol α-primase is centrally located and may prime both sister replisomes. The Ctf4-coupled-sister replisome model is consistent with cellular microscopy studies revealing two sister forks of an origin remain attached and are pushed forward from a protein platform. The replication factory model may facilitate parental nucleosome transfer during replication.
Collapse
Affiliation(s)
- Zuanning Yuan
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Roxana Georgescu
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | | | - Daniel Zhang
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Lin Bai
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| | - Nina Y Yao
- DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-EM Suite, Van Andel Institute, Grand Rapids, United States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Chevy Chase, United States.,DNA Replication Laboratory, The Rockefeller University, New York, United States
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
114
|
Lynch KL, Alvino GM, Kwan EX, Brewer BJ, Raghuraman MK. The effects of manipulating levels of replication initiation factors on origin firing efficiency in yeast. PLoS Genet 2019; 15:e1008430. [PMID: 31584938 PMCID: PMC6795477 DOI: 10.1371/journal.pgen.1008430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/16/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Chromosome replication in Saccharomyces cerevisiae is initiated from ~300 origins that are regulated by DNA sequence and by the limited abundance of six trans-acting initiation proteins (Sld2, Sld3, Dpb11, Dbf4, Sld7 and Cdc45). We set out to determine how the levels of individual factors contribute to time of origin activation and/or origin efficiency using induced depletion of single factors and overexpression of sets of multiple factors. Depletion of Sld2 or Sld3 slows growth and S phase progression, decreases origin efficiency across the genome and impairs viability as a result of incomplete replication of the rDNA. We find that the most efficient early origins are relatively unaffected by depletion of either Sld2 or Sld3. However, Sld3 levels, and to a lesser extent Sld2 levels, are critical for firing of the less efficient early origins. Overexpression of Sld3 simultaneously with Sld2, Dpb11 and Dbf4 preserves the relative efficiency of origins. Only when Cdc45 and Sld7 are also overexpressed is origin efficiency equalized between early- and late-firing origins. Our data support a model in which Sld3 together with Cdc45 (and/or Sld7) is responsible for the differential efficiencies of origins across the yeast genome. Eukaryotic chromosome duplication begins at sites called origins of replication along the chromosomal DNA. A conserved property of eukaryotic origins is that they vary in efficiency—the proportion of cells in a population in which they “fire”—and in the average time of activation within S phase, but the molecular details underlying this variation are not well understood. Previous work has shown that limiting concentrations of a set of conserved replication initiation proteins referred to as “SSDDCS” (Sld2, Sld3, Dbf4, Dpb11, Cdc45, and Sld7) are rate limiting for origin activation in budding yeast and other eukaryotes; combined overexpression of these proteins increases and/or advances origin firing. However, it remained possible that different factors affect different aspects of origin activation (e.g., timing vs. efficiency). Here, by depleting individual factors or by overexpressing sets of factors in budding yeast, we demonstrate that it is levels of Sld3, Cdc45 and/or Sld7 levels are primarily responsible for modulating the differences in relative origin efficiency and timing. This work gives further insights into what shapes the landscape of genome duplication.
Collapse
Affiliation(s)
- Kelsey L. Lynch
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gina M. Alvino
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth X. Kwan
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Bonita J. Brewer
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
115
|
5-hydroxymethylcytosine Marks Mammalian Origins Acting as a Barrier to Replication. Sci Rep 2019; 9:11065. [PMID: 31363131 PMCID: PMC6667497 DOI: 10.1038/s41598-019-47528-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
In most mammalian cells, DNA replication occurs once, and only once between cell divisions. Replication initiation is a highly regulated process with redundant mechanisms that prevent errant initiation events. In lower eukaryotes, replication is initiated from a defined consensus sequence, whereas a consensus sequence delineating mammalian origin of replication has not been identified. Here we show that 5-hydroxymethylcytosine (5hmC) is present at mammalian replication origins. Our data support the hypothesis that 5hmC has a role in cell cycle regulation. We show that 5hmC level is inversely proportional to proliferation; indeed, 5hmC negatively influences cell division by increasing the time a cell resides in G1. Our data suggest that 5hmC recruits replication-licensing factors, then is removed prior to or during origin firing. Later we propose that TET2, the enzyme catalyzing 5mC to 5hmC conversion, acts as barrier to rereplication. In a broader context, our results significantly advance the understating of 5hmC involvement in cell proliferation and disease states.
Collapse
|
116
|
Meagher M, Epling LB, Enemark EJ. DNA translocation mechanism of the MCM complex and implications for replication initiation. Nat Commun 2019; 10:3117. [PMID: 31308367 PMCID: PMC6629641 DOI: 10.1038/s41467-019-11074-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
The DNA translocation activity of the minichromosome maintenance (MCM) complex powers DNA strand separation of the replication forks of eukaryotes and archaea. Here we illustrate an atomic level mechanism for this activity with a crystal structure of an archaeal MCM hexamer bound to single-stranded DNA and nucleotide cofactors. Sequence conservation indicates this rotary mechanism is fully possible for all eukaryotes and archaea. The structure definitively demonstrates the ring orients during translocation with the N-terminal domain leading, indicating that the translocation activity could also provide the physical basis of replication initiation where a double-hexamer idly encircling double-stranded DNA transforms to single-hexamers that encircle only one strand. In this mechanism, each strand binds to the N-terminal tier of one hexamer and the AAA+ tier of the other hexamer such that one ring pulls on the other, aligning equivalent interfaces to enable each hexamer to pull its translocation strand outside of the opposing hexamer.
