101
|
Dynamics of Asymmetric and Symmetric Divisions of Muscle Stem Cells In Vivo and on Artificial Niches. Cell Rep 2020; 30:3195-3206.e7. [DOI: 10.1016/j.celrep.2020.01.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
|
102
|
Zhang T, Zhang Z, Dong Q, Xiong J, Zhu B. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol 2020; 21:45. [PMID: 32085783 PMCID: PMC7035716 DOI: 10.1186/s13059-020-01957-w] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
H3K27ac is well recognized as a marker for active enhancers and a great indicator of enhancer activity. However, its functional impact on transcription has not been characterized. By substituting lysine 27 in histone variant H3.3 with arginine in mouse embryonic stem cells, we diminish the vast majority of H3K27ac at enhancers. However, the transcriptome is largely undisturbed in these mutant cells, likely because the other enhancer features remain largely unchanged, including chromatin accessibility, H3K4me1, and histone acetylation at other lysine residues. Our results clearly reveal that H3K27ac alone is not capable of functionally determining enhancer activity.
Collapse
Affiliation(s)
- Tiantian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
103
|
Saavedra F, Gurard-Levin ZA, Rojas-Villalobos C, Vassias I, Quatrini R, Almouzni G, Loyola A. JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics Chromatin 2020; 13:6. [PMID: 32070414 PMCID: PMC7027290 DOI: 10.1186/s13072-020-00331-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Maintaining a proper supply of soluble histones throughout the cell cycle is important to ensure chromatin and genome stability. Following their synthesis, histones undergo a series of maturation steps to prepare them for deposition onto chromatin. RESULTS Here, we identify the lysine demethylase JMJD1B as a novel player in the maturation cascade that contributes to regulate histone provision. We find that depletion of JMJD1B increases the protein levels of the histone chaperone tNASP leading to an accumulation of newly synthesized histones H3 and H4 at early steps of the histone maturation cascade, which perturbs chromatin assembly. Furthermore, we find a high rate of JMJD1B mutations in cancer patients, and a correlation with genomic instability. CONCLUSIONS Our data support a role for JMJD1B in fine-tuning histone supply to maintain genome integrity, opening novel avenues for cancer therapeutics.
Collapse
Affiliation(s)
- Francisco Saavedra
- Fundación Ciencia & Vida, 7780272, Santiago, Chile.,Universidad San Sebastián, 7510156, Santiago, Chile
| | - Zachary A Gurard-Levin
- CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, Paris, 75005, France.,UPMC Univ Paris 06, CNRS, UMR3664, Sorbonne Universités, Paris, 75005, France.,SAMDI Tech, Inc, Chicago, IL, 60616, USA
| | - Camila Rojas-Villalobos
- Fundación Ciencia & Vida, 7780272, Santiago, Chile.,Universidad San Sebastián, 7510156, Santiago, Chile
| | - Isabelle Vassias
- CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, Paris, 75005, France.,UPMC Univ Paris 06, CNRS, UMR3664, Sorbonne Universités, Paris, 75005, France
| | - Raquel Quatrini
- Fundación Ciencia & Vida, 7780272, Santiago, Chile.,Universidad San Sebastián, 7510156, Santiago, Chile
| | - Geneviève Almouzni
- CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, Paris, 75005, France.,UPMC Univ Paris 06, CNRS, UMR3664, Sorbonne Universités, Paris, 75005, France
| | - Alejandra Loyola
- Fundación Ciencia & Vida, 7780272, Santiago, Chile. .,Universidad San Sebastián, 7510156, Santiago, Chile.
| |
Collapse
|
104
|
Singh S, Singh A, Singh A, Yadav S, Bajaj I, Kumar S, Jain A, Sarkar AK. Role of chromatin modification and remodeling in stem cell regulation and meristem maintenance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:778-792. [PMID: 31793642 DOI: 10.1093/jxb/erz459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
In higher plants, pluripotent stem cells reside in the specialized microenvironment called stem cell niches (SCNs) harbored at the shoot apical meristem (SAM) and root apical meristem (RAM), which give rise to the aerial and underground parts of a plant, respectively. The model plant Arabidopsis thaliana (Arabidopsis) has been extensively studied to decipher the intricate regulatory mechanisms involving some key transcriptions factors and phytohormones that play pivotal roles in stem cell homeostasis, meristem maintenance, and organ formation. However, there is increasing evidence to show the epigenetic regulation of the chromatin architecture, gene expression exerting an influence on an innate balance between the self-renewal of stem cells, and differentiation of the progeny cells to a specific tissue type or organ. Post-translational histone modifications, ATP-dependent chromatin remodeling, and chromatin assembly/disassembly are some of the key features involved in the modulation of chromatin architecture. Here, we discuss the major epigenetic regulators and illustrate their roles in the regulation of stem cell activity, meristem maintenance, and related organ patterning in Arabidopsis.
Collapse
Affiliation(s)
- Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Alka Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ishita Bajaj
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shailendra Kumar
- Amity School of Architecture and Planning, Amity University, Kant Kalwar, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University, Kant Kalwar, Rajasthan, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
105
|
Nucleus-specific linker histones Hho1 and Mlh1 form distinct protein interactions during growth, starvation and development in Tetrahymena thermophila. Sci Rep 2020; 10:168. [PMID: 31932604 PMCID: PMC6957481 DOI: 10.1038/s41598-019-56867-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Chromatin organization influences most aspects of gene expression regulation. The linker histone H1, along with the core histones, is a key component of eukaryotic chromatin. Despite its critical roles in chromatin structure and function and gene regulation, studies regarding the H1 protein-protein interaction networks, particularly outside of Opisthokonts, are limited. The nuclear dimorphic ciliate protozoan Tetrahymena thermophila encodes two distinct nucleus-specific linker histones, macronuclear Hho1 and micronuclear Mlh1. We used a comparative proteomics approach to identify the Hho1 and Mlh1 protein-protein interaction networks in Tetrahymena during growth, starvation, and sexual development. Affinity purification followed by mass spectrometry analysis of the Hho1 and Mlh1 proteins revealed a non-overlapping set of co-purifying proteins suggesting that Tetrahymena nucleus-specific linker histones are subject to distinct regulatory pathways. Furthermore, we found that linker histones interact with distinct proteins under the different stages of the Tetrahymena life cycle. Hho1 and Mlh1 co-purified with several Tetrahymena-specific as well as conserved interacting partners involved in chromatin structure and function and other important cellular pathways. Our results suggest that nucleus-specific linker histones might be subject to nucleus-specific regulatory pathways and are dynamically regulated under different stages of the Tetrahymena life cycle.
Collapse
|
106
|
Simeonova I, Almouzni G. Dynamic Histone H3 Incorporation Fuels Metastatic Progression. Trends Mol Med 2019; 25:933-935. [PMID: 31624022 DOI: 10.1016/j.molmed.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022]
Abstract
Treating metastatic cancers is an ongoing challenge in oncology. A recent paper by Gomes and colleagues proposes histone H3 variant dynamics as major regulator of cell fate transition during metastasis and suggests histone chaperones as therapeutic targets for invasive carcinoma.
Collapse
Affiliation(s)
- Iva Simeonova
- Chromatin dynamics, Equipe Labellisée Ligue contre le Cancer, Institut Curie 75005, Paris, France; CNRS (French National Center for Scientific Research), Nuclear Dynamics unit UMR3664, Paris, France; Sorbonne Université 75005, Paris, France; PSL Research University, Paris, France
| | - Geneviève Almouzni
- Chromatin dynamics, Equipe Labellisée Ligue contre le Cancer, Institut Curie 75005, Paris, France; CNRS (French National Center for Scientific Research), Nuclear Dynamics unit UMR3664, Paris, France; Sorbonne Université 75005, Paris, France; PSL Research University, Paris, France.
| |
Collapse
|
107
|
Gomes AP, Ilter D, Low V, Rosenzweig A, Shen ZJ, Schild T, Rivas MA, Er EE, McNally DR, Mutvei AP, Han J, Ou YH, Cavaliere P, Mullarky E, Nagiec M, Shin S, Yoon SO, Dephoure N, Massagué J, Melnick AM, Cantley LC, Tyler JK, Blenis J. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell 2019; 36:402-417.e13. [PMID: 31564638 PMCID: PMC6801101 DOI: 10.1016/j.ccell.2019.08.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/07/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
Metastasis is the leading cause of cancer mortality. Chromatin remodeling provides the foundation for the cellular reprogramming necessary to drive metastasis. However, little is known about the nature of this remodeling and its regulation. Here, we show that metastasis-inducing pathways regulate histone chaperones to reduce canonical histone incorporation into chromatin, triggering deposition of H3.3 variant at the promoters of poor-prognosis genes and metastasis-inducing transcription factors. This specific incorporation of H3.3 into chromatin is both necessary and sufficient for the induction of aggressive traits that allow for metastasis formation. Together, our data clearly show incorporation of histone variant H3.3 into chromatin as a major regulator of cell fate during tumorigenesis, and histone chaperones as valuable therapeutic targets for invasive carcinomas.
