101
|
Ntini E, Budach S, Vang Ørom UA, Marsico A. Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs. Cell Syst 2023; 14:906-922.e6. [PMID: 37857083 DOI: 10.1016/j.cels.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis. Although enriched in the cell chromatin fraction, to what degree this defines their regulatory potential remains unclear. Furthermore, the factors underlying lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chromatin dissociation and its impact on enhancer activity and target gene expression, remain to be resolved. Here, we developed chrTT-seq, which combines the pulse-chase metabolic labeling of nascent RNA with chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their transcription on chromatin to release and allows the quantification of dissociation dynamics. By incorporating genomic, transcriptomic, and epigenetic metrics, as well as RNA-binding protein propensities, in machine learning models, we identify features that define transcript groups of different chromatin dissociation dynamics. Notably, lncRNAs transcribed from enhancers display reduced chromatin retention, suggesting that, in addition to splicing, their chromatin dissociation may shape enhancer activity.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biotechnology, IMBB-FORTH, 70013 Heraklio, Greece.
| | - Stefan Budach
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany
| | - Ulf A Vang Ørom
- Aarhus University, Department of Molecular Biology and Genetics, 8000 Aarhus, Denmark
| | - Annalisa Marsico
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Computational Health Center, Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
102
|
Bennett CL, Dastidar S, Arnold FJ, McKinstry SU, Stockford C, Freibaum BD, Sopher BL, Wu M, Seidner G, Joiner W, Taylor JP, West RJH, La Spada AR. Senataxin helicase, the causal gene defect in ALS4, is a significant modifier of C9orf72 ALS G4C2 and arginine-containing dipeptide repeat toxicity. Acta Neuropathol Commun 2023; 11:164. [PMID: 37845749 PMCID: PMC10580588 DOI: 10.1186/s40478-023-01665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.
Collapse
Affiliation(s)
- Craig L Bennett
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Somasish Dastidar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Molecular Neurosciences, Kasturba Medical College, Manipal, 576104, India
| | - Frederick J Arnold
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Spencer U McKinstry
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cameron Stockford
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bryce L Sopher
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Meilin Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Glen Seidner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - William Joiner
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Ryan J H West
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Albert R La Spada
- Departments of Pathology, Laboratory Medicine, Neurology, and Biological Chemistry, UCI Center for Neurotherapeutics, University of California Irvine School of Medicine, Irvine, CA, 92697, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology and Behavior, University of California Irvine School of Biosciences, Irvine, CA, 92697, USA.
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
103
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
104
|
Yang H, Lachtara EM, Ran X, Hopkins J, Patel PS, Zhu X, Xiao Y, Phoon L, Gao B, Zou L, Lawrence MS, Lan L. The RNA m5C modification in R-loops as an off switch of Alt-NHEJ. Nat Commun 2023; 14:6114. [PMID: 37777505 PMCID: PMC10542358 DOI: 10.1038/s41467-023-41790-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
The roles of R-loops and RNA modifications in homologous recombination (HR) and other DNA double-stranded break (DSB) repair pathways remain poorly understood. Here, we find that DNA damage-induced RNA methyl-5-cytosine (m5C) modification in R-loops plays a crucial role to regulate PARP1-mediated poly ADP-ribosylation (PARylation) and the choice of DSB repair pathways at sites of R-loops. Through bisulfite sequencing, we discover that the methyltransferase TRDMT1 preferentially generates m5C after DNA damage in R-loops across the genome. In the absence of m5C, R-loops activate PARP1-mediated PARylation both in vitro and in cells. Concurrently, m5C promotes transcription-coupled HR (TC-HR) while suppressing PARP1-dependent alternative non-homologous end joining (Alt-NHEJ), favoring TC-HR over Alt-NHEJ in transcribed regions as the preferred repair pathway. Importantly, simultaneous disruption of both TC-HR and Alt-NHEJ with TRDMT1 and PARP or Polymerase θ inhibitors prevents alternative DSB repair and exhibits synergistic cytotoxic effects on cancer cells, suggesting an effective strategy to exploit genomic instability in cancer therapy.
Collapse
Affiliation(s)
- Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily M Lachtara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Ran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jessica Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Parasvi S Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yao Xiao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Laiyee Phoon
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Boya Gao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
105
|
Traphagen NA, Schwartz GN, Tau S, Roberts AM, Jiang A, Hosford SR, Marotti JD, Goen AE, Romo BA, Johnson AL, Duffy ECK, Demidenko E, Heverly P, Mosesson Y, Soucy SM, Kolling F, Miller TW. Estrogen Therapy Induces Receptor-Dependent DNA Damage Enhanced by PARP Inhibition in ER+ Breast Cancer. Clin Cancer Res 2023; 29:3717-3728. [PMID: 37439680 PMCID: PMC10528687 DOI: 10.1158/1078-0432.ccr-23-0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Clinical evidence indicates that treatment with estrogens elicits anticancer effects in ∼30% of patients with advanced endocrine-resistant estrogen receptor α (ER)-positive breast cancer. Despite the proven efficacy of estrogen therapy, its mechanism of action is unclear and this treatment remains underused. Mechanistic understanding may offer strategies to enhance therapeutic efficacy. EXPERIMENTAL DESIGN We performed genome-wide CRISPR/Cas9 screening and transcriptomic profiling in long-term estrogen-deprived ER+ breast cancer cells to identify pathways required for therapeutic response to the estrogen 17β-estradiol (E2). We validated findings in cell lines, patient-derived xenografts (PDX), and patient samples, and developed a novel combination treatment through testing in cell lines and PDX models. RESULTS Cells treated with E2 exhibited replication-dependent markers of DNA damage and the DNA damage response prior to apoptosis. Such DNA damage was partially driven by the formation of DNA:RNA hybrids (R-loops). Pharmacologic suppression of the DNA damage response via PARP inhibition with olaparib enhanced E2-induced DNA damage. PARP inhibition synergized with E2 to suppress growth and prevent tumor recurrence in BRCA1/2-mutant and BRCA1/2-wild-type cell line and PDX models. CONCLUSIONS E2-induced ER activity drives DNA damage and growth inhibition in endocrine-resistant breast cancer cells. Inhibition of the DNA damage response using drugs such as PARP inhibitors can enhance therapeutic response to E2. These findings warrant clinical exploration of the combination of E2 with DNA damage response inhibitors in advanced ER+ breast cancer, and suggest that PARP inhibitors may synergize with therapeutics that exacerbate transcriptional stress.
Collapse
Affiliation(s)
- Nicole A. Traphagen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Gary N. Schwartz
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Steven Tau
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alyssa M. Roberts
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Amanda Jiang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sarah R. Hosford
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jonathan D. Marotti
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Abigail E. Goen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Bianca A. Romo
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anneka L. Johnson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Emily-Claire K. Duffy
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | - Shannon M. Soucy
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Center for Quantitative Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fred Kolling
- Center for Quantitative Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W. Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
106
|
Li J, Querl L, Coban I, Salinas G, Krebber H. Surveillance of 3' mRNA cleavage during transcription termination requires CF IB/Hrp1. Nucleic Acids Res 2023; 51:8758-8773. [PMID: 37351636 PMCID: PMC10484732 DOI: 10.1093/nar/gkad530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
CF IB/Hrp1 is part of the cleavage and polyadenylation factor (CPF) and cleavage factor (CF) complex (CPF-CF), which is responsible for 3' cleavage and maturation of pre-mRNAs. Although Hrp1 supports this process, its presence is not essential for the cleavage event. Here, we show that the main function of Hrp1 in the CPF-CF complex is the nuclear mRNA quality control of proper 3' cleavage. As such, Hrp1 acts as a nuclear mRNA retention factor that hinders transcripts from leaving the nucleus until processing is completed. Only after proper 3' cleavage, which is sensed through contacting Rna14, Hrp1 recruits the export receptor Mex67, allowing nuclear export. Consequently, its absence results in the leakage of elongated mRNAs into the cytoplasm. If cleavage is defective, the presence of Hrp1 on the mRNA retains these elongated transcripts until they are eliminated by the nuclear exosome. Together, we identify Hrp1 as the key quality control factor for 3' cleavage.