Collapse
Affiliation(s)
- Martin Meagher
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN, 38105, USA
| | - Leslie B Epling
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN, 38105, USA.,Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE, 19803, USA
| | - Eric J Enemark
- Department of Structural Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 311, Memphis, TN, 38105, USA.
| |
Collapse
|
117
|
Yang W, Seidman MM, Rupp WD, Gao Y. Replisome structure suggests mechanism for continuous fork progression and post-replication repair. DNA Repair (Amst) 2019; 81:102658. [PMID: 31303546 DOI: 10.1016/j.dnarep.2019.102658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
What happens to DNA replication when it encounters a damaged or nicked DNA template has been under investigation for five decades. Initially it was thought that DNA polymerase, and thus the replication-fork progression, would stall at road blocks. After the discovery of replication-fork helicase and replication re-initiation factors by the 1990s, it became clear that the replisome can "skip" impasses and finish replication with single-stranded gaps and double-strand breaks in the product DNA. But the mechanism for continuous fork progression after encountering roadblocks is entangled with translesion synthesis, replication fork reversal and recombination repair. The recently determined structure of the bacteriophage T7 replisome offers the first glimpse of how helicase, primase, leading-and lagging-strand DNA polymerases are organized around a DNA replication fork. The tightly coupled leading-strand polymerase and lagging-strand helicase provides a scaffold to consolidate data accumulated over the past five decades and offers a fresh perspective on how the replisome may skip lesions and complete discontinuous DNA synthesis. Comparison of the independently evolved bacterial and eukaryotic replisomes suggests that repair of discontinuous DNA synthesis occurs post replication in both.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute of Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - W Dean Rupp
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520-8040, USA
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| |
Collapse
|
118
|
Langston LD, O'Donnell ME. An explanation for origin unwinding in eukaryotes. eLife 2019; 8:e46515. [PMID: 31282859 PMCID: PMC6634965 DOI: 10.7554/elife.46515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
Twin CMG complexes are assembled head-to-head around duplex DNA at eukaryotic origins of replication. Mcm10 activates CMGs to form helicases that encircle single-strand (ss) DNA and initiate bidirectional forks. How the CMGs melt duplex DNA while encircling it is unknown. Here we show that S. cerevisiae CMG tracks with force while encircling double-stranded (ds) DNA and that in the presence of Mcm10 the CMG melts long blocks of dsDNA while it encircles dsDNA. We demonstrate that CMG tracks mainly on the 3'-5' strand during duplex translocation, predicting that head-to-head CMGs at an origin exert force on opposite strands. Accordingly, we show that CMGs that encircle double strand DNA in a head-to-head orientation melt the duplex in an Mcm10-dependent reaction.
Collapse
Affiliation(s)
- Lance D Langston
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| | - Michael E O'Donnell
- The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
119
|
Coulombe P, Nassar J, Peiffer I, Stanojcic S, Sterkers Y, Delamarre A, Bocquet S, Méchali M. The ORC ubiquitin ligase OBI1 promotes DNA replication origin firing. Nat Commun 2019; 10:2426. [PMID: 31160578 PMCID: PMC6547688 DOI: 10.1038/s41467-019-10321-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
DNA replication initiation is a two-step process. During the G1-phase of the cell cycle, the ORC complex, CDC6, CDT1, and MCM2-7 assemble at replication origins, forming pre-replicative complexes (pre-RCs). In S-phase, kinase activities allow fork establishment through (CDC45/MCM2-7/GINS) CMG-complex formation. However, only a subset of all potential origins becomes activated, through a poorly understood selection mechanism. Here we analyse the pre-RC proteomic interactome in human cells and find C13ORF7/RNF219 (hereafter called OBI1, for ORC-ubiquitin-ligase-1) associated with the ORC complex. OBI1 silencing result in defective origin firing, as shown by reduced CMG formation, without affecting pre-RC establishment. OBI1 catalyses the multi-mono-ubiquitylation of a subset of chromatin-bound ORC3 and ORC5 during S-phase. Importantly, expression of non-ubiquitylable ORC3/5 mutants impairs origin firing, demonstrating their relevance as OBI1 substrates for origin firing. Our results identify a ubiquitin signalling pathway involved in origin activation and provide a candidate protein for selecting the origins to be fired.
Collapse
Affiliation(s)
- Philippe Coulombe
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Joelle Nassar
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Isabelle Peiffer
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Slavica Stanojcic
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), 34090, Montpellier, France
| | - Yvon Sterkers
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), 34090, Montpellier, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, 34090, Montpellier, France
| | - Axel Delamarre
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Stéphane Bocquet
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Marcel Méchali
- Institute of Human Genetics, UMR 9002, CNRS-Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
120
|
Burnham DR, Kose HB, Hoyle RB, Yardimci H. The mechanism of DNA unwinding by the eukaryotic replicative helicase. Nat Commun 2019; 10:2159. [PMID: 31089141 PMCID: PMC6517413 DOI: 10.1038/s41467-019-09896-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022] Open
Abstract
Accurate DNA replication is tightly regulated in eukaryotes to ensure genome stability during cell division and is performed by the multi-protein replisome. At the core an AAA+ hetero-hexameric complex, Mcm2-7, together with GINS and Cdc45 form the active replicative helicase Cdc45/Mcm2-7/GINS (CMG). It is not clear how this replicative ring helicase translocates on, and unwinds, DNA. We measure real-time dynamics of purified recombinant Drosophila melanogaster CMG unwinding DNA with single-molecule magnetic tweezers. Our data demonstrates that CMG exhibits a biased random walk, not the expected unidirectional motion. Through building a kinetic model we find CMG may enter up to three paused states rather than unwinding, and should these be prevented, in vivo fork rates would be recovered in vitro. We propose a mechanism in which CMG couples ATP hydrolysis to unwinding by acting as a lazy Brownian ratchet, thus providing quantitative understanding of the central process in eukaryotic DNA replication.
Collapse
Affiliation(s)
- Daniel R Burnham
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hazal B Kose
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rebecca B Hoyle
- School of Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Hasan Yardimci
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
121
|
Rios-Morales RY, Chan SH, Bell SP. Initiation-specific alleles of the Cdc45 helicase-activating protein. PLoS One 2019; 14:e0214426. [PMID: 30913274 PMCID: PMC6435160 DOI: 10.1371/journal.pone.0214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022] Open
Abstract
The committed step in DNA replication initiation is the activation of the Mcm2-7 replicative DNA helicase. Two activators, Cdc45 and GINS, associate with Mcm2-7 at origins of replication to form the CMG complex, which is the active eukaryotic replicative helicase. These activators function during both replication initiation and elongation, however, it remains unclear whether Cdc45 performs the same function(s) during both events. Here, we describe the genetic and biochemical characterization of seven Cdc45 mutations. Three of these mutations are temperature-sensitive lethal mutations in CDC45. Intriguingly, these mutants are defective for DNA replication initiation but not elongation. Consistent with an initiation defect, all three temperature-sensitive mutants are defective for CMG formation. Two of the lethal mutants are located within the RecJ-like domain of Cdc45 confirming the importance of this region for Cdc45 function. The remaining two lethal mutations localize to an intrinsically disordered region (IDR) of Cdc45 that is found in all eukaryotes. Despite the lethality of these IDR substitution mutants, Cdc45 lacking the IDR retains full function. Together, our data provide insights into the functional importance of Cdc45 domains and suggest that the requirements for Cdc45 function during DNA replication initiation are distinct from those involved in replication elongation.