Collapse
Affiliation(s)
- Ana P Gomes
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Didem Ilter
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Adam Rosenzweig
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tanya Schild
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Martin A Rivas
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ekrem E Er
- Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Dylan R McNally
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anders P Mutvei
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julie Han
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yi-Hung Ou
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Paola Cavaliere
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Edouard Mullarky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Michal Nagiec
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sejeong Shin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sang-Oh Yoon
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Noah Dephoure
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Joan Massagué
- Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Ari M Melnick
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
108
|
Hardy J, Dai D, Ait Saada A, Teixeira-Silva A, Dupoiron L, Mojallali F, Fréon K, Ochsenbein F, Hartmann B, Lambert S. Histone deposition promotes recombination-dependent replication at arrested forks. PLoS Genet 2019; 15:e1008441. [PMID: 31584934 PMCID: PMC6795475 DOI: 10.1371/journal.pgen.1008441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/16/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022] Open
Abstract
Replication stress poses a serious threat to genome stability. Recombination-Dependent-Replication (RDR) promotes DNA synthesis resumption from arrested forks. Despite the identification of chromatin restoration pathways after DNA repair, crosstalk coupling RDR and chromatin assembly is largely unexplored. The fission yeast Chromatin Assembly Factor-1, CAF-1, is known to promote RDR. Here, we addressed the contribution of histone deposition to RDR. We expressed a mutated histone, H3-H113D, to genetically alter replication-dependent chromatin assembly by destabilizing (H3-H4)2 tetramer. We established that DNA synthesis-dependent histone deposition, by CAF-1 and Asf1, promotes RDR by preventing Rqh1-mediated disassembly of joint-molecules. The recombination factor Rad52 promotes CAF-1 binding to sites of recombination-dependent DNA synthesis, indicating that histone deposition occurs downstream Rad52. Histone deposition and Rqh1 activity act synergistically to promote cell resistance to camptothecin, a topoisomerase I inhibitor that induces replication stress. Moreover, histone deposition favors non conservative recombination events occurring spontaneously in the absence of Rqh1, indicating that the stabilization of joint-molecules by histone deposition also occurs independently of Rqh1 activity. These results indicate that histone deposition plays an active role in promoting RDR, a benefit counterbalanced by stabilizing at-risk joint-molecules for genome stability.
Collapse
Affiliation(s)
- Julien Hardy
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Dingli Dai
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Anissia Ait Saada
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Ana Teixeira-Silva
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Louise Dupoiron
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Fatemeh Mojallali
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Karine Fréon
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| | - Francoise Ochsenbein
- CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, France
| | - Brigitte Hartmann
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA) UMR 8113, CNRS / ENS de Cachan, Cachan cedex, France
| | - Sarah Lambert
- Institut Curie, PSL Research University, UMR3348, Orsay, France.,University Paris Sud, Paris-Saclay University, UMR3348, Orsay, France.,CNRS, UMR3348, Orsay France
| |
Collapse
|
109
|
Yee WB, Delaney PM, Vanderzalm PJ, Ramachandran S, Fehon RG. The CAF-1 complex couples Hippo pathway target gene expression and DNA replication. Mol Biol Cell 2019; 30:2929-2942. [PMID: 31553691 PMCID: PMC6822585 DOI: 10.1091/mbc.e19-07-0387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Hippo signaling pathway regulates tissue growth and organ development in many animals, including humans. Pathway activity leads to inactivation of Yorkie (Yki), a transcriptional coactivator that drives expression of growth-promoting genes. In addition, Yki has been shown to recruit chromatin modifiers that enhance chromatin accessibility and thereby enhance Yki function. Here, we asked whether changes in chromatin accessibility that occur during DNA replication could also affect Yki function. We found that depletion of the chromatin assembly complex-1 (CAF-1) complex, a histone chaperone that is required for nucleosome assembly after DNA replication, in the wing imaginal epithelium leads to increased Hippo pathway target gene expression but does not affect expression of other genes. Yki shows greater association with target sites when CAF-1 is depleted and misregulation of target gene expression is Yki-dependent, suggesting that nucleosome assembly competes with Yki for pathway targets post-DNA replication. Consistent with this idea, increased target gene expression is DNA replication dependent and newly replicated chromatin at target sites shows marked nucleosome depletion when CAF-1 function is reduced. These observations suggest a connection between cell cycle progression and Hippo pathway target expression, providing insights into functions of the Hippo pathway in normal and abnormal tissue growth.
Collapse
Affiliation(s)
- William B Yee
- Department of Molecular Genetics and Cell Biology.,Graduate Program in Cell and Molecular Biology, and
| | | | - Pamela J Vanderzalm
- Department of Molecular Genetics and Cell Biology.,Department of Biology, John Carroll University, University Heights, OH 44118
| | - Srinivas Ramachandran
- RNA Bioscience Initiative and.,Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology.,Graduate Program in Cell and Molecular Biology, and
| |
Collapse
|
110
|
Ashraf K, Nabeel-Shah S, Garg J, Saettone A, Derynck J, Gingras AC, Lambert JP, Pearlman RE, Fillingham J. Proteomic Analysis of Histones H2A/H2B and Variant Hv1 in Tetrahymena thermophila Reveals an Ancient Network of Chaperones. Mol Biol Evol 2019; 36:1037-1055. [PMID: 30796450 PMCID: PMC6502085 DOI: 10.1093/molbev/msz039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetic information, which can be passed on independently of the DNA sequence, is stored in part in the form of histone posttranslational modifications and specific histone variants. Although complexes necessary for deposition have been identified for canonical and variant histones, information regarding the chromatin assembly pathways outside of the Opisthokonts remains limited. Tetrahymena thermophila, a ciliated protozoan, is particularly suitable to study and unravel the chromatin regulatory layers due to its unique physical separation of chromatin states in the form of two distinct nuclei present within the same cell. Using a functional proteomics pipeline, we carried out affinity purification followed by mass spectrometry of endogenously tagged T. thermophila histones H2A, H2B and variant Hv1.We identified a set of interacting proteins shared among the three analyzed histones that includes the FACT-complex, as well as H2A- or Hv1-specific chaperones. We find that putative subunits of T. thermophila versions of SWR- and INO80-complexes, as well as transcription-related histone chaperone Spt6Tt specifically copurify with Hv1. We also identified importin β6 and the T. thermophila ortholog of nucleoplasmin 1 (cNpl1Tt) as H2A–H2B interacting partners. Our results further implicate Poly [ADP-ribose] polymerases in histone metabolism. Molecular evolutionary analysis, reciprocal affinity purification coupled to mass spectrometry experiments, and indirect immunofluorescence studies using endogenously tagged Spt16Tt (FACT-complex subunit), cNpl1Tt, and PARP6Tt underscore the validity of our approach and offer mechanistic insights. Our results reveal a highly conserved regulatory network for H2A (Hv1)–H2B concerning their nuclear import and assembly into chromatin.
Collapse
Affiliation(s)
- Kanwal Ashraf
- Department of Biology, York University, Toronto, ON, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jyoti Garg
- Department of Biology, York University, Toronto, ON, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Joanna Derynck
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada.,CHU de Québec Research Center, CHUL, Québec, QC, Canada
| | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
111
|
The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene 2019; 706:201-210. [DOI: 10.1016/j.gene.2019.05.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
|
112
|
Abstract
Cellular senescence defines an irreversible cell growth arrest state linked to loss of tissue function and aging in mammals. This transition from proliferation to senescence is typically characterized by increased expression of the cell-cycle inhibitor p16INK4a and formation of senescence-associated heterochromatin foci (SAHF). SAHF formation depends on HIRA-mediated nucleosome assembly of histone H3.3, which is regulated by the serine/threonine protein kinase Pak2. However, it is unknown if Pak2 contributes to cellular senescence. Here, we show that depletion of Pak2 delayed oncogene-induced senescence in IMR90 human fibroblasts and oxidative stress-induced senescence of mouse embryonic fibroblasts (MEFs), whereas overexpression of Pak2 accelerated senescence of IMR90 cells. Importantly, depletion of Pak2 in BubR1 progeroid mice attenuated the onset of aging-associated phenotypes and extended life span. Pak2 is required for expression of genes involved in cellular senescence and regulated the deposition of newly synthesized H3.3 onto chromatin in senescent cells. Together, our results demonstrate that Pak2 is an important regulator of cellular senescence and organismal aging, in part through the regulation of gene expression and H3.3 nucleosome assembly.
Collapse
|
113
|
Ricketts MD, Dasgupta N, Fan J, Han J, Gerace M, Tang Y, Black BE, Adams PD, Marmorstein R. The HIRA histone chaperone complex subunit UBN1 harbors H3/H4- and DNA-binding activity. J Biol Chem 2019; 294:9239-9259. [PMID: 31040182 DOI: 10.1074/jbc.ra119.007480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/01/2019] [Indexed: 02/04/2023] Open
Abstract
The HIRA histone chaperone complex is composed of the proteins HIRA, UBN1, and CABIN1 and cooperates with the histone chaperone ASF1a to specifically bind and deposit H3.3/H4 into chromatin. We recently reported that the UBN1 Hpc2-related domain (HRD) specifically binds to H3.3/H4 over H3.1/H4. However, the mechanism for HIRA complex deposition of H3.3/H4 into nucleosomes remains unclear. Here, we characterize a central region of UBN1 (UBN1 middle domain) that is evolutionarily conserved and predicted to have helical secondary structure. We report that the UBN1 middle domain has dimer formation activity and binds to H3/H4 in a manner that does not discriminate between H3.1 and H3.3. We additionally identify a nearby DNA-binding domain in UBN1, located between the UBN1 HRD and middle domain, which binds DNA through electrostatic contacts involving several conserved lysine residues. Together, these observations suggest a mechanism for HIRA-mediated H3.3/H4 deposition whereby UBN1 associates with DNA and dimerizes to mediate formation of an (H3.3/H4)2 heterotetramer prior to chromatin deposition.
