101
|
Krause HB, Bondarowicz H, Karls AL, McClean MN, Kreeger PK. Design and implementation of a microfluidic device capable of temporal growth factor delivery reveal filtering capabilities of the EGFR/ERK pathway. APL Bioeng 2021; 5:046101. [PMID: 34765858 PMCID: PMC8566012 DOI: 10.1063/5.0059011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022] Open
Abstract
Utilizing microfluidics to mimic the dynamic temporal changes of growth factor and cytokine concentrations in vivo has greatly increased our understanding of how signal transduction pathways are structured to encode extracellular stimuli. To date, these devices have focused on delivering pulses of varying frequency, and there are limited cell culture models for delivering slowly increasing concentrations of stimuli that cells may experience in vivo. To examine this setting, we developed and validated a microfluidic device that can deliver increasing concentrations of growth factor over periods ranging from 6 to 24 h. Using this device and a fluorescent biosensor of extracellular-regulated kinase (ERK) activity, we delivered a slowly increasing concentration of epidermal growth factor (EGF) to human mammary epithelial cells and surprisingly observed minimal ERK activation, even at concentrations that stimulate robust activity in bolus delivery. The cells remained unresponsive to subsequent challenges with EGF, and immunocytochemistry suggested that the loss of an epidermal growth factor receptor was responsible. Cells were then challenged with faster rates of change of EGF, revealing an increased ERK activity as a function of rate of change. Specifically, both the fraction of cells that responded and the length of ERK activation time increased with the rate of change. This microfluidic device fills a gap in the current repertoire of in vitro microfluidic devices and demonstrates that slower, more physiological changes in growth factor presentation can reveal new regulatory mechanisms for how signal transduction pathways encode changes in the extracellular growth factor milieu.
Collapse
Affiliation(s)
- Harris B Krause
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Hanna Bondarowicz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Alexis L Karls
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
102
|
Huang WYC, Alvarez S, Kondo Y, Kuriyan J, Groves JT. Relating cellular signaling timescales to single-molecule kinetics: A first-passage time analysis of Ras activation by SOS. Proc Natl Acad Sci U S A 2021; 118:e2103598118. [PMID: 34740968 PMCID: PMC8694064 DOI: 10.1073/pnas.2103598118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Son of Sevenless (SOS) is a Ras guanine nucleotide exchange factor (GEF) that plays a central role in numerous cellular signaling pathways. Like many other signaling molecules, SOS is autoinhibited in the cytosol and activates only after recruitment to the membrane. The mean activation time of individual SOS molecules has recently been measured to be ∼60 s, which is unexpectedly long and seemingly contradictory with cellular signaling timescales, which have been measured to be as fast as several seconds. Here, we rectify this discrepancy using a first-passage time analysis to reconstruct the effective signaling timescale of multiple SOS molecules from their single-molecule activation kinetics. Along with corresponding experimental measurements, this analysis reveals how the functional response time, comprised of many slowly activating molecules, can become substantially faster than the average molecular kinetics. This consequence stems from the enzymatic processivity of SOS in a highly out-of-equilibrium reaction cycle during receptor triggering. Ultimately, rare, early activation events dominate the macroscopic reaction dynamics.
Collapse
Affiliation(s)
- William Y C Huang
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720;
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
103
|
Williaume G, de Buyl S, Sirour C, Haupaix N, Bettoni R, Imai KS, Satou Y, Dupont G, Hudson C, Yasuo H. Cell geometry, signal dampening, and a bimodal transcriptional response underlie the spatial precision of an ERK-mediated embryonic induction. Dev Cell 2021; 56:2966-2979.e10. [PMID: 34672970 DOI: 10.1016/j.devcel.2021.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/16/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Precise control of lineage segregation is critical for the development of multicellular organisms, but our quantitative understanding of how variable signaling inputs are integrated to activate lineage-specific gene programs remains limited. Here, we show how precisely two out of eight ectoderm cells adopt neural fates in response to ephrin and FGF signals during ascidian neural induction. In each ectoderm cell, FGF signals activate ERK to a level that mirrors its cell contact surface with FGF-expressing mesendoderm cells. This gradual interpretation of FGF inputs is followed by a bimodal transcriptional response of the immediate early gene, Otx, resulting in its activation specifically in the neural precursors. At low levels of ERK, Otx is repressed by an ETS family transcriptional repressor, ERF2. Ephrin signals are critical for dampening ERK activation levels across ectoderm cells so that only neural precursors exhibit above-threshold levels, evade ERF repression, and "switch on" Otx transcription.
Collapse
Affiliation(s)
- Géraldine Williaume
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Sophie de Buyl
- Applied Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, 1050 Brussels, Belgium
| | - Cathy Sirour
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Nicolas Haupaix
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France
| | - Rossana Bettoni
- Applied Physics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, La Plaine Campus, 1050 Brussels, Belgium; Unité de Chronobiologie Théorique, Faculté des Sciences, CP231, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Faculté des Sciences, CP231, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Clare Hudson
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France.
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche-sur-Mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France.
| |
Collapse
|
104
|
Progress and challenges in understanding the regulation and function of p53 dynamics. Biochem Soc Trans 2021; 49:2123-2131. [PMID: 34495325 PMCID: PMC8765192 DOI: 10.1042/bst20210148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023]
Abstract
The dynamics of p53 expression provide a mechanism to increase differentiation between cellular stresses and specificity in appropriate responses. Here, we review recent advances in our understanding of the molecular mechanisms regulating p53 dynamics and the functions of the dynamics in the regulation of p53-dependent cell stress responses. We also compare dynamic encoding in the p53 system with that found in other important cell signaling systems, many of which can interact with the p53 network. Finally, we highlight some of the current challenges in understanding dynamic cell signaling within a larger cellular network context.
Collapse
|
105
|
González Wusener AE, González Á, Perez Collado ME, Maza MR, General IJ, Arregui CO. Protein tyrosine phosphatase 1B targets focal adhesion kinase and paxillin in cell-matrix adhesions. J Cell Sci 2021; 134:272564. [PMID: 34553765 DOI: 10.1242/jcs.258769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here, we used bimolecular fluorescence complementation assays, in combination with a substrate trapping mutant of PTP1B, to directly examine whether relevant phosphotyrosines on paxillin and focal adhesion kinase (FAK, also known as PTK2) are substrates of the phosphatase in the context of cell-matrix adhesion sites. We found that the formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin, and the localization of FAK at adhesion sites. Additionally, we found that PTP1B specifically targets Y925 on the focal adhesion targeting (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicated that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle and its interaction with paxillin at adhesion sites.
Collapse
Affiliation(s)
- Ana E González Wusener
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - María E Perez Collado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Melina R Maza
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Ignacio J General
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Carlos O Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| |
Collapse
|
106
|
Sipieter F, Cappe B, Leray A, De Schutter E, Bridelance J, Hulpiau P, Van Camp G, Declercq W, Héliot L, Vincent P, Vandenabeele P, Riquet FB. Characteristic ERK1/2 signaling dynamics distinguishes necroptosis from apoptosis. iScience 2021; 24:103074. [PMID: 34568795 PMCID: PMC8449238 DOI: 10.1016/j.isci.2021.103074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/21/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
ERK1/2 involvement in cell death remains unclear, although many studies have demonstrated the importance of ERK1/2 dynamics in determining cellular responses. To untangle how ERK1/2 contributes to two cell death programs, we investigated ERK1/2 signaling dynamics during hFasL-induced apoptosis and TNF-induced necroptosis in L929 cells. We observed that ERK1/2 inhibition sensitizes cells to apoptosis while delaying necroptosis. By monitoring ERK1/2 activity by live-cell imaging using an improved ERK1/2 biosensor (EKAR4.0), we reported differential ERK1/2 signaling dynamics between cell survival, apoptosis, and necroptosis. We also decrypted a temporally shifted amplitude- and frequency-modulated (AM/FM) ERK1/2 activity profile in necroptosis versus apoptosis. ERK1/2 inhibition, which disrupted ERK1/2 signaling dynamics, prevented TNF and IL-6 gene expression increase during TNF-induced necroptosis. Using an inducible cell line for activated MLKL, the final executioner of necroptosis, we showed ERK1/2 and its distinctive necroptotic ERK1/2 activity dynamics to be positioned downstream of MLKL.
