101
|
Roux J, Hafner M, Bandara S, Sims JJ, Hudson H, Chai D, Sorger PK. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol Syst Biol 2015; 11:803. [PMID: 25953765 PMCID: PMC4461398 DOI: 10.15252/msb.20145584] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
When cells are exposed to death ligands such as TRAIL, a fraction undergoes apoptosis and a fraction survives; if surviving cells are re-exposed to TRAIL, fractional killing is once again observed. Therapeutic antibodies directed against TRAIL receptors also cause fractional killing, even at saturating concentrations, limiting their effectiveness. Fractional killing arises from cell-to-cell fluctuations in protein levels (extrinsic noise), but how this results in a clean bifurcation between life and death remains unclear. In this paper, we identify a threshold in the rate and timing of initiator caspase activation that distinguishes cells that live from those that die; by mapping this threshold, we can predict fractional killing of cells exposed to natural and synthetic agonists alone or in combination with sensitizing drugs such as bortezomib. A phenomenological model of the threshold also quantifies the contributions of two resistance genes (c-FLIP and Bcl-2), providing new insight into the control of cell fate by opposing pro-death and pro-survival proteins and suggesting new criteria for evaluating the efficacy of therapeutic TRAIL receptor agonists.
Collapse
Affiliation(s)
- Jérémie Roux
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Marc Hafner
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Samuel Bandara
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Joshua J Sims
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Diana Chai
- Merrimack Pharmaceuticals, Cambridge, MA, USA
| | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
102
|
Enhancing the antitumor efficacy of a cell-surface death ligand by covalent membrane display. Proc Natl Acad Sci U S A 2015; 112:5679-84. [PMID: 25902490 DOI: 10.1073/pnas.1418962112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TNF superfamily death ligands are expressed on the surface of immune cells and can trigger apoptosis in susceptible cancer cells by engaging cognate death receptors. A recombinant soluble protein comprising the ectodomain of Apo2 ligand/TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) has shown remarkable preclinical anticancer activity but lacked broad efficacy in patients, possibly owing to insufficient exposure or potency. We observed that antibody cross-linking substantially enhanced cytotoxicity of soluble Apo2L/TRAIL against diverse cancer cell lines. Presentation of the ligand on glass-supported lipid bilayers enhanced its ability to drive receptor microclustering and apoptotic signaling. Furthermore, covalent surface attachment of Apo2L/TRAIL onto liposomes--synthetic lipid-bilayer nanospheres--similarly augmented activity. In vivo, liposome-displayed Apo2L/TRAIL achieved markedly better exposure and antitumor activity. Thus, covalent synthetic-membrane attachment of a cell-surface ligand enhances efficacy, increasing therapeutic potential. These findings have translational implications for liposomal approaches as well as for Apo2L/TRAIL and other clinically relevant TNF ligands.
Collapse
|
103
|
Petersen SL, Chen TT, Lawrence DA, Marsters SA, Gonzalvez F, Ashkenazi A. TRAF2 is a biologically important necroptosis suppressor. Cell Death Differ 2015; 22:1846-57. [PMID: 25882049 DOI: 10.1038/cdd.2015.35] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/11/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)-driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)-previously implicated in apoptosis suppression-also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα-driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.
Collapse
Affiliation(s)
- S L Petersen
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - T T Chen
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - D A Lawrence
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - S A Marsters
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - F Gonzalvez
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - A Ashkenazi
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
104
|
Chen TT, Filvaroff E, Peng J, Marsters S, Jubb A, Koeppen H, Merchant M, Ashkenazi A. MET Suppresses Epithelial VEGFR2 via Intracrine VEGF-induced Endoplasmic Reticulum-associated Degradation. EBioMedicine 2015; 2:406-20. [PMID: 26137585 PMCID: PMC4486192 DOI: 10.1016/j.ebiom.2015.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) drive cancer through their respective receptors, MET and VEGF receptor 2 (VEGFR2). VEGFR2 inhibits MET by promoting MET dephosphorylation. However, whether MET conversely regulates VEGFR2 remains unknown. Here we show that MET suppresses VEGFR2 protein by inducing its endoplasmic-reticulum-associated degradation (ERAD), via intracrine VEGF action. HGF-MET signaling in epithelial cancer cells promoted VEGF biosynthesis through PI3-kinase. In turn, VEGF and VEGFR2 associated within the ER, activating inositol-requiring enzyme 1α, and thereby facilitating ERAD-mediated depletion of VEGFR2. MET disruption upregulated VEGFR2, inducing compensatory tumor growth via VEGFR2 and MEK. However, concurrent disruption of MET and either VEGF or MEK circumvented this, enabling more profound tumor inhibition. Our findings uncover unique cross-regulation between MET and VEGFR2-two RTKs that play significant roles in tumor malignancy. Furthermore, these results suggest rational combinatorial strategies for targeting RTK signaling pathways more effectively, which has potentially important implications for cancer therapy.
