101
|
Fang X, Qi Y. RNAi in Plants: An Argonaute-Centered View. THE PLANT CELL 2016; 28:272-85. [PMID: 26869699 PMCID: PMC4790879 DOI: 10.1105/tpc.15.00920] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/29/2015] [Accepted: 02/10/2016] [Indexed: 05/18/2023]
Abstract
Argonaute (AGO) family proteins are effectors of RNAi in eukaryotes. AGOs bind small RNAs and use them as guides to silence target genes or transposable elements at the transcriptional or posttranscriptional level. Eukaryotic AGO proteins share common structural and biochemical properties and function through conserved core mechanisms in RNAi pathways, yet plant AGOs have evolved specialized and diversified functions. This Review covers the general features of AGO proteins and highlights recent progress toward our understanding of the mechanisms and functions of plant AGOs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
102
|
A One Precursor One siRNA Model for Pol IV-Dependent siRNA Biogenesis. Cell 2016; 163:445-55. [PMID: 26451488 DOI: 10.1016/j.cell.2015.09.032] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 09/11/2015] [Indexed: 01/07/2023]
Abstract
RNA-directed DNA methylation in Arabidopsis thaliana is driven by the plant-specific RNA Polymerase IV (Pol IV). It has been assumed that a Pol IV transcript can give rise to multiple 24-nt small interfering RNAs (siRNAs) that target DNA methylation. Here, we demonstrate that Pol IV-dependent RNAs (P4RNAs) from wild-type Arabidopsis are surprisingly short in length (30 to 40 nt) and mirror 24-nt siRNAs in distribution, abundance, strand bias, and 5'-adenine preference. P4RNAs exhibit transcription start sites similar to Pol II products and are featured with 5'-monophosphates and 3'-misincorporated nucleotides. The 3'-misincorporation preferentially occurs at methylated cytosines on the template DNA strand, suggesting a co-transcriptional feedback to siRNA biogenesis by DNA methylation to reinforce silencing locally. These results highlight an unusual mechanism of Pol IV transcription and suggest a "one precursor, one siRNA" model for the biogenesis of 24-nt siRNAs in Arabidopsis.
Collapse
|
103
|
Ye R, Chen Z, Lian B, Rowley MJ, Xia N, Chai J, Li Y, He XJ, Wierzbicki AT, Qi Y. A Dicer-Independent Route for Biogenesis of siRNAs that Direct DNA Methylation in Arabidopsis. Mol Cell 2015; 61:222-35. [PMID: 26711010 DOI: 10.1016/j.molcel.2015.11.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 01/03/2023]
Abstract
DNA methylation directed by 24-nucleotide (nt) small interfering RNAs (siRNAs) plays critical roles in gene regulation and transposon silencing in Arabidopsis. 24-nt siRNAs are known to be processed from double-stranded RNAs by Dicer-like 3 (DCL3) and loaded into the effector Argonaute 4 (AGO4). Here we report a distinct class of siRNAs independent of DCLs (sidRNAs). sidRNAs are present as ladders of ∼ 20-60 nt in length, often having the same 5' ends but differing in 3' ends by 1-nt steps. We further show that sidRNAs are associated with AGO4 and capable of directing DNA methylation. Finally we show that sidRNA production depends on distributive 3'-5' exonucleases. Our findings suggest an alternative route for siRNA biogenesis. Precursor transcripts are bound by AGO4 and subsequently subjected to 3'-5' exonucleolytic trimming for maturation. We propose that sidRNAs generated through this route are the initial triggers of de novo DNA methylation.
Collapse
Affiliation(s)
- Ruiqiang Ye
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zulong Chen
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; School of Life Sciences, Peking University, Beijing 100871, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Bi Lian
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - M Jordan Rowley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ning Xia
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Li
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
| | - Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yijun Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
104
|
Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Res 2015; 26:66-82. [PMID: 26642813 DOI: 10.1038/cr.2015.145] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/30/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is an important de novo DNA methylation pathway in plants. Small interfering RNAs (siRNAs) generated by Dicers from RNA polymerase IV (Pol IV) transcripts are thought to guide sequence-specific DNA methylation. To gain insight into the mechanism of RdDM, we performed whole-genome bisulfite sequencing of a collection of Arabidopsis mutants, including plants deficient in Pol IV (nrpd1) or Dicer (dcl1/2/3/4) activity. Unexpectedly, of the RdDM target loci that required Pol IV and/or Pol V, only 16% were fully dependent on Dicer activity. DNA methylation was partly or completely independent of Dicer activity at the remaining Pol IV- and/or Pol V-dependent loci, despite the loss of 24-nt siRNAs. Instead, DNA methylation levels correlated with the accumulation of Pol IV-dependent 25-50 nt RNAs at most loci in Dicer mutant plants. Our results suggest that RdDM in plants is largely guided by a previously unappreciated class of Dicer-independent non-coding RNAs, and that siRNAs are required to maintain DNA methylation at only a subset of loci.
Collapse
|
105
|
Movahedi A, Sun W, Zhang J, Wu X, Mousavi M, Mohammadi K, Yin T, Zhuge Q. RNA-directed DNA methylation in plants. PLANT CELL REPORTS 2015; 34:1857-1862. [PMID: 26183954 DOI: 10.1007/s00299-015-1839-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
In plants, many small interfering RNAs (siRNAs) direct de novo methylation by DNA methyltransferase. DNA methylation typically occurs by RNA-directed DNA methylation (RdDM), which directs transcriptional gene silencing of transposons and endogenous transgenes. RdDM is driven by non-coding RNAs (ncRNAs) produced by DNA-dependent RNA polymerases IV and V (PolIV and PolV). The production of siRNAs is initiated by PolIV and ncRNAs produced by PolIV are precursors of 24-nucleotide siRNAs. In contrast, ncRNAs produced by PolV are involved in scaffolding RNAs. In this review, we summarize recent studies of RdDM. In particular, we focus on the mechanisms involved in chromatin remodeling by PolIV and PolV.
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibu Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaxin Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaolong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohaddesseh Mousavi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kourosh Mohammadi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
106
|
Gebert D, Rosenkranz D. RNA-based regulation of transposon expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:687-708. [DOI: 10.1002/wrna.1310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Gebert
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| | - David Rosenkranz
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
107
|
Blevins T, Podicheti R, Mishra V, Marasco M, Wang J, Rusch D, Tang H, Pikaard CS. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife 2015; 4:e09591. [PMID: 26430765 PMCID: PMC4716838 DOI: 10.7554/elife.09591] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/01/2015] [Indexed: 12/21/2022] Open
Abstract
In Arabidopsis thaliana, abundant 24 nucleotide small interfering RNAs (24 nt siRNA) guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA polymerase IV (Pol IV), RNA-dependent RNA polymerase 2 (RDR2) and DICER-like 3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3' termini. The 24 nt siRNAs primarily correspond to the 5' or 3' ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events.