Collapse
Affiliation(s)
- François Sipieter
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, Lille, France
| | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Aymeric Leray
- Laboratoire Interdisciplinaire Carnot De Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Elke De Schutter
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, Edegem, 2650 Antwerp, Belgium
| | - Jolien Bridelance
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Paco Hulpiau
- Data Mining and Modeling for Biomedicine (DaMBi), VIB Center for Inflammation Research, Ghent, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, Edegem, 2650 Antwerp, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Laurent Héliot
- Team Biophotonique Cellulaire Fonctionnelle, Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS UMR 8523, 59655 Villeneuve d'Ascq, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Neurobiology of Adaptative Processes, UMR8256, 75005 Paris, France
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, Lille, France
| |
Collapse
|
107
|
Hsu IS, Strome B, Lash E, Robbins N, Cowen LE, Moses AM. A functionally divergent intrinsically disordered region underlying the conservation of stochastic signaling. PLoS Genet 2021; 17:e1009629. [PMID: 34506483 PMCID: PMC8457507 DOI: 10.1371/journal.pgen.1009629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/22/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Stochastic signaling dynamics expand living cells' information processing capabilities. An increasing number of studies report that regulators encode information in their pulsatile dynamics. The evolutionary mechanisms that lead to complex signaling dynamics remain uncharacterized, perhaps because key interactions of signaling proteins are encoded in intrinsically disordered regions (IDRs), whose evolution is difficult to analyze. Here we focused on the IDR that controls the stochastic pulsing dynamics of Crz1, a transcription factor in fungi downstream of the widely conserved calcium signaling pathway. We find that Crz1 IDRs from anciently diverged fungi can all respond transiently to calcium stress; however, only Crz1 IDRs from the Saccharomyces clade support pulsatility, encode extra information, and rescue fitness in competition assays, while the Crz1 IDRs from distantly related fungi do none of the three. On the other hand, we find that Crz1 pulsing is conserved in the distantly related fungi, consistent with the evolutionary model of stabilizing selection on the signaling phenotype. Further, we show that a calcineurin docking site in a specific part of the IDRs appears to be sufficient for pulsing and show evidence for a beneficial increase in the relative calcineurin affinity of this docking site. We propose that evolutionary flexibility of functionally divergent IDRs underlies the conservation of stochastic signaling by stabilizing selection.
Collapse
Affiliation(s)
- Ian S. Hsu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Bob Strome
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alan M. Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Department of Computer Science, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
108
|
Ueki R, Hayashi S, Tsunoda M, Akiyama M, Liu H, Ueno T, Urano Y, Sando S. Nongenetic control of receptor signaling dynamics using a DNA-based optochemical tool. Chem Commun (Camb) 2021; 57:5969-5972. [PMID: 34027523 DOI: 10.1039/d1cc01968f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optochemical tools that can modulate the activity of the target protein provide an opportunity for studying and regulating the related biological processes. Here we present a DNA-based nongenetic optochemical tool that can control the dynamics of growth factor signaling. This photo-caged mimicry of growth factor can be a promising tool for elucidating a linkage between the dynamics of signaling and the resulting biological outcomes, as well as for manipulating cellular functions and the fate of living cells.
Collapse
Affiliation(s)
- Ryosuke Ueki
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shota Hayashi
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masaya Tsunoda
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Momoko Akiyama
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hanrui Liu
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan and Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan and Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
109
|
Gillies TE, Pargett M, Silva JM, Teragawa CK, McCormick F, Albeck JG. Oncogenic mutant RAS signaling activity is rescaled by the ERK/MAPK pathway. Mol Syst Biol 2021; 16:e9518. [PMID: 33073539 PMCID: PMC7569415 DOI: 10.15252/msb.20209518] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Activating mutations in RAS are present in ~ 30% of human tumors, and the resulting aberrations in ERK/MAPK signaling play a central role in oncogenesis. However, the form of these signaling changes is uncertain, with activating RAS mutants linked to both increased and decreased ERK activation in vivo. Rationally targeting the kinase activity of this pathway requires clarification of the quantitative effects of RAS mutations. Here, we use live‐cell imaging in cells expressing only one RAS isoform to quantify ERK activity with a new level of accuracy. We find that despite large differences in their biochemical activity, mutant KRAS isoforms within cells have similar ranges of ERK output. We identify roles for pathway‐level effects, including variation in feedback strength and feedforward modulation of phosphatase activity, that act to rescale pathway sensitivity, ultimately resisting changes in the dynamic range of ERK activity while preserving responsiveness to growth factor stimuli. Our results reconcile seemingly inconsistent reports within the literature and imply that the signaling changes induced by RAS mutations early in oncogenesis are subtle.
Collapse
Affiliation(s)
- Taryn E Gillies
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Jillian M Silva
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Carolyn K Teragawa
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.,Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| |
Collapse
|
110
|
Abstract
PURPOSE OF REVIEW Although immune checkpoint inhibitors and small molecule inhibitors targeting the MAPK pathway have revolutionized the management of metastatic melanoma, long-term disease control occurs only for a minority of patients because of multiple resistance mechanisms. One way to tackle resistance is to develop the next-generation of RAF, MEK and ERK inhibitors using our understanding of the molecular mechanisms that fine-tune the MAPK pathway. RECENT FINDINGS Studies on the regulation of the MAPK pathway have revealed a dominant role for homo-dimerization and hetero-dimerization of RAF, MEK and ERK. Allosteric inhibitors that break these dimers are, therefore, undergoing various stages of preclinical and clinical evaluation. Novel MEK inhibitors are less susceptible to differences in MEK's activation state and do not drive the compensatory activation of MEK that could limit efficacy. Innovations in targeting ERK originate from dual inhibitors that block MEK-catalyzed ERK phosphorylation, thereby limiting the extent of ERK reactivation following feedback relief. SUMMARY The primary goal in RAF, MEK and ERK inhibitors' development is to produce molecules with less inhibitor paradox and off-target effects, giving robust and sustained MAPK pathway inhibition.
Collapse
|
111
|
Nakamura A, Goto Y, Kondo Y, Aoki K. Shedding light on developmental ERK signaling with genetically encoded biosensors. Development 2021; 148:271153. [PMID: 34338283 DOI: 10.1242/dev.199767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway governs cell proliferation, differentiation and migration, and therefore plays key roles in various developmental and regenerative processes. Recent advances in genetically encoded fluorescent biosensors have unveiled hitherto unrecognized ERK activation dynamics in space and time and their functional importance mainly in cultured cells. However, ERK dynamics during embryonic development have still only been visualized in limited numbers of model organisms, and we are far from a sufficient understanding of the roles played by developmental ERK dynamics. In this Review, we first provide an overview of the biosensors used for visualization of ERK activity in live cells. Second, we highlight the applications of the biosensors to developmental studies of model organisms and discuss the current understanding of how ERK dynamics are encoded and decoded for cell fate decision-making.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,IRCC International Research Collaboration Center, National Institutes of Natural Sciences, 4-3-13 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
112
|
Farahani PE, Reed EH, Underhill EJ, Aoki K, Toettcher JE. Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems. Annu Rev Biomed Eng 2021; 23:61-87. [PMID: 33722063 PMCID: PMC10436267 DOI: 10.1146/annurev-bioeng-083120-111648] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Ellen H Reed
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| | - Evan J Underhill
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Kazuhiro Aoki
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- International Research Collaboration Center (IRCC), National Institutes of Natural Sciences, Tokyo 105-0001, Japan
| |
Collapse
|
113
|
Molecular control of cell density-mediated exit to quiescence. Cell Rep 2021; 36:109436. [PMID: 34320337 PMCID: PMC8924979 DOI: 10.1016/j.celrep.2021.109436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
Contact inhibition of cell proliferation regulates tissue size and prevents uncontrolled cell expansion. When cell density increases, contact inhibition can force proliferating cells into quiescence. Here we show that the variable memory of local cell density experienced by a mother cell controls the levels of the cyclin-dependent kinase (CDK) activator cyclin D1 and inhibitor p27 in newborn daughters, which direct cells to proliferation or quiescence. Much of this regulation can be explained by rapid suppression of ERK activity by high cell density in mothers, which leads to lower cyclin D1 and higher p27 levels in daughters. Strikingly, cell density and mitogen signals compete by shifting the ratio of cyclin D1/p27 levels below or above a single sharp threshold that controls the proliferation decision. Thus, the history of competing cell density and mitogen signals experienced by mothers is funneled into a precise activator-inhibitor balance that decides the fate of daughter cells. Using live single-cell microscopy, Fan and Meyer show that the decision of newborn daughter cells to proliferate or become quiescent is controlled by the memory of local cell density inherited from mother cells. This memory is mediated by an ultrasensitive activator-inhibitor balance between cyclin D1 and p27.
