101
|
Yuan C, Ning Y, Pan Y. Emerging roles of HOTAIR in human cancer. J Cell Biochem 2020; 121:3235-3247. [PMID: 31943306 DOI: 10.1002/jcb.29591] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNA HOX antisense intergenic RNA (HOTAIR) is overexpressed in many types of cancers, and substantial evidence has suggested a link between cancers and HOTAIR. In the present study, we reviewed the structure and the corresponding biologic function of HOTAIR to clarify its molecular mechanism in cancer progression. HOTAIR promotes proliferation, invasion, and migration, and inhibits apoptosis in cancer cells. HOTAIR also participates in the pathogenesis and progression of cancer by regulating inflammation and immune signaling. These findings suggested that HOTAIR is a novel biomarker in human cancers.
Collapse
Affiliation(s)
- Chunjue Yuan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yong Ning
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
102
|
Stanicek L, Lozano-Vidal N, Bink DI, Hooglugt A, Yao W, Wittig I, van Rijssel J, van Buul JD, van Bergen A, Klems A, Ramms AS, Le Noble F, Hofmann P, Szulcek R, Wang S, Offermanns S, Ercanoglu MS, Kwon HB, Stainier D, Huveneers S, Kurian L, Dimmeler S, Boon RA. Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function. Commun Biol 2020; 3:265. [PMID: 32457386 PMCID: PMC7251106 DOI: 10.1038/s42003-020-0987-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are constantly exposed to shear stress, a biomechanical force generated by blood flow. Normal shear stress sensing and barrier function are crucial for vascular homeostasis and are controlled by adherens junctions (AJs). Here we show that AJs are stabilized by the shear stress-induced long non-coding RNA LASSIE (linc00520). Silencing of LASSIE in endothelial cells impairs cell survival, cell-cell contacts and cell alignment in the direction of flow. LASSIE associates with junction proteins (e.g. PECAM-1) and the intermediate filament protein nestin, as identified by RNA affinity purification. The AJs component VE-cadherin showed decreased stabilization, due to reduced interaction with nestin and the microtubule cytoskeleton in the absence of LASSIE. This study identifies LASSIE as link between nestin and VE-cadherin, and describes nestin as crucial component in the endothelial response to shear stress. Furthermore, this study indicates that LASSIE regulates barrier function by connecting AJs to the cytoskeleton. Stanicek et al identify a shear stress-induced long non-coding RNA they name LASSIE, which stabilises junctions between endothelial cells through interactions with junctional and cytoskeletal proteins. This study provides insights into how a transcript that does not encode a protein controls endothelial response to forces associated with blood flow and endothelial barrier function.
Collapse
Affiliation(s)
- Laura Stanicek
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany
| | - Noelia Lozano-Vidal
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Diewertje Ilse Bink
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Aukie Hooglugt
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Biochemistry, Vascular Microenvironment and Integrity, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Wenjie Yao
- Institute for Neurophysiology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Jos van Rijssel
- Molecular Cell Biology Laboratory, Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Jaap Diederik van Buul
- Molecular Cell Biology Laboratory, Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Anke van Bergen
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Alina Klems
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anne Sophie Ramms
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ferdinand Le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Patrick Hofmann
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Robert Szulcek
- Dept. of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Meryem Seda Ercanoglu
- Institute of Virology, University Hospital Cologne, 50935, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Vascular Microenvironment and Integrity, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Leo Kurian
- Institute for Neurophysiology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Reinier Abraham Boon
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands. .,Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany. .,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany.
| |
Collapse
|
103
|
Uroda T, Chillón I, Annibale P, Teulon JM, Pessey O, Karuppasamy M, Pellequer JL, Marcia M. Visualizing the functional 3D shape and topography of long noncoding RNAs by single-particle atomic force microscopy and in-solution hydrodynamic techniques. Nat Protoc 2020; 15:2107-2139. [PMID: 32451442 DOI: 10.1038/s41596-020-0323-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are recently discovered transcripts that regulate vital cellular processes, such as cellular differentiation and DNA replication, and are crucially connected to diseases. Although the 3D structures of lncRNAs are key determinants of their function, the unprecedented molecular complexity of lncRNAs has so far precluded their 3D structural characterization at high resolution. It is thus paramount to develop novel approaches for biochemical and biophysical characterization of these challenging targets. Here, we present a protocol that integrates non-denaturing lncRNA purification with in-solution hydrodynamic analysis and single-particle atomic force microscopy (AFM) imaging to produce highly homogeneous lncRNA preparations and visualize their 3D topology at ~15-Å resolution. Our protocol is suitable for imaging lncRNAs in biologically active conformations and for measuring structural defects of functionally inactive mutants that have been identified by cell-based functional assays. Once optimized for the specific target lncRNA of choice, our protocol leads from cloning to AFM imaging within 3-4 weeks and can be implemented using state-of-the-art biochemical and biophysical instrumentation by trained researchers familiar with RNA handling and supported by AFM and small-angle X-ray scattering (SAXS) experts.
Collapse
Affiliation(s)
- Tina Uroda
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Isabel Chillón
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | | | - Jean-Marie Teulon
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Ombeline Pessey
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | | | - Jean-Luc Pellequer
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France.
| |
Collapse
|
104
|
Heenan PR, Wang X, Gooding AR, Cech TR, Perkins TT. Bending and looping of long DNA by Polycomb repressive complex 2 revealed by AFM imaging in liquid. Nucleic Acids Res 2020; 48:2969-2981. [PMID: 32043141 DOI: 10.1093/nar/gkaa073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that methylates histone H3 at Lysine 27. PRC2 is critical for epigenetic gene silencing, cellular differentiation and the formation of facultative heterochromatin. It can also promote or inhibit oncogenesis. Despite this importance, the molecular mechanisms by which PRC2 compacts chromatin are relatively understudied. Here, we visualized the binding of PRC2 to naked DNA in liquid at the single-molecule level using atomic force microscopy. Analysis of the resulting images showed PRC2, consisting of five subunits (EZH2, EED, SUZ12, AEBP2 and RBBP4), bound to a 2.5-kb DNA with an apparent dissociation constant ($K_{\rm{D}}^{{\rm{app}}}$) of 150 ± 12 nM. PRC2 did not show sequence-specific binding to a region of high GC content (76%) derived from a CpG island embedded in such a long DNA substrate. At higher concentrations, PRC2 compacted DNA by forming DNA loops typically anchored by two or more PRC2 molecules. Additionally, PRC2 binding led to a 3-fold increase in the local bending of DNA's helical backbone without evidence of DNA wrapping around the protein. We suggest that the bending and looping of DNA by PRC2, independent of PRC2's methylation activity, may contribute to heterochromatin formation and therefore epigenetic gene silencing.
Collapse
Affiliation(s)
- Patrick R Heenan
- Department of Physics, University of Colorado, Boulder, CO 80309, USA.,JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| | - Xueyin Wang
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Anne R Gooding
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.,Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Thomas R Cech
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.,Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
105
|
Almeida M, Bowness JS, Brockdorff N. The many faces of Polycomb regulation by RNA. Curr Opin Genet Dev 2020; 61:53-61. [PMID: 32403014 PMCID: PMC7653676 DOI: 10.1016/j.gde.2020.02.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Many intricate pathways contribute to the timely control of gene expression during development. Polycomb repressive complexes (PRC1 and PRC2) and long non-coding RNAs (lncRNAs) are players associated with gene repression in various developmental processes such as X chromosome inactivation (XCI) and genomic imprinting. Historically, lncRNAs were proposed to directly recruit PRC2. However, recent evidence suggests that promiscuous interactions between PRC2 and RNA fine-tune the function of the complex through a multiplicity of mechanisms. A PRC2-recruitment model was definitively overturned in the paradigm of XCI by Xist RNA, being replaced by a novel mechanism which puts PRC1 in the spotlight. This review focuses on these recent advances in understanding the interplay between RNA and Polycomb complexes for gene expression control.
Collapse
Affiliation(s)
- Mafalda Almeida
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joseph S Bowness
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
106
|
Chen Q, Zhu C, Jin Y. The Oncogenic and Tumor Suppressive Functions of the Long Noncoding RNA MALAT1: An Emerging Controversy. Front Genet 2020; 11:93. [PMID: 32174966 PMCID: PMC7056701 DOI: 10.3389/fgene.2020.00093] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs are recently emerging as critical factors of tumorigenesis. Originally regarded as a pre-messenger RNA (mRNA) splicing regulator, the long noncoding RNA MALAT1 has been demonstrated to regulate gene transcription by binding histone modification enzymes and transcription factors, and to regulate mRNA and protein expression post-transcriptionally by binding microRNAs (miRNAs) and acting as a sponge. Early studies consistently report that MALAT1 is up-regulated in human cancer tissues of various organ origins, particularly metastatic cancer tissues, that high levels of MALAT1 expression in cancer tissues are associated with poor patient prognosis, and that MALAT1 induces cancer cell proliferation, migration, and invasion in vitro and tumor metastasis in mice. By contrast, by analyzing multiple independent large datasets, MALAT1 have very recently been found to be down-regulated in human colorectal and breast cancer tissues, and low MALAT1 expression is associated with decreased patient survival. By binding to the transcription factor TEAD, MALAT1 suppresses metastasis gene expression, colorectal and breast cancer cell migration, invasion, and metastasis in vitro and in mice. MALAT1 has therefore been proposed to function as a tumor suppressor in colorectal and breast cancers. More comprehensive studies with multiple independent cohorts of human cancer tissues of various organ origins, in vitro and in vivo function, and mechanism studies with rescue experiments are required to confirm the oncogenic or tumor suppressive role of MALAT1 in other cancers.