Collapse
Affiliation(s)
- Tom T Chen
- Cancer Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ellen Filvaroff
- Cancer Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jing Peng
- In Vivo Pharmacology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Scot Marsters
- Cancer Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Adrian Jubb
- Research Pathology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hartmut Koeppen
- Research Pathology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark Merchant
- In Vivo Pharmacology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
105
|
Fas and TRAIL 'death receptors' as initiators of inflammation: Implications for cancer. Semin Cell Dev Biol 2015; 39:26-34. [PMID: 25655947 DOI: 10.1016/j.semcdb.2015.01.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/19/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
Fas (CD95/APO-1) and TRAIL (CD253, TNFSF10, APO2) are members of a subset of the TNF receptor superfamily known as 'death receptors'. To date, the overwhelming majority of studies on Fas and TRAIL (TNF-related apoptosis-inducing ligand) have explored the role of these receptors as initiators of apoptosis. However, sporadic reports also suggest that engagement of the Fas and TRAIL receptors can lead to other outcomes such as cytokine and chemokine production, cell proliferation, cell migration and differentiation. Indeed, although transformed cells frequently express Fas and TRAIL, most do not undergo apoptosis upon engagement of these receptors and significant effort has been devoted toward exploring how to sensitize such cells to the pro-apoptotic effects of 'death receptor' stimulation. Moreover, the expression of Fas and TRAIL receptors is greatly elevated in many cancer types such as hepatocellular carcinoma, renal carcinoma and ovarian cancer, suggesting that such tumors benefit from the expression of these receptors. Furthermore, several studies have shown that tumor proliferation, progression and invasion can be impaired through blocking or downregulation of Fas expression, but the mechanistic basis for these effects is largely unknown. Thus, the characterization of Fas and TRAIL as 'death receptors' is a gross oversimplification, especially in the context of cancer. It is becoming increasingly clear that 'death receptor' engagement can lead to outcomes, other than apoptosis, that become subverted by certain tumors to their benefit. Here we will discuss death-independent outcomes of Fas and TRAIL signaling and their implications for cancer.
Collapse
|
106
|
Singh K, Poteryakhina A, Zheltukhin A, Bhatelia K, Prajapati P, Sripada L, Tomar D, Singh R, Singh AK, Chumakov PM, Singh R. NLRX1 acts as tumor suppressor by regulating TNF-α induced apoptosis and metabolism in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1073-86. [PMID: 25639646 DOI: 10.1016/j.bbamcr.2015.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/23/2014] [Accepted: 01/21/2015] [Indexed: 12/29/2022]
Abstract
Chronic inflammation in tumor microenvironment plays an important role at different stages of tumor development. The specific mechanisms of the association and its role in providing a survival advantage to the tumor cells are not well understood. Mitochondria are emerging as a central platform for the assembly of signaling complexes regulating inflammatory pathways, including the activation of type-I IFN and NF-κB. These complexes in turn may affect metabolic functions of mitochondria and promote tumorigenesis. NLRX1, a mitochondrial NOD-like receptor protein, regulate inflammatory pathways, however its role in regulation of cross talk of cell death and metabolism and its implication in tumorigenesis is not well understood. Here we demonstrate that NLRX1 sensitizes cells to TNF-α induced cell death by activating Caspase-8. In the presence of TNF-α, NLRX1 and active subunits of Caspase-8 are preferentially localized to mitochondria and regulate the mitochondrial ROS generation. NLRX1 regulates mitochondrial Complex I and Complex III activities to maintain ATP levels in the presence of TNF-α. The expression of NLRX1 compromises clonogenicity, anchorage-independent growth, migration of cancer cells in vitro and suppresses tumorigenicity in vivo in nude mice. We conclude that NLRX1 acts as a potential tumor suppressor by regulating the TNF-α induced cell death and metabolism.
Collapse
Affiliation(s)
- Kritarth Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India; Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | | | - Andrei Zheltukhin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Khyati Bhatelia
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India; Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Paresh Prajapati
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India; Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Lakshmi Sripada
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India; Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhanendra Tomar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Rochika Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Arun K Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
107
|
Panayotova-Dimitrova D, Feoktistova M, Ploesser M, Kellert B, Hupe M, Horn S, Makarov R, Jensen F, Porubsky S, Schmieder A, Zenclussen AC, Marx A, Kerstan A, Geserick P, He YW, Leverkus M. cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. Cell Rep 2015; 5:397-408. [PMID: 24209745 DOI: 10.1016/j.celrep.2013.09.035] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/20/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022] Open
Abstract
FADD, caspase-8, and cFLIP regulate the outcome of cell death signaling. Mice that constitutively lack these molecules die at an early embryonic age, whereas tissue-specific constitutive deletion of FADD or caspase-8 results in inflammatory skin disease caused by increased necroptosis. The function of cFLIP in the skin in vivo is unknown. In contrast to tissue-specific caspase-8 knockout, we show that mice constitutively lacking cFLIP in the epidermis die around embryonic days 10 and 11. When cFLIP expression was abrogated in adult skin of cFLIPfl/fl-K14CreERtam mice, severe inflammation of the skin with concomitant caspase activation and apoptotic, but not necroptotic, cell death developed. Apoptosis was dependent of autocrine tumor necrosis factor production triggered by loss of cFLIP. In addition, epidermal cFLIP protein was lost in patients with severe drug reactions associated with epidermal apoptosis. Our data demonstrate the importance of cFLIP for the integrity of the epidermis and for silencing of spontaneous skin inflammation.