Collapse
|
114
|
Pieters PA, Nathalia BL, van der Linden AJ, Yin P, Kim J, Huck WTS, de Greef TFA. Cell-Free Characterization of Coherent Feed-Forward Loop-Based Synthetic Genetic Circuits. ACS Synth Biol 2021; 10:1406-1416. [PMID: 34061505 PMCID: PMC8218305 DOI: 10.1021/acssynbio.1c00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Regulatory pathways
inside living cells employ feed-forward architectures
to fulfill essential signal processing functions that aid in the interpretation
of various types of inputs through noise-filtering, fold-change detection
and adaptation. Although it has been demonstrated computationally
that a coherent feed-forward loop (CFFL) can function as noise filter,
a property essential to decoding complex temporal signals, this motif
has not been extensively characterized experimentally or integrated
into larger networks. Here we use post-transcriptional regulation
to implement and characterize a synthetic CFFL in an Escherichia
coli cell-free transcription-translation system and build
larger composite feed-forward architectures. We employ microfluidic
flow reactors to probe the response of the CFFL circuit using both
persistent and short, noise-like inputs and analyze the influence
of different circuit components on the steady-state and dynamics of
the output. We demonstrate that our synthetic CFFL implementation
can reliably repress background activity compared to a reference circuit,
but displays low potential as a temporal filter, and validate these
findings using a computational model. Our results offer practical
insight into the putative noise-filtering behavior of CFFLs and show
that this motif can be used to mitigate leakage and increase the fold-change
of the output of synthetic genetic circuits.
Collapse
Affiliation(s)
- Pascal A. Pieters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bryan L. Nathalia
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ardjan J. van der Linden
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Jongmin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Eindhoven, The Netherlands
| |
Collapse
|
115
|
Gagliardi PA, Dobrzyński M, Jacques MA, Dessauges C, Ender P, Blum Y, Hughes RM, Cohen AR, Pertz O. Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival. Dev Cell 2021; 56:1712-1726.e6. [PMID: 34081908 DOI: 10.1016/j.devcel.2021.05.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/16/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022]
Abstract
Cell death events continuously challenge epithelial barrier function yet are crucial to eliminate old or critically damaged cells. How such apoptotic events are spatio-temporally organized to maintain epithelial homeostasis remains unclear. We observe waves of extracellular-signal-regulated kinase (ERK) and AKT serine/threonine kinase (Akt) activity pulses that originate from apoptotic cells and propagate radially to healthy surrounding cells. This requires epidermal growth factor receptor (EGFR) and matrix metalloproteinase (MMP) signaling. At the single-cell level, ERK/Akt waves act as spatial survival signals that locally protect cells in the vicinity of the epithelial injury from apoptosis for a period of 3-4 h. At the cell population level, ERK/Akt waves maintain epithelial homeostasis (EH) in response to mild or intense environmental insults. Disruption of this spatial signaling system results in the inability of a model epithelial tissue to ensure barrier function in response to environmental insults.
Collapse
Affiliation(s)
| | - Maciej Dobrzyński
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Marc-Antoine Jacques
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Coralie Dessauges
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Pascal Ender
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Yannick Blum
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, 300 Science and Technology Building, Greenville, NC 27858-4353, USA
| | - Andrew R Cohen
- Department of Electrical and Computer Engineering, Drexel University, 3120-40 Market Street, Suite 313, Philadelphia, PA 19104, USA
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
116
|
Kinnunen PC, Luker KE, Luker GD, Linderman JJ. Computational methods for characterizing and learning from heterogeneous cell signaling data. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 26:98-108. [PMID: 35647414 DOI: 10.1016/j.coisb.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Heterogeneity in cell signaling pathways is increasingly appreciated as a fundamental feature of cell biology and a driver of clinically relevant disease phenotypes. Understanding the causes of heterogeneity, the cellular mechanisms used to control heterogeneity, and the downstream effects of heterogeneity in single cells are all key obstacles for manipulating cellular populations and treating disease. Recent advances in genetic engineering, including multiplexed fluorescent reporters, have provided unprecedented measurements of signaling heterogeneity, but these vast data sets are often difficult to interpret, necessitating the use of computational techniques to extract meaning from the data. Here, we review recent advances in computational methods for extracting meaning from these novel data streams. In particular, we evaluate how machine learning methods related to dimensionality reduction and classification can identify structure in complex, dynamic datasets, simplifying interpretation. We also discuss how mechanistic models can be merged with heterogeneous data to understand the underlying differences between cells in a population. These methods are still being developed, but the work reviewed here offers useful applications of specific analysis techniques that could enable the translation of single-cell signaling data to actionable biological understanding.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Gary D Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, 109 Zina Pitcher Place, A526 BSRB, Ann Arbor, MI, 48109-2200, USA.,Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA, 48109.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA, 48109
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA.,Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA, 48109
| |
Collapse
|
117
|
Wu Y, Wu J, Deng M, Lin Y. Yeast cell fate control by temporal redundancy modulation of transcription factor paralogs. Nat Commun 2021; 12:3145. [PMID: 34035307 PMCID: PMC8149833 DOI: 10.1038/s41467-021-23425-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Recent single-cell studies have revealed that yeast stress response involves transcription factors that are activated in pulses. However, it remains unclear whether and how these dynamic transcription factors temporally interact to regulate stress survival. Here we show that budding yeast cells can exploit the temporal relationship between paralogous general stress regulators, Msn2 and Msn4, during stress response. We find that individual pulses of Msn2 and Msn4 are largely redundant, and cells can enhance the expression of their shared targets by increasing their temporal divergence. Thus, functional redundancy between these two paralogs is modulated in a dynamic manner to confer fitness advantages for yeast cells, which might feed back to promote the preservation of their redundancy. This evolutionary implication is supported by evidence from Msn2/Msn4 orthologs and analyses of other transcription factor paralogs. Together, we show a cell fate control mechanism through temporal redundancy modulation in yeast, which may represent an evolutionarily important strategy for maintaining functional redundancy between gene duplicates.
Collapse
Affiliation(s)
- Yan Wu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Jiaqi Wu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Minghua Deng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Mathematical Sciences, Peking University, Beijing, China
- Center for Statistical Science, Peking University, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
118
|
Benary M, Bohn S, Lüthen M, Nolis IK, Blüthgen N, Loewer A. Disentangling Pro-mitotic Signaling during Cell Cycle Progression using Time-Resolved Single-Cell Imaging. Cell Rep 2021; 31:107514. [PMID: 32294432 DOI: 10.1016/j.celrep.2020.03.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/19/2020] [Accepted: 03/23/2020] [Indexed: 11/26/2022] Open
Abstract
Cells rely on input from extracellular growth factors to control their proliferation during development and adult homeostasis. Such mitogenic inputs are transmitted through multiple signaling pathways that synergize to precisely regulate cell cycle entry and progression. Although the architecture of these signaling networks has been characterized in molecular detail, their relative contribution, especially at later cell cycle stages, remains largely unexplored. By combining quantitative time-resolved measurements of fluorescent reporters in untransformed human cells with targeted pharmacological inhibitors and statistical analysis, we quantify epidermal growth factor (EGF)-induced signal processing in individual cells over time and dissect the dynamic contribution of downstream pathways. We define signaling features that encode information about extracellular ligand concentrations and critical time windows for inducing cell cycle transitions. We show that both extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) activity are necessary for initial cell cycle entry, whereas only PI3K affects the duration of S phase at later stages of mitogenic signaling.
Collapse
Affiliation(s)
- Manuela Benary
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany; Integrative Research Institute Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany
| | - Stefan Bohn
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Mareen Lüthen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ilias K Nolis
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, 13125 Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute for Theoretical Biology, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany; Integrative Research Institute Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany; Berlin Institute for Medical Systems Biology, Max Delbrueck Center in the Helmholtz Association, 13125 Berlin, Germany.