Collapse
Affiliation(s)
- Qingjuan Chen
- Department of Oncology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Chenjing Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yingying Jin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
107
|
Li D, Kishta MS, Wang J. Regulation of pluripotency and reprogramming by RNA binding proteins. Curr Top Dev Biol 2020; 138:113-138. [PMID: 32220295 DOI: 10.1016/bs.ctdb.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells have the capacities of self-renewal and pluripotency. Pluripotency establishment (somatic cell reprogramming), maintenance, and execution (differentiation) require orchestrated regulatory mechanisms of a cell's molecular machinery, including signaling pathways, epigenetics, transcription, translation, and protein degradation. RNA binding proteins (RBPs) take part in every process of RNA regulation and recent studies began to address their important functions in the regulation of pluripotency and reprogramming. Here, we discuss the roles of RBPs in key regulatory steps in the control of pluripotency and reprogramming. Among RNA binding proteins are a group of RNA helicases that are responsible for RNA structure remodeling with important functional implications. We highlight the largest family of RNA helicases, DDX (DEAD-box) helicase family and our current understanding of their functions specifically in the regulation of pluripotency and reprogramming.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohamed S Kishta
- Hormones Department, Medical Research Division, National Research Centre, Cairo, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
108
|
Ehnes DD, Hussein AM, Ware CB, Mathieu J, Ruohola-Baker H. Combinatorial metabolism drives the naive to primed pluripotent chromatin landscape. Exp Cell Res 2020; 389:111913. [PMID: 32084392 DOI: 10.1016/j.yexcr.2020.111913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Since epigenetic modifications are a key driver for cellular differentiation, the regulation of these modifications is tightly controlled. Interestingly, recent studies have revealed metabolic regulation for epigenetic modifications in pluripotent cells. As metabolic differences are prominent between naive (pre-implantation) and primed (post-implantation) pluripotent cells, the epigenetic changes regulated by metabolites has become an interesting topic of analysis. In this review we discuss how combinatorial metabolic activities drive the developmental progression through early pluripotent stages.
Collapse
Affiliation(s)
- D D Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - A M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - C B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - J Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, 98109, USA.
| | - H Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
109
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
110
|
Yang J, Bashkenova N, Zang R, Huang X, Wang J. The roles of TET family proteins in development and stem cells. Development 2020; 147:147/2/dev183129. [PMID: 31941705 DOI: 10.1242/dev.183129] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases are enzymes that catalyze the demethylation of 5-methylcytosine on DNA. Through global and site-specific demethylation, they regulate cell fate decisions during development and in embryonic stem cells by maintaining pluripotency or by regulating differentiation. In this Primer, we provide an updated overview of TET functions in development and stem cells. We discuss the catalytic and non-catalytic activities of TETs, and their roles as epigenetic regulators of both DNA and RNA hydroxymethylation, highlighting how TET proteins function in regulating gene expression at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nazym Bashkenova
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ruge Zang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA.,Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
111
|
Lan Y, Lu C, Yang Y, Liu X, Guo X, Xi J, Kang J, Wang G. Linc1557 is critical for the initiation of embryonic stem cell differentiation by directly targeting the LIF/STAT3 signaling pathway. Stem Cells 2019; 38:340-351. [PMID: 31778238 DOI: 10.1002/stem.3130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
Embryonic stem cells (ESCs) have self-renewal and multi-lineage differentiation potential and perform critical functions in development and biomedicine. Several long noncoding RNAs (lncRNAs) have been reported as key regulators of stem cell pluripotency and differentiation. However, the function and regulatory mechanism of lncRNAs during the initiation of ESC differentiation remains unclear. Here, we found that linc1557 was highly expressed in mouse ESCs and required for the initiation of ESC differentiation. Knockdown of linc1557 increased the expression and phosphorylation levels of signal transducer and activator of transcription 3 (STAT3), a key factor in the leukemia inhibitory factor (LIF)/STAT3 signaling pathway. Furthermore, we found that linc1557 directly bound to Stat3 mRNA and affected its stability. The differentially expressed transcriptome after linc1557 knockdown in ESCs was involved primarily in multicellular organism development and cell differentiation as similar to that after Stat3 knockdown. Moreover, either knockdown of Stat3 or addition of a LIF/STAT3 signaling inhibitor rescued the suppressive effects of linc1557 knockdown on the initiation of mouse ESC differentiation. These findings not only elucidated the critical function of linc1557 in the initiation of mouse ESC differentiation but also clarified that its specific mechanism as directly affecting Stat3 mRNA stability, which enhanced the understanding of the lncRNA-mediated regulatory mechanism for mRNA stability and key signaling pathways in ESC pluripotency and differentiation.
Collapse
Affiliation(s)
- Yuanyuan Lan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xiaoqin Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
112
|
Mishra K, Kanduri C. Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far. Noncoding RNA 2019; 5:ncrna5040054. [PMID: 31817041 PMCID: PMC6958424 DOI: 10.3390/ncrna5040054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
Collapse
Affiliation(s)
- Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Cell Biology, Memorial Sloan Kettering Cancer Centre, Rockefeller Research Laboratory, 430 East 67th Street, RRL 445, New York, NY 10065, USA
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden;
- Correspondence:
| |
Collapse
|
113
|
Smith KN, Miller SC, Varani G, Calabrese JM, Magnuson T. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics 2019; 213:1093-1110. [PMID: 31796550 PMCID: PMC6893379 DOI: 10.1534/genetics.119.302661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs.
Collapse
Affiliation(s)
- Keriayn N Smith
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah C Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
114
|
Shuai Y, Ma Z, Lu J, Feng J. LncRNA SNHG15: A new budding star in human cancers. Cell Prolif 2019; 53:e12716. [PMID: 31774607 PMCID: PMC6985667 DOI: 10.1111/cpr.12716] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) represent an important group of non-coding RNAs (ncRNAs) with more than 200 nucleotides in length that are transcribed from the so-called genomic "dark matter." Mounting evidence has shown that lncRNAs have manifested a paramount function in the pathophysiology of human diseases, especially in the pathogenesis and progression of cancers. Despite the exponential growth in lncRNA publications, our understanding of regulatory mechanism of lncRNAs is still limited, and a lot of controversies remain in the current lncRNA knowledge.The purpose of this article is to explore the clinical significance and molecular mechanism of SNHG15 in tumors. MATERIALS & METHODS We have systematically searched the Pubmed, Web of Science, Embase and Cochrane databases. We provide an overview of current evidence concerning the functional role, mechanistic models and clinical utilities of SNHG15 in human cancers in this review. RESULTS Small nucleolar RNA host gene 15 (SNHG15), a novel lncRNA, is identified as a key regulator in tumorigenesis and progression of various human cancers, including colorectal cancer (CRC), gastric cancer (GC), pancreatic cancer (PC) and hepatocellular carcinoma (HCC). Dysregulation of SNHG15 has been revealed to be dramatically correlated with advanced clinicopathological factors and predicts poor prognosis, suggesting its potential clinical value as a promising biomarker and therapeutic target for cancer patients. CONCLUSIONS LncRNA SNHG15 may serve as a prospective and novel biomarker for molecular diagnosis and therapeutics in patients with cancer.
Collapse
Affiliation(s)
- You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
115
|
Cyrus S, Burkardt D, Weaver DD, Gibson WT. PRC2-complex related dysfunction in overgrowth syndromes: A review of EZH2, EED, and SUZ12 and their syndromic phenotypes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:519-531. [PMID: 31724824 DOI: 10.1002/ajmg.c.31754] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
The EZH2, EED, and SUZ12 genes encode proteins that comprise core components of the polycomb repressive complex 2 (PRC2), an epigenetic "writer" with H3K27 methyltransferase activity, catalyzing the addition of up to three methyl groups on histone 3 at lysine residue 27 (H3K27). Partial loss-of-function variants in genes encoding the EZH2 and EED subunits of the complex lead to overgrowth, macrocephaly, advanced bone age, variable intellectual disability, and distinctive facial features. EZH2-associated overgrowth, caused by constitutional heterozygous mutations within Enhancer of Zeste homologue 2 (EZH2), has a phenotypic spectrum ranging from tall stature without obvious intellectual disability or dysmorphic features to classical Weaver syndrome (OMIM #277590). EED-associated overgrowth (Cohen-Gibson syndrome; OMIM #617561) is caused by germline heterozygous mutations in Embryonic Ectoderm Development (EED), and manifests overgrowth and intellectual disability (OGID), along with other features similar to Weaver syndrome. Most recently, rare coding variants in SUZ12 have also been described that present with clinical characteristics similar to the previous two syndromes. Here we review the PRC2 complex and clinical syndromes of OGID associated with core components EZH2, EED, and SUZ12.