Collapse
Affiliation(s)
- Todd Blevins
- Howard Hughes Medical Institute, Indiana University, Bloomington, United States
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, United States
- School of Informatics and Computing, Indiana University, Bloomington, United States
| | - Vibhor Mishra
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Michelle Marasco
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Jing Wang
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| | - Doug Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, United States
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, Bloomington, United States
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Indiana University, Bloomington, United States
- Department of Biology, Indiana University, Bloomington, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
108
|
Zhou M, Law JA. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:154-64. [PMID: 26344361 PMCID: PMC4618083 DOI: 10.1016/j.pbi.2015.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 05/19/2023]
Abstract
Noncoding RNAs regulate gene expression at both the transcriptional and post-transcriptional levels, and play critical roles in development, imprinting and the maintenance of genome integrity in eukaryotic organisms [1,2,3]. Therefore, it is important to understand how the production of such RNAs are controlled. In addition to the three canonical DNA dependent RNA polymerases (Pol) Pol I, II and III, two non-redundant plant-specific RNA polymerases, Pol IV and Pol V, have been identified and shown to generate noncoding RNAs that are required for transcriptional gene silencing via the RNA-directed DNA methylation (RdDM) pathway. Thus, somewhat paradoxically, transcription is required for gene silencing. This paradox extends beyond plants, as silencing pathways in yeast, fungi, flies, worms, and mammals also require transcriptional machinery [4,5]. As plants have evolved specialized RNA polymerases to carry out gene silencing in a manner that is separate from the essential roles of Pol II, their characterization offers unique insights into how RNA polymerases facilitate gene silencing. In this review, we focus on the mechanisms of Pol IV and Pol V function, including their compositions, their transcripts, and their modes of recruitment to chromatin.
Collapse
Affiliation(s)
- Ming Zhou
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julie A Law
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
109
|
Giacopelli BJ, Hollick JB. Trans-Homolog Interactions Facilitating Paramutation in Maize. PLANT PHYSIOLOGY 2015; 168:1226-36. [PMID: 26149572 PMCID: PMC4528761 DOI: 10.1104/pp.15.00591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/03/2015] [Indexed: 05/13/2023]
Abstract
Paramutations represent locus-specific trans-homolog interactions affecting the heritable silencing properties of endogenous alleles. Although examples of paramutation are well studied in maize (Zea mays), the responsible mechanisms remain unclear. Genetic analyses indicate roles for plant-specific DNA-dependent RNA polymerases that generate small RNAs, and current working models hypothesize that these small RNAs direct heritable changes at sequences often acting as transcriptional enhancers. Several studies have defined specific sequences that mediate paramutation behaviors, and recent results identify a diversity of DNA-dependent RNA polymerase complexes operating in maize. Other reports ascribe broader roles for some of these complexes in normal genome function. This review highlights recent research to understand the molecular mechanisms of paramutation and examines evidence relevant to small RNA-based modes of transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Brian John Giacopelli
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jay Brian Hollick
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
110
|
Fang X, Shi Y, Lu X, Chen Z, Qi Y. CMA33/XCT Regulates Small RNA Production through Modulating the Transcription of Dicer-Like Genes in Arabidopsis. MOLECULAR PLANT 2015; 8:1227-36. [PMID: 25770820 DOI: 10.1016/j.molp.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs) play important regulatory roles in various aspects of plant biology. They are processed from double-stranded RNA precursors by Dicer-like (DCL) proteins. There are three major classes of sRNAs in Arabidopsis: DCL1-dependent microRNA (miRNA), DCL3-dependent heterochromatic siRNA (hc-siRNA), and DCL4-dependent trans-acting siRNA (ta-siRNA). We have previously isolated a mutant with compromised miRNA activity, cma33. Here we show that CMA33 encodes a nuclear localized protein, XAP5 CIRCADIAN TIMEKEEPER (XCT). The cma33/xct mutation led to reduced accumulation of not only miRNAs but also hc-siRNAs and ta-siRNAs. Intriguingly, we found that the expression of DCL1, DCL3, and DCL4, but not other genes in the sRNA biogenesis pathways, was decreased in cma33/xct. Consistent with this, the occupancy of Pol II at DCL1, DCL3, and DCL4 genes was reduced upon the loss of CMA33/XCT. Collectively, our data suggest that CMA33/XCT modulates sRNA production through regulating the transcription of DCLs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yupeng Shi
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiuli Lu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zulong Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yijun Qi
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
111
|
Du JL, Zhang SW, Huang HW, Cai T, Li L, Chen S, He XJ. The Splicing Factor PRP31 Is Involved in Transcriptional Gene Silencing and Stress Response in Arabidopsis. MOLECULAR PLANT 2015; 8:1053-68. [PMID: 25684655 DOI: 10.1016/j.molp.2015.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/11/2015] [Accepted: 02/05/2015] [Indexed: 05/10/2023]
Abstract
Although DNA methylation is known to play an important role in the silencing of transposable elements (TEs) and introduced transgenes, the mechanisms that generate DNA methylation-independent transcriptional silencing are poorly understood. Previous studies suggest that RNA-directed DNA methylation (RdDM) is required for the silencing of the RD29A-LUC transgene in the Arabidopsis ros1 mutant background with defective DNA demethylase. Loss of function of ARGONAUTE 4 (AGO4) gene, which encodes a core RdDM component, partially released the silencing of RD29A-LUC in the ros1/ago4 double mutant plants. A forward genetic screen was performed to identify the mutants with elevated RD29A-LUC transgene expression in the ros1/ago4 mutant background. We identified a mutation in the homologous gene of PRP31, which encodes a conserved pre-mRNA splicing factor that regulates the formation of the U4/U6.U5 snRNP complex in fungi and animals. We previously demonstrated that the splicing factors ZOP1 and STA1 contribute to transcriptional gene silencing. Here, we reveal that Arabidopsis PRP31 associates with ZOP1, STA1, and several other splicing-related proteins, suggesting that these splicing factors are both physically and functionally connected. We show that Arabidopsis PRP31 participates in transcriptional gene silencing. Moreover, we report that PRP31, STA1, and ZOP1 are required for development and stress response. Under cold stress, PRP31 is not only necessary for pre-mRNA splicing but also for regulation of cold-responsive gene expression. Our results suggest that the splicing machinery has multiple functions including pre-mRNA splicing, gene regulation, transcriptional gene silencing, and stress response.
Collapse
Affiliation(s)
- Jin-Lu Du
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Su-Wei Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
112
|
Ariel F, Romero-Barrios N, Jégu T, Benhamed M, Crespi M. Battles and hijacks: noncoding transcription in plants. TRENDS IN PLANT SCIENCE 2015; 20:362-71. [PMID: 25850611 DOI: 10.1016/j.tplants.2015.03.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 05/08/2023]
Abstract
Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.