Collapse
Affiliation(s)
- Jing Li
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Luisa Querl
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Ivo Coban
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| | - Gabriela Salinas
- NGS-Serviceeinrichtung für Integrative Genomik (NIG), Institut für Humangenetik, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
107
|
Wang J, Huang H, Zhao K, Teng Y, Zhao L, Xu Z, Zheng Y, Zhang L, Li C, Duan Y, Liang K, Zhou X, Cheng X, Xia Y. G-quadruplex in hepatitis B virus pregenomic RNA promotes its translation. J Biol Chem 2023; 299:105151. [PMID: 37567479 PMCID: PMC10485161 DOI: 10.1016/j.jbc.2023.105151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Haiyan Huang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Conghui Li
- Department of Pathophysiology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yurong Duan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kaiwei Liang
- Department of Pathophysiology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Department of Pathology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| |
Collapse
|
108
|
Liu J, Zheng T, Chen D, Huang J, Zhao Y, Ma W, Liu H. RBMX involves in telomere stability maintenance by regulating TERRA expression. PLoS Genet 2023; 19:e1010937. [PMID: 37756323 PMCID: PMC10529574 DOI: 10.1371/journal.pgen.1010937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Telomeric repeat-containing RNA (TERRA) is a class of long noncoding RNAs (lncRNAs) that are transcribed from subtelomeric to telomeric region of chromosome ends. TERRA is prone to form R-loop structures at telomeres by invading into telomeric DNA. Excessive telomere R-loops result in telomere instability, so the TERRA level needs to be delicately modulated. However, the molecular mechanisms and factors controlling TERRA level are still largely unknown. In this study, we report that the RNA binding protein RBMX is a novel regulator of TERRA level and telomere integrity. The expression level of TERRA is significantly elevated in RBMX depleted cells, leading to enhanced telomere R-loop formation, replication stress, and telomere instability. We also found that RBMX binds to TERRA and the nuclear exosome targeting protein ZCCHC8 simultaneously, and that TERRA degradation slows down upon RBMX depletion, implying that RBMX promotes TERRA degradation by regulating its transportation to the nuclear exosome, which decays nuclear RNAs. Altogether, these findings uncover a new role of RBMX in TERRA expression regulation and telomere integrity maintenance, and raising RBMX as a potential target of cancer therapy.
Collapse
Affiliation(s)
- Jingfan Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tian Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dandan Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
109
|
Jiang Y, Huang F, Chen L, Gu JH, Wu YW, Jia MY, Lin Z, Zhou Y, Li YC, Yu C, Tong MH, Shen L, Fan HY, Sha QQ. Genome-wide map of R-loops reveals its interplay with transcription and genome integrity during germ cell meiosis. J Adv Res 2023; 51:45-57. [PMID: 36396044 PMCID: PMC10491972 DOI: 10.1016/j.jare.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/14/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The R-loop is a naturally formed three-strand nucleic acid structure that recently has been reported to participate in multiple biological processes and helped answer some previously unexplained scientific questions. Meiosis process involves multiple chromatin-related events such as DNA double-stranded breaks (DSB) formation, repairing and transcriptional dynamics. OBJECTIVES Explore the regulatory roles and physiological functions of R-loops in the mammalian meiosis process. METHODS In our study, using genome-wide S9.6 CUT & Tag seq, we first mapped the genomic distribution and dynamic changes of R-loop during the meiotic process in mice, from spermatogonia to secondary spermatocytes. And we further explore the role of R-loop in physiological conditions by constructing conditional knockout mice of Rnaseh1, which deleted the R-loop endonuclease before meiosis entry. RESULTS R-loop predominantly distributes at promoter-related regions and varies across different meiotic stages. By joint analysis with the corresponding transcriptome, we found that the R-loop was closely related to transcription during the meiotic process. The high frequency of promoter-related R-loop in meiotic cells is usually accompanied by high transcription activity, and we further verified this in the leptotene/zygotene to the pachytene transition process. Moreover, the lack of RNase H1 caused sterility in male mice with R-loop accumulation and abnormal DSB repair in spermatocytes. Further analysis showed that abnormal R-loop accumulation in the leptotene/zygotene stages influenced transcriptional regulation in the pachytene stage. CONCLUSION The mutual regulation of the R-loop and transcription plays an essential role in spermatogenesis. And R-loop is also important for the normal repair process of DSB during meiosis.
Collapse
Affiliation(s)
- Yu Jiang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lu Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia-Hui Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yun-Wen Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meng-Yan Jia
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Zhou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China
| | - Yan-Chu Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Heng-Yu Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, 510317 Guangzhou, China.
| |
Collapse
|
110
|
Krachmarova E, Petkov P, Lilkova E, Ilieva N, Rangelov M, Todorova N, Malinova K, Hristova R, Nacheva G, Gospodinov A, Litov L. Insights into the SARS-CoV-2 ORF6 Mechanism of Action. Int J Mol Sci 2023; 24:11589. [PMID: 37511350 PMCID: PMC10380535 DOI: 10.3390/ijms241411589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
ORF6 is responsible for suppressing the immune response of cells infected by the SARS-CoV-2 virus. It is also the most toxic protein of SARS-CoV-2, and its actions are associated with the viral pathogenicity. Here, we study in silico and in vitro the structure of the protein, its interaction with RAE1 and the mechanism of action behind its high toxicity. We show both computationally and experimentally that SARS-CoV-2 ORF6, embedded in the cytoplasmic membranes, binds to RAE1 and sequesters it in the cytoplasm, thus depleting its availability in the nucleus and impairing nucleocytoplasmic mRNA transport. This negatively affects the cellular genome stability by compromising the cell cycle progression into the S-phase and by promoting the accumulation of RNA-DNA hybrids. Understanding the multiple ways in which ORF6 affects DNA replication may also have important implications for elucidating the pathogenicity of SARS-CoV-2 and developing therapeutic strategies to mitigate its deleterious effects on host cells.
Collapse
Affiliation(s)
- Elena Krachmarova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Peicho Petkov
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Elena Lilkova
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.L.); (N.I.)
| | - Nevena Ilieva
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.L.); (N.I.)
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Kristina Malinova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Rossitsa Hristova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Genoveva Nacheva
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Anastas Gospodinov
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Leandar Litov
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
111
|
LaMarca EA, Saito A, Plaza-Jennings A, Espeso-Gil S, Hellmich A, Fernando MB, Javidfar B, Liao W, Estill M, Townsley K, Florio A, Ethridge JE, Do C, Tycko B, Shen L, Kamiya A, Tsankova NM, Brennand KJ, Akbarian S. R-loop landscapes in the developing human brain are linked to neural differentiation and cell-type specific transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549494. [PMID: 37503149 PMCID: PMC10370098 DOI: 10.1101/2023.07.18.549494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Here, we construct genome-scale maps for R-loops, three-stranded nucleic acid structures comprised of a DNA/RNA hybrid and a displaced single strand of DNA, in the proliferative and differentiated zones of the human prenatal brain. We show that R-loops are abundant in the progenitor-rich germinal matrix, with preferential formation at promoters slated for upregulated expression at later stages of differentiation, including numerous neurodevelopmental risk genes. RNase H1-mediated contraction of the genomic R-loop space in neural progenitors shifted differentiation toward the neuronal lineage and was associated with transcriptomic alterations and defective functional and structural neuronal connectivity in vivo and in vitro. Therefore, R-loops are important for fine-tuning differentiation-sensitive gene expression programs of neural progenitor cells.