Collapse
Affiliation(s)
- Sharri Cyrus
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deepika Burkardt
- Center for Human Genetics, University Hospitals Rainbow Babies and Children/Department of Genetics, Case Western Reserve University, Cleveland, Ohio
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
116
|
Emerging Roles of Long Non-Coding RNAs as Drivers of Brain Evolution. Cells 2019; 8:cells8111399. [PMID: 31698782 PMCID: PMC6912723 DOI: 10.3390/cells8111399] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 01/09/2023] Open
Abstract
Mammalian genomes encode tens of thousands of long-noncoding RNAs (lncRNAs), which are capable of interactions with DNA, RNA and protein molecules, thereby enabling a variety of transcriptional and post-transcriptional regulatory activities. Strikingly, about 40% of lncRNAs are expressed specifically in the brain with precisely regulated temporal and spatial expression patterns. In stark contrast to the highly conserved repertoire of protein-coding genes, thousands of lncRNAs have newly appeared during primate nervous system evolution with hundreds of human-specific lncRNAs. Their evolvable nature and the myriad of potential functions make lncRNAs ideal candidates for drivers of human brain evolution. The human brain displays the largest relative volume of any animal species and the most remarkable cognitive abilities. In addition to brain size, structural reorganization and adaptive changes represent crucial hallmarks of human brain evolution. lncRNAs are increasingly reported to be involved in neurodevelopmental processes suggested to underlie human brain evolution, including proliferation, neurite outgrowth and synaptogenesis, as well as in neuroplasticity. Hence, evolutionary human brain adaptations are proposed to be essentially driven by lncRNAs, which will be discussed in this review.
Collapse
|
117
|
Mallam AL, Sae-Lee W, Schaub JM, Tu F, Battenhouse A, Jang YJ, Kim J, Wallingford JB, Finkelstein IJ, Marcotte EM, Drew K. Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Cell Rep 2019; 29:1351-1368.e5. [PMID: 31665645 PMCID: PMC6873818 DOI: 10.1016/j.celrep.2019.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
RNA-binding proteins (RBPs) play essential roles in biology and are frequently associated with human disease. Although recent studies have systematically identified individual RNA-binding proteins, their higher-order assembly into ribonucleoprotein (RNP) complexes has not been systematically investigated. Here, we describe a proteomics method for systematic identification of RNP complexes in human cells. We identify 1,428 protein complexes that associate with RNA, indicating that more than 20% of known human protein complexes contain RNA. To explore the role of RNA in the assembly of each complex, we identify complexes that dissociate, change composition, or form stable protein-only complexes in the absence of RNA. We use our method to systematically identify cell-type-specific RNA-associated proteins in mouse embryonic stem cells and finally, distribute our resource, rna.MAP, in an easy-to-use online interface (rna.proteincomplexes.org). Our system thus provides a methodology for explorations across human tissues, disease states, and throughout all domains of life.
Collapse
Affiliation(s)
- Anna L Mallam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Wisath Sae-Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Anna Battenhouse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Kevin Drew
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
118
|
Wang Y, Xie Y, Li L, He Y, Zheng D, Yu P, Yu L, Tang L, Wang Y, Wang Z. EZH2 RIP-seq Identifies Tissue-specific Long Non-coding RNAs. Curr Gene Ther 2019; 18:275-285. [PMID: 30295189 PMCID: PMC6249712 DOI: 10.2174/1566523218666181008125010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/24/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Background: Polycomb Repressive Complex 2 (PRC2) catalyzes histone methylation at H3 Lys27, and plays crucial roles during development and diseases in numerous systems. Its catalytic sub-unit EZH2 represents a key nuclear target for long non-coding RNAs (lncRNAs) that emerging to be a novel class of epigenetic regulator and participate in diverse cellular processes. LncRNAs are character-ized by high tissue-specificity; however, little is known about the tissue profile of the EZH2-interacting lncRNAs. Objective: Here we performed a global screening for EZH2-binding lncRNAs in tissues including brain, lung, heart, liver, kidney, intestine, spleen, testis, muscle and blood by combining RNA immuno-precipitation and RNA sequencing. We identified 1328 EZH2-binding lncRNAs, among which 470 were shared in at least two tissues while 858 were only detected in single tissue. An RNA motif with specific secondary structure was identified in a number of lncRNAs, albeit not in all EZH2-binding lncRNAs. The EZH2-binding lncRNAs fell into four categories including intergenic lncRNA, antisense lncRNA, intron-related lncRNA and promoter-related lncRNA, suggesting diverse regulations of both cis and trans-mechanisms. A promoter-related lncRNA Hnf1aos1 bound to EZH2 specifically in the liver, a feature same as its paired coding gene Hnf1a, further confirming the validity of our study. In ad-dition to the well known EZH2-binding lncRNAs like Kcnq1ot1, Gas5, Meg3, Hotair and Malat1, ma-jority of the lncRNAs were firstly reported to be associated with EZH2. Conclusion: Our findings provide a profiling view of the EZH2-interacting lncRNAs across different tissues, and suggest critical roles of lncRNAs during cell differentiation and maturation
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yinping Xie
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Lili Li
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yuan He
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Pengcheng Yu
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Lixu Tang
- Wushu College, Wuhan Sports University, Wuhan, Hubei 430079, China
| | - Yibin Wang
- Departments of Anesthesiology, Division of Molecular Medicine, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States
| | - Zhihua Wang
- Department of Cardiology, Central Laboratory, Renmin Hospital, Wuhan University, Wuhan 430060, China
| |
Collapse
|
119
|
Monteiro JP, Bennett M, Rodor J, Caudrillier A, Ulitsky I, Baker AH. Endothelial function and dysfunction in the cardiovascular system: the long non-coding road. Cardiovasc Res 2019; 115:1692-1704. [PMID: 31214683 PMCID: PMC6755355 DOI: 10.1093/cvr/cvz154] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022] Open
Abstract
Present throughout the vasculature, endothelial cells (ECs) are essential for blood vessel function and play a central role in the pathogenesis of diverse cardiovascular diseases. Understanding the intricate molecular determinants governing endothelial function and dysfunction is essential to develop novel clinical breakthroughs and improve knowledge. An increasing body of evidence demonstrates that long non-coding RNAs (lncRNAs) are active regulators of the endothelial transcriptome and function, providing emerging insights into core questions surrounding EC contributions to pathology, and perhaps the emergence of novel therapeutic opportunities. In this review, we discuss this class of non-coding transcripts and their role in endothelial biology during cardiovascular development, homeostasis, and disease, highlighting challenges during discovery and characterization and how these have been overcome to date. We further discuss the translational therapeutic implications and the challenges within the field, highlighting lncRNA that support endothelial phenotypes prevalent in cardiovascular disease.
Collapse
Affiliation(s)
- João P Monteiro
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Matthew Bennett
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Julie Rodor
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Axelle Caudrillier
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| |
Collapse
|
120
|
Beltran M, Tavares M, Justin N, Khandelwal G, Ambrose J, Foster BM, Worlock KB, Tvardovskiy A, Kunzelmann S, Herrero J, Bartke T, Gamblin SJ, Wilson JR, Jenner RG. G-tract RNA removes Polycomb repressive complex 2 from genes. Nat Struct Mol Biol 2019; 26:899-909. [PMID: 31548724 PMCID: PMC6778522 DOI: 10.1038/s41594-019-0293-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/05/2019] [Indexed: 12/15/2022]
Abstract
Polycomb Repressive Complex 2 (PRC2) maintains repression of cell type-specific genes but also associates with genes ectopically in cancer. While it is currently unknown how PRC2 is removed from genes, such knowledge would be useful for the targeted reversal of deleterious PRC2 recruitment events. Here, we show that G-tract RNA specifically removes PRC2 from genes in human and mouse cells. PRC2 preferentially binds G-tracts within nascent pre-mRNAs, especially within predicted G-quadruplex structures. G-quadruplex RNA evicts the PRC2 catalytic core from the substrate nucleosome. PRC2 transfers from chromatin to RNA upon gene activation and chromatin-associated G-tract RNA removes PRC2, leading to H3K27me3 depletion from genes. Targeting G-tract RNA to the tumor suppressor gene CDKN2A in malignant rhabdoid tumor cells reactivates the gene and induces senescence. These data support a model in which pre-mRNA evicts PRC2 during gene activation and provides the means to selectively remove PRC2 from specific genes.