Collapse
|
108
|
TRAF-mediated modulation of NF-kB AND JNK Activation by TNFR2. Cell Signal 2014; 26:2658-66. [DOI: 10.1016/j.cellsig.2014.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
|
109
|
Bullenkamp J, Raulf N, Ayaz B, Walczak H, Kulms D, Odell E, Thavaraj S, Tavassoli M. Bortezomib sensitises TRAIL-resistant HPV-positive head and neck cancer cells to TRAIL through a caspase-dependent, E6-independent mechanism. Cell Death Dis 2014; 5:e1489. [PMID: 25341043 PMCID: PMC4649534 DOI: 10.1038/cddis.2014.455] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/12/2014] [Accepted: 09/10/2014] [Indexed: 11/09/2022]
Abstract
Human papillomavirus (HPV) is causative for a new and increasing form of head and neck squamous cell carcinomas (HNSCCs). Although localised HPV-positive cancers have a favourable response to radio-chemotherapy (RT/CT), the impact of HPV in advanced or metastatic HNSCC remains to be defined and targeted therapeutics need to be tested for cancers resistant to RT/CT. To this end, we investigated the sensitivity of HPV-positive and -negative HNSCC cell lines to TRAIL (tumour necrosis factor-related apoptosis-inducing ligand), which induces tumour cell-specific apoptosis in various cancer types. A clear correlation was observed between HPV positivity and resistance to TRAIL compared with HPV-negative head and neck cancer cell lines. All TRAIL-resistant HPV-positive cell lines tested were sensitised to TRAIL-induced cell death by treatment with bortezomib, a clinically approved proteasome inhibitor. Bortezomib-mediated sensitisation to TRAIL was associated with enhanced activation of caspase-8, -9 and -3, elevated membrane expression levels of TRAIL-R2, cytochrome c release and G2/M arrest. Knockdown of caspase-8 significantly blocked cell death induced by the combination therapy, whereas the BH3-only protein Bid was not required for induction of apoptosis. XIAP depletion increased the sensitivity of both HPV-positive and -negative cells to TRAIL alone or in combination with bortezomib. In contrast, restoration of p53 following E6 knockdown in HPV-positive cells had no effect on their sensitivity to either single or combination therapy, suggesting a p53-independent pathway for the observed response. In summary, bortezomib-mediated proteasome inhibition sensitises previously resistant HPV-positive HNSCC cells to TRAIL-induced cell death through a mechanism involving both the extrinsic and intrinsic pathways of apoptosis. The cooperative effect of these two targeted anticancer agents therefore represents a promising treatment strategy for RT/CT-resistant HPV-associated head and neck cancers.
Collapse
Affiliation(s)
- J Bullenkamp
- Department of Molecular Oncology, King's College London, Guy's Campus, Hodgkin Building, London SE1 1UL, UK
| | - N Raulf
- Department of Molecular Oncology, King's College London, Guy's Campus, Hodgkin Building, London SE1 1UL, UK
| | - B Ayaz
- Department of Oral Pathology, King's College London, Guy's Campus, Dental Institute, London SE1 9RT, UK
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - D Kulms
- Experimental Dermatology, Department of Dermatology, TU Dresden, Dresden 01307, Germany
| | - E Odell
- Department of Oral Pathology, King's College London, Guy's Campus, Dental Institute, London SE1 9RT, UK
| | - S Thavaraj
- Department of Oral Pathology, King's College London, Guy's Campus, Dental Institute, London SE1 9RT, UK
| | - M Tavassoli
- Department of Molecular Oncology, King's College London, Guy's Campus, Hodgkin Building, London SE1 1UL, UK
| |
Collapse
|
110
|
TRAF2 inhibits TRAIL- and CD95L-induced apoptosis and necroptosis. Cell Death Dis 2014; 5:e1444. [PMID: 25299769 PMCID: PMC4649511 DOI: 10.1038/cddis.2014.404] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/08/2014] [Accepted: 08/26/2014] [Indexed: 01/06/2023]
Abstract
The relevance of the adaptor protein TNF receptor-associated factor 2 (TRAF2) for signal transduction of the death receptor tumour necrosis factor receptor1 (TNFR1) is well-established. The role of TRAF2 for signalling by CD95 and the TNF-related apoptosis inducing ligand (TRAIL) DRs, however, is only poorly understood. Here, we observed that knockdown (KD) of TRAF2 sensitised keratinocytes for TRAIL- and CD95L-induced apoptosis. Interestingly, while cell death was fully blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) in control cells, TRAF2-depleted keratinocytes were only partly rescued from TRAIL- and CD95L-induced cell death. In line with the idea the only partially protective effect of zVAD-fmk on TRAIL- and CD95L-treated TRAF2-depleted keratinocytes is due to the induction of necroptosis, combined treatment with zVAD-fmk and the receptor interacting protein 1 (RIP1) inhibitor necrostatin-1 [corrected] fully rescued these cells. To better understand the impact of TRAF2 levels on RIP1- and RIP3-dependent necroptosis and RIP3-independent apoptosis, we performed experiments in HeLa cells that lack endogenous RIP3 and HeLa cells stably transfected with RIP3. HeLa cells, in which necroptosis has no role, were markedly sensitised to TRAIL-induced caspase-dependent apoptosis by TRAF2 KD. In RIP3-expressing HeLa transfectants, however, KD of TRAF2 also strongly sensitised for TRAIL-induced necroptosis. Noteworthy, priming of keratinocytes with soluble TWEAK, which depletes the cytosolic pool of TRAF2-containing protein complexes, resulted in strong sensitisation for TRAIL-induced necroptosis but had only a very limited effect on TRAIL-induced apoptosis. The necroptotic TRAIL response was not dependent on endogenously produced TNF and TNFR signalling, since blocking TNF by TNFR2-Fc or anti-TNFα had no effect on necroptosis induction. Taken together, we identified TRAF2 not only as a negative regulator of DR-induced apoptosis but in particular also as an antagonist of TRAIL- and CD95L-induced necroptosis.
