101
|
Hajibabaie F, Abedpoor N, Mohamadynejad P. Types of Cell Death from a Molecular Perspective. BIOLOGY 2023; 12:1426. [PMID: 37998025 PMCID: PMC10669395 DOI: 10.3390/biology12111426] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The former conventional belief was that cell death resulted from either apoptosis or necrosis; however, in recent years, different pathways through which a cell can undergo cell death have been discovered. Various types of cell death are distinguished by specific morphological alterations in the cell's structure, coupled with numerous biological activation processes. Various diseases, such as cancers, can occur due to the accumulation of damaged cells in the body caused by the dysregulation and failure of cell death. Thus, comprehending these cell death pathways is crucial for formulating effective therapeutic strategies. We focused on providing a comprehensive overview of the existing literature pertaining to various forms of cell death, encompassing apoptosis, anoikis, pyroptosis, NETosis, ferroptosis, autophagy, entosis, methuosis, paraptosis, mitoptosis, parthanatos, necroptosis, and necrosis.
Collapse
Affiliation(s)
- Fatemeh Hajibabaie
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran;
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| | - Navid Abedpoor
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran;
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord 88137-33395, Iran
| |
Collapse
|
102
|
Rogers MF, Marshall OJ, Secombe J. KDM5-mediated activation of genes required for mitochondrial biology is necessary for viability in Drosophila. Development 2023; 150:dev202024. [PMID: 37800333 PMCID: PMC10651110 DOI: 10.1242/dev.202024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.
Collapse
Affiliation(s)
- Michael F. Rogers
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Owen J. Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
103
|
Wu NS, Ma IC, Lin YF, Ko HJ, Loh JK, Hong YR. The mystery of phospho-Drp1 with four adaptors in cell cycle: when mitochondrial fission couples to cell fate decisions. Cell Cycle 2023; 22:2485-2503. [PMID: 38053243 PMCID: PMC10802209 DOI: 10.1080/15384101.2023.2289753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
Recent study had deepened our knowledge of the mitochondrial dynamics to classify mitochondrial fission into two types. To further clarify the relationship between the two distinct fission machinery and the four major adaptors of Drp1, we propose a model of mechanism elucidating the multiple functions of phospho-Drp1 with its adaptors during cell cycle and providing in-depth insights into the molecular basis and evolutionary implications in depth. The model highlights not only the clustering characteristics of different phospho-Drp1 with respective subsets of mitochondrial pro-fission adaptors but also the correlation, crosstalk and shifting between different clustering of phosphorylated Drp1-adaptors during different key fission situations. Particularly, phospho-Drp1 (Ser616) couples with Mff/MiD51 to exert mitochondrial division and phospho-Drp1 (Ser637) couples with MiD49/Fis1 to execute mitophagy in M-phase. We then apply the model to address the relationship of mitochondrial dynamics to Parkinson's disease (PD) and carcinogenesis. Our proposed model is indeed compatible with current research results and pathological observations, providing promising directions for future treatment design.