Collapse
Affiliation(s)
- Federico Ariel
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Natali Romero-Barrios
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Teddy Jégu
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France; Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Institut of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
113
|
Leopold LE, Heestand BN, Seong S, Shtessel L, Ahmed S. Lack of pairing during meiosis triggers multigenerational transgene silencing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:E2667-76. [PMID: 25941370 PMCID: PMC4443339 DOI: 10.1073/pnas.1501979112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-copy transgenes in Caenorhabditis elegans can be subjected to a potent, irreversible silencing process termed small RNA-induced epigenetic silencing (RNAe). RNAe is promoted by the Piwi Argonaute protein PRG-1 and associated Piwi-interacting RNAs (piRNAs), as well as by proteins that promote and respond to secondary small interfering RNA (siRNA) production. Here we define a related siRNA-mediated silencing process, termed "multigenerational RNAe," which can occur for transgenes that are maintained in a hemizygous state for several generations. We found that transgenes that contain either GFP or mCherry epitope tags can be silenced via multigenerational RNAe, whereas a transgene that possesses GFP and a perfect piRNA target site can be rapidly and permanently silenced via RNAe. Although previous studies have shown that PRG-1 is typically dispensable for maintenance of RNAe, we found that both initiation and maintenance of multigenerational RNAe requires PRG-1 and the secondary siRNA biogenesis protein RDE-2. Although silencing via RNAe is irreversible, we found that transgene expression can be restored when hemizygous transgenes that were silenced via multigenerational RNAe become homozygous. Furthermore, multigenerational RNAe was accelerated when meiotic pairing of the chromosome possessing the transgene was abolished. We propose that persistent lack of pairing during meiosis elicits a reversible multigenerational silencing response, which can lead to permanent transgene silencing. Multigenerational RNAe may be broadly relevant to single-copy transgenes used in experimental biology and to shaping the epigenomic landscape of diverse species, where genomic polymorphisms between homologous chromosomes commonly result in unpaired DNA during meiosis.
Collapse
Affiliation(s)
| | - Bree N Heestand
- Department of Genetics, Lineberger Comprehensive Cancer Center, and
| | | | | | - Shawn Ahmed
- Department of Genetics, Lineberger Comprehensive Cancer Center, and Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280
| |
Collapse
|
114
|
Xie M, Yu B. siRNA-directed DNA Methylation in Plants. Curr Genomics 2015; 16:23-31. [PMID: 25937811 PMCID: PMC4412961 DOI: 10.2174/1389202915666141128002211] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/02/2022] Open
Abstract
DNA cytosine methylationis an important epigenetic process that is correlated with transgene silencing, transposon suppression, and gene imprinting. In plants, small interfering RNAs (siRNAs) can trigger DNA methylation at loci containing their homolog sequences through a process called RNA-directed DNA methylation (RdDM). In canonical RdDM, 24 nucleotide (nt) siRNAs (ra-siRNAs) will be loaded into their effector protein called ARGONAUTE 4 (AGO4) and subsequently targeted to RdDM loci through base-pairing with the non-coding transcripts produced by DNA-directed RNA Polymerase V. Then, the AGO4-ra-siRNA will recruit the DNA methyltransferase to catalyze de novo DNA methylation. Recent studies also identified non-canonical RdDM pathways that involve microRNAs or 21 nt siRNAs. These RdDM pathways are biologically important since they control responses biotic and abiotic stresses, maintain genome stability and regulate development. Here, we summarize recent pro-gresses of mechanisms governing canonical and non-canonical RdDM pathways.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0660, USA
| | - Bin Yu
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0660, USA
| |
Collapse
|
115
|
Liu J, Wang H, Chua NH. Long noncoding RNA transcriptome of plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:319-28. [PMID: 25615265 DOI: 10.1111/pbi.12336] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Since their discovery more than two decades ago, animal long noncoding RNAs (lncRNAs) have emerged as important regulators of many biological processes. Recently, a large number of lncRNAs have also been identified in higher plants, and here, we review their identification, classification and known regulatory functions in various developmental events and stress responses. Knowledge gained from a deeper understanding of this special group of noncoding RNAs may lead to biotechnological improvement of crops. Some possible examples in this direction are discussed.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
116
|
Devert A, Fabre N, Floris M, Canard B, Robaglia C, Crété P. Primer-dependent and primer-independent initiation of double stranded RNA synthesis by purified Arabidopsis RNA-dependent RNA polymerases RDR2 and RDR6. PLoS One 2015; 10:e0120100. [PMID: 25793874 PMCID: PMC4368572 DOI: 10.1371/journal.pone.0120100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/19/2015] [Indexed: 12/05/2022] Open
Abstract
Cellular RNA-dependent RNA polymerases (RDRs) are fundamental components of RNA silencing in plants and many other eukaryotes. In Arabidopsis thaliana genetic studies have demonstrated that RDR2 and RDR6 are involved in the synthesis of double stranded RNA (dsRNA) from single stranded RNA (ssRNA) targeted by RNA silencing. The dsRNA is subsequently cleaved by the ribonuclease DICER-like into secondary small interfering RNAs (siRNAs) that reinforce and/or maintain the silenced state of the target RNA. Models of RNA silencing propose that RDRs could use primer-independent and primer-dependent initiation to generate dsRNA from a transcript targeted by primary siRNA or microRNA (miRNA). However, the biochemical activities of RDR proteins are still partly understood. Here, we obtained active recombinant RDR2 and RDR6 in a purified form. We demonstrate that RDR2 and RDR6 have primer-independent and primer-dependent RNA polymerase activities with different efficiencies. We further show that RDR2 and RDR6 can initiate dsRNA synthesis either by elongation of 21- to 24- nucleotides RNAs hybridized to complementary RNA template or by elongation of self-primed RNA template. These findings provide new insights into our understanding of the molecular mechanisms of RNA silencing in plants.