Collapse
|
111
|
Alternative lengthening of telomeres: recurrent cytogenetic aberrations and chromosome stability under extreme telomere dysfunction. Neoplasia 2014; 15:1301-13. [PMID: 24339742 DOI: 10.1593/neo.131574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022] Open
Abstract
Human tumors using the alternative lengthening of telomeres (ALT) exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN) in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines. We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted. We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs) were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.
Collapse
|
112
|
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2014; 170:748-64. [PMID: 23957828 DOI: 10.1111/bph.12337] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumour necrosis factor (TNF) receptor family that is induced in a variety of cell types in situations of tissue injury. Fn14 becomes activated by TNF-like weak inducer of apoptosis (TWEAK), a typical member of the TNF ligand family. TWEAK is constitutively expressed by monocytes and some tumour cell lines and also shows cytokine inducible expression in various other cell types. Fn14 activation results in stimulation of signalling pathways culminating in the activation of NFκB transcription factors and various MAPKs but might also trigger the PI3K/Akt pathway and GTPases of the Rho family. In accordance with its tissue damage-associated expression pattern and its pleiotropic proinflammatory signalling capabilities, the TWEAK-Fn14 system has been implicated in a huge number of pathologies. The use of TWEAK- and Fn14-knockout mice identified the TWEAK-Fn14 system as a crucial player in muscle atrophy, cerebral ischaemia, kidney injury, atherosclerosis and infarction as well as in various autoimmune scenarios including experimental autoimmune encephalitis, rheumatoid arthritis and inflammatory bowel disease. Moreover, there is increasing preclinical evidence that Fn14 targeting is a useful option in tumour therapy. Based on a discussion of the signalling capabilities of TWEAK and Fn14, this review is focused on two major issues. On the one hand, on the molecular and cellular basis of the TWEAK/Fn14-related pathological outcomes in the aforementioned diseases and on the other hand, on the preclinical experience that have been made so far with TWEAK and Fn14 targeting drugs.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
113
|
Abstract
Cell turnover is a fundamental feature in metazoans. Cells can die passively, as a consequence of severe damage to their structural integrity, or actively, owing to a more confined biological disruption such as DNA damage. Passive cell death is uncontrolled and often harmful to the organism. In contrast, active cell death is tightly regulated and serves to support the organism's life. Apoptosis-the primary form of regulated cell death-is relatively well defined. Necroptosis-an alternative, distinct kind of regulated cell death discovered more recently-is less well understood. Apoptosis and necroptosis can be triggered either from within the cell or by extracellular stimuli. Certain signaling components, including several death ligands and receptors, can regulate both processes. Whereas apoptosis is triggered and executed via intracellular proteases called caspases, necroptosis is suppressed by caspase activity. Here we highlight current understanding of the key signaling mechanisms that control regulated cell death.
Collapse
Affiliation(s)
- Avi Ashkenazi
- Genentech Inc., South San Francisco, California 94080;
| | | |
Collapse
|
114
|
Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ 2014; 21:1350-64. [PMID: 24948009 PMCID: PMC4131183 DOI: 10.1038/cdd.2014.81] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 02/07/2023] Open
Abstract
Unlike other members of the TNF superfamily, the TNF-related apoptosis-inducing ligand (TRAIL, also known as Apo2L) possesses the unique capacity to induce apoptosis selectively in cancer cells in vitro and in vivo. This exciting discovery provided the basis for the development of TRAIL-receptor agonists (TRAs), which have demonstrated robust anticancer activity in a number of preclinical studies. Subsequently initiated clinical trials testing TRAs demonstrated, on the one hand, broad tolerability but revealed, on the other, that therapeutic benefit was rather limited. Several factors that are likely to account for TRAs' sobering clinical performance have since been identified. First, because of initial concerns over potential hepatotoxicity, TRAs with relatively weak agonistic activity were selected to enter clinical trials. Second, although TRAIL can induce apoptosis in several cancer cell lines, it has now emerged that many others, and importantly, most primary cancer cells are resistant to TRAIL monotherapy. Third, so far patients enrolled in TRA-employing clinical trials were not selected for likelihood of benefitting from a TRA-comprising therapy on the basis of a valid(ated) biomarker. This review summarizes and discusses the results achieved so far in TRA-employing clinical trials in the light of these three shortcomings. By integrating recent insight on apoptotic and non-apoptotic TRAIL signaling in cancer cells, we propose approaches to introduce novel, revised TRAIL-based therapeutic concepts into the cancer clinic. These include (i) the use of recently developed highly active TRAs, (ii) the addition of efficient, but cancer-cell-selective TRAIL-sensitizing agents to overcome TRAIL resistance and (iii) employing proteomic profiling to uncover resistance mechanisms. We envisage that this shall enable the design of effective TRA-comprising therapeutic concepts for individual cancer patients in the future.