Collapse
Affiliation(s)
- M Daniel Ricketts
- From the Department of Biochemistry and Biophysics and.,the Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nirmalya Dasgupta
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Jiayi Fan
- From the Department of Biochemistry and Biophysics and
| | - Joseph Han
- From the Department of Biochemistry and Biophysics and.,the Department of Chemistry Graduate Group and
| | - Morgan Gerace
- From the Department of Biochemistry and Biophysics and
| | - Yong Tang
- the Wistar Institute, Philadelphia, Pennsylvania 19104, and
| | - Ben E Black
- From the Department of Biochemistry and Biophysics and.,the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Peter D Adams
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Ronen Marmorstein
- From the Department of Biochemistry and Biophysics and .,the Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,the Department of Chemistry Graduate Group and.,the Wistar Institute, Philadelphia, Pennsylvania 19104, and.,the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
114
|
Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers (Basel) 2019; 11:E660. [PMID: 31086012 PMCID: PMC6562757 DOI: 10.3390/cancers11050660] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023] Open
Abstract
In this review, we describe the attributes of histone H3 mutants identified in cancer. H3 mutants were first identified in genes encoding H3.3, in pediatric high-grade glioma, and subsequently in chondrosarcomas and giant cell tumors of bone (GCTB) in adolescents. The most heavily studied are the lysine to methionine mutants K27M and K36M, which perturb the target site for specific lysine methyltransferases and dominantly perturb methylation of corresponding lysines in other histone H3 proteins. We discuss recent progress in defining the consequences of these mutations on chromatin, including a newly emerging view of the central importance of the disruption of H3K36 modification in many distinct K to M histone mutant cancers. We also review new work exploring the role of H3.3 G34 mutants identified in pediatric glioma and GCTB. G34 is not itself post-translationally modified, but G34 mutation impinges on the modification of H3K36. Here, we ask if G34R mutation generates a new site for methylation on the histone tail. Finally, we consider evidence indicating that histone mutations might be more widespread in cancer than previously thought, and if the perceived bias towards mutation of H3.3 is real or reflects the biology of tumors in which the histone mutants were first identified.
Collapse
Affiliation(s)
- Brandon R Lowe
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Lily A Maxham
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| |
Collapse
|
115
|
The histone chaperoning pathway: from ribosome to nucleosome. Essays Biochem 2019; 63:29-43. [PMID: 31015382 PMCID: PMC6484783 DOI: 10.1042/ebc20180055] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
Abstract
Nucleosomes represent the fundamental repeating unit of eukaryotic DNA, and comprise eight core histones around which DNA is wrapped in nearly two superhelical turns. Histones do not have the intrinsic ability to form nucleosomes; rather, they require an extensive repertoire of interacting proteins collectively known as ‘histone chaperones’. At a fundamental level, it is believed that histone chaperones guide the assembly of nucleosomes through preventing non-productive charge-based aggregates between the basic histones and acidic cellular components. At a broader level, histone chaperones influence almost all aspects of chromatin biology, regulating histone supply and demand, governing histone variant deposition, maintaining functional chromatin domains and being co-factors for histone post-translational modifications, to name a few. In this essay we review recent structural insights into histone-chaperone interactions, explore evidence for the existence of a histone chaperoning ‘pathway’ and reconcile how such histone-chaperone interactions may function thermodynamically to assemble nucleosomes and maintain chromatin homeostasis.
Collapse
|
116
|
Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, Mesa KR, Liao W, Quivy JP, Hubert B, Almouzni G, Zuber J, Littman DR. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain Cd4 silencing in cytotoxic T cells. Genes Dev 2019; 33:669-683. [PMID: 30975723 PMCID: PMC6546056 DOI: 10.1101/gad.322024.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
In this study, Ng et al. investigated the maintenance of silent gene states and how the Cd4 gene is stably repressed in CD8+ T cells. Using CRISPR and shRNA screening, they identified the histone chaperone CAF-1 as a critical component for Cd4 repression and propose that the heritable silencing of the Cd4 gene in CD8+ T cells exploits cooperative functions among the DNA methyltransferases, CAF-1, and histone-modifying enzymes. The transcriptional repression of alternative lineage genes is critical for cell fate commitment. Mechanisms by which locus-specific gene silencing is initiated and heritably maintained during cell division are not clearly understood. To study the maintenance of silent gene states, we investigated how the Cd4 gene is stably repressed in CD8+ T cells. Through CRISPR and shRNA screening, we identified the histone chaperone CAF-1 as a critical component for Cd4 repression. We found that the large subunit of CAF-1, Chaf1a, requires the N-terminal KER domain to associate with the histone deacetylases HDAC1/2 and the histone demethylase LSD1, enzymes that also participate in Cd4 silencing. When CAF-1 was lacking, Cd4 derepression was markedly enhanced in the absence of the de novo DNA methyltransferase Dnmt3a but not the maintenance DNA methyltransferase Dnmt1. In contrast to Dnmt1, Dnmt3a deficiency did not significantly alter levels of DNA methylation at the Cd4 locus. Instead, Dnmt3a deficiency sensitized CD8+ T cells to Cd4 derepression mediated by compromised functions of histone-modifying factors, including the enzymes associated with CAF-1. Thus, we propose that the heritable silencing of the Cd4 gene in CD8+ T cells exploits cooperative functions among the DNA methyltransferases, CAF-1, and histone-modifying enzymes.
Collapse
Affiliation(s)
- Charles Ng
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Martin Aichinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Tung Nguyen
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Christy Au
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Tariq Najar
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Lin Wu
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Kai R Mesa
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Will Liao
- New York Genome Center, New York, New York 10013, USA
| | - Jean-Pierre Quivy
- UMR3664, Centre National de la Recherche Scientifique, Equipe Labellisée Ligue Contre le Cancer, Institut Curie, PSL Research University, F-75005 Paris, France
| | | | - Genevieve Almouzni
- UMR3664, Centre National de la Recherche Scientifique, Equipe Labellisée Ligue Contre le Cancer, Institut Curie, PSL Research University, F-75005 Paris, France
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, New York, New York 10016, USA
| |
Collapse
|
117
|
McFarlane S, Orr A, Roberts APE, Conn KL, Iliev V, Loney C, da Silva Filipe A, Smollett K, Gu Q, Robertson N, Adams PD, Rai TS, Boutell C. The histone chaperone HIRA promotes the induction of host innate immune defences in response to HSV-1 infection. PLoS Pathog 2019; 15:e1007667. [PMID: 30901352 PMCID: PMC6472835 DOI: 10.1371/journal.ppat.1007667] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Host innate immune defences play a critical role in restricting the intracellular propagation and pathogenesis of invading viral pathogens. Here we show that the histone H3.3 chaperone HIRA (histone cell cycle regulator) associates with promyelocytic leukaemia nuclear bodies (PML-NBs) to stimulate the induction of innate immune defences against herpes simplex virus 1 (HSV-1) infection. Following the activation of innate immune signalling, HIRA localized at PML-NBs in a Janus-Associated Kinase (JAK), Cyclin Dependent Kinase (CDK), and Sp100-dependent manner. RNA-seq analysis revealed that HIRA promoted the transcriptional upregulation of a broad repertoire of host genes that regulate innate immunity to HSV-1 infection, including those involved in MHC-I antigen presentation, cytokine signalling, and interferon stimulated gene (ISG) expression. ChIP-seq analysis revealed that PML, the principle scaffolding protein of PML-NBs, was required for the enrichment of HIRA onto ISGs, identifying a role for PML in the HIRA-dependent regulation of innate immunity to virus infection. Our data identifies independent roles for HIRA in the intrinsic silencing of viral gene expression and the induction of innate immune defences to restrict the initiation and propagation of HSV-1 infection, respectively. These intracellular host defences are antagonized by the HSV-1 ubiquitin ligase ICP0, which disrupts the stable recruitment of HIRA to infecting viral genomes and PML-NBs at spatiotemporally distinct phases of infection. Our study highlights the importance of histone chaperones to regulate multiple phases of intracellular immunity to virus infection, findings that are likely to be highly pertinent in the cellular restriction of many clinically important viral pathogens. Host innate immune defences play critical roles in the cellular restriction of invading viral pathogens and the stimulation of adaptive immune responses. A key component in the regulation of this arm of host immunity is the rapid induction of cytokine signalling and the expression of interferon stimulated gene products (ISGs), which confer a refractory antiviral state to limit virus propagation and pathogenesis. While the signal transduction cascades that activate innate immune defences are well established, little is known about the cellular host factors that expedite the expression of this broad repertoire of antiviral host genes in response to pathogen invasion. Here we show that HIRA, a histone H3.3 chaperone, associates with PML-NBs to stimulate the induction of innate immune defences in response to HSV-1 infection. Our study highlights the importance of histone chaperones in the coordinated regulation of multiple phases of host immunity in response to pathogen invasion and identifies a key role for HIRA in the induction of innate immunity to virus infection.
Collapse
Affiliation(s)
- Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Ashley P. E. Roberts
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Kristen L. Conn
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatoon, CA
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, CA
| | - Victor Iliev
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Katherine Smollett
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
| | - Neil Robertson
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Peter D. Adams
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, United States of America
| | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, United Kingdom
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Garscube Campus, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
118
|
Spirkoski J, Shah A, Reiner AH, Collas P, Delbarre E. PML modulates H3.3 targeting to telomeric and centromeric repeats in mouse fibroblasts. Biochem Biophys Res Commun 2019; 511:882-888. [PMID: 30850162 DOI: 10.1016/j.bbrc.2019.02.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
Abstract
Targeted deposition of histone variant H3.3 into chromatin is paramount for proper regulation of chromatin integrity, particularly in heterochromatic regions including repeats. We have recently shown that the promyelocytic leukemia (PML) protein prevents H3.3 from being deposited in large heterochromatic PML-associated domains (PADs). However, to what extent PML modulates H3.3 loading on chromatin in other areas of the genome remains unexplored. Here, we examined the impact of PML on targeting of H3.3 to genes and repeat regions that reside outside PADs. We show that loss of PML increases H3.3 deposition in subtelomeric, telomeric, pericentric and centromeric repeats in mouse embryonic fibroblasts, while other repeat classes are not affected. Expression of major satellite, minor satellite and telomeric non-coding transcripts is altered in Pml-null cells. In particular, telomeric Terra transcripts are strongly upregulated, in concordance with a marked reduction in H4K20me3 at these sites. Lastly, for most genes H3.3 enrichment or gene expression outcomes are independent of PML. Our data argue towards the importance of a PML-H3.3 axis in preserving a heterochromatin state at centromeres and telomeres.