Collapse
Affiliation(s)
- Nian-Siou Wu
- Department of Education, Hsin-Chu Branch, National Taiwan University Hospital, Hsinchu, Taiwan
- PhD Program in Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - I-Chu Ma
- Division of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Fan Lin
- Department of Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
104
|
Cho Y, Hwang JW, Park NJ, Moon J, Ali KH, Seo YH, Kim IS, Kim SN, Kim YK. SPC-180002, a SIRT1/3 dual inhibitor, impairs mitochondrial function and redox homeostasis and represents an antitumor activity. Free Radic Biol Med 2023; 208:73-87. [PMID: 37536458 DOI: 10.1016/j.freeradbiomed.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Since sirtuins (SIRTs) are closely associated with reactive oxygen species (ROS) and antioxidant system, the development of their selective inhibitors is drawing attention for understanding of cellular redox homeostasis. Here, we describe the pharmacological properties of SPC-180002, which incorporates a methyl methacrylate group as a key pharmacophore, along with its comprehensive molecular mechanism as a novel dual inhibitor of SIRT1/3. The dual inhibition of SIRT1/3 by SPC-180002 disturbs redox homeostasis via ROS generation, which leads to an increase in both p21 protein stability and mitochondrial dysfunction. Increased p21 interacts with and inhibits CDK, thereby interfering with cell cycle progression. SPC-180002 leads to mitochondrial dysfunction by inhibiting mitophagy, which is accompanied by a reduction in oxygen consumption rate. Consequently, SPC-180002 strongly suppresses the proliferation of cancer cells and exerts anticancer effect in vivo. Taken together, the novel SIRT1/3 dual inhibitor, SPC-180002, impairs mitochondrial function and redox homeostasis, thereby strongly inhibiting cell cycle progression and cancer cell growth.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Hwang
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - No-June Park
- Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea; Division of Bio-Medical Science and Technology, University of Science and Technology KIST School, Seoul, 02792, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Su-Nam Kim
- Natural Product Research Institute, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea; Division of Bio-Medical Science and Technology, University of Science and Technology KIST School, Seoul, 02792, Republic of Korea.
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
105
|
Sciandra F, Bottoni P, De Leo M, Braca A, Brancaccio A, Bozzi M. Verbascoside Elicits Its Beneficial Effects by Enhancing Mitochondrial Spare Respiratory Capacity and the Nrf2/HO-1 Mediated Antioxidant System in a Murine Skeletal Muscle Cell Line. Int J Mol Sci 2023; 24:15276. [PMID: 37894956 PMCID: PMC10607197 DOI: 10.3390/ijms242015276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Muscle weakness and muscle loss characterize many physio-pathological conditions, including sarcopenia and many forms of muscular dystrophy, which are often also associated with mitochondrial dysfunction. Verbascoside, a phenylethanoid glycoside of plant origin, also named acteoside, has shown strong antioxidant and anti-fatigue activity in different animal models, but the molecular mechanisms underlying these effects are not completely understood. This study aimed to investigate the influence of verbascoside on mitochondrial function and its protective role against H2O2-induced oxidative damage in murine C2C12 myoblasts and myotubes pre-treated with verbascoside for 24 h and exposed to H2O2. We examined the effects of verbascoside on cell viability, intracellular reactive oxygen species (ROS) production and mitochondrial function through high-resolution respirometry. Moreover, we verified whether verbascoside was able to stimulate nuclear factor erythroid 2-related factor (Nrf2) activity through Western blotting and confocal fluorescence microscopy, and to modulate the transcription of its target genes, such as heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), by Real Time PCR. We found that verbascoside (1) improved mitochondrial function by increasing mitochondrial spare respiratory capacity; (2) mitigated the decrease in cell viability induced by H2O2 and reduced ROS levels; (3) promoted the phosphorylation of Nrf2 and its nuclear translocation; (4) increased the transcription levels of HO-1 and, in myoblasts but not in myotubes, those of PGC-1α. These findings contribute to explaining verbascoside's ability to relieve muscular fatigue and could have positive repercussions for the development of therapies aimed at counteracting muscle weakness and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—SCITEC Sede di Roma, Largo F. Vito, 00168 Roma, Italy