Collapse
Affiliation(s)
- Anthony Devert
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France
- Centre National de la Recherche Scientifique, UMR 7265, Biologie Végétale et Microbiologie Environnementale, Marseille, France
- Commissariat à l’Énergie Atomique, Département des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologies, Marseille, France
| | - Nicolas Fabre
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France
- Centre National de la Recherche Scientifique, UMR 7265, Biologie Végétale et Microbiologie Environnementale, Marseille, France
- Commissariat à l’Énergie Atomique, Département des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologies, Marseille, France
| | - Maïna Floris
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France
- Centre National de la Recherche Scientifique, UMR 7265, Biologie Végétale et Microbiologie Environnementale, Marseille, France
- Commissariat à l’Énergie Atomique, Département des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologies, Marseille, France
| | - Bruno Canard
- Aix-Marseille Université, AFMB UMR 7257, Marseille, France
- CNRS, AFMB UMR 7257, Marseille, France
| | - Christophe Robaglia
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France
- Centre National de la Recherche Scientifique, UMR 7265, Biologie Végétale et Microbiologie Environnementale, Marseille, France
- Commissariat à l’Énergie Atomique, Département des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologies, Marseille, France
| | - Patrice Crété
- Aix-Marseille Université, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France
- Centre National de la Recherche Scientifique, UMR 7265, Biologie Végétale et Microbiologie Environnementale, Marseille, France
- Commissariat à l’Énergie Atomique, Département des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologies, Marseille, France
- * E-mail:
| |
Collapse
|
117
|
Huang Y, Kendall T, Forsythe ES, Dorantes-Acosta A, Li S, Caballero-Pérez J, Chen X, Arteaga-Vázquez M, Beilstein MA, Mosher RA. Ancient Origin and Recent Innovations of RNA Polymerase IV and V. Mol Biol Evol 2015; 32:1788-99. [PMID: 25767205 PMCID: PMC4476159 DOI: 10.1093/molbev/msv060] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonical DNA-dependent RNA Pol II, as well as specialized members of the RNA-dependent RNA Polymerase (RDR), Dicer-like (DCL), and Argonaute (AGO) families. Together these enzymes are required for production and activity of Pol IV-dependent (p4-)siRNAs, which trigger RNA-directed DNA methylation (RdDM) at homologous sequences. p4-siRNAs accumulate highly in developing endosperm, a specialized tissue found only in flowering plants, and are rare in nonflowering plants, suggesting that the evolution of flowers might coincide with the emergence of specialized RdDM machinery. Through comprehensive identification of RdDM genes from species representing the breadth of the land plant phylogeny, we describe the ancient origin of Pol IV and Pol V, suggesting that a nearly complete and functional RdDM pathway could have existed in the earliest land plants. We also uncover innovations in these enzymes that are coincident with the emergence of seed plants and flowering plants, and recent duplications that might indicate additional subfunctionalization. Phylogenetic analysis reveals rapid evolution of Pol IV and Pol V subunits relative to their Pol II counterparts and suggests that duplicates were retained and subfunctionalized through Escape from Adaptive Conflict. Evolution within the carboxy-terminal domain of the Pol V largest subunit is particularly striking, where illegitimate recombination facilitated extreme sequence divergence.
Collapse
Affiliation(s)
- Yi Huang
- The School of Plant Sciences, The University of Arizona
| | - Timmy Kendall
- The School of Plant Sciences, The University of Arizona
| | | | - Ana Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Veracruz, México
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside
| | | | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside
| | - Mario Arteaga-Vázquez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Veracruz, México
| | | | - Rebecca A Mosher
- The School of Plant Sciences, The University of Arizona The Bio5 Institute, The University of Arizona
| |
Collapse
|
118
|
Chen YCA, Aravin AA. Non-Coding RNAs in Transcriptional Regulation: The review for Current Molecular Biology Reports. ACTA ACUST UNITED AC 2015; 1:10-18. [PMID: 26120554 DOI: 10.1007/s40610-015-0002-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcriptional gene silencing guided by small RNAs is a process conserved from protozoa to mammals. Small RNAs loaded into Argonaute family proteins direct repressive histone modifications or DNA cytosine methylation to homologous regions of the genome. Small RNA-mediated transcriptional silencing is required for many biological processes, including repression of transposable elements, maintaining the genome stability/integrity, and epigenetic inheritance of gene expression. Here we will summarize the current knowledge about small RNA biogenesis and mechanisms of transcriptional regulation in plants, Drosophila, C. elegans and mice. Furthermore, a rapidly growing number long non-coding RNAs (lncRNAs) have been implicated as important players in transcription regulation. We will discuss current models for long non-coding RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Yung-Chia Ariel Chen
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
119
|
Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics 2015; 199:1107-25. [PMID: 25653306 DOI: 10.1534/genetics.115.174714] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/02/2015] [Indexed: 01/23/2023] Open
Abstract
All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.
Collapse
|
120
|
Abstract
Plants use 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs (lncRNAs) to direct de novo DNA methylation and transcriptional gene silencing. This process is called RNA-directed DNA methylation (RdDM). An important question in the RdDM model is what explains the target specificity of RNA polymerase IV (Pol IV), the enzyme that initiates siRNA production. Two recent papers addressed this question by characterizing the DTF1/SHH1 protein, which contains a homeodomain in the N-terminus and a novel histone-binding domain SAWADEE in the C terminus. Here we review the main results of the two studies and discuss several possible mechanisms that could contribute to Pol IV and Pol V recruitment.
Collapse
Affiliation(s)
- Heng Zhang
- Shanghai Center for Plant Stress Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Shanghai, P.R. China
| | - Xinjian He
- National Institute of Biological Sciences; Beijing, P.R. China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Shanghai, P.R. China; Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| |
Collapse
|
121
|
Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:911-6. [PMID: 25561521 DOI: 10.1073/pnas.1423603112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
DNA methylation is a mechanism of epigenetic gene regulation and genome defense conserved in many eukaryotic organisms. In Arabidopsis, the DNA methyltransferase domains rearranged methylase 2 (DRM2) controls RNA-directed DNA methylation in a pathway that also involves the plant-specific RNA Polymerase V (Pol V). Additionally, the Arabidopsis genome encodes an evolutionarily conserved but catalytically inactive DNA methyltransferase, DRM3. Here, we show that DRM3 has moderate effects on global DNA methylation and small RNA abundance and that DRM3 physically interacts with Pol V. In Arabidopsis drm3 mutants, we observe a lower level of Pol V-dependent noncoding RNA transcripts even though Pol V chromatin occupancy is increased at many sites in the genome. These findings suggest that DRM3 acts to promote Pol V transcriptional elongation or assist in the stabilization of Pol V transcripts. This work sheds further light on the mechanism by which long noncoding RNAs facilitate RNA-directed DNA methylation.
Collapse
|
122
|
Abstract
Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
Collapse
Affiliation(s)
- Daniel Holoch
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
123
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
124
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
125
|
Abstract
The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Department of Molecular and Cellular Biochemistry, and Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405
| | - Ortrun Mittelsten Scheid
- Gregor Mendel-Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| |
Collapse
|
126
|
Li S, Vandivier LE, Tu B, Gao L, Won SY, Li S, Zheng B, Gregory BD, Chen X. Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in Arabidopsis reveals features and regulation of siRNA biogenesis. Genome Res 2014; 25:235-45. [PMID: 25414514 PMCID: PMC4315297 DOI: 10.1101/gr.182238.114] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Twenty-four-nucleotide small interfering (si)RNAs are central players in RNA-directed DNA methylation (RdDM), a process that establishes and maintains DNA methylation at transposable elements to ensure genome stability in plants. The plant-specific RNA polymerase IV (Pol IV) is required for siRNA biogenesis and is believed to transcribe RdDM loci to produce primary transcripts that are converted to double-stranded RNAs (dsRNAs) by RDR2 to serve as siRNA precursors. Yet, no such siRNA precursor transcripts have ever been reported. Here, through genome-wide profiling of RNAs in genotypes that compromise the processing of siRNA precursors, we were able to identify Pol IV/RDR2-dependent transcripts from tens of thousands of loci. We show that Pol IV/RDR2-dependent transcripts correspond to both DNA strands, whereas the RNA polymerase II (Pol II)-dependent transcripts produced upon derepression of the loci are derived primarily from one strand. We also show that Pol IV/RDR2-dependent transcripts have a 5′ monophosphate, lack a poly(A) tail at the 3′ end, and contain no introns; these features distinguish them from Pol II-dependent transcripts. Like Pol II-transcribed genic regions, Pol IV-transcribed regions are flanked by A/T-rich sequences depleted in nucleosomes, which highlights similarities in Pol II- and Pol IV-mediated transcription. Computational analysis of siRNA abundance from various mutants reveals differences in the regulation of siRNA biogenesis at two types of loci that undergo CHH methylation via two different DNA methyltransferases. These findings begin to reveal features of Pol IV/RDR2-mediated transcription at the heart of genome stability in plants.