Collapse
Affiliation(s)
- Jane Spirkoski
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway
| | - Akshay Shah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway
| | - Andrew H Reiner
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway; Oslo Center for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway; Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424, Oslo, Norway.
| | - Erwan Delbarre
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317, Oslo, Norway.
| |
Collapse
|
119
|
Shibata Y, Seki Y, Nishiwaki K. Maintenance of cell fates and regulation of the histone variant H3.3 by TLK kinase in Caenorhabditis elegans. Biol Open 2019; 8:bio.038448. [PMID: 30635266 PMCID: PMC6361200 DOI: 10.1242/bio.038448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell-fate maintenance is important to preserve the variety of cell types that are essential for the formation and function of tissues. We previously showed that the acetylated histone-binding protein BET-1 maintains cell fate by recruiting the histone variant H2A.z. Here, we report that Caenorhabditis elegans TLK-1 and the histone H3 chaperone CAF1 prevent the accumulation of histone variant H3.3. In addition, TLK-1 and CAF1 maintain cell fate by repressing ectopic expression of transcription factors that induce cell-fate specification. Genetic analyses suggested that TLK-1 and BET-1 act in parallel pathways. In tlk-1 mutants, the loss of SIN-3, which promotes histone acetylation, suppressed a defect in cell-fate maintenance in a manner dependent on MYST family histone acetyltransferase MYS-2 and BET-1. sin-3 mutation also suppressed abnormal H3.3 incorporation. Thus, we propose a hypothesis that the regulation and interaction of histone variants play crucial roles in cell-fate maintenance through the regulation of selector genes. Summary: Histone H3 chaperone CAF1 maintains cell fate by repressing ectopic expression of genes for cell fate-specifying transcription factors. Accumulation of histone variant H3.3 correlates with defects in cell-fate maintenance.
Collapse
Affiliation(s)
- Yukimasa Shibata
- School of Science and Technology, Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yoshiyuki Seki
- School of Science and Technology, Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kiyoji Nishiwaki
- School of Science and Technology, Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
120
|
Pritchard AL. The Role of Histone Variants in Cancer. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
121
|
Bachu M, Tamura T, Chen C, Narain A, Nehru V, Sarai N, Ghosh SB, Ghosh A, Kavarthapu R, Dufau ML, Ozato K. A versatile mouse model of epitope-tagged histone H3.3 to study epigenome dynamics. J Biol Chem 2018; 294:1904-1914. [PMID: 30552116 DOI: 10.1074/jbc.ra118.005550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/09/2018] [Indexed: 12/26/2022] Open
Abstract
The variant histone H3.3 is incorporated into the genome in a transcription-dependent manner. This histone is thus thought to play a role in epigenetic regulation. However, our understanding of how H3.3 controls gene expression and epigenome landscape has remained incomplete. This is partly because precise localization of H3.3 in the genome has been difficult to decipher particularly for cells in vivo To circumvent this difficulty, we generated knockin mice, by homologous recombination, to replace both of the two H3.3 loci (H3f3a and H3f3b) with the hemagglutinin-tagged H3.3 cDNA cassette, which also contained a GFP gene. We show here that the hemagglutinin-tagged H3.3 and GFP are expressed in the majority of cells in all adult tissues tested. ChIP-seq data, combined with RNA-seq, revealed a striking correlation between the level of transcripts and that of H3.3 accumulation in expressed genes. Finally, we demonstrate that H3.3 deposition is markedly enhanced upon stimulation by interferon on interferon-stimulated genes, highlighting transcription-coupled H3.3 dynamics. Together, these H3.3 knockin mice serve as a useful experimental model to study epigenome regulation in development and in various adult cells in vivo.
Collapse
Affiliation(s)
| | - Tomohiko Tamura
- From the Division of Developmental Biology and.,the Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Chao Chen
- From the Division of Developmental Biology and
| | | | | | | | | | - Anu Ghosh
- From the Division of Developmental Biology and
| | - Raghuveer Kavarthapu
- the Section on Molecular Endocrinology, NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Maria L Dufau
- the Section on Molecular Endocrinology, NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Keiko Ozato
- From the Division of Developmental Biology and
| |
Collapse
|
122
|
Cabral JM, Oh HS, Knipe DM. ATRX promotes maintenance of herpes simplex virus heterochromatin during chromatin stress. eLife 2018; 7:40228. [PMID: 30465651 PMCID: PMC6307862 DOI: 10.7554/elife.40228] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms by which mammalian cells recognize and epigenetically restrict viral DNA are not well defined. We used herpes simplex virus with bioorthogonally labeled genomes to detect host factors recruited to viral DNA shortly after its nuclear entry and found that the cellular IFI16, PML, and ATRX proteins colocalized with viral DNA by 15 min post infection. HSV-1 infection of ATRX-depleted fibroblasts resulted in elevated viral mRNA and accelerated viral DNA accumulation. Despite the early association of ATRX with vDNA, we found that initial viral heterochromatin formation is ATRX-independent. However, viral heterochromatin stability required ATRX from 4 to 8 hr post infection. Inhibition of transcription blocked viral chromatin loss in ATRX-knockout cells; thus, ATRX is uniquely required for heterochromatin maintenance during chromatin stress. These results argue that the initial formation and the subsequent maintenance of viral heterochromatin are separable mechanisms, a concept that likely extrapolates to host cell chromatin and viral latency. Cells carefully package their DNA, tightly wrapping the long, stringy molecule around spool-like groups of proteins called histones. However, the genes that are draped around histones are effectively silenced, because they are ‘hidden’ from the molecular actors that read the genetic information to create proteins. A cell can control which of its genes are active by using proteins to move histones on or off specific portions of DNA. For example, a protein known as ATRX associates with a partner to load histones onto precise DNA regions and switch them off. Wrapping DNA around histones can also be a defense mechanism against viruses, which are tiny cellular parasites that hijack the molecular machinery of a cell to create more of themselves. For instance, the herpes simplex virus, which causes cold sores and genital herpes, injects its DNA into a cell where it is used as a template to create new viral particles. By packaging the DNA of the virus around histones, the cell ensures that this foreign genetic information cannot be used to make more invaders. However, the details of this process remain unknown. In particular, it is still unclear what happens immediately after the virus penetrates the nucleus, the compartment that shelters the DNA of the cell. Here, Cabral et al. explored this question by dissecting the role of ATRX in silencing the genetic information of the herpes simplex virus. The viral DNA was labeled while inside the virus itself, and then tracked using microscopy imaging techniques as it made its way into the cell and inside the nucleus. This revealed that, almost immediately after the viral DNA had entered the nucleus, ATRX came in contact with the foreign molecule. One possibility was that ATRX would be responsible for loading certain forms of histones onto the viral DNA. However, after Cabral et al. deleted ATRX from the cell, histones were still present on the genetic information of the virus, but this association was less stable. This indicated that ATRX was only required to keep histones latched onto the viral DNA, but not to load the proteins in the first place. Overall, these results show that using histones to silence viral DNA in done in several steps: first, the foreign genetic material needs to be recognized, then histones have to be attached, and finally molecular actors should be recruited to keep histones onto the DNA. Knowing how cells ward off the herpes simplex virus could help us find ways to ‘boost’ this defense mechanism. Armed with this knowledge, we could also begin to understand why certain people are more likely to be infected by this virus.
Collapse
Affiliation(s)
- Joseph M Cabral
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States.,Program in Virology, Harvard Medical School, Boston, United States
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States.,Program in Virology, Harvard Medical School, Boston, United States
| |
Collapse
|
123
|
Sauer PV, Gu Y, Liu WH, Mattiroli F, Panne D, Luger K, Churchill MEA. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res 2018; 46:9907-9917. [PMID: 30239791 PMCID: PMC6212844 DOI: 10.1093/nar/gky823] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/15/2018] [Indexed: 02/03/2023] Open
Abstract
Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.
Collapse
Affiliation(s)
- Paul V Sauer
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Yajie Gu
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Wallace H Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Daniel Panne
- European Molecular Biology Laboratory, 38042 Grenoble, France,Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Mair EA Churchill
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,To whom correspondence should be addressed. Tel: +1 303 724 3670;
| |
Collapse
|
124
|
Nye J, Sturgill D, Athwal R, Dalal Y. HJURP antagonizes CENP-A mislocalization driven by the H3.3 chaperones HIRA and DAXX. PLoS One 2018; 13:e0205948. [PMID: 30365520 PMCID: PMC6203356 DOI: 10.1371/journal.pone.0205948] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023] Open
Abstract
The centromere specific histone H3 variant CENP-A/CENH3 specifies where the kinetochore is formed in most eukaryotes. Despite tight regulation of CENP-A levels in normal cells, overexpression of CENP-A is a feature shared by various types of solid tumors and results in its mislocalization to non-centromeric DNA. How CENP-A is assembled ectopically and the consequences of this mislocalization remain topics of high interest. Here, we report that in human colon cancer cells, the H3.3 chaperones HIRA and DAXX promote ectopic CENP-A deposition. Moreover, the correct balance between levels of the centromeric chaperone HJURP and CENP-A is essential to preclude ectopic assembly by H3.3 chaperones. In addition, we find that ectopic localization can recruit kinetochore components, and correlates with mitotic defects and DNA damage in G1 phase. Finally, CENP-A occupancy at the 8q24 locus is also correlated with amplification and overexpression of the MYC gene within that locus. Overall, these data provide insights into the causes and consequences of histone variant mislocalization in human cancer cells.