Collapse
Affiliation(s)
- Ramon Y. Rios-Morales
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Sze Ham Chan
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Stephen P. Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
122
|
Nepon-Sixt BS, Bryant VL, Alexandrow MG. Myc-driven chromatin accessibility regulates Cdc45 assembly into CMG helicases. Commun Biol 2019; 2:110. [PMID: 30911685 PMCID: PMC6430796 DOI: 10.1038/s42003-019-0353-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/07/2019] [Indexed: 01/08/2023] Open
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replication origins. We show here that the mechanism underlying this process involves a direct role for Myc in activation of Cdc45-MCM-GINS (CMG) helicases at Myc-targeted sites. Myc induces decondensation of higher-order chromatin at targeted sites and is required for chromatin access at a chromosomal origin. Myc-driven chromatin accessibility promotes Cdc45/GINS recruitment to resident MCMs, and activation of CMGs. Myc-Box II, which is necessary for Myc-driven transformation, is required for Myc-induced chromatin accessibility, Cdc45/GINS recruitment, and replication stimulation. Myc interactors GCN5, Tip60, and TRRAP are essential for chromatin unfolding and recruitment of Cdc45, and co-expression of GCN5 or Tip60 with MBII-deficient Myc rescues these events and promotes CMG activation. Finally, Myc and Cdc45 interact and physiologic conditions for CMG assembly require the functions of Myc, MBII, and GCN5 for Cdc45 recruitment and initiation of DNA replication.
Collapse
Affiliation(s)
- Brook S. Nepon-Sixt
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
| | - Victoria L. Bryant
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
- University of South Florida Cancer Biology PhD Program, Tampa, FL 33612 USA
- Present Address: AT Still University School of Osteopathic Medicine 27 5850 E Still Circle, Mesa, AZ 85206 USA
| | - Mark G. Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
- University of South Florida Cancer Biology PhD Program, Tampa, FL 33612 USA
| |
Collapse
|
123
|
Mathematical description of eukaryotic chromosome replication. Proc Natl Acad Sci U S A 2019; 116:4776-4778. [PMID: 30782813 DOI: 10.1073/pnas.1900968116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
124
|
Origin Firing Regulations to Control Genome Replication Timing. Genes (Basel) 2019; 10:genes10030199. [PMID: 30845782 PMCID: PMC6470937 DOI: 10.3390/genes10030199] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Complete genome duplication is essential for genetic homeostasis over successive cell generations. Higher eukaryotes possess a complex genome replication program that involves replicating the genome in units of individual chromatin domains with a reproducible order or timing. Two types of replication origin firing regulations ensure complete and well-timed domain-wise genome replication: (1) the timing of origin firing within a domain must be determined and (2) enough origins must fire with appropriate positioning in a short time window to avoid inter-origin gaps too large to be fully copied. Fundamental principles of eukaryotic origin firing are known. We here discuss advances in understanding the regulation of origin firing to control firing time. Work with yeasts suggests that eukaryotes utilise distinct molecular pathways to determine firing time of distinct sets of origins, depending on the specific requirements of the genomic regions to be replicated. Although the exact nature of the timing control processes varies between eukaryotes, conserved aspects exist: (1) the first step of origin firing, pre-initiation complex (pre-IC formation), is the regulated step, (2) many regulation pathways control the firing kinase Dbf4-dependent kinase, (3) Rif1 is a conserved mediator of late origin firing and (4) competition between origins for limiting firing factors contributes to firing timing. Characterization of the molecular timing control pathways will enable us to manipulate them to address the biological role of replication timing, for example, in cell differentiation and genome instability.
Collapse
|
125
|
Wu RA, Semlow DR, Kamimae-Lanning AN, Kochenova OV, Chistol G, Hodskinson MR, Amunugama R, Sparks JL, Wang M, Deng L, Mimoso CA, Low E, Patel KJ, Walter JC. TRAIP is a master regulator of DNA interstrand crosslink repair. Nature 2019; 567:267-272. [PMID: 30842657 PMCID: PMC6417926 DOI: 10.1038/s41586-019-1002-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Cells often use multiple pathways to repair the same DNA lesion, and the choice of pathway has substantial implications for the fidelity of genome maintenance. DNA interstrand crosslinks covalently link the two strands of DNA, and thereby block replication and transcription; the cytotoxicity of these crosslinks is exploited for chemotherapy. In Xenopus egg extracts, the collision of replication forks with interstrand crosslinks initiates two distinct repair pathways. NEIL3 glycosylase can cleave the crosslink1; however, if this fails, Fanconi anaemia proteins incise the phosphodiester backbone that surrounds the interstrand crosslink, generating a double-strand-break intermediate that is repaired by homologous recombination2. It is not known how the simpler NEIL3 pathway is prioritized over the Fanconi anaemia pathway, which can cause genomic rearrangements. Here we show that the E3 ubiquitin ligase TRAIP is required for both pathways. When two replisomes converge at an interstrand crosslink, TRAIP ubiquitylates the replicative DNA helicase CMG (the complex of CDC45, MCM2-7 and GINS). Short ubiquitin chains recruit NEIL3 through direct binding, whereas longer chains are required for the unloading of CMG by the p97 ATPase, which enables the Fanconi anaemia pathway. Thus, TRAIP controls the choice between the two known pathways of replication-coupled interstrand-crosslink repair. These results, together with our other recent findings3,4 establish TRAIP as a master regulator of CMG unloading and the response of the replisome to obstacles.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gheorghe Chistol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Ravindra Amunugama
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Justin L Sparks
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lin Deng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Emily Low
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
126
|
Abstract
Bacterial and eukaryotic replisomes share no common ancestor but have uncanny similarity
Collapse
Affiliation(s)
- Huilin Li
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Michael E O'Donnell
- The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
127
|
Kose HB, Larsen NB, Duxin JP, Yardimci H. Dynamics of the Eukaryotic Replicative Helicase at Lagging-Strand Protein Barriers Support the Steric Exclusion Model. Cell Rep 2019; 26:2113-2125.e6. [PMID: 30784593 PMCID: PMC6381796 DOI: 10.1016/j.celrep.2019.01.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 12/01/2022] Open
Abstract
Progression of DNA replication depends on the ability of the replisome complex to overcome nucleoprotein barriers. During eukaryotic replication, the CMG helicase translocates along the leading-strand template and unwinds the DNA double helix. While proteins bound to the leading-strand template efficiently block the helicase, the impact of lagging-strand protein obstacles on helicase translocation and replisome progression remains controversial. Here, we show that CMG and replisome progressions are impaired when proteins crosslinked to the lagging-strand template enhance the stability of duplex DNA. In contrast, proteins that exclusively interact with the lagging-strand template influence neither the translocation of isolated CMG nor replisome progression in Xenopus egg extracts. Our data imply that CMG completely excludes the lagging-strand template from the helicase central channel while unwinding DNA at the replication fork, which clarifies how two CMG helicases could freely cross one another during replication initiation and termination.