Collapse
Affiliation(s)
- Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Lee E Vandivier
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Bin Tu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Lei Gao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - So Youn Won
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA; Howard Hughes Medical Institute, University of California, Riverside, California 92521, USA
| |
Collapse
|
127
|
Costa-Nunes P, Kim JY, Hong E, Pontes O. The cytological and molecular role of domains rearranged methyltransferase3 in RNA-dependent DNA methylation of Arabidopsis thaliana. BMC Res Notes 2014; 7:721. [PMID: 25316414 PMCID: PMC4209038 DOI: 10.1186/1756-0500-7-721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/29/2014] [Indexed: 12/26/2022] Open
Abstract
Background Plants have evolved a unique epigenetic process to target DNA cytosine methylation: RNA-directed DNA methylation (RdDM). During RdDM, small RNAs (smRNAs) guide methylation of homologous DNA loci. In Arabidopsis thaliana, the de novo DNA methyltransferase that ultimately methylates cytosines guided by smRNAs in all sequence contexts is DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2). Recent reports have shown that DRM2 requires the catalytic mutated paralog DRM3 to exert its function through a still largely unknown process. To shed light on how DRM3 affects RdDM, we have further characterized its role at the molecular and cytological levels. Findings Although DRM3 is not required for RdDM loci transcriptional silencing, it specifically affects loci’s DNA methylation. Interestingly, DRM3 and DRM2 regulate the DNA methylation in a subset of loci differently. Fluorescence In Situ Hybridization and immunolocalization analyses showed that DRM3 is not required for the large-scale nuclear organization of heterochromatin during interphase, with the notable exception of the 45S ribosomal RNA loci. DRM3 localizes exclusively to the nucleus and is enriched in a round-shaped domain located in the nucleolar periphery, in which it colocalizes with components of the RdDM pathway. Conclusions Our analyses reinforce the previously proposed chaperone role of DRM3 in RdDM. Overall, our work further demonstrates that DRM3 most likely functions exclusively with DRM2 in RdDM and not with other A. thaliana DNA methyltransferases. However, DRM3’s regulation of DNA methylation is likely target- or chromatin context-dependent. DRM3 hypothetically acts in RdDM either upstream of DRM2, or in a parallel step. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-721) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Olga Pontes
- Department of Biology, University of New Mexico, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
128
|
Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits. Cell Rep 2014; 9:378-390. [PMID: 25284785 DOI: 10.1016/j.celrep.2014.08.067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/09/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023] Open
Abstract
Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yields at least two subtypes of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.
Collapse
|
129
|
He XJ, Ma ZY, Liu ZW. Non-coding RNA transcription and RNA-directed DNA methylation in Arabidopsis. MOLECULAR PLANT 2014; 7:1406-1414. [PMID: 24966349 DOI: 10.1093/mp/ssu075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA-directed DNA methylation (RdDM) is responsible for transcriptional silencing of endogenous transposable elements and introduced transgenes. This process requires non-coding RNAs produced by DNA-dependent RNA polymerases IV and V (Pol IV and Pol V). Pol IV-produced non-coding RNAs are precursors of 24-nt small interfering RNAs, whereas Pol V-produced ncRNAs directly act as scaffold RNAs. In this review, we summarize recent advances in the understanding of RdDM. In particular, we focus on the mechanisms underlying the recruitment of Pol IV and Pol V to chromatin and the targeting of RdDM.
Collapse
Affiliation(s)
- Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Ze-Yang Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
130
|
Diverse gene-silencing mechanisms with distinct requirements for RNA polymerase subunits in Zea mays. Genetics 2014; 198:1031-42. [PMID: 25164883 DOI: 10.1534/genetics.114.168518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Zea mays, transcriptional regulation of the b1 (booster1) gene requires a distal enhancer and MEDIATOR OF PARAMUTATION1 (MOP1), MOP2, and MOP3 proteins orthologous to Arabidopsis components of the RNA-dependent DNA methylation pathway. We compared the genetic requirements for MOP1, MOP2, and MOP3 for endogenous gene silencing by two hairpin transgenes with inverted repeats of the a1 (anthocyaninless1) gene promoter (a1pIR) and the b1 gene enhancer (b1IR), respectively. The a1pIR transgene induced silencing of endogenous A1 in mop1-1 and mop3-1, but not in Mop2-1 homozygous plants. This finding suggests that transgene-derived small interfering RNAs (siRNAs) circumvented the requirement for MOP1, a predicted RNA-dependent RNA polymerase, and MOP3, the predicted largest subunit of RNA polymerase IV (Pol IV). Because the Arabidopsis protein orthologous to MOP2 is the second largest subunit of Pol IV and V, our results may indicate that hairpin-induced siRNAs cannot bypass the requirement for the predicted scaffolding activity of Pol V. In contrast to a1pIR, the b1IR transgene silenced endogenous B1 in all three homozygous mutant genotypes--mop1-1, Mop2-1, and mop3-1--suggesting that transgene mediated b1 silencing did not involve MOP2-containing Pol V complexes. Based on the combined results for a1, b1, and three previously described loci, we propose a speculative hypothesis of locus-specific deployment of Pol II, MOP2-containing Pol V, or alternative versions of Pol V with second largest subunits other than MOP2 to explain the mechanistic differences in silencing at specific loci, including one example associated with paramutation.