Collapse
Affiliation(s)
- Jonathan Nye
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD, United States of America
| | - David Sturgill
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD, United States of America
| | - Rajbir Athwal
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD, United States of America
| | - Yamini Dalal
- Chromatin Structure and Epigenetics Mechanisms Unit, Center for Cancer Research, National Cancer Institute National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
125
|
The Histone Chaperone FACT Coordinates H2A.X-Dependent Signaling and Repair of DNA Damage. Mol Cell 2018; 72:888-901.e7. [PMID: 30344095 PMCID: PMC6292839 DOI: 10.1016/j.molcel.2018.09.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
Safeguarding cell function and identity following a genotoxic stress challenge entails a tight coordination of DNA damage signaling and repair with chromatin maintenance. How this coordination is achieved and with what impact on chromatin integrity remains elusive. Here, we address these questions by investigating the mechanisms governing the distribution in mammalian chromatin of the histone variant H2A.X, a central player in damage signaling. We reveal that H2A.X is deposited de novo at sites of DNA damage in a repair-coupled manner, whereas the H2A.Z variant is evicted, thus reshaping the chromatin landscape at repair sites. Our mechanistic studies further identify the histone chaperone FACT (facilitates chromatin transcription) as responsible for the deposition of newly synthesized H2A.X. Functionally, we demonstrate that FACT potentiates H2A.X-dependent signaling of DNA damage. We propose that new H2A.X deposition in chromatin reflects DNA damage experience and may help tailor DNA damage signaling to repair progression. H2A.X is deposited de novo at sites of DNA damage repair, whereas H2A.Z is evicted FACT promotes new H2A.X deposition coupled to repair synthesis FACT stimulates H2A.X-dependent signaling of DNA damage H2A.X is not only a starting point of damage signaling but also an output of repair
Collapse
|
126
|
Reverón-Gómez N, González-Aguilera C, Stewart-Morgan KR, Petryk N, Flury V, Graziano S, Johansen JV, Jakobsen JS, Alabert C, Groth A. Accurate Recycling of Parental Histones Reproduces the Histone Modification Landscape during DNA Replication. Mol Cell 2018; 72:239-249.e5. [PMID: 30146316 PMCID: PMC6202308 DOI: 10.1016/j.molcel.2018.08.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/25/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Chromatin organization is disrupted genome-wide during DNA replication. On newly synthesized DNA, nucleosomes are assembled from new naive histones and old modified histones. It remains unknown whether the landscape of histone post-translational modifications (PTMs) is faithfully copied during DNA replication or the epigenome is perturbed. Here we develop chromatin occupancy after replication (ChOR-seq) to determine histone PTM occupancy immediately after DNA replication and across the cell cycle. We show that H3K4me3, H3K36me3, H3K79me3, and H3K27me3 positional information is reproduced with high accuracy on newly synthesized DNA through histone recycling. Quantitative ChOR-seq reveals that de novo methylation to restore H3K4me3 and H3K27me3 levels occurs across the cell cycle with mark- and locus-specific kinetics. Collectively, this demonstrates that accurate parental histone recycling preserves positional information and allows PTM transmission to daughter cells while modification of new histones gives rise to complex epigenome fluctuations across the cell cycle that could underlie cell-to-cell heterogeneity.
Collapse
Affiliation(s)
- Nazaret Reverón-Gómez
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Cristina González-Aguilera
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kathleen R Stewart-Morgan
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nataliya Petryk
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Valentin Flury
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simona Graziano
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Janus Schou Jakobsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Constance Alabert
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
127
|
Transcription-associated histone pruning demarcates macroH2A chromatin domains. Nat Struct Mol Biol 2018; 25:958-970. [PMID: 30291361 PMCID: PMC6178985 DOI: 10.1038/s41594-018-0134-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 08/17/2018] [Indexed: 02/01/2023]
Abstract
The histone variant macroH2A occupies large repressive domains throughout the genome, however mechanisms underlying its precise deposition remain poorly understood. Here, we characterized de novo chromatin deposition of macroH2A2 using temporal genomic profiling in murine-derived fibroblasts devoid of all macroH2A isoforms. We find that macroH2A2 is first pervasively deposited genome-wide at both steady state domains and adjacent transcribed regions, the latter of which are subsequently pruned, establishing mature macroH2A2 domains. Pruning of macroH2A2 can be counteracted by chemical inhibition of transcription. Further, CRISPR/Cas9-based locus-specific transcriptional manipulation reveals that gene activation depletes pre-existing macroH2A2, while silencing triggers ectopic macroH2A2 accumulation. We demonstrate that the FACT (facilitates chromatin transcription) complex is required for macroH2A2 pruning within transcribed chromatin. Taken together, we have identified active chromatin as a boundary for macroH2A domains through a transcription-associated ‘pruning’ mechanism that establishes and maintains the faithful genomic localization of macroH2A variants.
Collapse
|
128
|
Xiong C, Wen Z, Yu J, Chen J, Liu CP, Zhang X, Chen P, Xu RM, Li G. UBN1/2 of HIRA complex is responsible for recognition and deposition of H3.3 at cis-regulatory elements of genes in mouse ES cells. BMC Biol 2018; 16:110. [PMID: 30285846 PMCID: PMC6171237 DOI: 10.1186/s12915-018-0573-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023] Open
Abstract
Background H3.3 is an ancient and conserved H3 variant and plays essential roles in transcriptional regulation. HIRA complex, which is composed of HIRA, UBN1 or UBN2, and Cabin1, is a H3.3 specific chaperone complex. However, it still remains largely uncharacterized how HIRA complex specifically recognizes and deposits H3.3 to the chromatin, such as promoters and enhancers. Results In this study, we demonstrate that the UBN1 or UBN2 subunit is mainly responsible for specific recognition and direct binding of H3.3 by the HIRA complex. While the HIRA subunit can enhance the binding affinity of UBN1 toward H3.3, Cabin1 subunit cannot. We also demonstrate that both Ala87 and Gly90 residues of H3.3 are required and sufficient for the specific recognition and binding by UBN1. ChIP-seq studies reveal that two independent HIRA complexes (UBN1-HIRA and UBN2-HIRA) can cooperatively deposit H3.3 to cis-regulatory regions, including active promoters and active enhancers in mouse embryonic stem (mES) cells. Importantly, disruption of histone chaperone activities of UBN1 and UBN2 by FID/AAA mutation results in the defect of H3.3 deposition at promoters of developmental genes involved in neural differentiation, and subsequently causes the failure of activation of these genes during neural differentiation of mES cells. Conclusion Together, our results provide novel insights into the mechanism by which the HIRA complex specifically recognizes and deposits H3.3 at promoters and enhancers of developmental genes, which plays a critical role in neural differentiation of mES cells. Electronic supplementary material The online version of this article (10.1186/s12915-018-0573-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaoyang Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaodong Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
129
|
Elbakry A, Juhász S, Mathes A, Löbrich M. DNA repair synthesis and histone deposition partner during homologous recombination. Mol Cell Oncol 2018; 5:e1511210. [PMID: 30263950 PMCID: PMC6154852 DOI: 10.1080/23723556.2018.1511210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 11/25/2022]
Abstract
Chromatin remodeling is critical for the regulation of the DNA damage response. We highlight findings from our recent study showing that the deposition of the histone variant H3.3 by the alpha-thalassemia mental retardation X-linked protein (ATRX) and the death domain associated protein (DAXX) chromatin remodeling complex regulates DNA repair synthesis during homologous recombination.
Collapse
Affiliation(s)
- Amira Elbakry
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| | - Szilvia Juhász
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| | - Arthur Mathes
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
130
|
Challenges and guidelines toward 4D nucleome data and model standards. Nat Genet 2018; 50:1352-1358. [PMID: 30262815 DOI: 10.1038/s41588-018-0236-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/19/2018] [Indexed: 11/09/2022]
Abstract
Due to recent advances in experimental and theoretical approaches, the dynamic three-dimensional organization (3D) of the nucleus has become a very active area of research in life sciences. We now understand that the linear genome is folded in ways that may modulate how genes are expressed during the basic functioning of cells. Importantly, it is now possible to build 3D models of how the genome folds within the nucleus and changes over time (4D). Because genome folding influences its function, this opens exciting new possibilities to broaden our understanding of the mechanisms that determine cell fate. However, the rapid evolution of methods and the increasing complexity of data can result in ambiguity and reproducibility challenges, which may hamper the progress of this field. Here, we describe such challenges ahead and provide guidelines to think about strategies for shared standardized validation of experimental 4D nucleome data sets and models.