| | - Patrizia Bottoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica, Università Cattolica del Sacro Cuore di Roma, Largo F. Vito 1, 00168 Roma, Italy
| | - Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Andrea Brancaccio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—SCITEC Sede di Roma, Largo F. Vito, 00168 Roma, Italy
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Manuela Bozzi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”—SCITEC Sede di Roma, Largo F. Vito, 00168 Roma, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica, Università Cattolica del Sacro Cuore di Roma, Largo F. Vito 1, 00168 Roma, Italy
| |
Collapse
|
106
|
Hasani S, Young LEA, Van Nort W, Banerjee M, Rivas DR, Kim J, Xiong X, Sun RC, Gentry MS, Sesaki H, Gao T. Inhibition of mitochondrial fission activates glycogen synthesis to support cell survival in colon cancer. Cell Death Dis 2023; 14:664. [PMID: 37816729 PMCID: PMC10564897 DOI: 10.1038/s41419-023-06202-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Metabolic reprogramming has been recognized as one of the major mechanisms that fuel tumor initiation and progression. Our previous studies demonstrate that activation of Drp1 promotes fatty acid oxidation and downstream Wnt signaling. Here we investigate the role of Drp1 in regulating glycogen metabolism in colon cancer. Knockdown of Drp1 decreases mitochondrial respiration without increasing glycolysis. Analysis of cellular metabolites reveals that the levels of glucose-6-phosphate, a precursor for glycogenesis, are significantly elevated whereas pyruvate and other TCA cycle metabolites remain unchanged in Drp1 knockdown cells. Additionally, silencing Drp1 activates AMPK to stimulate the expression glycogen synthase 1 (GYS1) mRNA and promote glycogen storage. Using 3D organoids from Apcf/f/Villin-CreERT2 models, we show that glycogen levels are elevated in tumor organoids upon genetic deletion of Drp1. Similarly, increased GYS1 expression and glycogen accumulation are detected in xenograft tumors derived from Drp1 knockdown colon cancer cells. Functionally, increased glycogen storage provides survival advantage to Drp1 knockdown cells. Co-targeting glycogen phosphorylase-mediated glycogenolysis sensitizes Drp1 knockdown cells to chemotherapy drug treatment. Taken together, our results suggest that Drp1-loss activates glucose uptake and glycogenesis as compensative metabolic pathways to promote cell survival. Combined inhibition of glycogen metabolism may enhance the efficacy of chemotherapeutic agents for colon cancer treatment.
Collapse
Affiliation(s)
- Sumati Hasani
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Warren Van Nort
- College of Agriculture, Food & Environment, University of Kentucky, Lexington, KY, USA
| | - Moumita Banerjee
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA
| | - Dylan R Rivas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA
| | - Jinhwan Kim
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA
| | - Xiaopeng Xiong
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0679, USA.
| |
Collapse
|
107
|
Liu GY, Wang H, Ran R, Wang YC, Li Y. The GLI2/CDH6 axis enhances migration, invasion and mitochondrial fission of stomach adenocarcinoma cells. Biochem Biophys Res Commun 2023; 676:182-189. [PMID: 37523816 DOI: 10.1016/j.bbrc.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
It has been reported that cadherin 6 (CDH6) upregulation is associated with enhanced epithelial-to-mesenchymal transition (EMT) in several types of solid tumor cells. The current study aimed to explore the effect of CDH6 on the migration and invasion of stomach adenocarcinoma (STAD) cells, the transcription factors involved in CDH6 dysregulation and their effect on mitochondrial fission. Bioinformatics analysis was performed using data extracted from the Genotype-Tissue Expression Project, the Cancer Genome Atlas and Kaplan-Meier plotter. AGS and HGC27 cells were used to establish an in vitro STAD cell model. The results showed that higher CDH6 expression was associated with significantly shorter overall survival in patients with STAD. In addition, CDH6 overexpression promoted wound healing, enhanced the invasion ability of tumor cells and increased mitochondrial fission. Glioma-associated oncogene family zinc finger 2 (GLI2) could bind to the CDH6 promoter and activate its transcription. Fluorescent labeling also showed that GLI2 overexpression promoted mitochondrial fission. However, CDH6 silencing significantly reduced mitochondrial fragmentation. Besides, GLI2 overexpression notably upregulated phosphorylated-focal adhesion kinase and dynamin-related protein 1. However, the above effects were largely abrogated by CDH6 knockdown. In conclusion, the present study suggested that the novel GLI2/CDH6 axis could enhance the migration, invasion and mitochondrial fission of STAD cells.