Collapse
Affiliation(s)
- Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | | | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - John Ambrose
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK.,Genomics England, London, UK
| | - Benjamin M Foster
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kaylee B Worlock
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Javier Herrero
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, UK.
| |
Collapse
|
121
|
Sanli I, Lalevée S, Cammisa M, Perrin A, Rage F, Llères D, Riccio A, Bertrand E, Feil R. Meg3 Non-coding RNA Expression Controls Imprinting by Preventing Transcriptional Upregulation in cis. Cell Rep 2019; 23:337-348. [PMID: 29641995 DOI: 10.1016/j.celrep.2018.03.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/01/2017] [Accepted: 03/10/2018] [Indexed: 01/17/2023] Open
Abstract
Although many long non-coding RNAs (lncRNAs) are imprinted, their roles often remain unknown. The Dlk1-Dio3 domain expresses the lncRNA Meg3 and multiple microRNAs and small nucleolar RNAs (snoRNAs) on the maternal chromosome and constitutes an epigenetic model for development. The domain's Dlk1 (Delta-like-1) gene encodes a ligand that inhibits Notch1 signaling and regulates diverse developmental processes. Using a hybrid embryonic stem cell (ESC) system, we find that Dlk1 becomes imprinted during neural differentiation and that this involves transcriptional upregulation on the paternal chromosome. The maternal Dlk1 gene remains poised. Its protection against activation is controlled in cis by Meg3 expression and also requires the H3-Lys-27 methyltransferase Ezh2. Maternal Meg3 expression additionally protects against de novo DNA methylation at its promoter. We find that Meg3 lncRNA is partially retained in cis and overlaps the maternal Dlk1 in embryonic cells. Combined, our data evoke an imprinting model in which allelic lncRNA expression prevents gene activation in cis.
Collapse
Affiliation(s)
- Ildem Sanli
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Sébastien Lalevée
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Marco Cammisa
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), CNR, 80131 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università della Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Aurélien Perrin
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Florence Rage
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - David Llères
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Andrea Riccio
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), CNR, 80131 Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università della Campania "Luigi Vanvitelli," 81100 Caserta, Italy
| | - Edouard Bertrand
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France
| | - Robert Feil
- Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34293 Montpellier, France.
| |
Collapse
|
122
|
Saldaña-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jácome-López K, Nora EP, Bruneau BG, Tsirigos A, Furlan-Magaril M, Skok J, Reinberg D. RNA Interactions Are Essential for CTCF-Mediated Genome Organization. Mol Cell 2019; 76:412-422.e5. [PMID: 31522988 DOI: 10.1016/j.molcel.2019.08.015] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/15/2019] [Accepted: 08/16/2019] [Indexed: 01/14/2023]
Abstract
The function of the CCCTC-binding factor (CTCF) in the organization of the genome has become an important area of investigation, but the mechanisms by which CTCF dynamically contributes to genome organization are not clear. We previously discovered that CTCF binds to large numbers of endogenous RNAs, promoting its self-association. In this regard, we now report two independent features that disrupt CTCF association with chromatin: inhibition of transcription and disruption of CTCF-RNA interactions through mutations of 2 of its 11 zinc fingers that are not required for CTCF binding to its cognate DNA site: zinc finger 1 (ZF1) or zinc finger 10 (ZF10). These mutations alter gene expression profiles as CTCF mutants lose their ability to form chromatin loops and thus the ability to insulate chromatin domains and to mediate CTCF long-range genomic interactions. Our results point to the importance of CTCF-mediated RNA interactions as a structural component of genome organization.
Collapse
Affiliation(s)
- Ricardo Saldaña-Meyer
- Department of Biochemistry and Molecular Pharmacology, NYULSoM, New York, NY, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY, USA.
| | | | - Thelma Escobar
- Department of Biochemistry and Molecular Pharmacology, NYULSoM, New York, NY, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY, USA
| | | | - Karina Jácome-López
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elphege P Nora
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYULSoM, New York, NY, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jane Skok
- Department of Pathology, NYULSoM, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYULSoM, New York, NY, USA; Howard Hughes Medical Institute, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
123
|
Abstract
Mammalian genomes are extensively transcribed, which produces a large number of both coding and non-coding transcripts. Various RNAs are physically associated with chromatin, through being either retained in cis at their site of transcription or recruited in trans to other genomic regions. Driven by recent technological innovations for detecting chromatin-associated RNAs, diverse roles are being revealed for these RNAs and associated RNA-binding proteins (RBPs) in gene regulation and genome function. Such functions include locus-specific roles in gene activation and silencing, as well as emerging roles in higher-order genome organization, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
124
|
Conserved Pseudoknots in lncRNA MEG3 Are Essential for Stimulation of the p53 Pathway. Mol Cell 2019; 75:982-995.e9. [PMID: 31444106 PMCID: PMC6739425 DOI: 10.1016/j.molcel.2019.07.025] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops"). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.
Collapse
|
125
|
LncRNAs and PRC2: Coupled Partners in Embryonic Stem Cells. EPIGENOMES 2019; 3:epigenomes3030014. [PMID: 34968226 PMCID: PMC8594682 DOI: 10.3390/epigenomes3030014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
The power of embryonic stem cells (ESCs) lies in their ability to self-renew and differentiate. Behind these two unique capabilities is a fine-tuned molecular network that shapes the genetic, epigenetic, and epitranscriptomic ESC plasticity. Although RNA has been shown to be functionally important in only a small minority of long non-coding RNA genes, a growing body of evidence has highlighted the pivotal and intricate role of lncRNAs in chromatin remodeling. Due to their multifaceted nature, lncRNAs interact with DNA, RNA, and proteins, and are emerging as new modulators of extensive gene expression programs through their participation in ESC-specific regulatory circuitries. Here, we review the tight cooperation between lncRNAs and Polycomb repressive complex 2 (PRC2), which is intimately involved in determining and maintaining the ESC epigenetic landscape. The lncRNA-PRC2 partnership is fundamental in securing the fully pluripotent state of ESCs, which must be primed to differentiate properly. We also reflect on the advantages brought to this field of research by the advent of single-cell analysis.
Collapse
|
126
|
Abstract
As the process that silences gene expression ensues during development, the stage is set for the activity of Polycomb-repressive complex 2 (PRC2) to maintain these repressed gene profiles. PRC2 catalyzes a specific histone posttranslational modification (hPTM) that fosters chromatin compaction. PRC2 also facilitates the inheritance of this hPTM through its self-contained "write and read" activities, key to preserving cellular identity during cell division. As these changes in gene expression occur without changes in DNA sequence and are inherited, the process is epigenetic in scope. Mutants of mammalian PRC2 or of its histone substrate contribute to the cancer process and other diseases, and research into these aberrant pathways is yielding viable candidates for therapeutic targeting. The effectiveness of PRC2 hinges on its being recruited to the proper chromatin sites; however, resolving the determinants to this process in the mammalian case was not straightforward and thus piqued the interest of many in the field. Here, we chronicle the latest advances toward exposing mammalian PRC2 and its high maintenance.
Collapse
Affiliation(s)
- Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
127
|
Rosenberg M, Blum R, Kesner B, Maier VK, Szanto A, Lee JT. Denaturing CLIP, dCLIP, Pipeline Identifies Discrete RNA Footprints on Chromatin-Associated Proteins and Reveals that CBX7 Targets 3' UTRs to Regulate mRNA Expression. Cell Syst 2019; 5:368-385.e15. [PMID: 29073373 DOI: 10.1016/j.cels.2017.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/18/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023]
Abstract
Interaction networks between chromatin complexes and long noncoding RNAs have become a recurrent theme in epigenetic regulation. However, technical limitations have precluded identification of RNA binding motifs for chromatin-associated proteins. Here, we add a denaturation step to UV-crosslink RNA immunoprecipitation (dCLIP) and apply dCLIP to mouse and human chromobox homolog 7 (CBX7), an RNA binding subunit of Polycomb repressive complex 1 (PRC1). In both species, CBX7 predominantly binds 3' UTRs of messenger RNAs. CBX7 binds with a median RNA "footprint" of 171-183 nucleotides, the small size of which facilitates motif identification by bioinformatics. We find four families of consensus RNA motifs in mouse, and independent analysis of human CBX7 dCLIP data identifies similar motifs. Their mutation abolishes CBX7 binding in vitro. Pharmacological intervention with antisense oligonucleotides paradoxically increases CBX7 binding and enhances gene expression. These data support the utility of dCLIP and reveal an unexpected functional interaction between CBX7 and the 3' UTRs of mRNA.
Collapse
Affiliation(s)
- Michael Rosenberg
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Roy Blum
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Barry Kesner
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Verena K Maier
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Attila Szanto
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
128
|
Abstract
Vertebrate Hox genes are clustered. This organization has a functional relevance, as the transcription of each gene in time and space depends upon its relative position within the gene cluster. Hox clusters display a high organization, and all genes are transcribed from the same DNA strand. Here, we investigate the importance of this uniform transcriptional polarity by engineering alleles where one or several transcription units are inverted, with or without a CTCF site. We observe that inversions are likely detrimental to the proper implementation of this genetic system. We propose that the enhanced organization of Hox clusters in vertebrates evolved in conjunction with the emergence of global gene regulation to optimize a coordinated response of selected subsets of target genes. In many animal species with a bilateral symmetry, Hox genes are clustered either at one or at several genomic loci. This organization has a functional relevance, as the transcriptional control applied to each gene depends upon its relative position within the gene cluster. It was previously noted that vertebrate Hox clusters display a much higher level of genomic organization than their invertebrate counterparts. The former are always more compact than the latter, they are generally devoid of repeats and of interspersed genes, and all genes are transcribed by the same DNA strand, suggesting that particular factors constrained these clusters toward a tighter structure during the evolution of the vertebrate lineage. Here, we investigate the importance of uniform transcriptional orientation by engineering several alleles within the HoxD cluster, such as to invert one or several transcription units, with or without a neighboring CTCF site. We observe that the association between the tight structure of mammalian Hox clusters and their regulation makes inversions likely detrimental to the proper implementation of this complex genetic system. We propose that the consolidation of Hox clusters in vertebrates, including transcriptional polarity, evolved in conjunction with the emergence of global gene regulation via the flanking regulatory landscapes, to optimize a coordinated response of selected subsets of target genes in cis.