Collapse
Affiliation(s)
- J Lemke
- 1] Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK [2] Clinic of General and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - S von Karstedt
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - J Zinngrebe
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
115
|
Salvesen GS, Walsh CM. Functions of caspase 8: the identified and the mysterious. Semin Immunol 2014; 26:246-52. [PMID: 24856110 DOI: 10.1016/j.smim.2014.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/07/2023]
Abstract
Initially discovered as an initiator protease in apoptosis mediated by death receptors, caspase-8 is now known to have an apparently confounding opposing effect in securing cell survival. It is required to allow mouse embryo survival, and the survival of hematopoietic cells during their development and activation. Classic models in which caspase-8 is depleted or inhibited frequently result in inhibition of apoptosis, and conversion to death through a necrotic pathway. This bewildering switch is now known to be driven by activation of a pathway dependent on protein kinases of the RIP family, which engage a pathway known as necroptosis. If caspase-8 does not control this pathway, necrotic death results. The pro-apoptotic and pro-survival functions of caspase-8 are regulated by a specific interaction with the pseudo-caspase cFLIP, and it is thought that the heterocomplex between these two partners alters the substrate specificity of caspase-8 in favor of inactivating components of the RIP kinase pathway. The description of how caspase-8 and cFLIP coordinate the switch between apoptosis and survival is just beginning. The mechanism is not known, the differential targets are not known, and the reason of why an apoptotic initiator has been co-opted as a critical survival factor is only guessed at. Elucidating these unknowns will be important in understanding mechanisms and possible therapeutic targets in autoimmune, inflammatory, and metastatic diseases.
Collapse
Affiliation(s)
- Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | - Craig M Walsh
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
116
|
Liu H, Westergard TD, Cashen A, Piwnica-Worms DR, Kunkle L, Vij R, Pham CG, DiPersio J, Cheng EH, Hsieh JJ. Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4. Cancer Cell 2014; 25:530-42. [PMID: 24735925 PMCID: PMC4097146 DOI: 10.1016/j.ccr.2014.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/24/2013] [Accepted: 03/10/2014] [Indexed: 01/22/2023]
Abstract
Chromosomal translocations disrupting MLL generate MLL-fusion proteins that induce aggressive leukemias. Unexpectedly, MLL-fusion proteins are rarely observed at high levels, suggesting excessive MLL-fusions may be incompatible with a malignant phenotype. Here, we used clinical proteasome inhibitors, bortezomib and carfilzomib, to reduce the turnover of endogenous MLL-fusions and discovered that accumulated MLL-fusions induce latent, context-dependent tumor suppression programs. Specifically, in MLL pro-B lymphoid, but not myeloid, leukemias, proteasome inhibition triggers apoptosis and cell cycle arrest involving activation cleavage of BID by caspase-8 and upregulation of p27, respectively. Furthermore, proteasome inhibition conferred preliminary benefit to patients with MLL-AF4 leukemia. Hence, feasible strategies to treat cancer-type and oncogene-specific cancers can be improvised through harnessing inherent tumor suppression properties of individual oncogenic fusions.
Collapse
Affiliation(s)
- Han Liu
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Todd D Westergard
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Amanda Cashen
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - David R Piwnica-Worms
- BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63105, USA
| | | | - Ravi Vij
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Can G Pham
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John DiPersio
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Emily H Cheng
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - James J Hsieh
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
117
|
Kallenberger SM, Beaudouin J, Claus J, Fischer C, Sorger PK, Legewie S, Eils R. Intra- and interdimeric caspase-8 self-cleavage controls strength and timing of CD95-induced apoptosis. Sci Signal 2014; 7:ra23. [PMID: 24619646 DOI: 10.1126/scisignal.2004738] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptosis in response to the ligand CD95L (also known as Fas ligand) is initiated by caspase-8, which is activated by dimerization and self-cleavage at death-inducing signaling complexes (DISCs). Previous work indicated that the degree of substrate cleavage by caspase-8 determines whether a cell dies or survives in response to a death stimulus. To determine how a death ligand stimulus is effectively translated into caspase-8 activity, we assessed this activity over time in single cells with compartmentalized probes that are cleaved by caspase-8 and used multiscale modeling to simultaneously describe single-cell and population data with an ensemble of single-cell models. We derived and experimentally validated a minimal model in which cleavage of caspase-8 in the enzymatic domain occurs in an interdimeric manner through interaction between DISCs, whereas prodomain cleavage sites are cleaved in an intradimeric manner within DISCs. Modeling indicated that sustained membrane-bound caspase-8 activity is followed by transient cytosolic activity, which can be interpreted as a molecular timer mechanism reflected by a limited lifetime of active caspase-8. The activation of caspase-8 by combined intra- and interdimeric cleavage ensures weak signaling at low concentrations of CD95L and strongly accelerated activation at higher ligand concentrations, thereby contributing to precise control of apoptosis.