| |
Collapse
|
119
|
Che B, Zhao W, Liu Y, Sun D, Jing G, Bai J, Feng X, Zhang C. Dynamic intracellular mechanical cues facilitate collective signaling responses. iScience 2021; 24:102396. [PMID: 33997681 PMCID: PMC8091894 DOI: 10.1016/j.isci.2021.102396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 12/02/2022] Open
Abstract
Collective behavior emerges in diverse life machineries, e.g., the immune responses to dynamic stimulations. The essential questions that arise here are that whether and how cells in vivo collectively respond to stimulation frequencies higher than their intrinsic natural values, e.g., the acute inflammation conditions. In this work, we systematically studied morphological and signaling responses of population fibroblasts in an interconnected cell monolayer and uncovered that, besides the natural NF-κB oscillation frequency of 1/90 min−1, collective signaling response emerges in the cell monolayer at 1/20 min−1 TNF-α input periodicity as well. Using a customized microfluidic device, we independently induced dynamic chemical stimulation and cytoskeleton reorganization on the stand-alone cells to exclude the effect of cell-cell communication. Our results reveal that, at this particular frequency, chemical stimulation is translated into dynamic intracellular mechanical cues through RAC1-medicated induction of dynamic cell-cell connections and cytoskeleton reorganizations, which synergize with chemical input to facilitate collective signaling responses. Dynamic intracellular mechanical cues facilitate collective cellular responses The dynamic chemical stimulations are translated into intracellular mechanical cues The synergy between dynamic mechanical and chemical signal plays crucial roles
Collapse
Affiliation(s)
- Bingchen Che
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Yanan Liu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Guangyin Jing
- School of Physics, Northwest University, Xi'an 710069, China
| | - Jintao Bai
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Xiqiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
120
|
Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling. Nat Cell Biol 2021; 23:377-390. [PMID: 33795873 PMCID: PMC7610573 DOI: 10.1038/s41556-021-00654-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Direct targeting of the downstream mitogen-activated protein kinase (MAPK) pathway to suppress extracellular-regulated kinase (ERK) activation in KRAS and BRAF mutant colorectal cancer (CRC) has proven clinically unsuccessful, but promising results have been obtained with combination therapies including epidermal growth factor receptor (EGFR) inhibition. To elucidate the interplay between EGF signalling and ERK activation in tumours, we used patient-derived organoids (PDOs) from KRAS and BRAF mutant CRCs. PDOs resemble in vivo tumours, model treatment response and are compatible with live-cell microscopy. We established real-time, quantitative drug response assessment in PDOs with single-cell resolution, using our improved fluorescence resonance energy transfer (FRET)-based ERK biosensor EKAREN5. We show that oncogene-driven signalling is strikingly limited without EGFR activity and insufficient to sustain full proliferative potential. In PDOs and in vivo, upstream EGFR activity rigorously amplifies signal transduction efficiency in KRAS or BRAF mutant MAPK pathways. Our data provide a mechanistic understanding of the effectivity of EGFR inhibitors within combination therapies against KRAS and BRAF mutant CRC.
Collapse
|
121
|
Jacques M, Dobrzyński M, Gagliardi PA, Sznitman R, Pertz O. CODEX, a neural network approach to explore signaling dynamics landscapes. Mol Syst Biol 2021; 17:e10026. [PMID: 33835701 PMCID: PMC8034356 DOI: 10.15252/msb.202010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Current studies of cell signaling dynamics that use live cell fluorescent biosensors routinely yield thousands of single-cell, heterogeneous, multi-dimensional trajectories. Typically, the extraction of relevant information from time series data relies on predefined, human-interpretable features. Without a priori knowledge of the system, the predefined features may fail to cover the entire spectrum of dynamics. Here we present CODEX, a data-driven approach based on convolutional neural networks (CNNs) that identifies patterns in time series. It does not require a priori information about the biological system and the insights into the data are built through explanations of the CNNs' predictions. CODEX provides several views of the data: visualization of all the single-cell trajectories in a low-dimensional space, identification of prototypic trajectories, and extraction of distinctive motifs. We demonstrate how CODEX can provide new insights into ERK and Akt signaling in response to various growth factors, and we recapitulate findings in p53 and TGFβ-SMAD2 signaling.
Collapse
Affiliation(s)
| | | | | | - Raphael Sznitman
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| | - Olivier Pertz
- Institute of Cell BiologyUniversity of BernBernSwitzerland
| |
Collapse
|
122
|
Day EK, Sosale NG, Xiao A, Zhong Q, Purow B, Lazzara MJ. Glioblastoma Cell Resistance to EGFR and MET Inhibition Can Be Overcome via Blockade of FGFR-SPRY2 Bypass Signaling. Cell Rep 2021; 30:3383-3396.e7. [PMID: 32160544 DOI: 10.1016/j.celrep.2020.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/24/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
SPRY2 is a purported tumor suppressor in certain cancers that promotes tumor growth and resistance to receptor tyrosine kinase inhibitors in glioblastoma. Here, we identify a SPRY2-dependent bypass signaling mechanism in glioblastoma that drives resistance to EGFR and MET inhibition. In glioblastoma cells treated with EGFR and MET inhibitors, SPRY2 expression is initially suppressed but eventually rebounds due to NF-κB pathway activation, resultant autocrine FGFR activation, and reactivation of ERK, which controls SPRY2 transcription. In cells where FGFR autocrine signaling does not occur and ERK does not reactivate, or in which ERK reactivates but SPRY2 cannot be expressed, EGFR and MET inhibitors are more effective at promoting death. The same mechanism also drives acquired resistance to EGFR and MET inhibition. Furthermore, tumor xenografts expressing an ERK-dependent bioluminescent reporter engineered for these studies reveal that this bypass resistance mechanism plays out in vivo but can be overcome through simultaneous FGFR inhibition.
Collapse
Affiliation(s)
- Evan K Day
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nisha G Sosale
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Aizhen Xiao
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA
| | - Qing Zhong
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA
| | - Benjamin Purow
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
123
|
Ascolani G, Skerry TM, Lacroix D, Dall'Ara E, Shuaib A. Analysis of mechanotransduction dynamics during combined mechanical stimulation and modulation of the extracellular-regulated kinase cascade uncovers hidden information within the signalling noise. Interface Focus 2021; 11:20190136. [PMID: 33343875 PMCID: PMC7739911 DOI: 10.1098/rsfs.2019.0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a bone disease characterized by brittle bone and increased fracture incidence. With ageing societies worldwide, the disease presents a high burden on health systems. Furthermore, there are limited treatments for osteoporosis with just two anabolic pharmacological agents approved by the US Food and Drug Administration. Healthy bones are believed to be maintained via an intricate relationship between dual biochemical and mechanical (bio-mechanical) stimulations. It is widely considered that osteoporosis emerges as a result of disturbances to said relationship. The mechanotransduction process is key to this balance, and disruption of its dynamics in bone cells plays a role in osteoporosis development. Nonetheless, the exact details and mechanisms that drive and secure the health of bones are still elusive at the cellular and molecular scales. This study examined the dual modulation of mechanical stimulation and mechanotransduction activation dynamics in an osteoblast (OB). The aim was to find patterns of mechanotransduction dynamics demonstrating a significant change that can be mapped to alterations in the OB responses, specifically at the level of gene expression and osteogenic markers such as alkaline phosphatase. This was achieved using a three-dimensional hybrid multiscale computational model simulating mechanotransduction in the OB and its interaction with the extracellular matrix, combined with a numerical analytical technique. The model and the analysis method predict that within the noise of mechanotransduction, owing to modulation of the bio-mechanical stimulus and consequent gene expression, there are unique events that provide signatures for a shift in the system's dynamics. Furthermore, the study uncovered molecular interactions that can be potential drug targets.
Collapse
Affiliation(s)
- Gianluca Ascolani
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Timothy M. Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Aban Shuaib
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Insigneo Institute of In Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
124
|
The ERK mitogen-activated protein kinase signaling network: the final frontier in RAS signal transduction. Biochem Soc Trans 2021; 49:253-267. [PMID: 33544118 DOI: 10.1042/bst20200507] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
The RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade is aberrantly activated in a diverse set of human cancers and the RASopathy group of genetic developmental disorders. This protein kinase cascade is one of the most intensely studied cellular signaling networks and has been frequently targeted by the pharmaceutical industry, with more than 30 inhibitors either approved or under clinical evaluation. The ERK-MAPK cascade was originally depicted as a serial and linear, unidirectional pathway that relays extracellular signals, such as mitogenic stimuli, through the cytoplasm to the nucleus. However, we now appreciate that this three-tiered protein kinase cascade is a central core of a complex network with dynamic signaling inputs and outputs and autoregulatory loops. Despite our considerable advances in understanding the ERK-MAPK network, the ability of cancer cells to adapt to the inhibition of key nodes reveals a level of complexity that remains to be fully understood. In this review, we summarize important developments in our understanding of the ERK-MAPK network and identify unresolved issues for ongoing and future study.