Collapse
Affiliation(s)
- Guang-Yi Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Huan Wang
- Department of Health Management Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Rui Ran
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yi-Cheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
108
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
109
|
Baek S, Nah S, Park JY, Lee SJ, Kang YG, Kwon SH, Oh SJ, Lee KP, Moon BS. A novel chalcone derivative exerts anticancer effects by promoting apoptotic cell death of human pancreatic cancer cells. Bioorg Med Chem 2023; 93:117458. [PMID: 37634418 DOI: 10.1016/j.bmc.2023.117458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Aggressive pancreatic cancer is typically treated using chemotherapeutics to reduce the tumor pre-operatively and prevent metastasis post-operatively, as well as surgical approaches. In the present study, we synthesized a hydroxyl group-introduced chalcone derivative (1, IC50 = 32.1 μM) and investigated its potential as an anticancer drug candidate by evaluating its apoptosis-promoting effects on BXPC-3 cancer cells. The viability of BXPC-3 cells treated with 1 was measured using the water-soluble tetrazolium 1 reagent. BXPC-3 cells induced by 1 were stained with diverse probes or antibodies, such as ethidium homodimer-1, Hoechst, anti-Ki67, and MitoTracker. Protein expression was measured using an immunoblotting assay, and mRNA expression was determined using real-time polymerase chain reaction. Apoptotic molecular features, such as lipid accumulation and protein degradation, were monitored directly using stimulated Raman scattering microspectroscopy. Through incubation time- and concentration-dependent studies of 1, we found that it significantly reduced the proliferation and increased the number of apoptotic BXPC-3 cells. Compound 1 induced mitochondrial dysfunction, phosphorylation of p38, and caspase 3 cleavage. These results indicate that 1 is a potential therapeutic agent for pancreatic cancer, providing valuable insights into the development of new anticancer drug candidates.
Collapse
Affiliation(s)
- Suji Baek
- Research & Development Center, UMUST R&D Corporation, Seoul 01411, South Korea
| | - Sanghee Nah
- Seoul Center, Korea Basic Science Institute, Seoul 02841, South Korea
| | - Joo Yeon Park
- Research & Development Center, UMUST R&D Corporation, Seoul 01411, South Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Yong Gil Kang
- Research & Development Center, UMUST R&D Corporation, Seoul 01411, South Korea
| | - Seung Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul 02841, South Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Kang Pa Lee
- Research & Development Center, UMUST R&D Corporation, Seoul 01411, South Korea.
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, South Korea.
| |
Collapse
|
110
|
Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming. Antioxid Redox Signal 2023; 39:684-707. [PMID: 37212238 DOI: 10.1089/ars.2023.0268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
Collapse
Affiliation(s)
- Ippei Kawano
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bazila Bazila
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
111
|
Ghosh D, Pakhira S, Ghosh DD, Roychoudhury S, Roy SS. Ets1 facilitates EMT/invasion through Drp1-mediated mitochondrial fragmentation in ovarian cancer. iScience 2023; 26:107537. [PMID: 37664613 PMCID: PMC10469980 DOI: 10.1016/j.isci.2023.107537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Ovarian cancer has sustained as a major cause of cancer-related female mortality owing to its aggressive nature and a dearth of early detection markers. Ets1 oncoprotein, a transcription factor belonging to the Ets family, is a well-established promoter of epithelial to mesenchymal transition (EMT) and a prospective malignancy marker in ovarian cancer. Our study establishes Ets1 as a regulator of mitochondrial fission-fusion dynamics through Drp1 augmentation via direct binding at DNM1L (DRP1) promoter. Ets1 overexpression-mediated Drp1 increment resulted in mitochondrial load reduction and compromised OXPHOS Complex 5 (ATP synthase) expression, facilitating a greater reliance on glycolysis over OXPHOS. Furthermore, our work demonstrates that inhibition of mitochondrial fission through molecular or pharmacological inhibition of Drp1 successfully mitigates Ets1-associated EMT in both in vitro and in vivo syngeneic mice model. Collectively, our data highlight the role of Drp1-mediated mitochondrial fragmentation in driving Ets1-mediated bioenergetic alterations and EMT/invasion in ovarian cancer.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Pakhira