Collapse
Affiliation(s)
- Stefan M Kallenberger
- 1Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg 69120, Germany
| | | | | | | | | | | | | |
Collapse
|
118
|
Stress-induced RNASET2 overexpression mediates melanocyte apoptosis via the TRAF2 pathway in vitro. Cell Death Dis 2014; 5:e1022. [PMID: 24457966 PMCID: PMC4040706 DOI: 10.1038/cddis.2013.539] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/08/2022]
Abstract
The recent genome-wide association study identified a link between vitiligo and genetic variants in the ribonuclease T2 (RNASET2) gene; however, the functional roles of RNASET2 in vitiligo pathogenesis or in melanocyte apoptosis have yet to be determined. The current study was designed to investigate the vitiligo-related expression pattern of RNASET2 and its molecular function involving apoptosis-related signaling proteins and pathways. The results showed overexpression of RNASET2 in epidermis specimens from 40 vitiligo patients compared with that from matched healthy controls. In addition, in vitro analyses indicated that overexpression of RNASET2 was inducible in cultured primary human melanocytes and keratinocytes by stress conditions, that is, exposure to UV irradiation, hydrogen peroxide, and inflammatory factors, respectively, and led to increased cell apoptosis via the tumor necrosis factor receptor-associated factor 2 (TRAF2)-caspases pathway through the physical interaction of RNASET2 with TRAF2. Thus, RNASET2 may contribute to vitiligo pathogenesis by inhibiting TRAF2 expression and, as such, RNASET2 may represent a potential therapeutic target of vitiligo.
Collapse
|
119
|
Kranz D, Boutros M. A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis. EMBO J 2014; 33:181-97. [PMID: 24442637 PMCID: PMC3983683 DOI: 10.1002/embj.201385686] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death-inducing signaling complex (DISC). Activation of procaspase-8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase-8 preventing the association of caspase-8 with the DISC. We identified FAT1 in a genome-wide siRNA screen for synthetic lethal interactions with death receptor-mediated apoptosis. Knockdown of FAT1 sensitized established and patient-derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase-8 recruitment to the DISC and increased formation of caspase-8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9-mediated genome engineering were more susceptible for death receptor-mediated apoptosis. Our findings provide evidence for a mechanism to control caspase-8-dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions.
Collapse
Affiliation(s)
- Dominique Kranz
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg, Germany
| | | |
Collapse
|
120
|
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is a pivotal intracellular mediator of signaling pathways downstream of TNFR1 and -2 with known pro- and antiviral effects. We investigated its role in the replication of the prototype poxvirus vaccinia virus (VACV). Loss of TRAF2 expression, either through small interfering RNA treatment of HeLa cells or through genetic knockout in murine embryonic fibroblasts (MEFs), led to significant reductions in VACV growth following low-multiplicity infection. In single-cycle infections, there was delayed production of both early and late VACV proteins as well as accelerated virus-induced alterations to cell morphology, indicating that TRAF2 influences early stages of virus replication. Consistent with an early role, uncoating assays showed normal virus attachment but delayed virus entry in the absence of TRAF2. Although alterations to c-Jun N-terminal kinase (JNK) signaling were apparent in VACV-infected TRAF2−/− MEFs, treatment of wild-type cells with a JNK inhibitor did not affect virus entry. Instead, treatment with an inhibitor of endosomal acidification greatly reduced virus entry into TRAF2−/− MEFs, suggesting that VACV is reliant on the endosomal route of entry in the absence of TRAF2. Thus, TRAF2 is a proviral factor for VACV that plays a role in promoting efficient viral entry, most likely via the plasma membrane. IMPORTANCE Tumor necrosis factor receptor-associated factors (TRAFs) are key facilitators of intracellular signaling with roles in innate and adaptive immunity and stress responses. We have discovered that TRAF2 is a proviral factor in vaccinia virus replication in both HeLa cells and mouse embryonic fibroblasts and that its influence is exercised through promotion of efficient virus entry.
Collapse
|
121
|
Abstract
Apoptosis is a tightly regulated cell suicide process used by metazoans to eliminate unwanted or damaged cells that pose a threat to the organism. Caspases-specialized proteolytic enzymes that are responsible for apoptosis initiation and execution-can be activated through two signaling mechanisms: (1) the cell-intrinsic pathway, consisting of Bcl-2 family proteins and initiated by internal sensors for severe cell distress and (2) the cell-extrinsic pathway, triggered by extracellular ligands through cognate death receptors at the surface of target cells. Proapoptotic ligands are often expressed on the surface of cytotoxic cells, for example, certain types of activated immune cells. Alternatively, these ligands can function in shed, soluble form. The mode of ligand presentation can substantially alter the cell response to receptor stimulation. Once receptor ligation on the target cell occurs, a number of intracellular signaling cascades may be initiated. These can lead to a variety of cellular outcomes, including caspase-mediated apoptosis, a distinct type of regulated cell death called necroptosis, or antiapoptotic or inflammatory responses. Death receptor signaling is kept tightly in check and plays critical homeostatic roles during embryonic development and throughout life.
Collapse
|
122
|
|
123
|
The HECTD3 E3 ubiquitin ligase facilitates cancer cell survival by promoting K63-linked polyubiquitination of caspase-8. Cell Death Dis 2013; 4:e935. [PMID: 24287696 PMCID: PMC3847339 DOI: 10.1038/cddis.2013.464] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/07/2013] [Accepted: 10/23/2013] [Indexed: 02/02/2023]
Abstract
Apoptosis resistance is a hurdle for cancer treatment. HECTD3, a new E3 ubiquitin ligase, interacts with caspase-8 death effector domains and ubiquitinates caspase-8 with K63-linked polyubiquitin chains that do not target caspase-8 for degradation but decrease the caspase-8 activation. HECTD3 depletion can sensitize cancer cells to extrinsic apoptotic stimuli. In addition, HECTD3 inhibits TNF-related apoptosis-inducing ligand (TRAIL)-induced caspase-8 cleavage in an E3 ligase activity-dependent manner. Mutation of the caspase-8 ubiquitination site at K215 abolishes the HECTD3 protection from TRAIL-induced cleavage. Finally, HECTD3 is frequently overexpressed in breast carcinomas. These findings suggest that caspase-8 ubiquitination by HECTD3 confers cancer cell survival.