Collapse
|
125
|
Haggerty RA, Purvis JE. Inferring the structures of signaling motifs from paired dynamic traces of single cells. PLoS Comput Biol 2021; 17:e1008657. [PMID: 33539338 PMCID: PMC7889133 DOI: 10.1371/journal.pcbi.1008657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2021] [Accepted: 12/26/2020] [Indexed: 11/18/2022] Open
Abstract
Individual cells show variability in their signaling dynamics that often correlates with phenotypic responses, indicating that cell-to-cell variability is not merely noise but can have functional consequences. Based on this observation, we reasoned that cell-to-cell variability under the same treatment condition could be explained in part by a single signaling motif that maps different upstream signals into a corresponding set of downstream responses. If this assumption holds, then repeated measurements of upstream and downstream signaling dynamics in a population of cells could provide information about the underlying signaling motif for a given pathway, even when no prior knowledge of that motif exists. To test these two hypotheses, we developed a computer algorithm called MISC (Motif Inference from Single Cells) that infers the underlying signaling motif from paired time-series measurements from individual cells. When applied to measurements of transcription factor and reporter gene expression in the yeast stress response, MISC predicted signaling motifs that were consistent with previous mechanistic models of transcription. The ability to detect the underlying mechanism became less certain when a cell's upstream signal was randomly paired with another cell's downstream response, demonstrating how averaging time-series measurements across a population obscures information about the underlying signaling mechanism. In some cases, motif predictions improved as more cells were added to the analysis. These results provide evidence that mechanistic information about cellular signaling networks can be systematically extracted from the dynamical patterns of single cells.
Collapse
Affiliation(s)
- Raymond A. Haggerty
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Computational Medicine Program, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy E. Purvis
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Computational Medicine Program, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
126
|
Thiemicke A, Neuert G. Kinetics of osmotic stress regulate a cell fate switch of cell survival. SCIENCE ADVANCES 2021; 7:7/8/eabe1122. [PMID: 33608274 PMCID: PMC7895434 DOI: 10.1126/sciadv.abe1122] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/06/2021] [Indexed: 05/02/2023]
Abstract
Exposure of cells to diverse types of stressful environments differentially regulates cell fate. Although many types of stresses causing this differential regulation are known, it is unknown how changes over time of the same stressor regulate cell fate. Changes in extracellular osmolarity are critically involved in physiological and pathophysiological processes in several tissues. We observe that human cells survive gradual but not acute hyperosmotic stress. We find that stress, caspase, and apoptosis signaling do not activate during gradual stress in contrast to acute treatments. Contrary to the current paradigm, we see a substantial accumulation of proline in cells treated with gradual but not acute stresses. We show that proline can protect cells from hyperosmotic stress similar to the osmoprotection in plants and bacteria. Our studies found a cell fate switch that enables cells to survive gradually changing stress environments by preventing caspase activation and protect cells through proline accumulation.
Collapse
Affiliation(s)
- Alexander Thiemicke
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Gregor Neuert
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
127
|
Li T, Chen X, Qian Y, Shao J, Li X, Liu S, Zhu L, Zhao Y, Ye H, Yang Y. A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice. Nat Commun 2021; 12:615. [PMID: 33504786 PMCID: PMC7840992 DOI: 10.1038/s41467-021-20913-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.
Collapse
Affiliation(s)
- Ting Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajie Qian
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jiawei Shao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuning Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
128
|
Goto Y, Kondo Y, Aoki K. Visualization and Manipulation of Intracellular Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:225-234. [PMID: 33398816 DOI: 10.1007/978-981-15-8763-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells respond to a wide range of extracellular stimuli, and process the input information through an intracellular signaling system comprised of biochemical and biophysical reactions, including enzymatic and protein-protein interactions. It is essential to understand the molecular mechanisms underlying intracellular signal transduction in order to clarify not only physiological cellular functions but also pathological processes such as tumorigenesis. Fluorescent proteins have revolutionized the field of life science, and brought the study of intracellular signaling to the single-cell and subcellular levels. Much effort has been devoted to developing genetically encoded fluorescent biosensors based on fluorescent proteins, which enable us to visualize the spatiotemporal dynamics of cell signaling. In addition, optogenetic techniques for controlling intracellular signal transduction systems have been developed and applied in recent years by regulating intracellular signaling in a light-dependent manner. Here, we outline the principles of biosensors for probing intracellular signaling and the optogenetic tools for manipulating them.
Collapse
Affiliation(s)
- Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
129
|
Bunker EN, Wheeler GE, Chapnick DA, Liu X. Suppression of α-catenin and adherens junctions enhances epithelial cell proliferation and motility via TACE-mediated TGF-α autocrine/paracrine signaling. Mol Biol Cell 2020; 32:348-361. [PMID: 33378218 PMCID: PMC8098817 DOI: 10.1091/mbc.e19-08-0474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sustained cell migration is essential for wound healing and cancer metastasis. The epidermal growth factor receptor (EGFR) signaling cascade is known to drive cell migration and proliferation. While the signal transduction downstream of EGFR has been extensively investigated, our knowledge of the initiation and maintenance of EGFR signaling during cell migration remains limited. The metalloprotease TACE (tumor necrosis factor alpha converting enzyme) is responsible for producing active EGFR family ligands in the via ligand shedding. Sustained TACE activity may perpetuate EGFR signaling and reduce a cell’s reliance on exogenous growth factors. Using a cultured keratinocyte model system, we show that depletion of α-catenin perturbs adherens junctions, enhances cell proliferation and motility, and decreases dependence on exogenous growth factors. We show that the underlying mechanism for these observed phenotypical changes depends on enhanced autocrine/paracrine release of the EGFR ligand transforming growth factor alpha in a TACE-dependent manner. We demonstrate that proliferating keratinocyte epithelial cell clusters display waves of oscillatory extracellular signal–regulated kinase (ERK) activity, which can be eliminated by TACE knockout, suggesting that these waves of oscillatory ERK activity depend on autocrine/paracrine signals produced by TACE. These results provide new insights into the regulatory role of adherens junctions in initiating and maintaining autocrine/paracrine signaling with relevance to wound healing and cellular transformation.
Collapse
Affiliation(s)
- Eric N Bunker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Graycen E Wheeler
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | | | - Xuedong Liu
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| |
Collapse
|
130
|
ERK-dependent suicide gene therapy for selective targeting of RTK/RAS-driven cancers. Mol Ther 2020; 29:1585-1601. [PMID: 33333291 DOI: 10.1016/j.ymthe.2020.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Suicide gene therapies provide a unique ability to target cancer cells selectively, often based on modification of viral tropism or transcriptional regulation of therapeutic gene expression. We designed a novel suicide gene therapy approach wherein the gene product (herpes simplex virus thymidine kinase or yeast cytosine deaminase) is phosphorylated and stabilized in expression by the extracellular signal-regulated kinase (ERK), which is overactive in numerous cancers with elevated expression or mutation of receptor tyrosine kinases or the GTPase RAS. In contrast to transcriptional strategies for selectivity, regulation of protein stability by ERK allows for high copy expression via constitutive viral promoters, while maintaining tumor selectivity in contexts of elevated ERK activity. Thus, our approach turns a signaling pathway often coopted by cancer cells for survival into a lethal disadvantage in the presence of a chimeric protein and prodrug, as highlighted by a series of in vitro and in vivo examples explored here.
Collapse
|
131
|
Ma M, Bordignon P, Dotto GP, Pelet S. Visualizing cellular heterogeneity by quantifying the dynamics of MAPK activity in live mammalian cells with synthetic fluorescent biosensors. Heliyon 2020; 6:e05574. [PMID: 33319088 PMCID: PMC7723811 DOI: 10.1016/j.heliyon.2020.e05574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Mitogen-Activated Protein Kinases (MAPKs) control a wide array of cellular functions by transducing extracellular information into defined biological responses. In order to understand how these pathways are regulated, dynamic single cell measurements are highly needed. Fluorescence microscopy is well suited to perform these measurements. However, more dynamic and sensitive biosensors that allow the quantification of signaling activity in living mammalian cells are required. We have engineered a synthetic fluorescent substrate for human MAPKs (ERK, JNK and p38) that relocates from the nucleus to the cytoplasm when phosphorylated by the kinases. We demonstrate that this reporter displays an improved response compared to other relocation biosensors. This assay allows to monitor the heterogeneity in the MAPK response in a population of isogenic cells, revealing pulses of ERK activity upon a physiological EGFR stimulation. We show applicability of this approach to the analysis of multiple cancer cell lines and primary cells as well as its application in vivo to developing tumors. Using this ERK biosensor, dynamic single cell measurements with high temporal resolution can be obtained. These MAPK reporters can be widely applied to the analysis of molecular mechanisms of MAPK signaling in healthy and diseased state, in cell culture assays or in vivo.