Collapse
|
131
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
132
|
Kraushaar DC, Chen Z, Tang Q, Cui K, Zhang J, Zhao K. The gene repressor complex NuRD interacts with the histone variant H3.3 at promoters of active genes. Genome Res 2018; 28:1646-1655. [PMID: 30254051 PMCID: PMC6211640 DOI: 10.1101/gr.236224.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The histone variant H3.3 is deposited across active genes, regulatory regions, and telomeres. It remains unclear how H3.3 interacts with chromatin modifying enzymes and thereby modulates gene activity. In this study, we performed a co-immunoprecipitation-mass spectrometry analysis of proteins associated with H3.3-containing nucleosomes and identified the nucleosome remodeling and deacetylase complex (NuRD) as a major H3.3-interactor. We show that the H3.3-NuRD interaction is dependent on the H3.3 lysine 4 residue and that NuRD binding occurs when lysine 4 is in its unmodified state. The majority of NuRD binding colocalizes with H3.3 and directly correlates with gene activity. H3.3 depletion led to reduced levels of NuRD at sites previously occupied by H3.3, as well as a global decrease in histone marks associated with gene activation. Our results demonstrate the importance of H3.3 in the maintenance of the cellular epigenetic landscape and reveal a highly prevalent interaction between the histone variant H3.3 and the multiprotein complex NuRD.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zuozhou Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qingsong Tang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
133
|
Promyelocytic leukemia (PML) nuclear bodies (NBs) induce latent/quiescent HSV-1 genomes chromatinization through a PML NB/Histone H3.3/H3.3 Chaperone Axis. PLoS Pathog 2018; 14:e1007313. [PMID: 30235352 PMCID: PMC6168178 DOI: 10.1371/journal.ppat.1007313] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/02/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) latency establishment is tightly controlled by promyelocytic leukemia (PML) nuclear bodies (NBs) (or ND10), although their exact contribution is still elusive. A hallmark of HSV-1 latency is the interaction between latent viral genomes and PML NBs, leading to the formation of viral DNA-containing PML NBs (vDCP NBs), and the complete silencing of HSV-1. Using a replication-defective HSV-1-infected human primary fibroblast model reproducing the formation of vDCP NBs, combined with an immuno-FISH approach developed to detect latent/quiescent HSV-1, we show that vDCP NBs contain both histone H3.3 and its chaperone complexes, i.e., DAXX/ATRX and HIRA complex (HIRA, UBN1, CABIN1, and ASF1a). HIRA also co-localizes with vDCP NBs present in trigeminal ganglia (TG) neurons from HSV-1-infected wild type mice. ChIP and Re-ChIP show that vDCP NBs-associated latent/quiescent viral genomes are chromatinized almost exclusively with H3.3 modified on its lysine (K) 9 by trimethylation, consistent with an interaction of the H3.3 chaperones with multiple viral loci and with the transcriptional silencing of HSV-1. Only simultaneous inactivation of both H3.3 chaperone complexes has a significant impact on the deposition of H3.3 on viral genomes, suggesting a compensation mechanism. In contrast, the sole depletion of PML significantly impacts the chromatinization of the latent/quiescent viral genomes with H3.3 without any overall replacement with H3.1. vDCP NBs-associated HSV-1 genomes are not definitively silenced since the destabilization of vDCP NBs by ICP0, which is essential for HSV-1 reactivation in vivo, allows the recovery of a transcriptional lytic program and the replication of viral genomes. Consequently, the present study demonstrates a specific chromatin regulation of vDCP NBs-associated latent/quiescent HSV-1 through an H3.3-dependent HSV-1 chromatinization involving the two H3.3 chaperones DAXX/ATRX and HIRA complexes. Additionally, the study reveals that PML NBs are major actors in latent/quiescent HSV-1 H3.3 chromatinization through a PML NB/histone H3.3/H3.3 chaperone axis. An understanding of the molecular mechanisms contributing to the persistence of a virus in its host is essential to be able to control viral reactivation and its associated diseases. Herpes simplex virus 1 (HSV-1) is a human pathogen that remains latent in the PNS and CNS of the infected host. The latency is unstable, and frequent reactivations of the virus are responsible for PNS and CNS pathologies. It is thus crucial to understand the physiological, immunological and molecular levels of interplay between latent HSV-1 and the host. Promyelocytic leukemia (PML) nuclear bodies (NBs) control viral infections by preventing the onset of lytic infection. In previous studies, we showed a major role of PML NBs in favoring the establishment of a latent state for HSV-1. A hallmark of HSV-1 latency establishment is the formation of PML NBs containing the viral genome, which we called “viral DNA-containing PML NBs” (vDCP NBs). The genome entrapped in the vDCP NBs is transcriptionally silenced. This naturally occurring latent/quiescent state could, however, be transcriptionally reactivated. Therefore, understanding the role of PML NBs in controlling the establishment of HSV-1 latency and its reactivation is essential to design new therapeutic approaches based on the prevention of viral reactivation.
Collapse
|
134
|
Bellelli R, Belan O, Pye VE, Clement C, Maslen SL, Skehel JM, Cherepanov P, Almouzni G, Boulton SJ. POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication. Mol Cell 2018; 72:112-126.e5. [PMID: 30217558 PMCID: PMC6179962 DOI: 10.1016/j.molcel.2018.08.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Abstract
Maintenance of epigenetic integrity relies on coordinated recycling and partitioning of parental histones and deposition of newly synthesized histones during DNA replication. This process depends upon a poorly characterized network of histone chaperones, remodelers, and binding proteins. Here we implicate the POLE3-POLE4 subcomplex of the leading-strand polymerase, Polε, in replication-coupled nucleosome assembly through its ability to selectively bind to histones H3-H4. Using hydrogen/deuterium exchange mass spectrometry and physical mapping, we define minimal domains necessary for interaction between POLE3-POLE4 and histones H3-H4. Biochemical analyses establish that POLE3-POLE4 is a histone chaperone that promotes tetrasome formation and DNA supercoiling in vitro. In cells, POLE3-POLE4 binds both newly synthesized and parental histones, and its depletion hinders helicase unwinding and chromatin PCNA unloading and compromises coordinated parental histone retention and new histone deposition. Collectively, our study reveals that POLE3-POLE4 possesses intrinsic H3-H4 chaperone activity, which facilitates faithful nucleosome dynamics at the replication fork.
Collapse
Affiliation(s)
| | - Ondrej Belan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Valerie E Pye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Camille Clement
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Genevieve Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
135
|
Interferon stimulation creates chromatin marks and establishes transcriptional memory. Proc Natl Acad Sci U S A 2018; 115:E9162-E9171. [PMID: 30201712 DOI: 10.1073/pnas.1720930115] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetic memory for signal-dependent transcription has remained elusive. So far, the concept of epigenetic memory has been largely limited to cell-autonomous, preprogrammed processes such as development and metabolism. Here we show that IFNβ stimulation creates transcriptional memory in fibroblasts, conferring faster and greater transcription upon restimulation. The memory was inherited through multiple cell divisions and led to improved antiviral protection. Of ∼2,000 IFNβ-stimulated genes (ISGs), about half exhibited memory, which we define as memory ISGs. The rest, designated nonmemory ISGs, did not show memory. Surprisingly, mechanistic analysis showed that IFN memory was not due to enhanced IFN signaling or retention of transcription factors on the ISGs. We demonstrated that this memory was attributed to accelerated recruitment of RNA polymerase II and transcription/chromatin factors, which coincided with acquisition of the histone H3.3 and H3K36me3 chromatin marks on memory ISGs. Similar memory was observed in bone marrow macrophages after IFNγ stimulation, suggesting that IFN stimulation modifies the shape of the innate immune response. Together, external signals can establish epigenetic memory in mammalian cells that imparts lasting adaptive performance upon various somatic cells.
Collapse
|
136
|
Abstract
Nucleosomes compact and organize genetic material on a structural level. However, they also alter local chromatin accessibility through changes in their position, through the incorporation of histone variants, and through a vast array of histone posttranslational modifications. The dynamic nature of chromatin requires histone chaperones to process, deposit, and evict histones in different tissues and at different times in the cell cycle. This review focuses on the molecular details of canonical and variant H3-H4 histone chaperone pathways that lead to histone deposition on DNA as they are currently understood. Emphasis is placed on the most established pathways beginning with the folding, posttranslational modification, and nuclear import of newly synthesized H3-H4 histones. Next, we review the deposition of replication-coupled H3.1-H4 in S-phase and replication-independent H3.3-H4 via alternative histone chaperone pathways. Highly specialized histone chaperones overseeing the deposition of histone variants are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Grover
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada;
| | - Jonathon S Asa
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; .,Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
137
|
Clément C, Orsi GA, Gatto A, Boyarchuk E, Forest A, Hajj B, Miné-Hattab J, Garnier M, Gurard-Levin ZA, Quivy JP, Almouzni G. High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat Commun 2018; 9:3181. [PMID: 30093638 PMCID: PMC6085313 DOI: 10.1038/s41467-018-05697-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/05/2018] [Indexed: 12/11/2022] Open
Abstract
DNA replication is a challenge for the faithful transmission of parental information to daughter cells, as both DNA and chromatin organization must be duplicated. Replication stress further complicates the safeguard of epigenome integrity. Here, we investigate the transmission of the histone variants H3.3 and H3.1 during replication. We follow their distribution relative to replication timing, first in the genome and, second, in 3D using super-resolution microscopy. We find that H3.3 and H3.1 mark early- and late-replicating chromatin, respectively. In the nucleus, H3.3 forms domains, which decrease in density throughout replication, while H3.1 domains increase in density. Hydroxyurea impairs local recycling of parental histones at replication sites. Similarly, depleting the histone chaperone ASF1 affects recycling, leading to an impaired histone variant landscape. We discuss how faithful transmission of histone variants involves ASF1 and can be impacted by replication stress, with ensuing consequences for cell fate and tumorigenesis. Epigenetic modifications are a key contributor to cell identity, and their propagation is crucial for proper development. Here the authors use a super-resolution microscopy approach to reveal how histone variants are faithfully transmitted during genome duplication, and reveal an important role for the histone chaperone ASF1 in the redistribution of parental histones.