Collapse
|
129
|
Affiliation(s)
- Shizuka Uchida
- From the Cardiovascular Innovation Institute, University of Louisville, KY.
| |
Collapse
|
130
|
Talebizadeh Z, Shah A, DiTacchio L. The potential role of a retrotransposed gene and a long noncoding RNA in regulating an X-linked chromatin gene (KDM5C): Novel epigenetic mechanism in autism. Autism Res 2019; 12:1007-1021. [PMID: 31087518 DOI: 10.1002/aur.2116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
A growing body of evidence supports the potential role of the circadian system and chromatin remodeling genes in autism. Considering the heterogeneity and gender discrepancy in autism, and the complex nature of the epigenetic landscape, identification of biologically relevant epigenetic factors requires reducing heterogeneity using proper subtyping. For this study, we used X chromosome inactivation (XCI) status in females with autism as an epigenetic marker for subtyping and examined the expression level of members of KDM5, a chromatin remodeling gene family. KDM5 are histone demethylases involved in the circadian molecular machinery. We used human blood samples to characterize alternatively spliced KDM5 isoforms and noticed that KDM5C undergoes a complex splicing process. We also identified a KDM5C isoform (KDM5C-3'UTR-lncRNA) containing a novel 3'UTR originated from a retrotransposed gene (retro-SUV39H2) of an autosomal methyltransferase (SUV39H2). This 3'UTR shows 84% sequence homology with long ncRNAs (lncRNAs) and is located 32 kb downstream of KDM5C. The KDM5C-3'UTR-lncRNA isoform was differentially expressed in autistic females with XCI skewness compared with controls. KDM5C plays a crucial role in balancing histone H3K4 methylation states. The identified retro-SUV39H2 originated lncRNA also shows H3K4 marks. By assessing the expression level of alternatively spliced Kdm5 isoforms at different circadian time-points, we showed that some isoforms follow a circadian oscillation pattern in wild type mouse brain.This study provides the first evidence and a suggestive model for the potential role of retrotransposed elements in autism through linking methylases and demethylases, two functionally complementary components of chromatin remodeling, which may collectively contribute to disease etiology through lncRNAs. Autism Res 2019, 12: 1007-1021. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Genes do not function in isolated conditions and their proper expression level also depends on a mechanism called gene regulation. An example of gene regulation is when changes outside DNA sequences influence the function of autism susceptibility genes. Alternative splicing is one type of gene regulation, which produces several versions of a gene (called variants) that may slightly differ from each other and be expressed at different levels in response to environmental changes. The circadian clock is an essential timing mechanism that enables organisms to maintain internal processes in sync with the dynamic environment brought about by the day-night cycle. The goal of this study was to assess if a subset of females with autism with certain genetic marker had a unique pattern of alternative splicing of three circadian genes. We identified a novel variant that is differentially expressed in this subset. Our study provides a novel subject stratification strategy, and a suggestive model of how biologically relevant components of a gene regulatory process may be linked and, possibly, collectively contribute to the etiology of autism.
Collapse
Affiliation(s)
- Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ayten Shah
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | |
Collapse
|
131
|
Yuan Z, Bian Y, Ma X, Tang Z, Chen N, Shen M. LncRNA H19 Knockdown in Human Amniotic Mesenchymal Stem Cells Suppresses Angiogenesis by Associating with EZH2 and Activating Vasohibin-1. Stem Cells Dev 2019; 28:781-790. [PMID: 30938218 DOI: 10.1089/scd.2019.0014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human amniotic mesenchymal stem cells (HAMSCs) are promising seed cells with great advantages in promoting angiogenesis. However, the mechanisms underlying angiogenesis facilitated by HAMSCs are still unclear. Long noncoding RNA H19 is involved in many biological processes, such as enhancing angiogenesis and proliferation, invasion, and migration of cancer cells. In this study, we constructed HAMSCs of stable low-expression H19 (HAMSC-shH19) and the scramble control (HAMSC-shNC) using lentiviral vectors, and in a three-dimensional coculture with human umbilical vein endothelial cells (HUVECs) to investigate the effect of H19 knockdown in HAMSCs on angiogenesis. Our results demonstrated that H19 knockdown significantly inhibited the angiogenic function of HAMSCs at an early stage in vitro and in vivo. The results of CCK8 and transwell assays demonstrated that the conditioned medium secreted by HAMSCs reduced proliferation and migration of HUVECs after downregulating H19. The angiogenesis factors expressed and secreted by HAMSC-shH19 were decreased compared with those secreted by the control, while angiogenesis inhibitors were elevated. Furthermore, we conducted chromatin immunoprecipitation and RNA-binding protein immunoprecipitation assays and found that H19 could interact with the histone methyltransferase Enhancer of Zeste homolog 2 (EZH2) and that H19 knockdown inhibited the ability of EZH2 to recruit methyl groups to the promoter region of the angiogenesis inhibitor gene vasohibin-1 (VASH1), thus increasing VASH1 expression and secretion of HAMSCs, suppressing angiogenesis. In summary, our study identified H19 as an important regulator in HAMSCs for promoting angiogenesis, which would help to construct ideal gene-modified seed cells to enhance angiogenesis in regenerative medicine.
Collapse
Affiliation(s)
- Zhiyao Yuan
- 1 Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifeng Bian
- 2 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Xiaojie Ma
- 2 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Zichun Tang
- 2 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ning Chen
- 2 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,3 The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, China
| | - Ming Shen
- 2 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| |
Collapse
|
132
|
Hirose T, Yamazaki T, Nakagawa S. Molecular anatomy of the architectural NEAT1 noncoding RNA: The domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1545. [PMID: 31044562 DOI: 10.1002/wrna.1545] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) are extremely diverse and have various significant physiological functions. lncRNAs generally associate with specific sets of RNA-binding proteins (RBPs) to form functional ribonucleoprotein (RNP) complexes. NEAT1 is a highly abundant lncRNA in the mammalian cell nucleus that associates with specific RBPs to form NEAT1 RNPs. Intriguingly, cellular NEAT1 RNPs are extraordinarily large and can be detected using an optical microscope. These gigantic RNPs, so-called paraspeckles, are a type of membraneless nuclear body. Paraspeckles contain approximately 50 NEAT1 RNA molecules together with characteristic RBPs possessing aggregation-prone prion-like domains. Paraspeckle formation proceeds on the nascent NEAT1 transcript in conjunction with NEAT1 biogenesis, which exhibits various features that differ from those exhibited by mRNA biogenesis, including a lack of introns, noncanonical 3' end formation, and nuclear retention. These unique features may be required for the mechanism of paraspeckle formation. NEAT1 possesses three distinct RNA domains (A, B, and C), which function in stabilization (A), isoform switching (B), and paraspeckle assembly (C). In particular, the central C domain contains smaller subdomains that are high-affinity binding sites for the essential paraspeckle proteins (NONO and SFPQ) that subsequently polymerize along NEAT1. Subsequent recruitment of additional essential PSPs (FUS and RBM14) induces liquid-liquid phase separation to build a massive paraspeckle structure. Thus, the molecular anatomy of the NEAT1 arcRNA provides an ideal model to understand how lncRNAs form the functional RNP machinery. This article is characterized under: RNA Export and Localization > Nuclear Export/Import RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Laboratory of RNA Biofucntion, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Yamazaki
- Laboratory of RNA Biofucntion, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
133
|
Zhu J, Wang Y, Yu W, Xia K, Huang Y, Wang J, Liu B, Tao H, Liang C, Li F. Long Noncoding RNA: Function and Mechanism on Differentiation of Mesenchymal Stem Cells and Embryonic Stem Cells. Curr Stem Cell Res Ther 2019; 14:259-267. [PMID: 30479219 DOI: 10.2174/1574888x14666181127145809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/20/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022]
Abstract
Background:Long suspected as transcriptional noise, recently recognized, long non-coding
RNAs (lncRNAs) are emerging as an indicator, biomarker and therapy target in the physiologic and
pathologic process. Mesenchymal stem cells and embryonic stem cells are important source for normal
and therapeutic tissue repair. However, the mechanism of stem cell differentiation is not completely
understood. Research on lncRNAs may provide novel insights into the mechanism of differentiation
process of the stem cell which is important for the application of stem cell therapy. The lncRNAs field
is still very young, new insights into lncRNAs function are emerging to a greater understanding of biological
processes.