Collapse
Affiliation(s)
- Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Nicolai B Larsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK.
| |
Collapse
|
128
|
Abstract
IMPACT STATEMENT This review provides various genetic and cell line data previously published in a way to explain how cellular stress can lead into genetic instability.
Collapse
Affiliation(s)
- Jung Joo Moon
- 1 JS Yoon Memorial Cancer Research Institute LLC, Lutherville, MD 2109, USA
| | - Alexander Lu
- 1 JS Yoon Memorial Cancer Research Institute LLC, Lutherville, MD 2109, USA
| | - Chulso Moon
- 1 JS Yoon Memorial Cancer Research Institute LLC, Lutherville, MD 2109, USA.,2 Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD 21205, USA
| |
Collapse
|
129
|
Control of Eukaryotic DNA Replication Initiation-Mechanisms to Ensure Smooth Transitions. Genes (Basel) 2019; 10:genes10020099. [PMID: 30700044 PMCID: PMC6409694 DOI: 10.3390/genes10020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps—licensing and firing—which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases.
Collapse
|
130
|
Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, Zhou ZH, Yang W. Structures and operating principles of the replisome. Science 2019; 363:science.aav7003. [PMID: 30679383 DOI: 10.1126/science.aav7003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Visualization in atomic detail of the replisome that performs concerted leading- and lagging-DNA strand synthesis at a replication fork has not been reported. Using bacteriophage T7 as a model system, we determined cryo-electron microscopy structures up to 3.2-angstroms resolution of helicase translocating along DNA and of helicase-polymerase-primase complexes engaging in synthesis of both DNA strands. Each domain of the spiral-shaped hexameric helicase translocates sequentially hand-over-hand along a single-stranded DNA coil, akin to the way AAA+ ATPases (adenosine triphosphatases) unfold peptides. Two lagging-strand polymerases are attached to the primase, ready for Okazaki fragment synthesis in tandem. A β hairpin from the leading-strand polymerase separates two parental DNA strands into a T-shaped fork, thus enabling the closely coupled helicase to advance perpendicular to the downstream DNA duplex. These structures reveal the molecular organization and operating principles of a replisome.
Collapse
Affiliation(s)
- Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanxiang Cui
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Tara Fox
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Shiqiang Lin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Z Hong Zhou
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
131
|
Abstract
PURPOSE OF REVIEW Natural killer cells are innate lymphoid cells (ILCs) that play critical roles in human host defense and are especially useful in combating viral pathogens and malignancy. RECENT FINDINGS The NK cell deficiency (NKD) is particularly underscored in patients with a congenital immunodeficiency in which NK cell development or function is affected. The classical NK cell deficiency (cNKD) is a result of absent or a profound decrease in the number of circulating NK cells. In contrast, functional NKD (fNKD) is characterized by abnormal NK cell function but with normal number of NK cells. The combined immune deficiencies with significant impact on NK cells are not considered classical or functional NK cell deficiencies. In these disorders, the impairment of NK cells represents an important aspect of the overall immunodeficiency. In turn, this leads to improved insights on the NK cell development and function. Here, we detail the NK cell biology based upon recent natural killer cell defects described in combined immune deficiencies.
Collapse
|
132
|
Abstract
The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Himabindu Gali
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
133
|
Goswami P, Abid Ali F, Douglas ME, Locke J, Purkiss A, Janska A, Eickhoff P, Early A, Nans A, Cheung AMC, Diffley JFX, Costa A. Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nat Commun 2018; 9:5061. [PMID: 30498216 PMCID: PMC6265327 DOI: 10.1038/s41467-018-07417-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/28/2018] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase. A key step is the recruitment of GINS that requires the leading-strand polymerase Pol epsilon, composed of Pol2, Dpb2, Dpb3, Dpb4. While a truncation of the catalytic N-terminal Pol2 supports cell division, Dpb2 and C-terminal Pol2 (C-Pol2) are essential for viability. Dpb2 and C-Pol2 are non-catalytic modules, shown or predicted to be related to an exonuclease and DNA polymerase, respectively. Here, we present the cryo-EM structure of the isolated C-Pol2/Dpb2 heterodimer, revealing that C-Pol2 contains a DNA polymerase fold. We also present the structure of CMG/C-Pol2/Dpb2 on a DNA fork, and find that polymerase binding changes both the helicase structure and fork-junction engagement. Inter-subunit contacts that keep the helicase-polymerase complex together explain several cellular phenotypes. At least some of these contacts are preserved during Pol epsilon-dependent CMG assembly on path to origin firing, as observed with DNA replication reconstituted in vitro. Eukaryotic origin firing depends on assembly of the Cdc45-MCM-GINS (CMG) helicase, which requires the leading-strand polymerase Pol ɛ. Here the authors present a structural analysis of a CMG Pol ɛ on a DNA fork, providing insight on the steps leading productive helicase engagement to the DNA junction.