Collapse
Affiliation(s)
- Camille Clément
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France
| | - Guillermo A Orsi
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France
| | - Alberto Gatto
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France
| | - Ekaterina Boyarchuk
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France
| | - Audrey Forest
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France
| | - Bassam Hajj
- Institut Curie, PSL Research University, CNRS, UMR168, Laboratoire Physico-Chimie, F-75005, Paris, France
| | - Judith Miné-Hattab
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR3664, F-75005, Paris, France
| | - Mickaël Garnier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR3664, F-75005, Paris, France
| | - Zachary A Gurard-Levin
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France.,SAMDI Tech, Inc., Chicago, IL, 60657, USA
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, F-75005, Paris, France.
| |
Collapse
|
138
|
Functional activity of the H3.3 histone chaperone complex HIRA requires trimerization of the HIRA subunit. Nat Commun 2018; 9:3103. [PMID: 30082790 PMCID: PMC6078998 DOI: 10.1038/s41467-018-05581-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
The HIRA histone chaperone complex deposits the histone variant H3.3 onto chromatin in a DNA synthesis-independent manner. It comprises three identified subunits, HIRA, UBN1 and CABIN1, however the functional oligomerization state of the complex has not been investigated. Here we use biochemical and crystallographic analysis to show that the HIRA subunit forms a stable homotrimer that binds two subunits of CABIN1 in vitro. A HIRA mutant that is defective in homotrimer formation interacts less efficiently with CABIN1, is not enriched at DNA damage sites upon UV irradiation and cannot rescue new H3.3 deposition in HIRA knockout cells. The structural homology with the homotrimeric replisome component Ctf4/AND-1 enables the drawing of parallels and discussion of the functional importance of the homotrimerization state of the HIRA subunit. The HIRA histone chaperone complex is involved in the deposition of the histone variant H3.3. Here the authors, by using biochemical and crystallographic approaches, report the homotrimerization of the HIRA subunit which is critical for the functional activity of the complex.
Collapse
|
139
|
HIRA directly targets the enhancers of selected cardiac transcription factors during in vitro differentiation of mouse embryonic stem cells. Mol Biol Rep 2018; 45:1001-1011. [PMID: 30030774 PMCID: PMC6156767 DOI: 10.1007/s11033-018-4247-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/08/2018] [Indexed: 01/06/2023]
Abstract
HIRA is a histone chaperone known to modulate gene expression through the deposition of H3.3. Conditional knockout of Hira in embryonic mouse hearts leads to cardiac septal defects. Loss of function mutation in HIRA, together with other chromatin modifiers, was found in patients with congenital heart diseases. However, the effects of HIRA on gene expression at earlier stages of cardiogenic mesoderm differentiation have not yet been studied. Differentiation of mouse embryonic stem cells (mESCs) towards cardiomyocytes mimics some of these early events and is an accepted model of these early stages. We performed RNA-Seq and H3.3-HA ChIP-seq on both WT and Hira-null mESCs and early cardiomyocyte progenitors of both genotypes. Analysis of RNA-seq data showed differential down regulation of cardiovascular development-related genes in Hira-null cardiomyocytes compared to WT cardiomyocytes. We found HIRA-dependent H3.3 deposition at these genes. In particular, we observed that HIRA influenced directly the expression of the transcription factors Gata6, Meis1 and Tbx2, essential for cardiac septation, through H3.3 deposition. We therefore identified new direct targets of HIRA during cardiac differentiation.
Collapse
|
140
|
Juhász S, Elbakry A, Mathes A, Löbrich M. ATRX Promotes DNA Repair Synthesis and Sister Chromatid Exchange during Homologous Recombination. Mol Cell 2018; 71:11-24.e7. [PMID: 29937341 DOI: 10.1016/j.molcel.2018.05.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/20/2018] [Accepted: 05/10/2018] [Indexed: 01/15/2023]
Abstract
ATRX is a chromatin remodeler that, together with its chaperone DAXX, deposits the histone variant H3.3 in pericentromeric and telomeric regions. Notably, ATRX is frequently mutated in tumors that maintain telomere length by a specific form of homologous recombination (HR). Surprisingly, in this context, we demonstrate that ATRX-deficient cells exhibit a defect in repairing exogenously induced DNA double-strand breaks (DSBs) by HR. ATRX operates downstream of the Rad51 removal step and interacts with PCNA and RFC-1, which are collectively required for DNA repair synthesis during HR. ATRX depletion abolishes DNA repair synthesis and prevents the formation of sister chromatid exchanges at exogenously induced DSBs. DAXX- and H3.3-depleted cells exhibit identical HR defects as ATRX-depleted cells, and both ATRX and DAXX function to deposit H3.3 during DNA repair synthesis. This suggests that ATRX facilitates the chromatin reconstitution required for extended DNA repair synthesis and sister chromatid exchange during HR.
Collapse
Affiliation(s)
- Szilvia Juhász
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Amira Elbakry
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Arthur Mathes
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany.
| |
Collapse
|
141
|
Giberson AN, Saha B, Campbell K, Christou C, Poulin KL, Parks RJ. Human adenoviral DNA association with nucleosomes containing histone variant H3.3 during the early phase of infection is not dependent on viral transcription or replication. Biochem Cell Biol 2018; 96:797-807. [PMID: 29874470 DOI: 10.1139/bcb-2018-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (Ad) DNA undergoes dynamic changes in protein association as the virus progresses through its replicative cycle. Within the virion, the Ad DNA associates primarily with the virus-encoded, protamine-like protein VII. During the early phase of infection (∼6 h), the viral DNA showed declining association with VII, suggesting that VII was removed from at least some regions of the viral DNA. Within 6 h, the viral DNA was wrapped into a repeating nucleosome-like array containing the histone variant H3.3. Transcription elongation was not required to strip VII from the viral DNA or for deposition of H3.3. H3.1 did not associate with the viral DNA at any point during infection. During the late phase of infection (i.e., active DNA replication ∼12-24 h), association with H3 was dramatically reduced and the repeating nucleosome-like pattern was no longer evident. Thus, we have uncovered some of the changes in nucleoprotein structure that occur during lytic Ad infection.
Collapse
Affiliation(s)
- Andrea N Giberson
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bratati Saha
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kalisa Campbell
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Carin Christou
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kathy L Poulin
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Robin J Parks
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,d Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
142
|
Kang J, Kim YW, Kim A. Histone variants H3.3 and H2A.Z are incorporated into the β-globin locus during transcription activation via different mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30082-8. [PMID: 29879504 DOI: 10.1016/j.bbagrm.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Histone variants H3.3 and H2A.Z are often enriched in enhancers and transcriptionally active genes. However, the incorporation dynamics of these variants and the mechanisms of their incorporation are unclear. Here, we examined the distribution of H3.3 and H2A.Z in the human β-globin locus and analyzed their incorporation dynamics during transcription activation. Locus control region hypersensitive sites (LCR HSs), acting as enhancers, and active globin genes were enriched by H3.3 and H2A.Z in erythroid K562 cells, but inactive globin genes were not. Both variants were dynamically incorporated into the β-globin locus after transcription induction in MEL/ch11 cells, and prior to gene transcription the LCR HSs became enriched with the variants. In the activated β-globin gene, H3.3 was highly incorporated during transcription, whereas H2A.Z incorporation appeared to precede it. To further explore the relationship between gene transcription and variant incorporation, we deleted the LCR HS3 enhancer or the β-globin proximal promoter from the β-globin locus using the CRISPR-Cas9 genome editing system. H2A.Z was incorporated into the β-globin gene in the locus lacking promoter, even though the β-globin gene transcription was abolished by these deletions. However, H3.3 incorporation was reduced in the untranscribed β-globin gene. These results suggest that H3.3 and H2A.Z are systematically incorporated into the LCR enhancer and β-globin gene as part of transcription activation, but that their incorporation is carried out via different mechanisms.
Collapse
Affiliation(s)
- Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
143
|
Horard B, Sapey-Triomphe L, Bonnefoy E, Loppin B. ASF1 is required to load histones on the HIRA complex in preparation of paternal chromatin assembly at fertilization. Epigenetics Chromatin 2018; 11:19. [PMID: 29751847 PMCID: PMC5946387 DOI: 10.1186/s13072-018-0189-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background Anti-Silencing Factor 1 (ASF1) is a conserved H3–H4 histone chaperone involved in both Replication-Coupled and Replication-Independent (RI) nucleosome assembly pathways. At DNA replication forks, ASF1 plays an important role in regulating the supply of H3.1/2 and H4 to the CAF-1 chromatin assembly complex. ASF1 also provides H3.3–H4 dimers to HIRA and DAXX chaperones for RI nucleosome assembly. The early Drosophila embryo is an attractive system to study chromatin assembly in a developmental context. The formation of a diploid zygote begins with the unique, genome-wide RI assembly of paternal chromatin following sperm protamine eviction. Then, within the same cytoplasm, syncytial embryonic nuclei undergo a series of rapid, synchronous S and M phases to form the blastoderm embryo. Here, we have investigated the implication of ASF1 in these two distinct assembly processes. Results We show that depletion of the maternal pool of ASF1 with a specific shRNA induces a fully penetrant, maternal effect embryo lethal phenotype. Unexpectedly, despite the depletion of ASF1 protein to undetectable levels, we show that asf1 knocked-down (KD) embryos can develop to various stages, thus demonstrating that ASF1 is not absolutely required for the amplification of cleavage nuclei. Remarkably, we found that ASF1 is required for the formation of the male pronucleus, although ASF1 protein does not reside in the decondensing sperm nucleus. In asf1 KD embryos, HIRA localizes to the male nucleus but is only capable of limited and insufficient chromatin assembly. Finally, we show that the conserved HIRA B domain, which is involved in ASF1-HIRA interaction, is dispensable for female fertility. Conclusions We conclude that ASF1 is critically required to load H3.3–H4 dimers on the HIRA complex prior to histone deposition on paternal DNA. This separation of tasks could optimize the rapid assembly of paternal chromatin within the gigantic volume of the egg cell. In contrast, ASF1 is surprisingly dispensable for the amplification of cleavage nuclei, although chromatin integrity is likely compromised in KD embryos. Electronic supplementary material The online version of this article (10.1186/s13072-018-0189-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France.