Collapse
Affiliation(s)
- Elizabeth A LaMarca
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Amara Plaza-Jennings
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Espeso-Gil
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allyse Hellmich
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Behnam Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Will Liao
- New York Genome Center, New York, NY 10013, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kayla Townsley
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Florio
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - James E Ethridge
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catherine Do
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Benjamin Tycko
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Nadejda M Tsankova
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current affiliation: Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
112
|
Reiss M, Keegan J, Aldrich A, Lyons SM, Flynn RL. The exoribonuclease XRN2 mediates degradation of the long non-coding telomeric RNA TERRA. FEBS Lett 2023; 597:1818-1836. [PMID: 37191774 PMCID: PMC10524182 DOI: 10.1002/1873-3468.14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
The telomeric repeat-containing RNA, TERRA, associates with both telomeric DNA and telomeric proteins, often forming RNA:DNA hybrids (R-loops). TERRA is most abundant in cancer cells utilizing the alternative lengthening of telomeres (ALT) pathway for telomere maintenance, suggesting that persistent TERRA R-loops may contribute to activation of the ALT mechanism. Therefore, we sought to identify the enzyme(s) that regulate TERRA metabolism in mammalian cells. Here, we identify that the 5'-3' exoribonuclease XRN2 regulates the stability of TERRA RNA. Moreover, while stabilization of TERRA alone was insufficient to drive ALT, depletion of XRN2 in ALT-positive cells led to a significant increase in TERRA R-loops and exacerbated ALT activity. Together, our findings highlight XRN2 as a key determinant of TERRA metabolism and telomere stability in cancer cells that rely on the ALT pathway.
Collapse
Affiliation(s)
- Matthew Reiss
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Joshua Keegan
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anne Aldrich
- Departments of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Shawn M. Lyons
- Departments of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Rachel Litman Flynn
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
113
|
Zhang X, Duan J, Li Y, Jin X, Wu C, Yang X, Lu W, Ge W. NKAP acts with HDAC3 to prevent R-loop associated genome instability. Cell Death Differ 2023; 30:1811-1828. [PMID: 37322264 PMCID: PMC10307950 DOI: 10.1038/s41418-023-01182-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Persistent R-loop accumulation can cause DNA damage and lead to genome instability, which contributes to various human diseases. Identification of molecules and signaling pathways in controlling R-loop homeostasis provide important clues about their physiological and pathological roles in cells. Here, we show that NKAP (NF-κB activating protein) is essential for preventing R-loop accumulation and maintaining genome integrity through forming a protein complex with HDAC3. NKAP depletion causes DNA damage and genome instability. Aberrant accumulation of R-loops is present in NKAP-deficient cells and leads to DNA damage and DNA replication fork progression defects. Moreover, NKAP depletion induced R-loops and DNA damage are dependent on transcription. Consistently, the NKAP interacting protein HDAC3 exhibits a similar role in suppressing R-loop associated DNA damage and replication stress. Further analysis uncovers that HDAC3 functions to stabilize NKAP protein, independent of its deacetylase activity. In addition, NKAP prevents R-loop formation by maintaining RNA polymerase II pausing. Importantly, R-loops induced by NKAP or HDAC3 depletion are processed into DNA double-strand breaks by XPF and XPG endonucleases. These findings indicate that both NKAP and HDAC3 are novel key regulators of R-loop homeostasis, and their dysregulation might drive tumorigenesis by causing R-loop associated genome instability.
Collapse
Affiliation(s)
- Xing Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jingwei Duan
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yang Li
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xiaoye Jin
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Cheng Wu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Weiguo Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
114
|
Kitagawa R, Niikura Y, Becker A, Houghton PJ, Kitagawa K. EWSR1 maintains centromere identity. Cell Rep 2023; 42:112568. [PMID: 37243594 PMCID: PMC10758295 DOI: 10.1016/j.celrep.2023.112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
The centromere is essential for ensuring high-fidelity transmission of chromosomes. CENP-A, the centromeric histone H3 variant, is thought to be the epigenetic mark of centromere identity. CENP-A deposition at the centromere is crucial for proper centromere function and inheritance. Despite its importance, the precise mechanism responsible for maintenance of centromere position remains obscure. Here, we report a mechanism to maintain centromere identity. We demonstrate that CENP-A interacts with EWSR1 (Ewing sarcoma breakpoint region 1) and EWSR1-FLI1 (the oncogenic fusion protein in Ewing sarcoma). EWSR1 is required for maintaining CENP-A at the centromere in interphase cells. EWSR1 and EWSR1-FLI1 bind CENP-A through the SYGQ2 region within the prion-like domain, important for phase separation. EWSR1 binds to R-loops through its RNA-recognition motif in vitro. Both the domain and motif are required for maintaining CENP-A at the centromere. Therefore, we conclude that EWSR1 guards CENP-A in centromeric chromatins by binding to centromeric RNA.
Collapse
Affiliation(s)
- Risa Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Yohei Niikura
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Argentina Becker
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| |
Collapse
|
115
|
Wei E, Bou-Nader C, Perry ML, Fattah R, Zhang J, Leppla SH, Bothra A. S9.6 Antibody-Enzyme Conjugates for the Detection of DNA-RNA Hybrids. Bioconjug Chem 2023; 34:834-844. [PMID: 37194248 DOI: 10.1021/acs.bioconjchem.2c00609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Diagnosis of infectious agents is increasingly done by the detection of unique nucleic acid sequences, typically using methods such as PCR that specifically amplify these sequences. A largely neglected alternative approach is to use antibodies that recognize nucleic acids. The unique monoclonal antibody S9.6 recognizes DNA-RNA hybrids in a largely sequence-independent manner. S9.6 has been used in several cases for the analysis of nucleic acids. Extending our recent determination of the structure of S9.6 Fab bound to a DNA-RNA hybrid, we have developed reagents and methods for the sensitive detection of specific DNA and RNA sequences. To facilitate the use in diagnostics, we conjugated the S9.6 Fab to the highly active and well-characterized reporter enzyme human-secreted embryonic alkaline phosphatase (SEAP). Two approaches were utilized for conjugation. The first used sortase A (SrtA), which generates a covalent peptide bond between short amino acid sequences added to recombinantly produced S9.6 Fab and SEAP. The second approach was to genetically fuse the S9.6 Fab and SEAP so that the two are produced as a single molecule. Using these two antibody-SEAP proteins, we developed a simplified ELISA format for the identification of synthetic DNA-RNA hybrids, which can be optimized for detecting nucleic acids of pathogens, as well as for other applications. We successfully used this immunosorbent assay, HC-S, to identify DNA-RNA hybrids in solution with high specificity and sensitivity.
Collapse
Affiliation(s)
- Elena Wei
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Megan L Perry
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Rasem Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| | - Ankur Bothra
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda Maryland 20892, United States
| |
Collapse
|
116
|
Gatti V, De Domenico S, Melino G, Peschiaroli A. Senataxin and R-loops homeostasis: multifaced implications in carcinogenesis. Cell Death Discov 2023; 9:145. [PMID: 37147318 PMCID: PMC10163015 DOI: 10.1038/s41420-023-01441-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
R-loops are inherent byproducts of transcription consisting of an RNA:DNA hybrid and a displaced single-stranded DNA. These structures are of key importance in controlling numerous physiological processes and their homeostasis is tightly controlled by the activities of several enzymes deputed to process R-loops and prevent their unproper accumulation. Senataxin (SETX) is an RNA/DNA helicase which catalyzes the unwinding of RNA:DNA hybrid portion of the R-loops, promoting thus their resolution. The key importance of SETX in R-loops homeostasis and its relevance with pathophysiological events is highlighted by the evidence that gain or loss of function SETX mutations underlie the pathogenesis of two distinct neurological disorders. Here, we aim to describe the potential impact of SETX on tumor onset and progression, trying to emphasize how dysregulation of this enzyme observed in human tumors might impact tumorigenesis. To this aim, we will describe the functional relevance of SETX in regulating gene expression, genome integrity, and inflammation response and discuss how cancer-associated SETX mutations might affect these pathways, contributing thus to tumor development.