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Damayanti Das Ghosh
- Molecular and Diagnostics Laboratory, Basic and Translational Research, Saroj Gupta Cancer Centre & Research Institute, Thakurpukur, Kolkata 700063, India
| | - Susanta Roychoudhury
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
112
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
113
|
Mani S, Ralph SJ, Swargiary G, Rani M, Wasnik S, Singh SP, Devi A. Therapeutic Targeting of Mitochondrial Plasticity and Redox Control to Overcome Cancer Chemoresistance. Antioxid Redox Signal 2023; 39:591-619. [PMID: 37470214 DOI: 10.1089/ars.2023.0379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Significance: Mitochondria are subcellular organelles performing essential metabolic functions contributing to cellular bioenergetics and regulation of cell growth or death. The basic mitochondrial function in fulfilling the need for cell growth and vitality is evidenced whereby cancer cells with depleted mitochondrial DNA (rho zero, p0 cells) no longer form tumors until newly recruited mitochondria are internalized into the rho zero cells. Herein lies the absolute dependency on mitochondria for tumor growth. Hence, mitochondria are key regulators of cell death (by apoptosis, necroptosis, or other forms of cell death) and are, therefore, important targets for anticancer therapy. Recent Advances: Mitochondrial plasticity regulating their state of fusion or fission is key to the chemoresistance properties of cancer cells by promoting pro-survival pathways, enabling the mitochondria to mitigate against the cellular stresses and extreme conditions within the tumor microenvironment caused by chemotherapy, hypoxia, or oxidative stress. Critical Issues: This review discusses many characteristics of mitochondria, the processes and pathways controlling the dynamic changes occurring in the morphology of mitochondria, the roles of reactive oxygen species, and their relationship with mitochondrial fission or fusion. It also examines the relationship of redox to mitophagy when mitochondria become compromised and its effect on cancer cell survival, stemness, and the changes accompanying malignant progression from primary tumors to metastatic disease. Future Directions: A challenging question that arises is whether the changes in mitochondrial dynamics and their regulation can provide opportunities for improving drug targeting during cancer treatment and enhancing survival outcomes. Antioxid. Redox Signal. 39, 591-619.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Madhu Rani
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Samiksha Wasnik
- Department of Regenerative Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Shashi Prakash Singh
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Annu Devi
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
114
|
Xin X, Wei D, Lei L, Zheng H, Wallace IS, Li S, Gu Y. CALCIUM-DEPENDENT PROTEIN KINASE32 regulates cellulose biosynthesis through post-translational modification of cellulose synthase. THE NEW PHYTOLOGIST 2023; 239:2212-2224. [PMID: 37431066 DOI: 10.1111/nph.19106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs. In this study, we used yeast two-hybrid, protein biochemistry, genetics, and live-cell imaging to reveal the role of calcium-dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana. We identified CPK32 using CESA3 as a bait in a yeast two-hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho-dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs. We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.