Collapse
Affiliation(s)
- Panchali Goswami
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Max E Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrew Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Agnieszka Janska
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Patrik Eickhoff
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Anne Early
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alan M C Cheung
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK.,Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck College, London, WC1E 7HX, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
134
|
Li X, Qian X, Jiang H, Xia Y, Zheng Y, Li J, Huang BJ, Fang J, Qian CN, Jiang T, Zeng YX, Lu Z. Nuclear PGK1 Alleviates ADP-Dependent Inhibition of CDC7 to Promote DNA Replication. Mol Cell 2018; 72:650-660.e8. [PMID: 30392930 DOI: 10.1016/j.molcel.2018.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/30/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
Abstract
DNA replication is initiated by assembly of the kinase cell division cycle 7 (CDC7) with its regulatory activation subunit, activator of S-phase kinase (ASK), to activate DNA helicase. However, the mechanism underlying regulation of CDC7-ASK complex is unclear. Here, we show that ADP generated from CDC7-mediated MCM phosphorylation binds to an allosteric region of CDC7, disrupts CDC7-ASK interaction, and inhibits CDC7-ASK activity in a feedback way. EGFR- and ERK-activated casein kinase 2α (CK2α) phosphorylates nuclear phosphoglycerate kinase (PGK) 1 at S256, resulting in interaction of PGK1 with CDC7. CDC7-bound PGK1 converts ADP to ATP, thereby abrogating the inhibitory effect of ADP on CDC7-ASK activity, promoting the recruitment of DNA helicase to replication origins, DNA replication, cell proliferation, and brain tumorigenesis. These findings reveal an instrumental self-regulatory mechanism of CDC7-ASK activity by its kinase reaction product ADP and a nonglycolytic role for PGK1 in abrogating this negative feedback in promoting tumor development.
Collapse
Affiliation(s)
- Xinjian Li
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Qian
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongfei Jiang
- Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs of Minister of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Xia
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Li
- Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs of Minister of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, China; Qingdao Cancer Institute, Qingdao, Shandong 266061, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Tao Jiang
- Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs of Minister of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yi-Xin Zeng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhimin Lu
- Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, The University of TX, Houston, Texas 77030, USA.
| |
Collapse
|
135
|
Villa-Hernández S, Bermejo R. Replisome-Cohesin Interfacing: A Molecular Perspective. Bioessays 2018; 40:e1800109. [PMID: 30106480 DOI: 10.1002/bies.201800109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Cohesion is established in S-phase through the action of key replisome factors as replication forks engage cohesin molecules. By holding sister chromatids together, cohesion critically assists both an equal segregation of the duplicated genetic material and an efficient repair of DNA breaks. Nonetheless, the molecular events leading the entrapment of nascent chromatids by cohesin during replication are only beginning to be understood. The authors describe here the essential structural features of the cohesin complex in connection to its ability to associate DNA molecules and review the current knowledge on the architectural-functional organization of the eukaryotic replisome, significantly advanced by recent biochemical and structural studies. In light of this novel insight, the authors discuss the mechanisms proposed to assist interfacing of replisomes with chromatin-bound cohesin complexes and elaborate on models for nascent chromatids entrapment by cohesin in the environment of the replication fork.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 928040 Madrid, Spain
| |
Collapse
|
136
|
Nepon-Sixt BS, Alexandrow MG. TGFβ1 Cell Cycle Arrest Is Mediated by Inhibition of MCM Assembly in Rb-Deficient Conditions. Mol Cancer Res 2018; 17:277-288. [PMID: 30257992 DOI: 10.1158/1541-7786.mcr-18-0558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023]
Abstract
Transforming growth factor β1 (TGFβ1) is a potent inhibitor of cell growth that targets gene-regulatory events, but also inhibits the function of CDC45-MCM-GINS helicases (CMG; MCM, Mini-Chromosome Maintenance; GINS, Go-Ichi-Ni-San) through multiple mechanisms to achieve cell-cycle arrest. Early in G1, TGFβ1 blocks MCM subunit expression and suppresses Myc and Cyclin E/Cdk2 activity required for CMG assembly, should MCMs be expressed. Once CMGs are assembled in late-G1, TGFβ1 blocks CMG activation using a direct mechanism involving the retinoblastoma (Rb) tumor suppressor. Here, in cells lacking Rb, TGFβ1 does not suppress Myc, Cyclin E/Cdk2 activity, or MCM expression, yet growth arrest remains intact and Smad2/3/4-dependent. Such arrest occurs due to inhibition of MCM hexamer assembly by TGFβ1, which is not seen when Rb is present and MCM subunit expression is normally blocked by TGFβ1. Loss of Smad expression prevents TGFβ1 suppression of MCM assembly. Mechanistically, TGFβ1 blocks a Cyclin E-Mcm7 molecular interaction required for MCM hexamer assembly upstream of CDC10-dependent transcript-1 (CDT1) function. Accordingly, overexpression of CDT1 with an intact MCM-binding domain abrogates TGFβ1 arrest and rescues MCM assembly. The ability of CDT1 to restore MCM assembly and allow S-phase entry indicates that, in the absence of Rb and other canonical mediators, TGFβ1 relies on inhibition of Cyclin E-MCM7 and MCM assembly to achieve cell cycle arrest. IMPLICATIONS: These results demonstrate that the MCM assembly process is a pivotal target of TGFβ1 in eliciting cell cycle arrest, and provide evidence for a novel oncogenic role for CDT1 in abrogating TGFβ1 inhibition of MCM assembly.
Collapse
Affiliation(s)
- Brook S Nepon-Sixt
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
137
|
Tamberg N, Tahk S, Koit S, Kristjuhan K, Kasvandik S, Kristjuhan A, Ilves I. Keap1-MCM3 interaction is a potential coordinator of molecular machineries of antioxidant response and genomic DNA replication in metazoa. Sci Rep 2018; 8:12136. [PMID: 30108253 PMCID: PMC6092318 DOI: 10.1038/s41598-018-30562-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/02/2018] [Indexed: 01/19/2023] Open
Abstract
Coordination of DNA replication and cellular redox homeostasis mechanisms is essential for the sustained genome stability due to the sensitivity of replicating DNA to oxidation. However, substantial gaps remain in our knowledge of underlying molecular pathways. In this study, we characterise the interaction of Keap1, a central antioxidant response regulator in Metazoa, with the replicative helicase subunit protein MCM3. Our analysis suggests that structural determinants of the interaction of Keap1 with its critical downstream target - Nrf2 master transactivator of oxidative stress response genes – may have evolved in evolution to mimic the conserved helix-2-insert motif of MCM3. We show that this has led to a competition between MCM3 and Nrf2 proteins for Keap1 binding, and likely recruited MCM3 for the competitive binding dependent modulation of Keap1 controlled Nrf2 activities. We hypothesise that such mechanism could help to adjust the Keap1-Nrf2 antioxidant response pathway according to the proliferative and replicative status of the cell, with possible reciprocal implications also for the regulation of cellular functions of MCM3. Altogether this suggests about important role of Keap1-MCM3 interaction in the cross-talk between replisome and redox homeostasis machineries in metazoan cells.