Collapse
Affiliation(s)
- Veronica Gatti
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy
| | - Sara De Domenico
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Angelo Peschiaroli
- National Research Council of Italy, Institute of Translational Pharmacology, Rome, Italy.
| |
Collapse
|
117
|
Zhu C, Xie Y, Li Q, Zhang Z, Chen J, Zhang K, Xia X, Yu D, Chen D, Yu Z, Chen J. CPSF6-mediated XBP1 3'UTR shortening attenuates cisplatin-induced ER stress and elevates chemo-resistance in lung adenocarcinoma. Drug Resist Updat 2023; 68:100933. [PMID: 36821972 DOI: 10.1016/j.drup.2023.100933] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Alternative polyadenylation (APA) is a widespread mechanism generating RNA molecules with alternative 3' ends. Herein, we discovered that TargetScan includes a novel XBP1 transcript with a longer 3' untranslated region (UTR) (XBP1-UL) than that included in NCBI. XBP1-UL exhibited a lowered level in blood samples from lung adenocarcinoma (LUAD) patients and in those after DDP treatment. Consistently, XBP1-UL was reduced in A549 cells compared to normal BEAS-2B cells, as well as in DDP-treated/resistant A549 cells relative to controls. Moreover, due to decreased usage of the distal polyadenylation site (PAS) in 3'UTR, XBP1-UL level was lowered in A549 cells and decreased further in DDP-resistant A549 (A549/DDP) cells. Importantly, use of the distal PAS (dPAS) and XBP1-UL level were gradually reduced in A549 cells under increasing concentrations of DDP, which was attributed to DDP-induced endoplasmic reticulum (ER) stress. Furthermore, XBP1 transcripts with shorter 3'UTR (XBP1-US) were more stable and presented stronger potentiation on DDP resistance. The choice of proximal PAS (pPAS) was attributed to CPSF6 elevation, which was caused by BRCA1-distrupted R-loop accumulation in CPSF6 5'end. DDP-induced nuclear LINC00221 also facilitated CPSF6-induced pPAS choice in the pre-XBP1 3'end. Finally, we found that unlike the unspliced XBP1 protein (XBP1-u), the spliced form XBP1-s retarded p53 degradation to facilitate DNA damage repair of LUAD cells. The current study provides new insights into tumor progression and DDP resistance in LUAD, which may contribute to improved LUAD treatment.
Collapse
Affiliation(s)
- Chuandong Zhu
- Department of Oncology, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yufeng Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qiang Li
- Department of Chemotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330006, China
| | - Zhiwei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Juan Chen
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing, Medical University, Nanjing 210006, Jiangsu, China
| | - Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing, Medical University, Nanjing 210006, Jiangsu, China
| | | | - Danlei Yu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China
| | - Dongqin Chen
- Department of Medical Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Pudong New District, Shanghai 200127, China; Department of Oncology, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, No. 666, Shengli Road, Nantong 226000, Jiangsu, China.
| | - Zhengyuan Yu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou 215006, Jiangsu, China.
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
118
|
Elsakrmy N, Cui H. R-Loops and R-Loop-Binding Proteins in Cancer Progression and Drug Resistance. Int J Mol Sci 2023; 24:ijms24087064. [PMID: 37108225 PMCID: PMC10138518 DOI: 10.3390/ijms24087064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
R-loops are three-stranded DNA/RNA hybrids that form by the annealing of the mRNA transcript to its coding template while displacing the non-coding strand. While R-loop formation regulates physiological genomic and mitochondrial transcription and DNA damage response, imbalanced R-loop formation can be a threat to the genomic integrity of the cell. As such, R-loop formation is a double-edged sword in cancer progression, and perturbed R-loop homeostasis is observed across various malignancies. Here, we discuss the interplay between R-loops and tumor suppressors and oncogenes, with a focus on BRCA1/2 and ATR. R-loop imbalances contribute to cancer propagation and the development of chemotherapy drug resistance. We explore how R-loop formation can cause cancer cell death in response to chemotherapeutics and be used to circumvent drug resistance. As R-loop formation is tightly linked to mRNA transcription, their formation is unavoidable in cancer cells and can thus be explored in novel cancer therapeutics.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
119
|
Gong Y, Liu Y. R-Loops at Chromosome Ends: From Formation, Regulation, and Cellular Consequence. Cancers (Basel) 2023; 15:cancers15072178. [PMID: 37046839 PMCID: PMC10093737 DOI: 10.3390/cancers15072178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Telomeric repeat containing RNA (TERRA) is transcribed from subtelomeric regions to telomeres. TERRA RNA can invade telomeric dsDNA and form telomeric R-loop structures. A growing body of evidence suggests that TERRA-mediated R-loops are critical players in telomere length homeostasis. Here, we will review current knowledge on the regulation of R-loop levels at telomeres. In particular, we will discuss how the central player TERRA and its binding proteins modulate R-loop levels through various mechanisms. We will further provide an overview of the consequences of TERRA-mediated persistent or unscheduled R-loops at telomeres in human ALT cancers and other organisms, with a focus on telomere length regulation after replication interference-induced damage and DNA homologous recombination-mediated repair.
Collapse
Affiliation(s)
- Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
120
|
Marchena-Cruz E, Camino LP, Bhandari J, Silva S, Marqueta-Gracia JJ, Amdeen SA, Guillén-Mendoza C, García-Rubio ML, Calderón-Montaño JM, Xue X, Luna R, Aguilera A. DDX47, MeCP2, and other functionally heterogeneous factors protect cells from harmful R loops. Cell Rep 2023; 42:112148. [PMID: 36827184 PMCID: PMC10066596 DOI: 10.1016/j.celrep.2023.112148] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Unscheduled R loops can be a source of genome instability, a hallmark of cancer cells. Although targeted proteomic approaches and cellular analysis of specific mutants have uncovered factors potentially involved in R-loop homeostasis, we report a more open screening of factors whose depletion causes R loops based on the ability of activation-induced cytidine deaminase (AID) to target R loops. Immunofluorescence analysis of γH2AX caused by small interfering RNAs (siRNAs) covering 3,205 protein-coding genes identifies 59 potential candidates, from which 13 are analyzed further and show a significant increase of R loops. Such candidates are enriched in factors involved in chromatin, transcription, and RNA biogenesis and other processes. A more focused study shows that the DDX47 helicase is an R-loop resolvase, whereas the MeCP2 methyl-CpG-binding protein uncovers a link between DNA methylation and R loops. Thus, our results suggest that a plethora of gene dysfunctions can alter cell physiology via affecting R-loop homeostasis by different mechanisms.
Collapse
Affiliation(s)
- Esther Marchena-Cruz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Lola P Camino
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Jay Bhandari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Sónia Silva
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - José Javier Marqueta-Gracia
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Shahad A Amdeen
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Cristina Guillén-Mendoza
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - José M Calderón-Montaño
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departmento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
121
|
Laspata N, Kaur P, Mersaoui S, Muoio D, Liu Z, Bannister MH, Nguyen H, Curry C, Pascal J, Poirier G, Wang H, Masson JY, Fouquerel E. PARP1 associates with R-loops to promote their resolution and genome stability. Nucleic Acids Res 2023; 51:2215-2237. [PMID: 36794853 PMCID: PMC10018367 DOI: 10.1093/nar/gkad066] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
PARP1 is a DNA-dependent ADP-Ribose transferase with ADP-ribosylation activity that is triggered by DNA breaks and non-B DNA structures to mediate their resolution. PARP1 was also recently identified as a component of the R-loop-associated protein-protein interaction network, suggesting a potential role for PARP1 in resolving this structure. R-loops are three-stranded nucleic acid structures that consist of a RNA-DNA hybrid and a displaced non-template DNA strand. R-loops are involved in crucial physiological processes but can also be a source of genome instability if persistently unresolved. In this study, we demonstrate that PARP1 binds R-loops in vitro and associates with R-loop formation sites in cells which activates its ADP-ribosylation activity. Conversely, PARP1 inhibition or genetic depletion causes an accumulation of unresolved R-loops which promotes genomic instability. Our study reveals that PARP1 is a novel sensor for R-loops and highlights that PARP1 is a suppressor of R-loop-associated genomic instability.