Collapse
|
131
|
Zhang H, Zhu JK. Emerging roles of RNA processing factors in regulating long non-coding RNAs. RNA Biol 2014; 11:793-7. [PMID: 25144332 DOI: 10.4161/rna.29731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) can be important regulators of various biological processes such as RNA-directed DNA methylation (RdDM). In the RdDM pathway, recruitment of the DNA methylation complex is mediated through complementary pairing between scaffold RNAs and Argonaute-associated siRNAs. Scaffold RNAs are chromatin-associated lncRNAs transcribed by RNA polymerase Pol V or Pol II, while siRNAs originate from Pol IV- or Pol II-dependent production of lncRNAs. In contrast to the vast literature on co-transcriptional and post-transcriptional processing of mRNAs, information is limited for lncRNA regulation that enables their production and function. Recently Arabidopsis RRP6L1, a plant paralog of the conserved nuclear RNA surveillance protein Rrp6, was shown to mediate RdDM through retention of lncRNAs in the chromatin, thereby revealing that accumulation of functional lncRNAs requires more than simply RNA polymerases. By focusing on the canonical RdDM pathway, here we summarize recent evidence that indicate co-transcriptional and/or post-transcriptional regulation of lncRNAs, and highlight the emerging theme of lncRNA regulation by RNA processing factors.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA; Shanghai Center for Plant Stress Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Beijing, PR China
| |
Collapse
|
132
|
Wheeler BS. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response. Chromosome Res 2014; 21:587-600. [PMID: 24254230 DOI: 10.1007/s10577-013-9394-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.
Collapse
Affiliation(s)
- Bayly S Wheeler
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, 94720, USA,
| |
Collapse
|
133
|
Connecting the dots of RNA-directed DNA methylation in Arabidopsis thaliana. Chromosome Res 2014; 22:225-40. [PMID: 24846724 DOI: 10.1007/s10577-014-9425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Noncoding RNAs are the rising stars of genome regulation and are crucial to an organism's metabolism, development, and defense. One of their most notable functions is its ability to direct epigenetic modifications through small RNA molecules to specific genomic regions, ensuring transcriptional regulation, proper genome organization, and maintenance of genome integrity. Here, we review the current knowledge of the spatial organization of the Arabidopsis thaliana RNA-directed DNA methylation pathway within the cell nucleus, which, while known to be essential for the proper establishment of epigenetic modifications, remains poorly understood. We will also discuss possible future cytological approaches that have the potential of unveiling functional insights into how small RNA-directed epigenetics is regulated through the spatiotemporal regulation of its major components within the cell.
Collapse
|
134
|
Abstract
Cytosine DNA methylation is an epigenetic modification in eukaryotes that maintains genome integrity and regulates gene expression. The DNA methylation patterns in plants are more complex than those in animals, and plants and animals have common as well as distinct pathways in regulating DNA methylation. Recent studies involving genetic, molecular, biochemical and genomic approaches have greatly expanded our knowledge of DNA methylation in plants. The roles of many proteins as well as non-coding RNAs in DNA methylation have been uncovered.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521 ; Howard Hughes Medical Institute, University of California, Riverside, CA 92521
| |
Collapse
|
135
|
Abstract
RNA-directed DNA methylation (RdDM) is the major small RNA-mediated epigenetic pathway in plants. RdDM requires a specialized transcriptional machinery that comprises two plant-specific RNA polymerases - Pol IV and Pol V - and a growing number of accessory proteins, the functions of which in the RdDM mechanism are only partially understood. Recent work has revealed variations in the canonical RdDM pathway and identified factors that recruit Pol IV and Pol V to specific target sequences. RdDM, which transcriptionally represses a subset of transposons and genes, is implicated in pathogen defence, stress responses and reproduction, as well as in interallelic and intercellular communication.
Collapse
|
136
|
Kim MY, Zilberman D. DNA methylation as a system of plant genomic immunity. TRENDS IN PLANT SCIENCE 2014; 19:320-6. [PMID: 24618094 DOI: 10.1016/j.tplants.2014.01.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 05/06/2023]
Abstract
Transposons are selfish genetic sequences that can increase their copy number and inflict substantial damage on their hosts. To combat these genomic parasites, plants have evolved multiple pathways to identify and silence transposons by methylating their DNA. Plants have also evolved mechanisms to limit the collateral damage from the antitransposon machinery. In this review, we examine recent developments that have elucidated many of the molecular workings of these pathways. We also highlight the evidence that the methylation and demethylation pathways interact, indicating that plants have a highly sophisticated, integrated system of transposon defense that has an important role in the regulation of gene expression.
Collapse
Affiliation(s)
- M Yvonne Kim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
137
|
An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis. Mol Cell 2014; 54:418-30. [PMID: 24726328 DOI: 10.1016/j.molcel.2014.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/02/2014] [Accepted: 02/28/2014] [Indexed: 01/11/2023]
Abstract
Rrp6-mediated nuclear RNA surveillance tunes eukaryotic transcriptomes through noncoding RNA degradation and mRNA quality control, including exosomal RNA decay and transcript retention triggered by defective RNA processing. It is unclear whether Rrp6 can positively regulate noncoding RNAs and whether RNA retention occurs in normal cells. Here we report that AtRRP6L1, an Arabidopsis Rrp6-like protein, controls RNA-directed DNA methylation through positive regulation of noncoding RNAs. Discovered in a forward genetic screen, AtRRP6L1 mutations decrease DNA methylation independently of exosomal RNA degradation. Accumulation of Pol V-transcribed scaffold RNAs requires AtRRP6L1 that binds to RNAs in vitro and in vivo. AtRRP6L1 helps retain Pol V-transcribed RNAs in chromatin to enable their scaffold function. In addition, AtRRP6L1 is required for genome-wide Pol IV-dependent siRNA production that may involve retention of Pol IV transcripts. Our results suggest that AtRRP6L1 functions in epigenetic regulation by helping with the retention of noncoding RNAs in normal cells.
Collapse
|
138
|
Kubat Z, Zluvova J, Vogel I, Kovacova V, Cermak T, Cegan R, Hobza R, Vyskot B, Kejnovsky E. Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. THE NEW PHYTOLOGIST 2014; 202:662-678. [PMID: 24456522 DOI: 10.1111/nph.12669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/25/2013] [Indexed: 05/18/2023]
Abstract
Some transposable elements (TEs) show extraordinary variance in abundance along sex chromosomes but the mechanisms responsible for this variance are unknown. Here, we studied Ogre long terminal repeat (LTR) retrotransposons in Silene latifolia, a dioecious plant with evolutionarily young heteromorphic sex chromosomes. Ogre elements are ubiquitous in the S. latifolia genome but surprisingly absent on the Y chromosome. Bacterial artificial chromosome (BAC) library analysis and fluorescence in situ hybridization (FISH) were used to determine Ogre structure and chromosomal localization. Next generation sequencing (NGS) data were analysed to assess the transcription level and abundance of small RNAs. Methylation of Ogres was determined by bisulphite sequencing. Phylogenetic analysis was used to determine mobilization time and selection forces acting on Ogre elements. We characterized three Ogre families ubiquitous in the S. latifolia genome. One family is nearly absent on the Y chromosome despite all the families having similar structures and spreading mechanisms. We showed that Ogre retrotransposons evolved before sex chromosomes appeared but were mobilized after formation of the Y chromosome. Our data suggest that the absence of one Ogre family on the Y chromosome may be caused by 24-nucleotide (24-nt) small RNA-mediated silencing leading to female-specific spreading. Our findings highlight epigenetic silencing mechanisms as potentially crucial factors in sex-specific spreading of some TEs, but other possible mechanisms are also discussed.