Objective:
In this review, we summarize the recent researches studying lncRNAs and illustrate how
they act in the differentiation of the mesenchymal stem cells and embryonic stem cells, and discuss
some future directions in this field.
Results:
Numerous lncRNAs were differentially expressed during differentiation of mesenchymal stem
cells and embryonic stem cells. LncRNAs were able to regulate the differentiation processes through
epigenetic regulation, transcription regulation and post-transcription regulation.
Conclusion:
LncRNAs are involved in the differentiation process of mesenchymal stem cells and embryonic
stem cells, and they could become promising indicator, biomarker and therapeutic targets in the
physiologic and pathologic process. However, the mechanisms of the role of lncRNAs still require further
investigation.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Yitian Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuluan Huang
- Department of Gynecologic Oncology, Women`s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Fangcai Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
134
|
Shields EJ, Petracovici AF, Bonasio R. lncRedibly versatile: biochemical and biological functions of long noncoding RNAs. Biochem J 2019; 476:1083-1104. [PMID: 30971458 PMCID: PMC6745715 DOI: 10.1042/bcj20180440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcripts that do not code for proteins, but nevertheless exert regulatory effects on various biochemical pathways, in part via interactions with proteins, DNA, and other RNAs. LncRNAs are thought to regulate transcription and other biological processes by acting, for example, as guides that target proteins to chromatin, scaffolds that facilitate protein-protein interactions and complex formation, and orchestrators of phase-separated compartments. The study of lncRNAs has reached an exciting time, as recent advances in experimental and computational methods allow for genome-wide interrogation of biochemical and biological mechanisms of these enigmatic transcripts. A better appreciation for the biochemical versatility of lncRNAs has allowed us to begin closing gaps in our knowledge of how they act in diverse cellular and organismal contexts, including development and disease.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Ana F Petracovici
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
- Graduate Group in Genetics and Epigenetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A.
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| |
Collapse
|
135
|
Fico A, Fiorenzano A, Pascale E, Patriarca EJ, Minchiotti G. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci 2019; 76:1459-1471. [PMID: 30607432 PMCID: PMC6439142 DOI: 10.1007/s00018-018-3000-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
LncRNAs have recently emerged as new and fundamental transcriptional and post-transcriptional regulators acting at multiple levels of gene expression. Indeed, lncRNAs participate in a wide variety of stem cell and developmental processes, acting in cis and/or in trans in the nuclear and/or in the cytoplasmic compartments, and generating an intricate network of interactions with RNAs, enhancers, and chromatin-modifier complexes. Given the versatility of these molecules to operate in different subcellular compartments, via different modes of action and with different target specificity, the interest in this research field is rapidly growing. Here, we review recent progress in defining the functional role of lncRNAs in stem cell biology with a specific focus on the underlying mechanisms. We also discuss recent findings on a new family of evolutionary conserved lncRNAs transcribed from ultraconserved elements, which show perfect conservation between human, mouse, and rat genomes, and that are emerging as new player in this complex scenario.
Collapse
Affiliation(s)
- Annalisa Fico
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
| | - Alessandro Fiorenzano
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Emilia Pascale
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Eduardo Jorge Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| |
Collapse
|
136
|
Zhang Q, McKenzie NJ, Warneford-Thomson R, Gail EH, Flanigan SF, Owen BM, Lauman R, Levina V, Garcia BA, Schittenhelm RB, Bonasio R, Davidovich C. RNA exploits an exposed regulatory site to inhibit the enzymatic activity of PRC2. Nat Struct Mol Biol 2019; 26:237-247. [PMID: 30833789 DOI: 10.1038/s41594-019-0197-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/29/2019] [Indexed: 12/18/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that maintains cell identity during development in multicellular organisms by marking repressed genes and chromatin domains. In addition to four core subunits, PRC2 comprises multiple accessory subunits that vary in their composition during cellular differentiation and define two major holo-PRC2 complexes: PRC2.1 and PRC2.2. PRC2 binds to RNA, which inhibits its enzymatic activity, but the mechanism of RNA-mediated inhibition of holo-PRC2 is poorly understood. Here we present in vivo and in vitro protein-RNA interaction maps and identify an RNA-binding patch within the allosteric regulatory site of human and mouse PRC2, adjacent to the methyltransferase center. RNA-mediated inhibition of holo-PRC2 is relieved by allosteric activation of PRC2 by H3K27me3 and JARID2-K116me3 peptides. Both holo-PRC2.1 and holo-PRC2.2 bind RNA, providing a unified model to explain how RNA and allosteric stimuli antagonistically regulate the enzymatic activity of PRC2.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicholas J McKenzie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Robert Warneford-Thomson
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Graduate Group in Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarena F Flanigan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brady M Owen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard Lauman
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Graduate Group in Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vitalina Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Benjamin A Garcia
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Monash Biomedical Proteomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia. .,EMBL-Australia and the ARC Centre of Excellence in Advanced Molecular Imaging, Clayton, Victoria, Australia.
| |
Collapse
|
137
|
Wang Y, Yan L, Liu J, Chen S, Liu G, Nie Y, Wang P, Yang W, Chen L, Zhong X, Han S, Zhang L. The HNF1 α-Regulated LncRNA HNF1 α-AS1 Is Involved in the Regulation of Cytochrome P450 Expression in Human Liver Tissues and Huh7 Cells. J Pharmacol Exp Ther 2019; 368:353-362. [PMID: 30602592 PMCID: PMC6367688 DOI: 10.1124/jpet.118.252940] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Expression of cytochrome P450s (P450s) is regulated by epigenetic factors, such as DNA methylation, histone modifications, and noncoding RNAs through different mechanisms. Among these factors, long noncoding RNAs (lncRNAs) have been shown to play important roles in the regulation of gene expression; however, little is known about the effects of lncRNAs on the regulation of P450 expression. The aim of this study was to explore the role of lncRNAs in the regulation of P450 expression by using human liver tissues and hepatoma Huh7 cells. Through lncRNA microarray analysis and quantitative polymerase chain reaction in human liver tissues, we found that the lncRNA hepatocyte nuclear factor 1 alpha antisense 1 (HNF1α-AS1), an antisense RNA of HNF1α, is positively correlated with the mRNA expression of CYP2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 as well as pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Gain- and loss-of-function studies in Huh7 cells transfected with small interfering RNAs or overexpression plasmids showed that HNF1α not only regulated the expression of HNF1α-AS1 and P450s, but also regulated the expression of CAR, PXR, and aryl hydrocarbon receptor (AhR). In turn, HNF1α-AS1 regulated the expression of PXR and most P450s without affecting the expression of HNF1α, AhR, and CAR. Moreover, the rifampicin-induced expression of P450s was also affected by HNF1α and HNF1α-AS1. In summary, the results of this study suggested that HNF1α-AS1 is involved in the HNF1α-mediated regulation of P450s in the liver at both basal and drug-induced levels.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Liang Yan
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Jingyang Liu
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Shitong Chen
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Guangming Liu
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Yali Nie
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Pei Wang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Weihong Yang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Liming Chen
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Xiaobo Zhong
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Shengna Han
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| | - Lirong Zhang
- Department of Pharmacology (Y.W., L.Y., J.L., S.C., G.L., Y.N., P.W., S.H., L.Z.) and Forensic Medicine (W.Y.), School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (L.Y.); and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.C., X.Z.)
| |
Collapse
|
138
|
Zhao Y, Ding L, Wang D, Ye Z, He Y, Ma L, Zhu R, Pan Y, Wu Q, Pang K, Hou X, Weroha SJ, Han C, Coleman R, Coleman I, Karnes RJ, Zhang J, Nelson PS, Wang L, Huang H. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J 2019; 38:e99599. [PMID: 30723117 PMCID: PMC6396169 DOI: 10.15252/embj.201899599] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
In light of the increasing number of identified cancer-driven gain-of-function (GOF) mutants of p53, it is important to define a common mechanism to systematically target several mutants, rather than developing strategies tailored to inhibit each mutant individually. Here, using RNA immunoprecipitation-sequencing (RIP-seq), we identified the Polycomb-group histone methyltransferase EZH2 as a p53 mRNA-binding protein. EZH2 bound to an internal ribosome entry site (IRES) in the 5'UTR of p53 mRNA and enhanced p53 protein translation in a methyltransferase-independent manner. EZH2 augmented p53 GOF mutant-mediated cancer growth and metastasis by increasing protein levels of mutant p53. EZH2 overexpression was associated with worsened outcome selectively in patients with p53-mutated cancer. Depletion of EZH2 by antisense oligonucleotides inhibited p53 GOF mutant-mediated cancer growth. Our findings reveal a non-methyltransferase function of EZH2 that controls protein translation of p53 GOF mutants, inhibition of which causes synthetic lethality in cancer cells expressing p53 GOF mutants.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Liya Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenqing Ye
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Linlin Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Runzhi Zhu
- Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Qiang Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Pang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Roger Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - R Jeffery Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Liguo Wang
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
139
|
Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW, Sun X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res 2019; 47:1505-1522. [PMID: 30476192 PMCID: PMC6379667 DOI: 10.1093/nar/gky1190] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023] Open
Abstract
The role of long non-coding RNAs (lncRNAs) in regulating endothelial function through the DNA damage response (DDR) remains poorly understood. In this study, we demonstrate that lncRNA maternally expressed gene 3 (Meg3) interacts with the RNA binding protein polypyrimidine tract binding protein 3 (PTBP3) to regulate gene expression and endothelial function through p53 signaling ─ a major coordinator of apoptosis and cell proliferation triggered by the DDR. Meg3 expression is induced in endothelial cells (ECs) upon p53 activation. Meg3 silencing induces DNA damage, activates p53 signaling, increases the expression of p53 target genes, promotes EC apoptosis, and inhibits EC proliferation. Mechanistically, Meg3 silencing reduces the interaction of p53 with Mdm2, induces p53 expression, and promotes the association of p53 with the promoters of a subset of p53 target genes. PTBP3 silencing recapitulates the effects of Meg3 deficiency on the expression of p53 target genes, EC apoptosis and proliferation. The Meg3-dependent association of PTBP3 with the promoters of p53 target genes suggests that Meg3 and PTBP3 restrain p53 activation. Our studies reveal a novel role of Meg3 and PTBP3 in regulating p53 signaling and endothelial function, which may serve as novel targets for therapies to restore endothelial homeostasis.