Collapse
Affiliation(s)
- Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Parminder Kaur
- Physics Department, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, Raleigh, NC 27695, USA
| | - Sofiane Yacine Mersaoui
- CHU de Québec Research Centre, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, McMahon, Québec City, Québec G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
| | - Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
| | - Zhiyan Silvia Liu
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maxwell Henry Bannister
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hai Dang Nguyen
- Department of Pharmacology, The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caroline Curry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
- CHU de Québec Research Centre, CHUL Pavilion, Oncology Division, Quebec, Canada
| | - Hong Wang
- Physics Department, Raleigh, NC 27695, USA
- Center for Human Health and the Environment, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Jean-Yves Masson
- CHU de Québec Research Centre, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, McMahon, Québec City, Québec G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, Canada
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15213, USA
| |
Collapse
|
122
|
Traphagen NA, Schwartz GN, Tau S, Jiang A, Hosford SR, Goen AE, Roberts AM, Romo BA, Johnson AL, Duffy ECK, Demidenko E, Heverly P, Mosesson Y, Soucy SM, Kolling F, Miller TW. Estrogen therapy induces receptor-dependent DNA damage enhanced by PARP inhibition in ER+ breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532956. [PMID: 36993590 PMCID: PMC10055145 DOI: 10.1101/2023.03.16.532956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Purpose Clinical evidence indicates that treatment with estrogens elicits anti-cancer effects in ∼30% of patients with advanced endocrine-resistant estrogen receptor alpha (ER)-positive breast cancer. Despite the proven efficacy of estrogen therapy, its mechanism of action is unclear and this treatment remains under-utilized. Mechanistic understanding may offer strategies to enhance therapeutic efficacy. Experimental Design We performed genome-wide CRISPR/Cas9 screening and transcriptomic profiling in long-term estrogen-deprived (LTED) ER+ breast cancer cells to identify pathways required for therapeutic response to the estrogen 17β-estradiol (E2). We validated findings in cell lines, patient-derived xenografts (PDXs), and patient samples, and developed a novel combination treatment through testing in cell lines and PDX models. Results Cells treated with E2 exhibited replication-dependent markers of DNA damage and the DNA damage response prior to apoptosis. Such DNA damage was partially driven by the formation of DNA:RNA hybrids (R-loops). Pharmacological suppression of the DNA damage response via poly(ADP-ribose) polymerase (PARP) inhibition with olaparib enhanced E2-induced DNA damage. PARP inhibition synergized with E2 to suppress growth and prevent tumor recurrence in BRCA1/2 -mutant and BRCA1 /2-wild-type cell line and PDX models. Conclusions E2-induced ER activity drives DNA damage and growth inhibition in endocrine-resistant breast cancer cells. Inhibition of the DNA damage response using drugs such as PARP inhibitors can enhance therapeutic response to E2. These findings warrant clinical exploration of the combination of E2 with DNA damage response inhibitors in advanced ER+ breast cancer, and suggest that PARP inhibitors may synergize with therapeutics that exacerbate transcriptional stress.
Collapse
|
123
|
Kumar C, Remus D. A transcription-based approach to purify R-loop-containing plasmid DNA templates in vitro. STAR Protoc 2023; 4:101937. [PMID: 36520635 PMCID: PMC9758483 DOI: 10.1016/j.xpro.2022.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
To study the direct effects of R-loops on DNA replication and other DNA-templated processes in vitro, R-loop-containing DNA templates need to be prepared efficiently and to near homogeneity. Here, we describe a simple transcription-based approach to form R-loops on plasmid DNA templates in vitro. We detail steps to transcribe a DNA sequence element with a high propensity to form co-transcriptional R-loops using T7 RNA polymerase. We describe nucleolytic digestion of free RNA, deproteinization, and repurification of R-loop-containing templates via gel filtration. For complete details on the use and execution of this protocol, please refer to Kumar et al.1.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| |
Collapse
|
124
|
Stoy H, Zwicky K, Kuster D, Lang KS, Krietsch J, Crossley MP, Schmid JA, Cimprich KA, Merrikh H, Lopes M. Direct visualization of transcription-replication conflicts reveals post-replicative DNA:RNA hybrids. Nat Struct Mol Biol 2023; 30:348-359. [PMID: 36864174 PMCID: PMC10023573 DOI: 10.1038/s41594-023-00928-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
Transcription-replication collisions (TRCs) are crucial determinants of genome instability. R-loops were linked to head-on TRCs and proposed to obstruct replication fork progression. The underlying mechanisms, however, remained elusive due to the lack of direct visualization and of non-ambiguous research tools. Here, we ascertained the stability of estrogen-induced R-loops on the human genome, visualized them directly by electron microscopy (EM), and measured R-loop frequency and size at the single-molecule level. Combining EM and immuno-labeling on locus-specific head-on TRCs in bacteria, we observed the frequent accumulation of DNA:RNA hybrids behind replication forks. These post-replicative structures are linked to fork slowing and reversal across conflict regions and are distinct from physiological DNA:RNA hybrids at Okazaki fragments. Comet assays on nascent DNA revealed a marked delay in nascent DNA maturation in multiple conditions previously linked to R-loop accumulation. Altogether, our findings suggest that TRC-associated replication interference entails transactions that follow initial R-loop bypass by the replication fork.
Collapse
Affiliation(s)
- Henriette Stoy
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Katharina Zwicky
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Danina Kuster
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Kevin S Lang
- Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
125
|
Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 2023; 5:zcad013. [PMID: 37600974 PMCID: PMC9984992 DOI: 10.1093/narcan/zcad013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
126
|
Zhao Y, Simon M, Seluanov A, Gorbunova V. DNA damage and repair in age-related inflammation. Nat Rev Immunol 2023; 23:75-89. [PMID: 35831609 PMCID: PMC10106081 DOI: 10.1038/s41577-022-00751-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Matthew Simon
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
127
|
Hao Y, Cai T, Liu C, Zhang X, Fu XD. Sequential Polyadenylation to Enable Alternative mRNA 3' End Formation. Mol Cells 2023; 46:57-64. [PMID: 36697238 PMCID: PMC9880608 DOI: 10.14348/molcells.2023.2176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/27/2023] Open
Abstract
In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3' end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3' ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3'UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered "apparent" APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.
Collapse
Affiliation(s)
- Yajing Hao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ting Cai
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Chang Liu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Present address: Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
128
|
Faravelli I, Riboldi GM, Rinchetti P, Lotti F. The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration. Int J Mol Sci 2023; 24:2247. [PMID: 36768569 PMCID: PMC9917330 DOI: 10.3390/ijms24032247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulietta M. Riboldi
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, NYU Langone Health, New York, NY 10017, USA
| | - Paola Rinchetti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
129
|
Shen L, Yang Y. Detecting R-Loop Formation Using a Plasmid-Based In Vitro Transcription Assay. Methods Mol Biol 2023; 2666:265-278. [PMID: 37166671 DOI: 10.1007/978-1-0716-3191-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
R-loops are three-stranded nucleic acid structures that consist of a DNA-RNA hybrid and a displaced single-stranded DNA. Since it was first reported by Ronald Davis and colleagues over 40 years ago, the study of R-loops has become an increasingly expanded area of research. Numerous factors have been identified to modulate the dynamic formation and resolution of R-loops, which are critical for proper controls of gene expression and genome stability. Along the lines of these discoveries, various biochemical and cellular assays have been developed to detect R-loop changes in vitro and in vivo. In this chapter, we describe a protocol for measuring R-loop formation using a plasmid-based in vitro transcription assay. The R-loop formed is then detected and quantified by using gel mobility, antibody staining, and DNA-RNA immunoprecipitation (DRIP)-qPCR assays. Unlike the helicase assay that uses short R-loop substrates, this assay system introduces DNA topology and active transcription as additional variables that impact R-loop formation, thus, more closely recapitulating in vivo situations. Furthermore, this method can be adopted for investigation of cis-elements and trans-acting factors that influence R-loop formation.