Collapse
Affiliation(s)
- Nele Tamberg
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Siret Tahk
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Sandra Koit
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu, Tartu, 50411, Estonia.
| |
Collapse
|
138
|
Xue H, Wu S, Wu Y, Idarraga JCR, Wu H. Independence screening for high dimensional nonlinear additive ODE models with applications to dynamic gene regulatory networks. Stat Med 2018; 37:2630-2644. [PMID: 29722041 PMCID: PMC6940146 DOI: 10.1002/sim.7669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/18/2018] [Accepted: 03/08/2018] [Indexed: 11/12/2022]
Abstract
Mechanism-driven low-dimensional ordinary differential equation (ODE) models are often used to model viral dynamics at cellular levels and epidemics of infectious diseases. However, low-dimensional mechanism-based ODE models are limited for modeling infectious diseases at molecular levels such as transcriptomic or proteomic levels, which is critical to understand pathogenesis of diseases. Although linear ODE models have been proposed for gene regulatory networks (GRNs), nonlinear regulations are common in GRNs. The reconstruction of large-scale nonlinear networks from time-course gene expression data remains an unresolved issue. Here, we use high-dimensional nonlinear additive ODEs to model GRNs and propose a 4-step procedure to efficiently perform variable selection for nonlinear ODEs. To tackle the challenge of high dimensionality, we couple the 2-stage smoothing-based estimation method for ODEs and a nonlinear independence screening method to perform variable selection for the nonlinear ODE models. We have shown that our method possesses the sure screening property and it can handle problems with non-polynomial dimensionality. Numerical performance of the proposed method is illustrated with simulated data and a real data example for identifying the dynamic GRN of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Hongqi Xue
- iCardiac Technologies, 150 Allens Creek Road, Rochester, NY 14618, USA
| | - Shuang Wu
- Biogen, 300 Binney Street, Cambridge, MA 02142, USA
| | - Yichao Wu
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA
| | | | - Hulin Wu
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler Street, RAS E833, Houston, TX 77030, USA
| |
Collapse
|
139
|
Zhai Y, Tye BK. Structure of the MCM2-7 Double Hexamer and Its Implications for the Mechanistic Functions of the Mcm2-7 Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:189-205. [PMID: 29357059 DOI: 10.1007/978-981-10-6955-0_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The eukaryotic minichromosome maintenance 2-7 complex is the core of the inactive MCM replication licensing complex and the catalytic core of the Cdc45-MCM-GINS replicative helicase. The years of effort to determine the structure of parts or the whole of the heterohexameric complex by X-ray crystallography and conventional cryo-EM produced limited success. Modern cryo-EM technology ushered in a new era of structural biology that allowed the determination of the structure of the inactive double hexamer at an unprecedented resolution of 3.8 Å. This review will focus on the fine details observed in the Mcm2-7 double hexameric complex and their implications for the function of the Mcm2-7 hexamer in its different roles during DNA replication.
Collapse
Affiliation(s)
- Yuanliang Zhai
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong, China
| | - Bik-Kwoon Tye
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
140
|
Pasero P, Vindigni A. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annu Rev Genet 2018; 51:477-499. [PMID: 29178820 DOI: 10.1146/annurev-genet-120116-024745] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a lifetime, a human being synthesizes approximately 2×1016 meters of DNA, a distance that corresponds to 130,000 times the distance between the Earth and the Sun. This daunting task is executed by thousands of replication forks, which progress along the chromosomes and frequently stall when they encounter DNA lesions, unusual DNA structures, RNA polymerases, or tightly-bound protein complexes. To complete DNA synthesis before the onset of mitosis, eukaryotic cells have evolved complex mechanisms to process and restart arrested forks through the coordinated action of multiple nucleases, topoisomerases, and helicases. In this review, we discuss recent advances in understanding the role and regulation of nucleases acting at stalled forks with a focus on the nucleolytic degradation of nascent DNA, a process commonly referred to as fork resection. We also discuss the effects of deregulated fork resection on genomic instability and on the unscheduled activation of the interferon response under replication stress conditions.
Collapse
Affiliation(s)
- Philippe Pasero
- Institute of Human Genetics, CNRS UMR9002, University of Montpellier, 34396 Montpellier, France;
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA;
| |
Collapse
|
141
|
Kurniawan F, Shi K, Kurahashi K, Bielinsky AK, Aihara H. Crystal Structure of Entamoeba histolytica Cdc45 Suggests a Conformational Switch that May Regulate DNA Replication. iScience 2018; 3:102-109. [PMID: 29901028 PMCID: PMC5994768 DOI: 10.1016/j.isci.2018.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Cdc45 plays a critical role at the core of the eukaryotic DNA replisome, serving as an essential scaffolding component of the replicative helicase holoenzyme Cdc45-MCM-GINS (CMG) complex. A 1.66-Å-resolution crystal structure of the full-length Cdc45 protein from Entamoeba histolytica shows a protein fold similar to that observed previously for human Cdc45 in its active conformation, featuring the overall disk-like monomer shape and intimate contacts between the N- and C-terminal DHH domains. However, the E. histolytica Cdc45 structure shows several unique features, including a distinct orientation of the C-terminal DHHA1 domain, concomitant disordering of the adjacent protruding α-helical segment implicated in DNA polymerase ε interactions, and a unique conformation of the GINS/Mcm5-binding loop. These structural observations collectively suggest the possibility that Cdc45 can sample multiple conformations corresponding to different functional states. We propose that such conformational switch of Cdc45 may allow regulation of protein-protein interactions important in DNA replication.