Collapse
Affiliation(s)
- Xiaoran Xin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Donghui Wei
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lei Lei
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
115
|
Wang Z, Wang X, Chen Y, Wang C, Chen L, Jiang M, Liu X, Zhang X, Feng Y, Xu J. Loss and recovery of myocardial mitochondria in mice under different tail suspension time: Apoptosis and mitochondrial fission, fusion and autophagy. Exp Physiol 2023; 108:1189-1202. [PMID: 37565298 PMCID: PMC10988507 DOI: 10.1113/ep090518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Long-term weightlessness in animals can cause changes in myocardial structure and function, in which mitochondria play an important role. Here, a tail suspension (TS) Kunming mouse (Mus musculus) model was used to simulate the effects of weightlessness on the heart. We investigated the effects of 2 and 4 weeks of TS (TS2 and TS4) on myocardial mitochondrial ultrastructure and oxidative respiratory function and on the molecular mechanisms of apoptosis and mitochondrial fission, autophagy and fusion-related signalling. Our study revealed significant changes in the ultrastructural features of cardiomyocytes in response to TS. The results showed: (1) mitochondrial swelling and disruption of cristae in TS2, but mitochondrial recovery and denser cristae in TS4; (2) an increase in the total number of mitochondria and number of sub-mitochondria in TS4; (3) no significant changes in the nuclear ultrastructure or DNA fragmentation among the two TS groups and the control group; (4) an increase in the bax/bcl-2 protein levels in the two TS groups, indicating increased activation of the bax-mediated apoptosis pathway; (5) no change in the phosphorylation ratio of dynamin-related protein 1 in the two TS groups; (6) an increase in the protein levels of optic atrophy 1 and mitofusin 2 in the two TS groups; and (7) in comparison to the TS2 group, an increase in the phosphorylation ratio of parkin and the ratio of LC3II to LC3I in TS4, suggesting an increase in autophagy. Taken together, these findings suggest that mitochondrial autophagy and fusion levels increased after 4 weeks of TS, leading to a restoration of the bax-mediated myocardial apoptosis pathway observed after 2 weeks of TS. NEW FINDINGS: What is the central question of this study? What are the effects of 2 and 4 weeks of tail suspension on myocardial mitochondrial ultrastructure and oxidative respiratory function and on the molecular mechanisms of apoptosis and mitochondrial fission, autophagy and fusion-related signalling? What is the main finding and its importance? Increased mitochondrial autophagy and fusion levels after 4 weeks of tail suspension help to reshape the morphology and increase the number of myocardial mitochondria.
Collapse
Affiliation(s)
- Zhe Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xing‐Chen Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Ya‐Fei Chen
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Chuan‐Li Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Le Chen
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Ming‐Yue Jiang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xi‐Wei Liu
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xiao‐Xuan Zhang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Yong‐Zhen Feng
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Jin‐Hui Xu
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| |
Collapse
|
116
|
Liu A, Hatch AL, Higgs HN. Effects of phosphorylation on Drp1 activation by its receptors, actin, and cardiolipin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554022. [PMID: 37645886 PMCID: PMC10462108 DOI: 10.1101/2023.08.20.554022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Drp1 is a dynamin family GTPase that is required for mitochondrial and peroxisomal division, in which it oligomerizes into a ring and constricts the underlying membrane in a GTP hydrolysis-dependent manner. Oligomerization increases Drp1 GTPase activity through interactions between neighboring GTPase domains. In cells, Drp1 is regulated by several factors including Drp1 receptors, actin filaments, cardiolipin, and phosphorylation at two sites: S579 and S600. Phosphorylation of S579 is widely regarded as activating, while S600 phosphorylation is commonly considered inhibiting. However, the direct effects of phosphorylation on Drp1 GTPase activity have not been investigated in detail. In this study, we compare the effects of S579 and S600 phosphorylation on purified Drp1, using phospho-mimetic mutants and in vitro phosphorylation. The oligomerization state of both phospho-mimetic mutants is shifted toward smaller oligomers. Both phospho-mimetic mutations maintain basal GTPase activity, but eliminate GTPase stimulation by actin and decrease GTPase stimulation by cardiolipin, Mff, and MiD49. Phosphorylation of S579 by Erk2 produces similar effects. When mixed with wild-type Drp1, both S579D and S600D phospho-mimetic mutants reduce the actin-stimulated GTPase activity of Drp1-WT. Conversely, a Drp1 mutant that lacks GTPase activity, the K38A mutant, stimulates Drp1-WT GTPase activity under both basal and actin-stimulated conditions, similar to previous results for dynamin-1. These results suggest that the effect of S579 phosphorylation is not to activate Drp1 directly, and likely requires additional factors for stimulation of mitochondrial fission in cells. In addition, our results suggest that nearest neighbor interactions within the Drp1 oligomer affect catalytic activity.