Collapse
Affiliation(s)
| | - Xiao Cheng
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Matthew Moran
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Stefan Haemmig
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine St, Lincoln, NE 68588, USA
- Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
140
|
Epigenetic programming of T cells impacts immune reconstitution in hematopoietic stem cell transplant recipients. Blood Adv 2019; 2:656-668. [PMID: 29563122 DOI: 10.1182/bloodadvances.2018015909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/24/2018] [Indexed: 12/31/2022] Open
Abstract
Immune reconstitution following hematopoietic stem cell transplantation (HSCT) is critical in preventing harmful sequelae in recipients with cytomegalovirus (CMV) infection. To understand the molecular mechanisms underlying immune reconstitution kinetics, we profiled the transcriptome-chromatin accessibility landscape of CMV-specific CD8+ T cells from HCST recipients with different immune reconstitution efficiencies. CMV-specific T cells from HSCT recipients with stable antiviral immunity expressed higher levels of interferon/defense response and cell cycle genes in an interconnected network involving PI3KCG, STAT5B, NFAT, RBPJ, and lower HDAC6, increasing chromatin accessibility at the enhancer regions of immune and T-cell receptor signaling pathway genes. By contrast, the transcriptional and epigenomic signatures of CMV-specific T cells from HSCT recipients with unstable immune reconstitution showed commonalities with T-cell responses in other nonresolving chronic infections. These signatures included higher levels of EGR and KLF factors that, along with lower JARID2 expression, maintained higher accessibility at promoter and CpG-rich regions of genes associated with apoptosis. Furthermore, epigenetic targeting via inhibition of HDAC6 or JARID2 enhanced the transcription of genes associated with differential responses, suggesting that drugs targeting epigenomic modifiers may have therapeutic potential for enhancing immune reconstitution in HSCT recipients. Taken together, these analyses demonstrate that transcription factors and chromatin modulators create different chromatin accessibility landscapes in T cells of HSCT recipients that not only affect immediate gene expression but also differentially prime cells for responses to additional signals. Epigenetic therapy may be a promising strategy to promote immune reconstitution in HSCT recipients.
Collapse
|
141
|
Abstract
Polycomb repressive complex 2 (PRC2) and its methylation of histone 3 at lysine 27 (H3K27me3) play a crucial role in epigenetic regulation of normal development and malignancy. Several factors regulate the recruitment of PRC2 and affects its chromatin modification function. Over the past years, emerging discoveries have portrayed the association of RNA (protein-coding and non-coding) with PRC2 as a critical factor in understanding PRC2 function. With PRC2 being a macromolecular complex of interest in development and diseases, further studies are needed to relate the rapidly evolving PRC2:RNA biology in that scenario. In this review, we summarize the current understanding of different modes of RNA binding by PRC2, and further discuss perspectives, key questions and therapeutic applications of PRC2 binding to RNAs.
Collapse
Affiliation(s)
- Junli Yan
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore
| | - Bibek Dutta
- b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Yan Ting Hee
- c Lee Kong Chian School of Medicine , Nanyang Technological University , Singapore , Singapore
| | - Wee-Joo Chng
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore.,b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,d Department of Hematology-Oncology , National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS) , Singapore , Singapore
| |
Collapse
|
142
|
Al-Raawi D, Jones R, Wijesinghe S, Halsall J, Petric M, Roberts S, Hotchin NA, Kanhere A. A novel form of JARID2 is required for differentiation in lineage-committed cells. EMBO J 2018; 38:embj.201798449. [PMID: 30573669 PMCID: PMC6356158 DOI: 10.15252/embj.201798449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Polycomb repressive complex‐2 (PRC2) is a group of proteins that play an important role during development and in cell differentiation. PRC2 is a histone‐modifying complex that catalyses methylation of lysine 27 of histone H3 (H3K27me3) at differentiation genes leading to their transcriptional repression. JARID2 is a co‐factor of PRC2 and is important for targeting PRC2 to chromatin. Here, we show that, unlike in embryonic stem cells, in lineage‐committed human cells, including human epidermal keratinocytes, JARID2 predominantly exists as a novel low molecular weight form, which lacks the N‐terminal PRC2‐interacting domain (ΔN‐JARID2). We show that ΔN‐JARID2 is a cleaved product of full‐length JARID2 spanning the C‐terminal conserved jumonji domains. JARID2 knockout in keratinocytes results in up‐regulation of cell cycle genes and repression of many epidermal differentiation genes. Surprisingly, repression of epidermal differentiation genes in JARID2‐null keratinocytes can be rescued by expression of ΔN‐JARID2 suggesting that, in contrast to PRC2, ΔN‐JARID2 promotes activation of differentiation genes. We propose that a switch from expression of full‐length JARID2 to ΔN‐JARID2 is important for the up‐regulation differentiation genes.
Collapse
Affiliation(s)
- Diaa Al-Raawi
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rhian Jones
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - John Halsall
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Marija Petric
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Neil A Hotchin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
143
|
Long Non-Coding RNAs Associated with Heterochromatin Function in Immune Cells in Psychosis. Noncoding RNA 2018; 4:ncrna4040043. [PMID: 30567388 PMCID: PMC6316406 DOI: 10.3390/ncrna4040043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Psychosis is associated with chronic immune dysregulation. Many long non-coding RNAs (lncRNAs) display abnormal expression during activation of immune responses, and play a role in heterochromatic regulation of gene promoters. We have measured lncRNAs MEG3, PINT and GAS5, selected for their previously described association with heterochromatin. Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples collected from 86 participants with a diagnosis of psychosis and 44 control participants. Expression was assessed in relation to diagnosis, illness acuity status, and treatment with antipsychotic medication. We observed diagnostic differences with MEG3, PINT and GAS5, and symptom acuity effect with MEG3 and GAS5. Medication effects were evident in those currently on treatment with antipsychotics when compared to drug-naïve participants. We observed that clinical diagnosis and symptom acuity predict selected lncRNA expression. Particular noteworthy is the differential expression of MEG3 in drug naïve participants compared to those treated with risperidone. Additionally, an in vitro cell model using M2tol macrophages was used to test the effects of the antipsychotic drug risperidone on the expression of these lncRNAs using quantitative real-time PCR (qRT-PCR). Significant but differential effects of risperidone were observed in M2tol macrophages indicating a clear ability of antipsychotic medications to modify lncRNA expression.
Collapse
|
144
|
Kasinath V, Poepsel S, Nogales E. Recent Structural Insights into Polycomb Repressive Complex 2 Regulation and Substrate Binding. Biochemistry 2018; 58:346-354. [PMID: 30451485 PMCID: PMC6438374 DOI: 10.1021/acs.biochem.8b01064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycomb group proteins are transcriptional repressors controlling gene expression patterns and maintaining cell type identity. The chemical modifications of histones and DNA caused by the regulated activity of chromatin-modifying enzymes such as Polycomb help establish and maintain such expression patterns. Polycomb repressive complex 2 (PRC2) is the only known methyltransferase specific for histone H3 lysine 27 (H3K27) and catalyzes its trimethylation leading to the repressive H3K27me3 mark. Structural biology has made important contributions to our understanding of the molecular mechanisms that ensure the spatiotemporal regulation of PRC2 activity and the establishment of inactive chromatin domains marked by H3K27me3. In this review, we discuss the recent structural studies that have advanced our understanding of PRC2 function, in particular the roles of intersubunit interactions in complex assembly and the regulation of methyltransferase activity, as well as the mechanism of local H3K27me3 spreading leading to repressive domains.