Collapse
Affiliation(s)
- Fredy Kurniawan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kayo Kurahashi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
142
|
Hoggard TA, Chang F, Perry KR, Subramanian S, Kenworthy J, Chueng J, Shor E, Hyland EM, Boeke JD, Weinreich M, Fox CA. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. PLoS Genet 2018; 14:e1007418. [PMID: 29795547 PMCID: PMC5991416 DOI: 10.1371/journal.pgen.1007418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/06/2018] [Accepted: 05/15/2018] [Indexed: 01/23/2023] Open
Abstract
Most active DNA replication origins are found within euchromatin, while origins within heterochromatin are often inactive or inhibited. In yeast, origin activity within heterochromatin is negatively controlled by the histone H4K16 deacetylase, Sir2, and at some heterochromatic loci also by the nucleosome binding protein, Sir3. The prevailing view has been that direct functions of Sir2 and Sir3 are confined to heterochromatin. However, growth defects in yeast mutants compromised for loading the MCM helicase, such as cdc6-4, are suppressed by deletion of either SIR2 or SIR3. While these and other observations indicate that SIR2,3 can have a negative impact on at least some euchromatic origins, the genomic scale of this effect was unknown. It was also unknown whether this suppression resulted from direct functions of Sir2,3 within euchromatin, or was an indirect effect of their previously established roles within heterochromatin. Using MCM ChIP-Seq, we show that a SIR2 deletion rescued MCM complex loading at ~80% of euchromatic origins in cdc6-4 cells. Therefore, Sir2 exhibited a pervasive effect at the majority of euchromatic origins. Using MNase-H4K16ac ChIP-Seq, we show that origin-adjacent nucleosomes were depleted for H4K16 acetylation in a SIR2-dependent manner in wild type (i.e. CDC6) cells. In addition, we present evidence that both Sir2 and Sir3 bound to nucleosomes adjacent to euchromatic origins. The relative levels of each of these molecular hallmarks of yeast heterochromatin–SIR2-dependent H4K16 hypoacetylation, Sir2, and Sir3 –correlated with how strongly a SIR2 deletion suppressed the MCM loading defect in cdc6-4 cells. Finally, a screen for histone H3 and H4 mutants that could suppress the cdc6-4 growth defect identified amino acids that map to a surface of the nucleosome important for Sir3 binding. We conclude that heterochromatin proteins directly modify the local chromatin environment of euchromatic DNA replication origins. When a cell divides, it must copy or “replicate” its DNA. DNA replication starts at chromosomal regions called origins when a collection of replication proteins gains local access to unwind the two DNA strands. Chromosomal DNA is packaged into a protein-DNA complex called chromatin and there are two major structurally and functionally distinct types. Euchromatin allows DNA replication proteins to access origin DNA, while heterochromatin inhibits their access. The prevalent view has been that the heterochromatin proteins required to inhibit origins are confined to heterochromatin. In this study, the conserved heterochromatin proteins, Sir2 and Sir3, were shown to both physically and functionally associate with the majority of origins in euchromatin. This observation raises important questions about the chromosomal targets of heterochromatin proteins, and how and why the majority of origins exist within a potentially repressive chromatin structure.
Collapse
Affiliation(s)
- Timothy A. Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
| | - FuJung Chang
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Kelsey Rae Perry
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Sandya Subramanian
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Jessica Kenworthy
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Julie Chueng
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Erika Shor
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Edel M. Hyland
- School of Biological Sciences, Medical Biology Center, Queen’s University, Belfast, United Kingdom
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics and NYU Langone Health, New York, NY, United States of America
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
- * E-mail: (MW); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
- * E-mail: (MW); (CAF)
| |
Collapse
|
143
|
Bellelli R, Borel V, Logan C, Svendsen J, Cox DE, Nye E, Metcalfe K, O'Connell SM, Stamp G, Flynn HR, Snijders AP, Lassailly F, Jackson A, Boulton SJ. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis. Mol Cell 2018; 70:707-721.e7. [PMID: 29754823 PMCID: PMC5972231 DOI: 10.1016/j.molcel.2018.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4-/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4-/-p53+/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention.
Collapse
Affiliation(s)
| | - Valerie Borel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Clare Logan
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | - Danielle E Cox
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kay Metcalfe
- Department of Genetic Medicine, St Mary's Hospital, Oxford Road, Manchester, M13 OJH, UK
| | - Susan M O'Connell
- Department of Paediatrics, Cork University Hospital, Wilton, Cork T12 DC4A, Ireland
| | - Gordon Stamp
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Helen R Flynn
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | | | - Andrew Jackson
- MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
144
|
Carroll TD, Newton IP, Chen Y, Blow JJ, Näthke I. Lgr5 + intestinal stem cells reside in an unlicensed G 1 phase. J Cell Biol 2018; 217:1667-1685. [PMID: 29599208 PMCID: PMC5940300 DOI: 10.1083/jcb.201708023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
During late mitosis and the early G1 phase, the origins of replication are licensed by binding to double hexamers of MCM2-7. In this study, we investigated how licensing and proliferative commitment are coupled in the epithelium of the small intestine. We developed a method for identifying cells in intact tissue containing DNA-bound MCM2-7. Interphase cells above the transit-amplifying compartment had no DNA-bound MCM2-7, but still expressed the MCM2-7 protein, suggesting that licensing is inhibited immediately upon differentiation. Strikingly, we found most proliferative Lgr5+ stem cells are in an unlicensed state. This suggests that the elongated cell-cycle of intestinal stem cells is caused by an increased G1 length, characterized by dormant periods with unlicensed origins. Significantly, the unlicensed state is lost in Apc-mutant epithelium, which lacks a functional restriction point, causing licensing immediately upon G1 entry. We propose that the unlicensed G1 phase of intestinal stem cells creates a temporal window when proliferative fate decisions can be made.
Collapse
Affiliation(s)
- Thomas D Carroll
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Ian P Newton
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Yu Chen
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - J Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Inke Näthke
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
145
|
Seo YS, Kang YH. The Human Replicative Helicase, the CMG Complex, as a Target for Anti-cancer Therapy. Front Mol Biosci 2018; 5:26. [PMID: 29651420 PMCID: PMC5885281 DOI: 10.3389/fmolb.2018.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.