Collapse
|
124
|
Brint E, O’Callaghan G, Houston A. Life in the Fas lane: differential outcomes of Fas signaling. Cell Mol Life Sci 2013; 70:4085-99. [PMID: 23579628 PMCID: PMC11113183 DOI: 10.1007/s00018-013-1327-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
Fas, also known as CD95 or APO-1, is a member of the tumor necrosis factor/nerve growth factor superfamily. Although best characterized in terms of its apoptotic function, recent studies have identified several other cellular responses emanating from Fas. These responses include migration, invasion, inflammation, and proliferation. In this review, we focus on the diverse cellular outcomes of Fas signaling and the molecular switches identified to date that regulate its pro- and anti-apoptotic functions. Such switches occur at different levels of signal transduction, ranging from the receptor through to cross-talk with other signaling pathways. Factors identified to date including other extracellular signals, proteins recruited to the death-inducing signaling complex, and the availability of different intracellular components of signal transduction pathways. The success of therapeutically targeting Fas will require a better understanding of these pathways, as well as the regulatory mechanisms that determine cellular outcome following receptor activation.
Collapse
Affiliation(s)
- Elizabeth Brint
- Department of Pathology, University College Cork, National University of Ireland, Cork, Ireland
| | - Grace O’Callaghan
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
125
|
Sridevi P, Nhiayi MK, Setten RL, Wang JYJ. Persistent inhibition of ABL tyrosine kinase causes enhanced apoptotic response to TRAIL and disrupts the pro-apoptotic effect of chloroquine. PLoS One 2013; 8:e77495. [PMID: 24147007 PMCID: PMC3795698 DOI: 10.1371/journal.pone.0077495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
TNF-Related Apoptosis Inducing Ligand (TRAIL) binds to and activates death receptors to stimulate caspase-8 and apoptosis with higher efficiency in cancer than normal cells but the development of apoptosis resistance has limited its clinical efficacy. We found that stable, but not transient knockdown of the ABL tyrosine kinase enhanced the apoptotic response to TRAIL. Re-expression of Abl, but not its nuclear import- or kinase-defective mutant, in the ABL-knockdown cells re-established apoptosis suppression. TRAIL is known to stimulate caspase-8 ubiquitination (Ub-C8), which can facilitate caspase-8 activation or degradation by the lysosomes. In the ABL-knockdown cells, we found a higher basal level of Ub-C8 that was not further increased by lysosomal inhibition. Re-expression of Abl in the ABL-knockdown cells reduced the basal Ub-C8, correlating with apoptosis suppression. We found that lysosomal inhibition by chloroquine (CQ) could also enhance TRAIL-induced apoptosis. However, this pro-apoptotic effect of CQ was lost in the ABL-knockdown cells but restored by Abl re-expression. Interestingly, kinase inhibition at the time of TRAIL stimulation was not sufficient to enhance apoptosis. Instead, persistent treatment for several days with imatinib, an ABL kinase inhibitor, was required to cause the enhanced and the CQ-insensitive apoptotic response to TRAIL. Together, these results show that persistent loss of nuclear ABL tyrosine kinase function can sensitize cells to TRAIL and suggest that long-term exposure to the FDA-approved ABL kinase inhibitors may potentiate apoptotic response to TRAIL-based cancer therapy.
Collapse
Affiliation(s)
- Priya Sridevi
- Moores Cancer Center, Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - May K. Nhiayi
- Moores Cancer Center, Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ryan L. Setten
- Moores Cancer Center, Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jean Y. J. Wang
- Moores Cancer Center, Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
126
|
Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J 2013; 32:2307-20. [PMID: 23912815 DOI: 10.1038/emboj.2013.173] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/12/2013] [Indexed: 01/07/2023] Open
Abstract
Protein ubiquitylation is a post-translational modification that controls all aspects of eukaryotic cell functionality, and its defective regulation is manifested in various human diseases. The ubiquitylation process requires a set of enzymes, of which the ubiquitin ligases (E3s) are the substrate recognition components. Modular CULLIN-RING ubiquitin ligases (CRLs) are the most prevalent class of E3s, comprising hundreds of distinct CRL complexes with the potential to recruit as many and even more protein substrates. Best understood at both structural and functional levels are CRL1 or SCF (SKP1/CUL1/F-box protein) complexes, representing the founding member of this class of multimeric E3s. Another CRL subfamily, called CRL3, is composed of the molecular scaffold CULLIN3 and the RING protein RBX1, in combination with one of numerous BTB domain proteins acting as substrate adaptors. Recent work has firmly established CRL3s as major regulators of different cellular and developmental processes as well as stress responses in both metazoans and higher plants. In humans, functional alterations of CRL3s have been associated with various pathologies, including metabolic disorders, muscle, and nerve degeneration, as well as cancer. In this review, we summarize recent discoveries on the function of CRL3s in both metazoans and plants, and discuss their mode of regulation and specificities.