Collapse
Affiliation(s)
- Vignesh Kasinath
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Simon Poepsel
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States.,Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Molecular and Cellular Biology , University of California , Berkeley , California 94720 , United States.,Howard Hughes Medical Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
145
|
Yen YP, Hsieh WF, Tsai YY, Lu YL, Liau ES, Hsu HC, Chen YC, Liu TC, Chang M, Li J, Lin SP, Hung JH, Chen JA. Dlk1-Dio3 locus-derived lncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity. eLife 2018; 7:38080. [PMID: 30311912 PMCID: PMC6221546 DOI: 10.7554/elife.38080] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell-derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes. When a gene is active, its DNA sequence is ‘transcribed’ to form a molecule of RNA. Many of these RNAs act as templates for making proteins. But for some genes, the protein molecules are not their final destinations. Their RNA molecules instead help to control gene activity, which can alter the behaviour or the identity of a cell. For example, experiments performed in individual cells suggest that so-called long non-coding RNAs (or lncRNAs for short) guide how stem cells develop into different types of mature cells. However, it is not clear whether lncRNAs play the same critical role in embryos. Yen et al. used embryonic stem cells to model how motor neurons develop in the spinal cord of mouse embryos. This revealed that motor neurons produce large amounts of a specific group of lncRNAs, particularly one called Meg3. Further experiments showed that motor neurons in mouse embryos that lack Meg3 do not correctly silence a set of genes called the Hox genes, which are crucial for laying out the body plans of many different animal embryos. These neurons also incorrectly continue to express genes that are normally active in an early phase of the stem-like cells that make motor neurons. There is wide interest in how lncRNAs help to regulate embryonic development. With this new knowledge of how Meg3 regulates the activity of Hox genes in motor neurons, research could now be directed toward investigating whether lncRNAs help other tissues to develop in a similar way.
Collapse
Affiliation(s)
- Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Wen-Fu Hsieh
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Ya-Yin Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ya-Lin Lu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ee Shan Liau
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ho-Chiang Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Ting-Chun Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Joye Li
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jui-Hung Hung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.,Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
146
|
Terashima M, Ishimura A, Wanna-Udom S, Suzuki T. MEG8 long noncoding RNA contributes to epigenetic progression of the epithelial-mesenchymal transition of lung and pancreatic cancer cells. J Biol Chem 2018; 293:18016-18030. [PMID: 30262664 DOI: 10.1074/jbc.ra118.004006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulatory molecules in various biological and pathological processes, including cancer development. We have previously shown that the MEG3 lncRNA plays an essential role in transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT) of human lung cancer cells. In this study, we investigated the function of another lncRNA, MEG8, which shares the DLK1-DIO3 locus with MEG3, in the regulation of EMT. MEG8 lncRNA expression was immediately induced during TGF-β-mediated EMT of A549 and LC2/ad lung cancer and Panc1 pancreatic cancer cell lines. MEG8 overexpression specifically suppressed the expression of microRNA-34a and microRNA-203 genes, resulting in up-regulation of SNAIL family transcriptional repressor 1 (SNAI1) and SNAI2 transcription factors, which repressed expression of cadherin 1 (CDH1)/E-cadherin. Mechanistic investigations revealed that MEG8 associates with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) protein and induces its recruitment to the regulatory regions of the two microRNA genes for histone H3 methylation and transcriptional repression. Interestingly, expression of both MEG8 and MEG3, but not each individually, could induce EMT-related cell morphological changes and increased cell motility in the absence of TGF-β by activating the gene expression program required for EMT. MEG8 knockdown indicated that endogenous MEG8 lncRNA is indispensable for TGF-β-induced EMT in A549 lung cancer and Panc1 pancreatic cancer cells. Our findings indicate that MEG8 lncRNA significantly contributes to epigenetic EMT induction and increase our understanding of the lncRNA-mediated regulatory mechanisms involved in malignant progression of cancer.
Collapse
Affiliation(s)
- Minoru Terashima
- From the Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Akihiko Ishimura
- From the Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Sasithorn Wanna-Udom
- From the Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Takeshi Suzuki
- From the Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan.
| |
Collapse
|
147
|
LncGata6 maintains stemness of intestinal stem cells and promotes intestinal tumorigenesis. Nat Cell Biol 2018; 20:1134-1144. [PMID: 30224759 DOI: 10.1038/s41556-018-0194-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
The intestinal epithelium harbours remarkable self-renewal capacity that is driven by Lgr5+ intestinal stem cells (ISCs) at the crypt base. However, the molecular mechanism controlling Lgr5+ ISC stemness is incompletely understood. We show that a Gata6 long noncoding RNA (lncGata6) is highly expressed in ISCs. LncGata6 knockout or conditional knockout in ISCs impairs the stemness of ISCs and epithelial regeneration. Mechanistically, lncGata6 recruits the NURF complex onto the Ehf promoter to induce its transcription, which promotes the expression of Lgr4/5 to enhance Wnt signalling activation. Moreover, the human orthologue lncGATA6 is highly expressed in the cancer stem cells of colorectal cancer and promotes tumour initiation and progression. Antisense oligonucleotides against lncGATA6 exhibit strong therapeutic efficacy on colorectal cancer. Thus, targeting lncGATA6 will have potential clinical applications in colorectal cancer treatment as an ideal therapeutic target.
Collapse
|
148
|
Kameswaran V, Golson ML, Ramos-Rodríguez M, Ou K, Wang YJ, Zhang J, Pasquali L, Kaestner KH. The Dysregulation of the DLK1- MEG3 Locus in Islets From Patients With Type 2 Diabetes Is Mimicked by Targeted Epimutation of Its Promoter With TALE-DNMT Constructs. Diabetes 2018; 67:1807-1815. [PMID: 30084829 PMCID: PMC6110314 DOI: 10.2337/db17-0682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/18/2018] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by the inability of the insulin-producing β-cells to overcome insulin resistance. We previously identified an imprinted region on chromosome 14, the DLK1-MEG3 locus, as being downregulated in islets from humans with T2DM. In this study, using targeted epigenetic modifiers, we prove that increased methylation at the promoter of Meg3 in mouse βTC6 β-cells results in decreased transcription of the maternal transcripts associated with this locus. As a result, the sensitivity of β-cells to cytokine-mediated oxidative stress was increased. Additionally, we demonstrate that an evolutionarily conserved intronic region at the MEG3 locus can function as an enhancer in βTC6 β-cells. Using circular chromosome conformation capture followed by high-throughput sequencing, we demonstrate that the promoter of MEG3 physically interacts with this novel enhancer and other putative regulatory elements in this imprinted region in human islets. Remarkably, this enhancer is bound in an allele-specific manner by the transcription factors FOXA2, PDX1, and NKX2.2. Overall, these data suggest that the intronic MEG3 enhancer plays an important role in the regulation of allele-specific expression at the imprinted DLK1-MEG3 locus in human β-cells, which in turn impacts the sensitivity of β-cells to cytokine-mediated oxidative stress.
Collapse
Affiliation(s)
- Vasumathi Kameswaran
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | - Mireia Ramos-Rodríguez
- Program of Predictive and Personalized Medicine of Cancer, Department of Endocrinology, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Kristy Ou
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | - Yue J Wang
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | - Jia Zhang
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| | - Lorenzo Pasquali
- Program of Predictive and Personalized Medicine of Cancer, Department of Endocrinology, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
149
|
Sun Z, Zhu M, Lv P, Cheng L, Wang Q, Tian P, Yan Z, Wen B. The Long Noncoding RNA Lncenc1 Maintains Naive States of Mouse ESCs by Promoting the Glycolysis Pathway. Stem Cell Reports 2018; 11:741-755. [PMID: 30174313 PMCID: PMC6135739 DOI: 10.1016/j.stemcr.2018.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
The naive embryonic stem cells (nESCs) display unique characteristics compared with the primed counterparts, but the underlying molecular mechanisms remain elusive. Here we investigate the functional roles of Lncenc1, a highly abundant long noncoding RNA in nESCs. Knockdown or knockout of Lncenc1 in mouse nESCs leads to a significantly decreased expression of core pluripotency genes and a significant reduction of colony formation capability. Furthermore, upon the depletion of Lncenc1, the expression of glycolysis-associated genes is significantly reduced, and the glycolytic activity is substantially impaired, as indicated by a more than 50% reduction in levels of glucose consumption, lactate production, and extracellular acidification rate. Mechanistically, Lncenc1 interacts with PTBP1 and HNRNPK, which regulate the transcription of glycolytic genes, thereby maintaining the self-renewal of nESCs. Our results demonstrate the functions of Lncenc1 in linking energy metabolism and naive state of ESCs, which may enhance our understanding of the molecular basis underlying naive pluripotency.
Collapse
Affiliation(s)
- Zihao Sun
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Minzhe Zhu
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pin Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Cheng
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qianfeng Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pengxiang Tian
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zixiang Yan
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Wen
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
150
|
Long Noncoding RNA Meg3 Controls Endothelial Cell Aging and Function: Implications for Regenerative Angiogenesis. J Am Coll Cardiol 2018; 68:2589-2591. [PMID: 27931619 DOI: 10.1016/j.jacc.2016.09.949] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022]
|