Collapse
Affiliation(s)
- Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young-Hoon Kang
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
146
|
Douglas ME, Ali FA, Costa A, Diffley JF. The mechanism of eukaryotic CMG helicase activation. Nature 2018; 555:265-268. [PMID: 29489749 PMCID: PMC6847044 DOI: 10.1038/nature25787] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
Abstract
The initiation of eukaryotic DNA replication occurs in two discrete stages: first, the minichromosome maintenance (MCM) complex assembles as a head-to-head double hexamer that encircles duplex replication origin DNA during G1 phase; then, 'firing factors' convert each double hexamer into two active Cdc45-MCM-GINS helicases (CMG) during S phase. This second stage requires separation of the two origin DNA strands and remodelling of the double hexamer so that each MCM hexamer encircles a single DNA strand. Here we show that the MCM complex, which hydrolyses ATP during double-hexamer formation, remains stably bound to ADP in the double hexamer. Firing factors trigger ADP release, and subsequent ATP binding promotes stable CMG assembly. CMG assembly is accompanied by initial DNA untwisting and separation of the double hexamer into two discrete but inactive CMG helicases. Mcm10, together with ATP hydrolysis, then triggers further DNA untwisting and helicase activation. After activation, the two CMG helicases translocate in an 'N terminus-first' direction, and in doing so pass each other within the origin; this requires that each helicase is bound entirely to single-stranded DNA. Our experiments elucidate the mechanism of eukaryotic replicative helicase activation, which we propose provides a fail-safe mechanism for bidirectional replisome establishment.
Collapse
Affiliation(s)
- Max E. Douglas
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT
| | - Ferdos Abid Ali
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT
| | - John F.X. Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT
| |
Collapse
|
147
|
Li H, O'Donnell ME. The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism. Bioessays 2018; 40. [PMID: 29405332 DOI: 10.1002/bies.201700208] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Indexed: 01/12/2023]
Abstract
The eukaryotic helicase is an 11-subunit machine containing an Mcm2-7 motor ring that encircles DNA, Cdc45 and the GINS tetramer, referred to as CMG (Cdc45, Mcm2-7, GINS). CMG is "built" on DNA at origins in two steps. First, two Mcm2-7 rings are assembled around duplex DNA at origins in G1 phase, forming the Mcm2-7 "double hexamer." In a second step, in S phase Cdc45 and GINS are assembled onto each Mcm2-7 ring, hence producing two CMGs that ultimately form two replication forks that travel in opposite directions. Here, we review recent findings about CMG structure and function. The CMG unwinds the parental duplex and is also the organizing center of the replisome: it binds DNA polymerases and other factors. EM studies reveal a 20-subunit core replisome with the leading Pol ϵ and lagging Pol α-primase on opposite faces of CMG, forming a fundamentally asymmetric architecture. Structural studies of CMG at a replication fork reveal unexpected details of how CMG engages the DNA fork. The structures of CMG and the Mcm2-7 double hexamer on DNA suggest a completely unanticipated process for formation of bidirectional replication forks at origins.
Collapse
Affiliation(s)
- Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Michael E O'Donnell
- Department of DNA Replication, Rockefeller University and HHMI, New York, NY 10065, USA
| |
Collapse
|
148
|
Mimura S, Kubota Y, Takisawa H. MCM interference during licensing of DNA replication in Xenopus egg extracts-Possible Role of a C-terminal region of MCM3. Cell Cycle 2018; 17:492-505. [PMID: 29261034 DOI: 10.1080/15384101.2017.1415681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.
Collapse
Affiliation(s)
- Satoru Mimura
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| | - Yumiko Kubota
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| | - Haruhiko Takisawa
- a Department of Biological Sciences, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka , Japan
| |
Collapse
|
149
|
The ring-shaped hexameric helicases that function at DNA replication forks. Nat Struct Mol Biol 2018; 25:122-130. [PMID: 29379175 DOI: 10.1038/s41594-018-0024-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
DNA replication requires separation of genomic duplex DNA strands, an operation that is performed by a hexameric ring-shaped helicase in all domains of life. The structures and chemomechanical actions of these fascinating machines are coming into sharper focus. Although there is no evolutionary relationship between the hexameric helicases of bacteria and those of archaea and eukaryotes, they share many fundamental features. Here we review recent studies of these two groups of hexameric helicases and the unexpected distinctions they have also unveiled.
Collapse
|
150
|
Xiong W, Zhai M, Yu X, Wei L, Mao J, Liu J, Xie J, Li B. Comparative RNA-sequencing analysis of ER-based HSP90 functions and signal pathways in Tribolium castaneum. Cell Stress Chaperones 2018; 23:29-43. [PMID: 28681272 PMCID: PMC5741579 DOI: 10.1007/s12192-017-0821-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
Tribolium castaneum, the red flour beetle, is a major agriculture pest that damages stored grains and cereal products. Heat-shock protein 90 of T. castaneum (Tchsp90) has been reported to play pivotal roles in heat stress response, development, reproduction, and life span. However, the signaling pathway of Tchsp90 remains unclear. Thus, the global transcriptome profiles between RNA interference (RNAi)-treated insects (ds-Tchsp90) and control insects of T. castaneum were investigated and compared by RNA sequencing. In all, we obtained 14,145,451 sequence reads, which assembled into 13,243 genes. Among these genes, 461 differentially expressed genes (DEGs) were identified between the ds-Tchsp90 and control samples. These DEGs were classified into 44 gene ontology (GO) functional groups, including the cellular process, the response to stimulus, the immune system process, the development process, and reproduction. Interestingly, knocking down the expression of Tchsp90 suppressed both the DNA replication and cell division signaling pathways, which most likely modulated the effects of Tchsp90 on development, reproduction, and life span. Moreover, the DEGs encoding AnnexinB9, frizzled-4, sno, Fem1B, TSL, and CSW might be related to the regulation of the development and reproduction of ds-Tchsp90 insects. The DEGs including TLR6, PGRP2, defensin1, and defensin2 were involved in heat stress and immune response simultaneously, which suggested that cross talk might exist between immunity and stress response. Additionally, RNAi of Tchsp90 altered large-scale serine protease (sp) gene expression patterns and amplified the SP signaling pathway to regulate the development and reproduction as well as the stress response and innate immunity in T. castaneum. All these results shed new light onto the regulatory mechanism of Tchsp90 involved in insect physiology and could further facilitate research into appropriate and sustainable pest control management.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Mengfan Zhai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Xiaojuan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|