Collapse
Affiliation(s)
- Lei Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, USA
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope National Cancer Center, Duarte, CA, USA.
| |
Collapse
|
130
|
Gospodinov A, Dzhokova S, Petrova M, Ugrinova I. Chromatin regulators in DNA replication and genome stability maintenance during S-phase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:243-280. [PMID: 37061334 DOI: 10.1016/bs.apcsb.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The duplication of genetic information is central to life. The replication of genetic information is strictly controlled to ensure that each piece of genomic DNA is copied only once during a cell cycle. Factors that slow or stop replication forks cause replication stress. Replication stress is a major source of genome instability in cancer cells. Multiple control mechanisms facilitate the unimpeded fork progression, prevent fork collapse and coordinate fork repair. Chromatin alterations, caused by histone post-translational modifications and chromatin remodeling, have critical roles in normal replication and in avoiding replication stress and its consequences. This text reviews the chromatin regulators that ensure DNA replication and the proper response to replication stress. We also briefly touch on exploiting replication stress in therapeutic strategies. As chromatin regulators are frequently mutated in cancer, manipulating their activity could provide many possibilities for personalized treatment.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Stefka Dzhokova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
131
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
132
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
133
|
Crossley MP, Song C, Bocek MJ, Choi JH, Kousouros JN, Sathirachinda A, Lin C, Brickner JR, Bai G, Lans H, Vermeulen W, Abu-Remaileh M, Cimprich KA. R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response. Nature 2023; 613:187-194. [PMID: 36544021 PMCID: PMC9949885 DOI: 10.1038/s41586-022-05545-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Chenlin Song
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Jun-Hyuk Choi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon, South Korea
| | - Joseph N Kousouros
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Ataya Sathirachinda
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Cindy Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Gongshi Bai
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
134
|
Said M, Barra V, Balzano E, Talhaoui I, Pelliccia F, Giunta S, Naim V. FANCD2 promotes mitotic rescue from transcription-mediated replication stress in SETX-deficient cancer cells. Commun Biol 2022; 5:1395. [PMID: 36543851 PMCID: PMC9772326 DOI: 10.1038/s42003-022-04360-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Replication stress (RS) is a leading cause of genome instability and cancer development. A substantial source of endogenous RS originates from the encounter between the transcription and replication machineries operating on the same DNA template. This occurs predominantly under specific contexts, such as oncogene activation, metabolic stress, or a deficiency in proteins that specifically act to prevent or resolve those transcription-replication conflicts (TRCs). One such protein is Senataxin (SETX), an RNA:DNA helicase involved in resolution of TRCs and R-loops. Here we identify a synthetic lethal interaction between SETX and proteins of the Fanconi anemia (FA) pathway. Depletion of SETX induces spontaneous under-replication and chromosome fragility due to active transcription and R-loops that persist in mitosis. These fragile loci are targeted by the Fanconi anemia protein, FANCD2, to facilitate the resolution of under-replicated DNA, thus preventing chromosome mis-segregation and allowing cells to proliferate. Mechanistically, we show that FANCD2 promotes mitotic DNA synthesis that is dependent on XPF and MUS81 endonucleases. Importantly, co-depleting FANCD2 together with SETX impairs cancer cell proliferation, without significantly affecting non-cancerous cells. Therefore, we uncovered a synthetic lethality between SETX and FA proteins for tolerance of transcription-mediated RS that may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Maha Said
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Viviana Barra
- grid.10776.370000 0004 1762 5517Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Elisa Balzano
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Ibtissam Talhaoui
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Franca Pelliccia
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Simona Giunta
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Valeria Naim
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| |
Collapse
|
135
|
Zhao H, Hartono SR, de Vera KMF, Yu Z, Satchi K, Zhao T, Sciammas R, Sanz L, Chédin F, Barlow J. Senataxin and RNase H2 act redundantly to suppress genome instability during class switch recombination. eLife 2022; 11:e78917. [PMID: 36542058 PMCID: PMC9771370 DOI: 10.7554/elife.78917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.
Collapse
Affiliation(s)
- Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Stella R Hartono
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | | | - Zheyuan Yu
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
- Graduate Group in Biostatistics, University of California, DavisDavisUnited States
| | - Krishni Satchi
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Tracy Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California, DavisDavisUnited States
| | - Lionel Sanz
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jacqueline Barlow
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| |
Collapse
|
136
|
Polenkowski M, Allister AB, Burbano de Lara S, Pierce A, Geary B, El Bounkari O, Wiehlmann L, Hoffmann A, Whetton AD, Tamura T, Tran DDH. THOC5 complexes with DDX5, DDX17, and CDK12 to regulate R loop structures and transcription elongation rate. iScience 2022; 26:105784. [PMID: 36590164 PMCID: PMC9800341 DOI: 10.1016/j.isci.2022.105784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
THOC5, a member of the THO complex, is essential for the 3'processing of some inducible genes, the export of a subset of mRNAs and stem cell survival. Here we show that THOC5 depletion results in altered 3'cleavage of >50% of mRNAs and changes in RNA polymerase II binding across genes. THOC5 is recruited close to high-density polymerase II sites, suggesting that THOC5 is involved in transcriptional elongation. Indeed, measurement of elongation rates in vivo demonstrated decreased rates in THOC5-depleted cells. Furthermore, THOC5 is preferentially recruited to its target genes in slow polymerase II cells compared with fast polymerase II cells. Importantly chromatin-associated THOC5 interacts with CDK12 (a modulator of transcription elongation) and RNA helicases DDX5, DDX17, and THOC6 only in slow polymerase II cells. The CDK12/THOC5 interaction promotes CDK12 recruitment to R-loops in a THOC6-dependent manner. These data demonstrate a novel function of THOC5 in transcription elongation.
Collapse
Affiliation(s)
- Mareike Polenkowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | - Aldrige Bernardus Allister
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Humangenetik, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | | | - Andrew Pierce
- Stem Cell and Leukemia Protoemics Laboratory, University of Manchester, Manchester M20 3LJ, UK
| | - Bethany Geary
- Stem Cell and Leukemia Protoemics Laboratory, University of Manchester, Manchester M20 3LJ, UK
| | - Omar El Bounkari
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Lutz Wiehlmann
- Pädiatrische Pneumologie Hannover Medical School, Hannover D-30623, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Hannover Medical School, Hannover D-30623, Germany
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, University of Manchester, Manchester M13 9PL, UK
| | - Teruko Tamura
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany
| | - Doan Duy Hai Tran
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover D-30623, Germany,Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover D-30623, Germany,Corresponding author
| |
Collapse
|
137
|
RAD18 opposes transcription-associated genome instability through FANCD2 recruitment. PLoS Genet 2022; 18:e1010309. [DOI: 10.1371/journal.pgen.1010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
DNA replication is a vulnerable time for genome stability maintenance. Intrinsic stressors, as well as oncogenic stress, can challenge replication by fostering conflicts with transcription and stabilizing DNA:RNA hybrids. RAD18 is an E3 ubiquitin ligase for PCNA that is involved in coordinating DNA damage tolerance pathways to preserve genome stability during replication. In this study, we show that RAD18 deficient cells have higher levels of transcription-replication conflicts and accumulate DNA:RNA hybrids that induce DNA double strand breaks and replication stress. We find that these effects are driven in part by failure to recruit the Fanconi Anemia protein FANCD2 at difficult to replicate and R-loop prone genomic sites. FANCD2 activation caused by splicing inhibition or aphidicolin treatment is critically dependent on RAD18 activity. Thus, we highlight a RAD18-dependent pathway promoting FANCD2-mediated suppression of R-loops and transcription-replication conflicts.