Collapse
Affiliation(s)
- Pascal Genschik
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, Strasbourg, France.
| | | | | |
Collapse
|
127
|
Vinarsky V, Krivanek J, Rankel L, Nahacka Z, Barta T, Jaros J, Andera L, Hampl A. Human embryonic and induced pluripotent stem cells express TRAIL receptors and can be sensitized to TRAIL-induced apoptosis. Stem Cells Dev 2013; 22:2964-74. [PMID: 23806100 DOI: 10.1089/scd.2013.0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Death ligands and their tumor necrosis factor receptor (TNFR) family receptors are the best-characterized and most efficient inducers of apoptotic signaling in somatic cells. In this study, we analyzed whether these prototypic activators of apoptosis are also expressed and able to be activated in human pluripotent stem cells. We examined human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC) and found that both cell types express primarily TNF-related apoptosis-inducing ligand (TRAIL) receptors and TNFR1, but very low levels of Fas/CD95. We also found that although hESC and hiPSC contain all the proteins required for efficient induction and progression of extrinsic apoptotic signaling, they are resistant to TRAIL-induced apoptosis. However, both hESC and hiPSC can be sensitized to TRAIL-induced apoptosis by co-treatment with protein synthesis inhibitors such as the anti-leukemia drug homoharringtonine (HHT). HHT treatment led to suppression of cellular FLICE inhibitory protein (cFLIP) and Mcl-1 expression and, in combination with TRAIL, enhanced processing of caspase-8 and full activation of caspase-3. cFLIP likely represents an important regulatory node, as its shRNA-mediated down-regulation significantly sensitized hESC to TRAIL-induced apoptosis. Thus, we provide the first evidence that, irrespective of their origin, human pluripotent stem cells express canonical components of the extrinsic apoptotic system and on stress can activate death receptor-mediated apoptosis.
Collapse
Affiliation(s)
- Vladimir Vinarsky
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Horova V, Hradilova N, Jelinkova I, Koc M, Svadlenka J, Brazina J, Klima M, Slavik J, Hyrslova Vaculova A, Andera L. Inhibition of vacuolar ATPase attenuates the TRAIL-induced activation of caspase-8 and modulates the trafficking of TRAIL receptosomes. FEBS J 2013; 280:3436-50. [PMID: 23678861 DOI: 10.1111/febs.12347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/13/2013] [Accepted: 05/13/2013] [Indexed: 01/14/2023]
Abstract
Tumour necrosis factor (TNF) related apoptosis inducing ligand (TRAIL), a membrane-bound ligand from the TNF family, has attracted significant attention due to its rather specific and effective ability to induce apoptotic death in various types of cancer cells via binding to and activating its pro-apoptotic death receptors. However, a significant number of primary cancer cells often develop resistance to TRAIL treatment, and the signalling platform behind this phenomenon is not fully understood. Upon blocking endosomal acidification by the vacuolar ATPase (V-ATPase) inhibitors bafilomycin A1 (BafA1) or concanamycin A, we observed a significantly reduced initial sensitivity of several, mainly colorectal, tumour cell lines to TRAIL-induced apoptosis. In cells pretreated with these inhibitors, the TRAIL-induced processing of caspase-8 and the aggregation and trafficking of the TRAIL receptor complexes were temporarily attenuated. Nuclear factor κB or mitogen activated protein/stress kinase signalling from the activated TRAIL receptors remained unchanged, and neither possible lysosomal permeabilization nor acid sphingomyelinase was involved in this process. The cell surface expression of TRAIL receptors and their TRAIL-induced internalization were not affected by V-ATPase inhibitors. The inhibitory effect of BafA1, however, was blunted by knockdown of the caspase-8 inhibitor cFLIP. Altogether, the data obtained provide the first evidence that endosomal acidification could represent an important regulatory node in the proximal part of TRAIL-induced pro-apoptotic signalling.
Collapse
Affiliation(s)
- Vladimira Horova
- Department of Cell Signalling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Since viruses rely on functional cellular machinery for efficient propagation, apoptosis is an important mechanism to fight viral infections. In this study, we sought to determine the mechanism of cell death caused by Ebola virus (EBOV) infection by assaying for multiple stages of apoptosis and hallmarks of necrosis. Our data indicate that EBOV does not induce apoptosis in infected cells but rather leads to a nonapoptotic form of cell death. Ultrastructural analysis confirmed necrotic cell death of EBOV-infected cells. To investigate if EBOV blocks the induction of apoptosis, infected cells were treated with different apoptosis-inducing agents. Surprisingly, EBOV-infected cells remained sensitive to apoptosis induced by external stimuli. Neither receptor- nor mitochondrion-mediated apoptosis signaling was inhibited in EBOV infection. Although double-stranded RNA (dsRNA)-induced activation of protein kinase R (PKR) was blocked in EBOV-infected cells, induction of apoptosis mediated by dsRNA was not suppressed. When EBOV-infected cells were treated with dsRNA-dependent caspase recruiter (dsCARE), an antiviral protein that selectively induces apoptosis in cells containing dsRNA, virus titers were strongly reduced. These data show that the inability of EBOV to block apoptotic pathways may open up new strategies toward the development of antiviral therapeutics.
Collapse
|