| | - Laure Sapey-Triomphe
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France
| | - Emilie Bonnefoy
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France
| | - Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
144
|
Dhar S, Gursoy-Yuzugullu O, Parasuram R, Price BD. The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0284. [PMID: 28847821 DOI: 10.1098/rstb.2016.0284] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The ability of cells to detect and repair DNA double-strand breaks (DSBs) within the complex architecture of the genome requires co-ordination between the DNA repair machinery and chromatin remodelling complexes. This co-ordination is essential to process damaged chromatin and create open chromatin structures which are required for repair. Initially, there is a PARP-dependent recruitment of repressors, including HP1 and several H3K9 methyltransferases, and exchange of histone H2A.Z by the NuA4-Tip60 complex. This creates repressive chromatin at the DSB in which the tail of histone H4 is bound to the acidic patch on the nucleosome surface. These repressor complexes are then removed, allowing rapid acetylation of the H4 tail by Tip60. H4 acetylation blocks interaction between the H4 tail and the acidic patch on adjacent nucleosomes, decreasing inter-nucleosomal interactions and creating open chromatin. Further, the H4 tail is now free to recruit proteins such as 53BP1 to DSBs, a process modulated by H4 acetylation, and provides binding sites for bromodomain proteins, including ZMYND8 and BRD4, which are important for DSB repair. Here, we will discuss how the H4 tail functions as a dynamic hub that can be programmed through acetylation to alter chromatin packing and recruit repair proteins to the break site.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Surbhi Dhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| |
Collapse
|
145
|
Perkins DJ, Patel MC, Blanco JCG, Vogel SN. Epigenetic Mechanisms Governing Innate Inflammatory Responses. J Interferon Cytokine Res 2018; 36:454-61. [PMID: 27379867 DOI: 10.1089/jir.2016.0003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptors (TLRs) are major receptors of the host innate immune system that recognize conserved pathogen-associated molecular patterns (PAMPs) of invading microbes. Activation of TLR signaling culminates in the expression of multiple genes in a coordinate and kinetically defined manner. In this review, we summarize the current studies describing the chromatin landscape of TLR-responsive inflammatory genes and how changes to this chromatin landscape govern cell type-specific and temporal gene expression. We further elaborate classical endotoxin tolerance and epigenetic mechanisms controlling tolerance and interferon priming effects on inflammatory promoters.
Collapse
Affiliation(s)
- Darren J Perkins
- 1 Department of Microbiology and Immunology, University of Maryland , Baltimore (UMB), School of Medicine, Baltimore, Maryland
| | - Mira C Patel
- 1 Department of Microbiology and Immunology, University of Maryland , Baltimore (UMB), School of Medicine, Baltimore, Maryland.,2 Sigmovir Biosystems, Inc. , Rockville, Maryland
| | | | - Stefanie N Vogel
- 1 Department of Microbiology and Immunology, University of Maryland , Baltimore (UMB), School of Medicine, Baltimore, Maryland
| |
Collapse
|
146
|
Siwek W, Gómez-Rodríguez M, Sobral D, Corrêa IR, Jansen LET. time-ChIP: A Method to Determine Long-Term Locus-Specific Nucleosome Inheritance. Methods Mol Biol 2018; 1832:131-158. [PMID: 30073525 DOI: 10.1007/978-1-4939-8663-7_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding chromatin dynamics is essential to define the contribution of chromatin to heritable gene silencing and the long-term maintenance of gene expression. Here we present a detailed protocol for time-ChIP, a novel method to measure histone turnover at high resolution across long timescales. This method is based on the SNAP-tag, a self-labeling enzyme that can be pulse labeled with small molecules in cells. Upon pulse biotinylation of a cohort of SNAP-tagged histones we can determine their abundance and fate across a chase period using a biotin-specific chromatin pulldown followed by DNA sequencing or quantitative PCR. This method is unique in its ability to trace the long-term fate of a chromatin bound histone pool, genome wide. In addition to a step by step protocol, we outline advantages and limitations of the method in relation to other existing techniques. time-ChIP can define regions of high and low histone turnover and identify the location of pools of long lived histones.
Collapse
Affiliation(s)
| | - Mariluz Gómez-Rodríguez
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Departamento de Ciencias Naturales and Matemáticas, Pontificia Universidad Javeriana, Cali, Colombia
| | | | | | | |
Collapse
|
147
|
Serra-Cardona A, Zhang Z. Replication-Coupled Nucleosome Assembly in the Passage of Epigenetic Information and Cell Identity. Trends Biochem Sci 2017; 43:136-148. [PMID: 29292063 DOI: 10.1016/j.tibs.2017.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/31/2022]
Abstract
During S phase, replicated DNA must be assembled into nucleosomes using both newly synthesized and parental histones in a process that is tightly coupled to DNA replication. This DNA replication-coupled process is regulated by multitude of histone chaperones as well as by histone-modifying enzymes. In recent years novel insights into nucleosome assembly of new H3-H4 tetramers have been gained through studies on the classical histone chaperone CAF-1 and the identification of novel factors involved in this process. Moreover, in vitro reconstitution of chromatin replication has shed light on nucleosome assembly of parental H3-H4, a process that remains elusive. Finally, recent studies have revealed that the replication-coupled nucleosome assembly is important for the determination and maintenance of cell fate in multicellular organisms.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
148
|
Morozov VM, Giovinazzi S, Ishov AM. CENP-B protects centromere chromatin integrity by facilitating histone deposition via the H3.3-specific chaperone Daxx. Epigenetics Chromatin 2017; 10:63. [PMID: 29273057 PMCID: PMC5741900 DOI: 10.1186/s13072-017-0164-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022] Open
Abstract
Background The main chromatin unit, the nucleosome, can be modulated by the incorporation of histone variants that, in combination with posttranslational histones modifications, determine epigenetics properties of chromatin. Understanding the mechanism that creates a histone variants landscape at different genomic elements is expected to elevate our comprehension of chromatin assembly and function. The Daxx chaperone deposits transcription-associated histone H3.3 at centromeres, but mechanism of centromere-specific Daxx targeting remains unclear. Results In this study, we identified an unexpected function of the constitutive centromeric protein CENP-B that serves as a “beacon” for H3.3 incorporation. CENP-B depletion reduces Daxx association and H3.3 incorporation at centromeres. Daxx/CENP-B interaction and Daxx centromeric association are SUMO dependent and requires SIMs of Daxx. Depletion of SUMO-2, but not SUMO-1, decreases Daxx/CENP-B interaction and reduces centromeric accumulation of Daxx and H3.3, demonstrating distinct functions of SUMO paralogs in H3.3 chaperoning. Finally, disruption of CENP-B/Daxx-dependent H3.3 pathway deregulates heterochromatin marks H3K9me3, ATRX and HP1α at centromeres and elevates chromosome instability. Conclusion The demonstrated roles of CENP-B and SUMO-2 in H3.3 loading reveal a novel mechanism controlling chromatin maintenance and genome stability. Given that CENP-B is the only centromere protein that binds centromere-specific DNA elements, our study provides a new link between centromere DNA and unique epigenetic landscape of centromere chromatin. Electronic supplementary material The online version of this article (10.1186/s13072-017-0164-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, and University of Florida Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL, 32610, USA
| | - Serena Giovinazzi
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, and University of Florida Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL, 32610, USA.,Division of Food Safety, Florida Department of Agriculture and Consumer Services, Tallahassee, FL, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, and University of Florida Cancer Center, 2033 Mowry Road, Room 358, Gainesville, FL, 32610, USA.
| |
Collapse
|
149
|
Saavedra F, Rivera C, Rivas E, Merino P, Garrido D, Hernández S, Forné I, Vassias I, Gurard-Levin ZA, Alfaro IE, Imhof A, Almouzni G, Loyola A. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4. Nucleic Acids Res 2017; 45:11700-11710. [PMID: 28977641 PMCID: PMC5714232 DOI: 10.1093/nar/gkx775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/24/2017] [Indexed: 11/12/2022] Open
Abstract
Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.
Collapse
Affiliation(s)
| | | | | | - Paola Merino
- Fundación Ciencia & Vida, Santiago 7780272, Chile
| | | | | | - Ignasi Forné
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Isabelle Vassias
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Zachary A Gurard-Levin
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Iván E Alfaro
- Fundación Ciencia & Vida, Santiago 7780272, Chile.,Departamento de Biología. Facultad de Ciencias Naturales y Exactas. Universidad de Playa Ancha, Valparaíso, Chile
| | - Axel Imhof
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | | |
Collapse
|
150
|
Shaping Chromatin in the Nucleus: The Bricks and the Architects. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:1-14. [PMID: 29208640 DOI: 10.1101/sqb.2017.82.033753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromatin organization in the nucleus provides a vast repertoire of information in addition to that encoded genetically. Understanding how this organization impacts genome stability and influences cell fate and tumorigenesis is an area of rapid progress. Considering the nucleosome, the fundamental unit of chromatin structure, the study of histone variants (the bricks) and their selective loading by histone chaperones (the architects) is particularly informative. Here, we report recent advances in understanding how relationships between histone variants and their chaperones contribute to tumorigenesis using cell lines and Xenopus development as model systems. In addition to their role in histone deposition, we also document interactions between histone chaperones and other chromatin factors that govern higher-order structure and control DNA metabolism. We highlight how a fine-tuned assembly line of bricks (H3.3 and CENP-A) and architects (HIRA, HJURP, and DAXX) is key in adaptation to developmental and pathological changes. An example of this conceptual advance is the exquisite sensitivity displayed by p53-null tumor cells to modulation of HJURP, the histone chaperone for CENP-A (CenH3 variant). We discuss how these findings open avenues for novel therapeutic paradigms in cancer care.
Collapse
|