Collapse
|
138
|
Wu T, Lyu R, He C. spKAS-seq reveals R-loop dynamics using low-input materials by detecting single-stranded DNA with strand specificity. SCIENCE ADVANCES 2022; 8:eabq2166. [PMID: 36449625 PMCID: PMC9710868 DOI: 10.1126/sciadv.abq2166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/13/2022] [Indexed: 05/26/2023]
Abstract
R-loops affect transcription and genome stability. Dysregulation of R-loops is related to human diseases. Genome-wide R-loop mapping typically uses the S9.6 antibody or inactive ribonuclease H, both requiring a large number of cells with varying results observed depending on the approach applied. Here, we present strand-specific kethoxal-assisted single-stranded DNA (ssDNA) sequencing (spKAS-seq) to map R-loops by taking advantage of the presence of a ssDNA in the triplex structure. We show that spKAS-seq detects R-loops and their dynamics at coding sequences, enhancers, and other intergenic regions with as few as 50,000 cells. A joint analysis of R-loops and chromatin-bound RNA binding proteins (RBPs) suggested that R-loops can be RBP binding hotspots on the chromatin.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Ruitu Lyu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
139
|
Mitschka S, Mayr C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat Rev Mol Cell Biol 2022; 23:779-796. [PMID: 35798852 PMCID: PMC9261900 DOI: 10.1038/s41580-022-00507-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is a widespread mechanism to generate mRNA isoforms with alternative 3' untranslated regions (UTRs). The expression of alternative 3' UTR isoforms is highly cell type specific and is further controlled in a gene-specific manner by environmental cues. In this Review, we discuss how the dynamic, fine-grained regulation of APA is accomplished by several mechanisms, including cis-regulatory elements in RNA and DNA and factors that control transcription, pre-mRNA cleavage and post-transcriptional processes. Furthermore, signalling pathways modulate the activity of these factors and integrate APA into gene regulatory programmes. Dysregulation of APA can reprogramme the outcome of signalling pathways and thus can control cellular responses to environmental changes. In addition to the regulation of protein abundance, APA has emerged as a major regulator of mRNA localization and the spatial organization of protein synthesis. This role enables the regulation of protein function through the addition of post-translational modifications or the formation of protein-protein interactions. We further discuss recent transformative advances in single-cell RNA sequencing and CRISPR-Cas technologies, which enable the mapping and functional characterization of alternative 3' UTRs in any biological context. Finally, we discuss new APA-based RNA therapeutics, including compounds that target APA in cancer and therapeutic genome editing of degenerative diseases.
Collapse
Affiliation(s)
- Sibylle Mitschka
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine Mayr
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
140
|
Zhou J, Zhang W, Sun Q. R-loop: The new genome regulatory element in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2275-2289. [PMID: 36223078 DOI: 10.1111/jipb.13383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
An R-loop is a three-stranded chromatin structure that consists of a displaced single strand of DNA and an RNA:DNA hybrid duplex, which was thought to be a rare by-product of transcription. However, recent genome-wide data have shown that R-loops are widespread and pervasive in a variety of genomes, and a growing body of experimental evidence indicates that R-loops have both beneficial and harmful effects on an organism. To maximize benefit and avoid harm, organisms have evolved several means by which they tightly regulate R-loop levels. Here, we summarize our current understanding of the biogenesis and effects of R-loops, the mechanisms that regulate them, and methods of R-loop profiling, reviewing recent research advances on R-loops in plants. Furthermore, we provide perspectives on future research directions for R-loop biology in plants, which might lead to a more comprehensive understanding of R-loop functions in plant genome regulation and contribute to future agricultural improvements.
Collapse
Affiliation(s)
- Jincong Zhou
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
141
|
Khan ES, Danckwardt S. Pathophysiological Role and Diagnostic Potential of R-Loops in Cancer and Beyond. Genes (Basel) 2022; 13:genes13122181. [PMID: 36553448 PMCID: PMC9777984 DOI: 10.3390/genes13122181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
R-loops are DNA-RNA hybrids that play multifunctional roles in gene regulation, including replication, transcription, transcription-replication collision, epigenetics, and preserving the integrity of the genome. The aberrant formation and accumulation of unscheduled R-loops can disrupt gene expression and damage DNA, thereby causing genome instability. Recent links between unscheduled R-loop accumulation and the abundance of proteins that modulate R-loop biogenesis have been associated with numerous human diseases, including various cancers. Although R-loops are not necessarily causative for all disease entities described to date, they can perpetuate and even exacerbate the initially disease-eliciting pathophysiology, making them structures of interest for molecular diagnostics. In this review, we discuss the (patho) physiological role of R-loops in health and disease, their surprising diagnostic potential, and state-of-the-art techniques for their detection.
Collapse
Affiliation(s)
- Essak S. Khan
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Consortium for Translational Cancer Research (DKTK), DKFZ Frankfurt-Mainz, 60590 Frankfurt am Main, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Center Mainz, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
142
|
Lee H, You SY, Han DW, La H, Park C, Yoo S, Kang K, Kang MH, Choi Y, Hong K. Dynamic Change of R-Loop Implicates in the Regulation of Zygotic Genome Activation in Mouse. Int J Mol Sci 2022; 23:ijms232214345. [PMID: 36430821 PMCID: PMC9699122 DOI: 10.3390/ijms232214345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In mice, zygotic genome activation (ZGA) occurs in two steps: minor ZGA at the one-cell stage and major ZGA at the two-cell stage. Regarding the regulation of gene transcription, minor ZGA is known to have unique features, including a transcriptionally permissive state of chromatin and insufficient splicing processes. The molecular characteristics may originate from extremely open chromatin states in the one-cell stage zygotes, yet the precise underlying mechanism has not been well studied. Recently, the R-loop, a triple-stranded nucleic acid structure of the DNA/RNA hybrid, has been implicated in gene transcription and DNA replication. Therefore, in the present study, we examined the changes in R-loop dynamics during mouse zygotic development, and its roles in zygotic transcription or DNA replication. Our analysis revealed that R-loops persist in the genome of metaphase II oocytes and preimplantation embryos from the zygote to the blastocyst stage. In particular, zygotic R-loop levels dynamically change as development proceeds, showing that R-loop levels decrease as pronucleus maturation occurs. Mechanistically, R-loop dynamics are likely linked to ZGA, as inhibition of either DNA replication or transcription at the time of minor ZGA decreases R-loop levels in the pronuclei of zygotes. However, the induction of DNA damage by treatment with anticancer agents, including cisplatin or doxorubicin, does not elicit genome-wide changes in zygotic R-loop levels. Therefore, our study suggests that R-loop formation is mechanistically associated with the regulation of mouse ZGA, especially minor ZGA, by modulating gene transcription and DNA replication.
Collapse
Affiliation(s)
- Hyeonji Lee
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seong-Yeob You
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seonho Yoo
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Kiye Kang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence:
| |
Collapse
|
143
|
Zhao W, Pei Q, Zhu Y, Zhan D, Mao G, Wang M, Qiu Y, Zuo K, Pei H, Sun LQ, Wen M, Tan R. The Association of R-Loop Binding Proteins Subtypes with CIN Implicates Therapeutic Strategies in Colorectal Cancer. Cancers (Basel) 2022; 14:5607. [PMID: 36428700 PMCID: PMC9688457 DOI: 10.3390/cancers14225607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chromosomal instability (CIN) covers approximately 65 to 70% of colorectal cancer patients and plays an essential role in cancer progression. However, the molecular features and therapeutic strategies related to those patients are still controversial. R-loop binding proteins (RLBPs) exert significant roles in transcription and replication. Here, integrative colorectal cancer proteogenomic analysis identified two RLBPs subtypes correlated with distinct prognoses. Cluster I (CI), represented by high expression of RLBPs, was associated with the CIN phenotype. While Cluster II (CII) with the worst prognosis and low expression of RLBPs was composed of a high percentage of patients with mucinous adenocarcinoma or right-sided colon cancer. The molecular feature analysis revealed that the active RNA processing, ribosome synthesis, and aberrant DNA damage repair were shown in CI, a high inflammatory signaling pathway, and lymphocyte infiltration was enriched in CII. In addition, we revealed 42 tumor-associated RLBPs proteins. The CI with high expression of tumor-associated proteins was sensitive to drugs targeting genome integrity and EGFR in both cell and organoid models. Thus, our study unveils a significant molecular association of the CIN phenotype with RLBPs, and also provides a powerful resource for further functional exploration of RLBPs in cancer progression and therapeutic application.