Collapse
Affiliation(s)
- Min Ma
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- Department of Biochemistry, University of Lausanne, Switzerland
| | - Pino Bordignon
- Department of Biochemistry, University of Lausanne, Switzerland
| | | | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| |
Collapse
|
132
|
Dettinger P, Wang W, Ahmed N, Zhang Y, Loeffler D, Kull T, Etzrodt M, Lengerke C, Schroeder T. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation. LAB ON A CHIP 2020; 20:4246-4254. [PMID: 33063816 DOI: 10.1039/d0lc00687d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell fates are controlled by environmental stimuli that rapidly change the activity of intracellular signaling. Studying these processes requires rapid manipulations of micro-environmental conditions while continuously observing single cells over long periods of time. Current microfluidic devices are unable to simultaneously i) efficiently capture and concentrate rare cells, ii) conduct automated rapid media exchanges via diffusion without displacing non-adherent cells, and iii) allow sensitive high-throughput long-term time-lapse microscopy. Hematopoietic stem and progenitor cells pose a particular challenge for these types of experiments as they are impossible to obtain in very large numbers and are displaced by the fluid flow usually used to change culture media, thus preventing cell tracking. Here, we developed a programmable automated system composed of a novel microfluidic device for efficient capture of rare cells in independently addressable culture chambers, a custom incubation system, and user-friendly control software. The chip's culture chambers are optimized for efficient and sensitive fluorescence microscopy and their media can be individually and quickly changed by diffusion without non-adherent cell displacement. The chip allows efficient capture, stimulation, and sensitive high-frequency time-lapse observation of rare and sensitive murine and human primary hematopoietic stem cells. Our 3D-printed humidification and incubation system minimizes gas consumption, facilitates chip setup, and maintains stable humidity and gas composition during long-term cell culture. This approach now enables the required continuous long-term single-cell quantification of rare non-adherent cells with rapid environmental manipulations, e.g. of rapid signaling dynamics and the later stem cell fate choices they control.
Collapse
Affiliation(s)
- Philip Dettinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Weijia Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Yang Zhang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Tobias Kull
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Martin Etzrodt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
133
|
Simon CS, Rahman S, Raina D, Schröter C, Hadjantonakis AK. Live Visualization of ERK Activity in the Mouse Blastocyst Reveals Lineage-Specific Signaling Dynamics. Dev Cell 2020; 55:341-353.e5. [PMID: 33091370 PMCID: PMC7658048 DOI: 10.1016/j.devcel.2020.09.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 01/16/2023]
Abstract
FGF/ERK signaling is crucial for the patterning and proliferation of cell lineages that comprise the mouse blastocyst. However, ERK signaling dynamics have never been directly visualized in live embryos. To address whether differential signaling is associated with particular cell fates and states, we generated a targeted mouse line expressing an ERK-kinase translocation reporter (KTR) that enables live quantification of ERK activity at single-cell resolution. 3D time-lapse imaging of this biosensor in embryos revealed spatially graded ERK activity in the trophectoderm prior to overt polar versus mural differentiation. Within the inner cell mass (ICM), all cells relayed FGF/ERK signals with varying durations and magnitude. Primitive endoderm cells displayed higher overall levels of ERK activity, while pluripotent epiblast cells exhibited lower basal activity with sporadic pulses. These results constitute a direct visualization of signaling events during mammalian pre-implantation development and reveal the existence of spatial and temporal lineage-specific dynamics.
Collapse
Affiliation(s)
- Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shahadat Rahman
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
134
|
Gerosa L, Chidley C, Fröhlich F, Sanchez G, Lim SK, Muhlich J, Chen JY, Vallabhaneni S, Baker GJ, Schapiro D, Atanasova MI, Chylek LA, Shi T, Yi L, Nicora CD, Claas A, Ng TSC, Kohler RH, Lauffenburger DA, Weissleder R, Miller MA, Qian WJ, Wiley HS, Sorger PK. Receptor-Driven ERK Pulses Reconfigure MAPK Signaling and Enable Persistence of Drug-Adapted BRAF-Mutant Melanoma Cells. Cell Syst 2020; 11:478-494.e9. [PMID: 33113355 DOI: 10.1016/j.cels.2020.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
Targeted inhibition of oncogenic pathways can be highly effective in halting the rapid growth of tumors but often leads to the emergence of slowly dividing persister cells, which constitute a reservoir for the selection of drug-resistant clones. In BRAFV600E melanomas, RAF and MEK inhibitors efficiently block oncogenic signaling, but persister cells emerge. Here, we show that persister cells escape drug-induced cell-cycle arrest via brief, sporadic ERK pulses generated by transmembrane receptors and growth factors operating in an autocrine/paracrine manner. Quantitative proteomics and computational modeling show that ERK pulsing is enabled by rewiring of mitogen-activated protein kinase (MAPK) signaling: from an oncogenic BRAFV600E monomer-driven configuration that is drug sensitive to a receptor-driven configuration that involves Ras-GTP and RAF dimers and is highly resistant to RAF and MEK inhibitors. Altogether, this work shows that pulsatile MAPK activation by factors in the microenvironment generates a persistent population of melanoma cells that rewires MAPK signaling to sustain non-genetic drug resistance.
Collapse
Affiliation(s)
- Luca Gerosa
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fabian Fröhlich
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela Sanchez
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sang Kyun Lim
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jia-Yun Chen
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sreeram Vallabhaneni
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory J Baker
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Denis Schapiro
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mariya I Atanasova
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lily A Chylek
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Allison Claas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
135
|
Jashnsaz H, Fox ZR, Hughes JJ, Li G, Munsky B, Neuert G. Diverse Cell Stimulation Kinetics Identify Predictive Signal Transduction Models. iScience 2020; 23:101565. [PMID: 33083733 PMCID: PMC7549069 DOI: 10.1016/j.isci.2020.101565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022] Open
Abstract
Computationally understanding the molecular mechanisms that give rise to cell signaling responses upon different environmental, chemical, and genetic perturbations is a long-standing challenge that requires models that fit and predict quantitative responses for new biological conditions. Overcoming this challenge depends not only on good models and detailed experimental data but also on the rigorous integration of both. We propose a quantitative framework to perturb and model generic signaling networks using multiple and diverse changing environments (hereafter "kinetic stimulations") resulting in distinct pathway activation dynamics. We demonstrate that utilizing multiple diverse kinetic stimulations better constrains model parameters and enables predictions of signaling dynamics that would be impossible using traditional dose-response or individual kinetic stimulations. To demonstrate our approach, we use experimentally identified models to predict signaling dynamics in normal, mutated, and drug-treated conditions upon multitudes of kinetic stimulations and quantify which proteins and reaction rates are most sensitive to which extracellular stimulations.
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary R. Fox
- Inria Saclay Ile-de-France, Palaiseau 91120, France
- Institut Pasteur, USR 3756 IP CNRS, Paris 75015, France
- Keck Scholars, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jason J. Hughes
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Guoliang Li
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Munsky
- Keck Scholars, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
136
|
Theoretical study of the impact of adaptation on cell-fate heterogeneity and fractional killing. Sci Rep 2020; 10:17429. [PMID: 33060729 PMCID: PMC7562916 DOI: 10.1038/s41598-020-74238-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fractional killing illustrates the cell propensity to display a heterogeneous fate response over a wide range of stimuli. The interplay between the nonlinear and stochastic dynamics of biochemical networks plays a fundamental role in shaping this probabilistic response and in reconciling requirements for heterogeneity and controllability of cell-fate decisions. The stress-induced fate choice between life and death depends on an early adaptation response which may contribute to fractional killing by amplifying small differences between cells. To test this hypothesis, we consider a stochastic modeling framework suited for comprehensive sensitivity analysis of dose response curve through the computation of a fractionality index. Combining bifurcation analysis and Langevin simulation, we show that adaptation dynamics enhances noise-induced cell-fate heterogeneity by shifting from a saddle-node to a saddle-collision transition scenario. The generality of this result is further assessed by a computational analysis of a detailed regulatory network model of apoptosis initiation and by a theoretical analysis of stochastic bifurcation mechanisms. Overall, the present study identifies a cooperative interplay between stochastic, adaptation and decision intracellular processes that could promote cell-fate heterogeneity in many contexts.