Collapse
Affiliation(s)
- Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Ivan Vogel
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Viera Kovacova
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Tomas Cermak
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc, 77200, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, Brno, 61200, Czech Republic
- Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| |
Collapse
|
139
|
Mathieu O, Bouché N. Interplay between chromatin and RNA processing. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:60-65. [PMID: 24631845 DOI: 10.1016/j.pbi.2014.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
The processing of pre-mRNAs, including the selection of polyadenylation sites, is influenced by the surrounding chromatin context. We review here recent studies in Arabidopsis thaliana highlighting the intricate and reciprocal interplay between chromatin state and RNA processing. The studies have revealed that transcription can be influenced by the presence, in gene introns, of combination of epigenetic marks typical of heterochromatin. New factors binding to these marks have been identified and shown to play key roles in controlling the use of polyadenylation sites and processing of functional mRNAs. Concomitantly, several proteins of both the splicing and the polyadenylation machineries are also emerging as regulators of DNA methylation patterns and chromatin silencing.
Collapse
Affiliation(s)
- Olivier Mathieu
- Clermont Université, Université Blaise Pascal, GReD, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6293, GReD, F-63001 Clermont-Ferrand, France; INSERM, UMR 1103, GReD, F-63001 Clermont-Ferrand, France.
| | - Nicolas Bouché
- INRA, UMR 1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France.
| |
Collapse
|
140
|
Pecinka A, Liu CH. Drugs for Plant Chromosome and Chromatin Research. Cytogenet Genome Res 2014; 143:51-9. [DOI: 10.1159/000360774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
141
|
Huang CF, Zhu JK. RNA Splicing Factors and RNA-Directed DNA Methylation. BIOLOGY 2014; 3:243-54. [PMID: 24833507 PMCID: PMC4085605 DOI: 10.3390/biology3020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/16/2022]
Abstract
RNA-directed histone and/or DNA modification is a conserved mechanism for the establishment of epigenetic marks from yeasts and plants to mammals. The heterochromation formation in yeast is mediated by RNAi-directed silencing mechanism, while the establishment of DNA methylation in plants is through the RNA-directed DNA methylation (RdDM) pathway. Recently, splicing factors are reported to be involved in both RNAi-directed heterochromatin formation in yeast and the RdDM pathway in plants. In yeast, splicing factors may provide a platform for facilitating the siRNA generation through an interaction with RDRC and thereby affect the heterochromatin formation, whereas in plants, various splicing factors seem to act at different steps in the RdDM pathway.
Collapse
Affiliation(s)
- Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
142
|
Blevins T, Pontvianne F, Cocklin R, Podicheti R, Chandrasekhara C, Yerneni S, Braun C, Lee B, Rusch D, Mockaitis K, Tang H, Pikaard CS. A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 2014; 54:30-42. [PMID: 24657166 DOI: 10.1016/j.molcel.2014.02.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/08/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
In Arabidopsis, multisubunit RNA polymerases IV and V orchestrate RNA-directed DNA methylation (RdDM) and transcriptional silencing, but what identifies the loci to be silenced is unclear. We show that heritable silent locus identity at a specific subset of RdDM targets requires HISTONE DEACETYLASE 6 (HDA6) acting upstream of Pol IV recruitment and siRNA biogenesis. At these loci, epigenetic memory conferring silent locus identity is erased in hda6 mutants such that restoration of HDA6 activity cannot restore siRNA biogenesis or silencing. Silent locus identity is similarly lost in mutants for the cytosine maintenance methyltransferase, MET1. By contrast, pol IV or pol V mutants disrupt silencing without erasing silent locus identity, allowing restoration of Pol IV or Pol V function to restore silencing. Collectively, these observations indicate that silent locus specification and silencing are separable steps that together account for epigenetic inheritance of the silenced state.
Collapse
Affiliation(s)
- Todd Blevins
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Frédéric Pontvianne
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Ross Cocklin
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Chinmayi Chandrasekhara
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Satwica Yerneni
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Chris Braun
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Brandon Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Doug Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Keithanne Mockaitis
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Haixu Tang
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
143
|
Liu ZW, Shao CR, Zhang CJ, Zhou JX, Zhang SW, Li L, Chen S, Huang HW, Cai T, He XJ. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genet 2014; 10:e1003948. [PMID: 24465213 PMCID: PMC3898904 DOI: 10.1371/journal.pgen.1003948] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/25/2013] [Indexed: 12/05/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is required for transcriptional silencing of transposons and other DNA repeats in Arabidopsis thaliana. Although previous research has demonstrated that the SET domain-containing SU(VAR)3–9 homologs SUVH2 and SUVH9 are involved in the RdDM pathway, the underlying mechanism remains unknown. Our results indicated that SUVH2 and/or SUVH9 not only interact with the chromatin-remodeling complex termed DDR (DMS3, DRD1, and RDM1) but also with the newly characterized complex composed of two conserved Microrchidia (MORC) family proteins, MORC1 and MORC6. The effect of suvh2suvh9 on Pol IV-dependent siRNA accumulation and DNA methylation is comparable to that of the Pol V mutant nrpe1 and the DDR complex mutant dms3, suggesting that SUVH2 and SUVH9 are functionally associated with RdDM. Our CHIP assay demonstrated that SUVH2 and SUVH9 are required for the occupancy of Pol V at RdDM loci and facilitate the production of Pol V-dependent noncoding RNAs. Moreover, SUVH2 and SUVH9 are also involved in the occupancy of DMS3 at RdDM loci. The putative catalytic active site in the SET domain of SUVH2 is dispensable for the function of SUVH2 in RdDM and H3K9 dimethylation. We propose that SUVH2 and SUVH9 bind to methylated DNA and facilitate the recruitment of Pol V to RdDM loci by associating with the DDR complex and the MORC complex. Small RNA-induced transcriptional silencing at transposable elements and other DNA repeats is an evolutionarily conserved mechanism in plants, fungi, and animals. In Arabidopsis thaliana, an RNA-directed DNA methylation pathway is involved in transcriptional silencing. Noncoding RNAs produced by the plant-specific DNA-dependent RNA polymerase V are required for RNA-directed DNA methylation. A chromatin-remodeling complex was previously demonstrated to be required for the occupancy of DNA-dependent RNA polymerase V at RNA-directed DNA methylation loci. Our results suggest that two putative histone methyltransferases are inactive in their enzymatic activity and act as adaptor proteins to facilitate the recruitment of DNA-dependent RNA polymerase V to chromatin by associating with the chromatin-remodeling complex. In combination with previous studies, we propose that the inactive histone methyltransferases bind to methylated DNA, thereby linking DNA methylation to Pol V transcription at RNA-directed DNA methylation loci.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, China
| | | | - Cui-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Su-Wei Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
144
|
Nagano H, Fukudome A, Hiraguri A, Moriyama H, Fukuhara T. Distinct substrate specificities of Arabidopsis DCL3 and DCL4. Nucleic Acids Res 2013; 42:1845-56. [PMID: 24214956 PMCID: PMC3919572 DOI: 10.1093/nar/gkt1077] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In Arabidopsis thaliana, Dicer-like 3 (DCL3) and Dicer-like 4 (DCL4) cleave long, perfect double-stranded RNAs (dsRNAs) into 24 and 21 nucleotides (nt) small interfering RNAs, respectively, which in turn function in RNA-directed DNA methylation and RNA interference, respectively. To reveal how DCL3 and DCL4 individually recognize long perfect dsRNAs as substrates, we biochemically characterized DCL3 and DCL4 and compared their enzymatic properties. DCL3 preferentially cleaves short dsRNAs with 5′ phosphorylated adenosine or uridine and a 1 nt 3′ overhang, whereas DCL4 cleaves long dsRNAs with blunt ends or with a 1 or 2 nt 3′ overhang with similar efficiency. DCL3 produces 24 nt RNA duplexes with 2 nt 3′ overhangs by the 5′ counting rule. Inorganic phosphate, NaCl and KCl enhance DCL3 activity but inhibit DCL4 activity. These results indicate that plants use DCLs with distinct catalytic profiles to ensure each dsRNA substrate generates only a specific length of siRNAs that trigger a unique siRNA-mediated response.