Collapse
Affiliation(s)
- Wenchao Zhao
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Guo Mao
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Meng Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Yanfang Qiu
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
| | - Ke Zuo
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Haiping Pei
- General Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lun-Quan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ming Wen
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Tan
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
144
|
Chakraborty A, Diwan A. Biomarkers and molecular mechanisms of Amyotrophic Lateral Sclerosis. AIMS Neurosci 2022; 9:423-443. [PMID: 36660079 PMCID: PMC9826749 DOI: 10.3934/neuroscience.2022023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in adults involving non-demyelinating motor disorders. About 90% of ALS cases are sporadic, while 10-12% of cases are due to some genetic reasons. Mutations in superoxide dismutase 1 (SOD1), TAR, c9orf72 (chromosome 9 open reading frame 72) and VAPB genes are commonly found in ALS patients. Therefore, the mechanism of ALS development involves oxidative stress, endoplasmic reticulum stress, glutamate excitotoxicity and aggregation of proteins, neuro-inflammation and defective RNA function. Cholesterol and LDL/HDL levels are also associated with ALS development. As a result, sterols could be a suitable biomarker for this ailment. The main mechanisms of ALS development are reticulum stress, neuroinflammation and RNA metabolism. The multi-nature development of ALS makes it more challenging to pinpoint a treatment.
Collapse
|
145
|
Kaminski N, Wondisford AR, Kwon Y, Lynskey ML, Bhargava R, Barroso-González J, García-Expósito L, He B, Xu M, Mellacheruvu D, Watkins SC, Modesti M, Miller KM, Nesvizhskii AI, Zhang H, Sung P, O'Sullivan RJ. RAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRA. Mol Cell 2022; 82:4001-4017.e7. [PMID: 36265488 PMCID: PMC9713952 DOI: 10.1016/j.molcel.2022.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.
Collapse
Affiliation(s)
- Nicole Kaminski
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ragini Bhargava
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Barroso-González
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura García-Expósito
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Boxue He
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Meng Xu
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dattatreya Mellacheruvu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Simon C Watkins
- Department of Cell Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm UMR1068, Aix Marseille Université U105, Institut Paoli Calmettes, 27 Boulevard Lei Roure CS30059, 13273 Marseille Cedex 09, France
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
146
|
Gritti I, Basso V, Rinchai D, Corigliano F, Pivetti S, Gaviraghi M, Rosano D, Mazza D, Barozzi S, Roncador M, Parmigiani G, Legube G, Parazzoli D, Cittaro D, Bedognetti D, Mondino A, Segalla S, Tonon G. Loss of ribonuclease DIS3 hampers genome integrity in myeloma by disrupting DNA:RNA hybrid metabolism. EMBO J 2022; 41:e108040. [PMID: 36215697 PMCID: PMC9670201 DOI: 10.15252/embj.2021108040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.
Collapse
Affiliation(s)
- Ilaria Gritti
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious DiseaseIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | | | - Federica Corigliano
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Silvia Pivetti
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Dalia Rosano
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Davide Mazza
- Experimental Imaging CenterIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Sara Barozzi
- IFOM, The FIRC Institute of Molecular OncologyMilanoItaly
| | - Marco Roncador
- Department of Data SciencesDana Farber Cancer InstituteBostonMAUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Giovanni Parmigiani
- Department of Data SciencesDana Farber Cancer InstituteBostonMAUSA,Department of BiostatisticsHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Gaelle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRSUniversity of ToulouseToulouseFrance
| | | | - Davide Cittaro
- Center for Omics Sciences @OSR (COSR)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Davide Bedognetti
- Cancer Research DepartmentSidra MedicineDohaQatar,Dipartimento di Medicina Interna e Specialità MedicheUniversità degli Studi di GenovaGenoaItaly
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious DiseaseIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental OncologyIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly,Center for Omics Sciences @OSR (COSR)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific InstituteMilanoItaly,Università Vita‐Salute San RaffaeleMilanItaly
| |
Collapse
|
147
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
148
|
Belotserkovskii BP, Hanawalt PC. Topology and kinetics of R-loop formation. Biophys J 2022; 121:3345-3357. [PMID: 36004778 PMCID: PMC9515371 DOI: 10.1016/j.bpj.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
R-loops are structures containing an RNA-DNA duplex and an unpaired DNA strand. They can be formed upon "invasion" of an RNA strand into a DNA duplex, during which the RNA displaces the homologous DNA strand and binds the complementary strand. R-loops have many significant beneficial or deleterious biological effects, so it is important to understand the mechanisms for their generation and processing. We propose a model for co-transcriptional R-loop formation, in which their generation requires passage of the nascent RNA "tail" through the gap between the separated DNA strands. This passage becomes increasingly difficult with lengthening of the RNA tail. The length of the tail increases upon increasing distance between the transcription start site and the site of R-loop initiation. This causes reduced yields of R-loops with greater distance from the transcription start site. However, alternative pathways for R-loop formation are possible, involving either transient disruption of the transcription complex or the hypothetical formation of a triple-stranded structure, as a "collapsed R-loop." These alternative pathways could account for the fact that in many systems R-loops are observed very far from the transcription start site. Our model is consistent with experimental data and makes general predictions about the kinetics of R-loop formation.
Collapse
|
149
|
Groelly FJ, Dagg RA, Petropoulos M, Rossetti GG, Prasad B, Panagopoulos A, Paulsen T, Karamichali A, Jones SE, Ochs F, Dionellis VS, Puig Lombardi E, Miossec MJ, Lockstone H, Legube G, Blackford AN, Altmeyer M, Halazonetis TD, Tarsounas M. Mitotic DNA synthesis is caused by transcription-replication conflicts in BRCA2-deficient cells. Mol Cell 2022; 82:3382-3397.e7. [PMID: 36002001 PMCID: PMC9631240 DOI: 10.1016/j.molcel.2022.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/31/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022]
Abstract
Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Giacomo G Rossetti
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Birbal Prasad
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andreas Panagopoulos
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Teressa Paulsen
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Fena Ochs
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Vasilis S Dionellis
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Emilia Puig Lombardi
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Matthieu J Miossec
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Helen Lockstone
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
150
|
Arvanitaki ES, Stratigi K, Garinis GA. DNA damage, inflammation and aging: Insights from mice. FRONTIERS IN AGING 2022; 3:973781. [PMID: 36160606 PMCID: PMC9490123 DOI: 10.3389/fragi.2022.973781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Persistent DNA lesions build up with aging triggering inflammation, the body’s first line of immune defense strategy against foreign pathogens and irritants. Once established, DNA damage-driven inflammation takes on a momentum of its own, due to the amplification and feedback loops of the immune system leading to cellular malfunction, tissue degenerative changes and metabolic complications. Here, we discuss the use of murine models with inborn defects in genome maintenance and the DNA damage response for understanding how irreparable DNA lesions are functionally linked to innate immune signaling highlighting their relevance for developing novel therapeutic strategies against the premature onset of aging-associated diseases.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - George A. Garinis
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- *Correspondence: George A. Garinis,
| |
Collapse
|