Collapse
|
137
|
Meyer M, Paquet A, Arguel MJ, Peyre L, Gomes-Pereira LC, Lebrigand K, Mograbi B, Brest P, Waldmann R, Barbry P, Hofman P, Roux J. Profiling the Non-genetic Origins of Cancer Drug Resistance with a Single-Cell Functional Genomics Approach Using Predictive Cell Dynamics. Cell Syst 2020; 11:367-374.e5. [PMID: 33099406 DOI: 10.1016/j.cels.2020.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Non-genetic heterogeneity observed in clonal cell populations is an immediate cause of drug resistance that remains challenging to profile because of its transient nature. Here, we coupled three single-cell technologies to link the predicted drug response of a cell to its own genome-wide transcriptomic profile. As a proof of principle, we analyzed the response to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) in HeLa cells to demonstrate that cell dynamics can discriminate the transient transcriptional states at the origin of cell decisions such as sensitivity and resistance. Our same-cell approach, named fate-seq, can reveal the molecular factors regulating the efficacy of a drug in clonal cells, providing therapeutic targets of non-genetic drug resistance otherwise confounded in gene expression noise. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Agnès Paquet
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Marie-Jeanne Arguel
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Luis C Gomes-Pereira
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, 06560 Nice, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Baharia Mograbi
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Patrick Brest
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Rainer Waldmann
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France.
| |
Collapse
|
138
|
Aikin TJ, Peterson AF, Pokrass MJ, Clark HR, Regot S. MAPK activity dynamics regulate non-cell autonomous effects of oncogene expression. eLife 2020; 9:e60541. [PMID: 32940599 PMCID: PMC7498266 DOI: 10.7554/elife.60541] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
A large fraction of human cancers contain genetic alterations within the Mitogen Activated Protein Kinase (MAPK) signaling network that promote unpredictable phenotypes. Previous studies have shown that the temporal patterns of MAPK activity (i.e. signaling dynamics) differentially regulate cell behavior. However, the role of signaling dynamics in mediating the effects of cancer driving mutations has not been systematically explored. Here, we show that oncogene expression leads to either pulsatile or sustained ERK activity that correlate with opposing cellular behaviors (i.e. proliferation vs. cell cycle arrest, respectively). Moreover, sustained-but not pulsatile-ERK activity triggers ERK activity waves in unperturbed neighboring cells that depend on the membrane metalloprotease ADAM17 and EGFR activity. Interestingly, the ADAM17-EGFR signaling axis coordinates neighboring cell migration toward oncogenic cells and is required for oncogenic cell extrusion. Overall, our data suggests that the temporal patterns of MAPK activity differentially regulate cell autonomous and non-cell autonomous effects of oncogene expression.
Collapse
Affiliation(s)
- Timothy J Aikin
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of MedicineBaltimoreUnited States
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, The Johns Hopkins Universtiy School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Amy F Peterson
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of MedicineBaltimoreUnited States
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, The Johns Hopkins Universtiy School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael J Pokrass
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of MedicineBaltimoreUnited States
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, The Johns Hopkins Universtiy School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Helen R Clark
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of MedicineBaltimoreUnited States
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, The Johns Hopkins Universtiy School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sergi Regot
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of MedicineBaltimoreUnited States
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, The Johns Hopkins Universtiy School of MedicineBaltimoreUnited States
- Department of Oncology, The Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
139
|
An Excitable Ras/PI3K/ERK Signaling Network Controls Migration and Oncogenic Transformation in Epithelial Cells. Dev Cell 2020; 54:608-623.e5. [PMID: 32877650 DOI: 10.1016/j.devcel.2020.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The Ras/PI3K/extracellular signal-regulated kinases (ERK) signaling network plays fundamental roles in cell growth, survival, and migration and is frequently activated in cancer. Here, we show that the activities of the signaling network propagate as coordinated waves, biased by growth factor, which drive actin-based protrusions in human epithelial cells. The network exhibits hallmarks of biochemical excitability: the annihilation of oppositely directed waves, all-or-none responsiveness, and refractoriness. Abrupt perturbations to Ras, PI(4,5)P2, PI(3,4)P2, ERK, and TORC2 alter the threshold, observations that define positive and negative feedback loops within the network. Oncogenic transformation dramatically increases the wave activity, the frequency of ERK pulses, and the sensitivity to EGF stimuli. Wave activity was progressively enhanced across a series of increasingly metastatic breast cancer cell lines. The view that oncogenic transformation is a shift to a lower threshold of excitable Ras/PI3K/ERK network, caused by various combinations of genetic insults, can facilitate the assessment of cancer severity and effectiveness of interventions.
Collapse
|
140
|
Davies AE, Pargett M, Siebert S, Gillies TE, Choi Y, Tobin SJ, Ram AR, Murthy V, Juliano C, Quon G, Bissell MJ, Albeck JG. Systems-Level Properties of EGFR-RAS-ERK Signaling Amplify Local Signals to Generate Dynamic Gene Expression Heterogeneity. Cell Syst 2020; 11:161-175.e5. [PMID: 32726596 PMCID: PMC7856305 DOI: 10.1016/j.cels.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Intratumoral heterogeneity is associated with aggressive tumor behavior, therapy resistance, and poor patient outcomes. Such heterogeneity is thought to be dynamic, shifting over periods of minutes to hours in response to signaling inputs from the tumor microenvironment. However, models of this process have been inferred from indirect or post-hoc measurements of cell state, leaving the temporal details of signaling-driven heterogeneity undefined. Here, we developed a live-cell model system in which microenvironment-driven signaling dynamics can be directly observed and linked to variation in gene expression. Our analysis reveals that paracrine signaling between two cell types is sufficient to drive continual diversification of gene expression programs. This diversification emerges from systems-level properties of the EGFR-RAS-ERK signaling cascade, including intracellular amplification of amphiregulin-mediated paracrine signals and differential kinetic filtering by target genes including Fra-1, c-Myc, and Egr1. Our data enable more precise modeling of paracrine-driven transcriptional variation as a generator of gene expression heterogeneity. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Alexander E Davies
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Taryn E Gillies
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Yongin Choi
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Savannah J Tobin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA; Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Abhineet R Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Vaibhav Murthy
- Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Celina Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
141
|
Kiyatkin A, van Alderwerelt van Rosenburgh IK, Klein DE, Lemmon MA. Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. Sci Signal 2020; 13:13/645/eaaz5267. [PMID: 32817373 DOI: 10.1126/scisignal.aaz5267] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In responses to activation of receptor tyrosine kinases (RTKs), crucial cell fate decisions depend on the duration and dynamics of ERK signaling. In PC12 cells, epidermal growth factor (EGF) induces transient ERK activation that leads to cell proliferation, whereas nerve growth factor (NGF) promotes sustained ERK activation and cell differentiation. These differences have typically been assumed to reflect distinct feedback mechanisms in the Raf-MEK-ERK signaling network, with the receptors themselves acting as simple upstream inputs. We failed to confirm the expected differences in feedback type when investigating transient versus sustained signaling downstream of the EGF receptor (EGFR) and NGF receptor (TrkA). Instead, we found that ERK signaling faithfully followed RTK dynamics when receptor signaling was modulated in different ways. EGFR activation kinetics, and consequently ERK signaling dynamics, were switched from transient to sustained when receptor internalization was inhibited with drugs or mutations, or when cells expressed a chimeric receptor likely to have impaired dimerization. In addition, EGFR and ERK signaling both became more sustained when substoichiometric levels of erlotinib were added to reduce duration of EGFR kinase activation. Our results argue that RTK activation kinetics play a crucial role in determining MAP kinase cascade signaling dynamics and cell fate decisions, and that signaling outcome can be modified by activating a given RTK in different ways.
Collapse
Affiliation(s)
- Anatoly Kiyatkin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Iris K van Alderwerelt van Rosenburgh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Daryl E Klein
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA. .,Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
142
|
Ravindran PT, Wilson MZ, Jena SG, Toettcher JE. Engineering combinatorial and dynamic decoders using synthetic immediate-early genes. Commun Biol 2020; 3:436. [PMID: 32792645 PMCID: PMC7426417 DOI: 10.1038/s42003-020-01171-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Many cell- and tissue-level functions are coordinated by intracellular signaling pathways that trigger the expression of context-specific target genes. Yet the input–output relationships that link pathways to the genes they activate are incompletely understood. Mapping the pathway-decoding logic of natural target genes could also provide a basis for engineering novel signal-decoding circuits. Here we report the construction of synthetic immediate-early genes (SynIEGs), target genes of Erk signaling that implement complex, user-defined regulation and can be monitored by using live-cell biosensors to track their transcription and translation. We demonstrate the power of this approach by confirming Erk duration-sensing by FOS, elucidating how the BTG2 gene is differentially regulated by external stimuli, and designing a synthetic immediate-early gene that selectively responds to the combination of growth factor and DNA damage stimuli. SynIEGs pave the way toward engineering molecular circuits that decode signaling dynamics and combinations across a broad range of cellular contexts. Ravindran et al. report the construction of synthetic immediate-early genes (SynIEGs), target genes of the Erk signaling pathway. SynIEGs implement user-defined regulation while tracking transcription and translation. This study underscores post-transcriptional regulation in signal decoding that may be masked by analyses of RNA abundance alone.