Collapse
Affiliation(s)
- Hideaki Nagano
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
145
|
Hajheidari M, Koncz C, Eick D. Emerging roles for RNA polymerase II CTD in Arabidopsis. TRENDS IN PLANT SCIENCE 2013; 18:633-43. [PMID: 23910452 DOI: 10.1016/j.tplants.2013.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/12/2013] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Post-translational modifications of the carboxy-terminal domain of the largest subunit of RNA polymerase II (RNAPII CTD) provide recognition marks to coordinate recruitment of numerous nuclear factors controlling transcription, cotranscriptional RNA processing, chromatin remodeling, and RNA export. Compared with the progress in yeast and mammals, deciphering the regulatory roles of position-specific combinatorial CTD modifications, the so-called CTD code, is still at an early stage in plants. In this review, we discuss some of the recent advances in understanding of the molecular mechanisms controlling the deposition and recognition of RNAPII CTD marks in plants during the transcriptional cycle and highlight some intriguing differences between regulatory components characterized in yeast, mammals, and plants.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| | | | | |
Collapse
|
146
|
Huang Y, Kendall T, Mosher RA. Pol IV-Dependent siRNA Production is Reduced in Brassica rapa. BIOLOGY 2013; 2:1210-23. [PMID: 24833221 PMCID: PMC4009798 DOI: 10.3390/biology2041210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/16/2022]
Abstract
Plants produce a diverse array of small RNA molecules capable of gene regulation, including Pol IV-dependent short interfering (p4-si)RNAs that trigger transcriptional gene silencing. Small RNA transcriptomes are available for many plant species, but mutations affecting the synthesis of Pol IV-dependent siRNAs are characterized only in Arabidopsis and maize, leading to assumptions regarding nature of p4-siRNAs in all other species. We have identified a mutation in the largest subunit of Pol IV, NRPD1, that impacts Pol IV activity in Brassica rapa, an agriculturally important relative of the reference plant Arabidopsis. Using this mutation we characterized the Pol IV-dependent and Pol IV-independent small RNA populations in B. rapa. In addition, our analysis demonstrates reduced production of p4-siRNAs in B. rapa relative to Arabidopsis. B. rapa genomic regions are less likely to generate p4-siRNAs than Arabidopsis but more likely to generate Pol IV-independent siRNAs, including 24 nt RNAs mapping to transposable elements. These observations underscore the diversity of small RNAs produced by plants and highlight the importance of genetic studies during small RNA analysis.
Collapse
Affiliation(s)
- Yi Huang
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Timmy Kendall
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
147
|
Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol 2013; 24:100-7. [PMID: 24012194 DOI: 10.1016/j.tcb.2013.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that inheritance of phenotypes in plants is more likely to involve epigenetics than in mammals. There are two reasons for this difference. First, there is a RNA-based system in plants involving small (s)RNAs that influences de novo establishment and maintenance of DNA methylation at many sites in plant genomes. These regions of methylated DNA are epigenetic marks with the potential to affect gene expression that are transmitted between dividing cells of the same generation. Second, unlike mammals, DNA methyltransferases in plants are active during gametogenesis and embryogenesis so that patterns of DNA methylation can persist from parent to progeny and do not need to be reset. We discuss how the effects of stress and genome interactions in hybrid plants are two systems that illustrate how RNA-based mechanisms can influence heritable phenotypes in plants.
Collapse
|
148
|
Brabbs TR, He Z, Hogg K, Kamenski A, Li Y, Paszkiewicz KH, Moore KA, O'Toole P, Graham IA, Jones L. The stochastic silencing phenotype of Arabidopsis morc6 mutants reveals a role in efficient RNA-directed DNA methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:836-46. [PMID: 23675613 DOI: 10.1111/tpj.12246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/09/2013] [Indexed: 05/18/2023]
Abstract
The RNA-directed DNA methylation (RdDM) pathway is of central importance to the initiation and maintenance of transcriptional gene silencing in plants. DNA methylation is directed to target sequences by a mechanism that involves production of small RNAs by RNA polymerase IV and long non-coding RNAs by RNA polymerase V. DNA methylation then leads to recruitment of histone-modifying enzymes, followed by establishment of a silenced chromatin state. Recently MORC6, a member of the microrchidia (MORC) family of adenosine triphosphatases (ATPases), has been shown to be involved in transcriptional gene silencing. However, reports differ regarding whether MORC6 is involved in RdDM itself or acts downstream of DNA methylation to enable formation of higher-order chromatin structure. Here we demonstrate that MORC6 is required for efficient RdDM at some target loci, and, using a GFP reporter system, we found that morc6 mutants show a stochastic silencing phenotype. By using cell sorting to separate silenced and unsilenced cells, we show that release of silencing at this locus is associated with a loss of DNA methylation. Thus our data support a view that MORC6 influences RdDM and that it is not acting downstream of DNA methylation. For some loci, efficient initiation or maintenance of DNA methylation may depend on the ability to form higher-order chromatin structure.
Collapse
Affiliation(s)
- Thomas R Brabbs
- Department of Biology, University of York, YO10 5DD, York, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
150
|
De Novo Methyltransferase, OsDRM2, Interacts with the ATP-Dependent RNA Helicase, OseIF4A, in Rice. J Mol Biol 2013; 425:2853-66. [DOI: 10.1016/j.jmb.2013.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 12/12/2022]
|