Collapse
Affiliation(s)
- Pavithran T Ravindran
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Maxwell Z Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular, Cellular, and Developmental, Biology, University of California, Santa Barbara, CA, USA
| | - Siddhartha G Jena
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
143
|
ERK signaling dynamics in the morphogenesis and homeostasis of Drosophila. Curr Opin Genet Dev 2020; 63:9-15. [DOI: 10.1016/j.gde.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
|
144
|
Regulation of ERK basal and pulsatile activity control proliferation and exit from the stem cell compartment in mammalian epidermis. Proc Natl Acad Sci U S A 2020; 117:17796-17807. [PMID: 32651268 PMCID: PMC7395546 DOI: 10.1073/pnas.2006965117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding how intracellular signaling cascades control cell fate is a key issue in stem cell biology. Here we show that exit from the stem cell compartment in mammalian epidermis is characterized by pulsatile ERK MAPK activity. Basal activity and pulses are differentially regulated by DUSP10 and DUSP6, two phosphatases that have been shown previously to regulate differentiation commitment in the epidermis. ERK activity is controlled both transcriptionally and posttranscriptionally. Spatial segregation of mean ERK activity and pulses is observed both in reconstituted human epidermis and in mouse epidermis. Our findings demonstrate the tight spatial and temporal regulation of ERK MAPK expression and activity in mammalian epidermis. Fluctuation in signal transduction pathways is frequently observed during mammalian development. However, its role in regulating stem cells has not been explored. Here we tracked spatiotemporal ERK MAPK dynamics in human epidermal stem cells. While stem cells and differentiated cells were distinguished by high and low stable basal ERK activity, respectively, we also found cells with pulsatile ERK activity. Transitions from Basalhi-Pulselo (stem) to Basalhi-Pulsehi, Basalmid-Pulsehi, and Basallo-Pulselo (differentiated) cells occurred in expanding keratinocyte colonies and in response to differentiation stimuli. Pharmacological inhibition of ERK induced differentiation only when cells were in the Basalmid-Pulsehi state. Basal ERK activity and pulses were differentially regulated by DUSP10 and DUSP6, leading us to speculate that DUSP6-mediated ERK pulse down-regulation promotes initiation of differentiation, whereas DUSP10-mediated down-regulation of mean ERK activity promotes and stabilizes postcommitment differentiation. Levels of MAPK1/MAPK3 transcripts correlated with DUSP6 and DUSP10 transcripts in individual cells, suggesting that ERK activity is negatively regulated by transcriptional and posttranslational mechanisms. When cells were cultured on a topography that mimics the epidermal−dermal interface, spatial segregation of mean ERK activity and pulses was observed. In vivo imaging of mouse epidermis revealed a patterned distribution of basal cells with pulsatile ERK activity, and down-regulation was linked to the onset of differentiation. Our findings demonstrate that ERK MAPK signal fluctuations link kinase activity to stem cell dynamics.
Collapse
|
145
|
Ningsih Z, Clayton AHA. Does frequency-dependent cell proliferation exhibit a Fano-type resonance? Phys Biol 2020; 17:044001. [PMID: 32396881 DOI: 10.1088/1478-3975/ab9242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined PC12 cell proliferation in environments with temporally varying epidermal growth factor concentrations by means of a microfluidic system. Our measurements revealed frequency-dependent cell behaviour over an observation period of three days. The cell population either increased, decreased or remained constant depending on the frequency of epidermal growth factor applied. A plot of the apparent proliferation rate as a function of growth-factor frequency was mathematically described by the Fano line-shape formula. In the context of linear response theory, these results imply that the PC12 cells compute zero, first and second-order time derivatives of the ligand concentration and utilise this information to decide to proliferate or die. We discuss a physical model based on periodic forcing of coupled oscillators that accounts for these observations. Our results and analysis suggest the possibility to influence cell fate by controlling the dynamics of the extracellular environment.
Collapse
Affiliation(s)
- Zubaidah Ningsih
- Cell Biophysics Laboratory, Optical Sciences Centre, Department of Physics and Astronomy, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn VIC 3122, Australia
| | | |
Collapse
|
146
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 647] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
147
|
Min M, Rong Y, Tian C, Spencer SL. Temporal integration of mitogen history in mother cells controls proliferation of daughter cells. Science 2020; 368:1261-1265. [PMID: 32241885 PMCID: PMC8363187 DOI: 10.1126/science.aay8241] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 01/17/2023]
Abstract
Multicellular organisms use mitogens to regulate cell proliferation, but how fluctuating mitogenic signals are converted into proliferation-quiescence decisions is poorly understood. In this work, we combined live-cell imaging with temporally controlled perturbations to determine the time scale and mechanisms underlying this system in human cells. Contrary to the textbook model that cells sense mitogen availability only in the G1 cell cycle phase, we find that mitogenic signaling is temporally integrated throughout the entire mother cell cycle and that even a 1-hour lapse in mitogen signaling can influence cell proliferation more than 12 hours later. Protein translation rates serve as the integrator that proportionally converts mitogen history into corresponding levels of cyclin D in the G2 phase of the mother cell, which controls the proliferation-quiescence decision in daughter cells and thereby couples protein production with cell proliferation.
Collapse
Affiliation(s)
- Mingwei Min
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Yao Rong
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Chengzhe Tian
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Sabrina L Spencer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
148
|
Ma CY, Marioni JC, Griffiths GM, Richard AC. Stimulation strength controls the rate of initiation but not the molecular organisation of TCR-induced signalling. eLife 2020; 9:e53948. [PMID: 32412411 PMCID: PMC7308083 DOI: 10.7554/elife.53948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of naïve T cells with different TCRs may interact with a peptide-MHC ligand, but very few will activate. Remarkably, this fine control is orchestrated using a limited set of intracellular machinery. It remains unclear whether changes in stimulation strength alter the programme of signalling events leading to T cell activation. Using mass cytometry to simultaneously measure multiple signalling pathways during activation of murine CD8+ T cells, we found a programme of distal signalling events that is shared, regardless of the strength of TCR stimulation. Moreover, the relationship between transcription of early response genes Nr4a1 and Irf8 and activation of the ribosomal protein S6 is also conserved across stimuli. Instead, we found that stimulation strength dictates the rate with which cells initiate signalling through this network. These data suggest that TCR-induced signalling results in a coordinated activation program, modulated in rate but not organization by stimulation strength.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Female
- Flow Cytometry
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Kinetics
- Ligands
- Lymphocyte Activation/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Ovalbumin/pharmacology
- Peptide Fragments/pharmacology
- Phosphorylation
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/metabolism
- Ribosomal Protein S6/metabolism
- Signal Transduction/drug effects
- Single-Cell Analysis
Collapse
Affiliation(s)
- Claire Y Ma
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Arianne C Richard
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
149
|
Xu X, Lemmens LJM, den Hamer A, Merkx M, Ottmann C, Brunsveld L. Modular bioengineered kinase sensors via scaffold protein-mediated split-luciferase complementation. Chem Sci 2020; 11:5532-5536. [PMID: 32874496 PMCID: PMC7446724 DOI: 10.1039/d0sc00074d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
Phosphorylation is a key regulation event in cellular signaling. To sense the underlying kinase activity, we engineered modular and easy adaptable serine kinase sensors for the exemplary kinases PKA, PKB and CHK1.
Phosphorylation is a key regulation event in cellular signaling. Sensing the underlying kinase activity is of crucial importance for its fundamental understanding and for drug development. For this, modular kinase activity sensing concepts are urgently needed. We engineered modular serine kinase sensors based on complementation of split NanoBiT luciferase on protein assembly platforms generated from the scaffold protein 14-3-3. The bioengineered platforms are modular and easy adaptable as exemplary shown using novel sensors for the kinases PKA, PKB, and CHK1. Two designs were conceptualized, both relying on binding of defined mono- or bivalent kinase recognition motifs to the 14-3-3 platform upon phosphorylation, resulting in reconstitution of active split-luciferase. Especially the design based on double phosphorylation and bivalent 14-3-3 binding exhibits high efficiency for signal amplification (>1000-fold) and sensitivity to specific kinases, including in cellular lysates.
Collapse
Affiliation(s)
- Xiaolu Xu
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Lenne J M Lemmens
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Anniek den Hamer
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Maarten Merkx
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Christian Ottmann
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| | - Luc Brunsveld
- Laboratory of Chemical Biology , Department of Biomedical Engineering , Institute for Complex Molecular Systems (ICMS) , Eindhoven University of Technology , Den Dolech 2 , 5612AZ , Eindhoven , the Netherlands .
| |
Collapse
|
150
|
Neagu A, van Genderen E, Escudero I, Verwegen L, Kurek D, Lehmann J, Stel J, Dirks RAM, van Mierlo G, Maas A, Eleveld C, Ge Y, den Dekker AT, Brouwer RWW, van IJcken WFJ, Modic M, Drukker M, Jansen JH, Rivron NC, Baart EB, Marks H, ten Berge D. In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nat Cell Biol 2020; 22:534-545. [DOI: 10.1038/s41556-020-0508-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
|