Collapse
Affiliation(s)
| | | | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755
| |
Collapse
|
117
|
Wang Y, Yang C, Wang Z, Wang Y, Yan Q, Feng Y, Liu Y, Huang J, Zhou J. Epithelial Galectin-3 Induced the Mitochondrial Complex Inhibition and Cell Cycle Arrest of CD8 + T Cells in Severe/Critical COVID-19. Int J Mol Sci 2023; 24:12780. [PMID: 37628961 PMCID: PMC10454470 DOI: 10.3390/ijms241612780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Previous research suggested that the dramatical decrease in CD8+ T cells is a contributing factor in the poor prognosis and disease progression of COVID-19 patients. However, the underlying mechanisms are not fully understood. In this study, we conducted Single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq) analysis, which revealed a proliferative-exhausted MCM+FASLGlow CD8+ T cell phenotype in severe/critical COVID-19 patients. These CD8+ T cells were characterized by G2/M cell cycle arrest, downregulation of respiratory chain complex genes, and inhibition of mitochondrial biogenesis. CellChat analysis of infected lung epithelial cells and CD8+ T cells found that the galectin signaling pathway played a crucial role in CD8+ T cell reduction and dysfunction. To further elucidate the mechanisms, we established SARS-CoV-2 ORF3a-transfected A549 cells, and co-cultured them with CD8+ T cells for ex vivo experiments. Our results showed that epithelial galectin-3 inhibited the transcription of the mitochondrial respiratory chain complex III/IV genes of CD8+ T cells by suppressing the nuclear translocation of nuclear respiratory factor 1 (NRF1). Further findings showed that the suppression of NRF1 translocation was associated with ERK-related and Akt-related signaling pathways. Importantly, the galectin-3 inhibitor, TD-139, promoted nuclear translocation of NRF1, thus enhancing the expression of the mitochondrial respiratory chain complex III/IV genes and the mitochondrial biogenesis of CD8+ T cells. Our study provided new insights into the immunopathogenesis of COVID-19 and identified potential therapeutic targets for the prevention and treatment of severe/critical COVID-19 patients.
Collapse
Affiliation(s)
- Yudie Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Yang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhongyi Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yi Wang
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qing Yan
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Feng
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanping Liu
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Huang
- Department of Hematology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Jingjiao Zhou
- Department of Biology and Genetics, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
118
|
Muñoz JP, Basei FL, Rojas ML, Galvis D, Zorzano A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023; 13:1225. [PMID: 37627290 PMCID: PMC10452872 DOI: 10.3390/biom13081225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial network architecture plays a critical role in cellular physiology. Indeed, alterations in the shape of mitochondria upon exposure to cellular stress can cause the dysfunction of these organelles. In this scenario, mitochondrial dynamics proteins and the phospholipid composition of the mitochondrial membrane are key for fine-tuning the modulation of mitochondrial architecture. In addition, several factors including post-translational modifications such as the phosphorylation, acetylation, SUMOylation, and o-GlcNAcylation of mitochondrial dynamics proteins contribute to shaping the plasticity of this architecture. In this regard, several studies have evidenced that, upon metabolic stress, mitochondrial dynamics proteins are post-translationally modified, leading to the alteration of mitochondrial architecture. Interestingly, several proteins that sustain the mitochondrial lipid composition also modulate mitochondrial morphology and organelle communication. In this context, pharmacological studies have revealed that the modulation of mitochondrial shape and function emerges as a potential therapeutic strategy for metabolic diseases. Here, we review the factors that modulate mitochondrial architecture.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083-871 Campinas, SP, Brazil
| | - María Laura Rojas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - David Galvis
- Programa de Química Farmacéutica, Universidad CES, Medellín 050031, Colombia
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
119
|
Mondal R, Banerjee C, Nandy S, Roy M, Chakraborty J. Calcineurin inhibition protects against dopamine toxicity and attenuates behavioral decline in a Parkinson's disease model. Cell Biosci 2023; 13:140. [PMID: 37528492 PMCID: PMC10394860 DOI: 10.1186/s13578-023-01068-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD), a highly prevalent neuro-motor disorder is caused due to progressive loss of dopaminergic (DAergic) neurons at substantia nigra region of brain. This leads to depleted dopamine (DA) content at striatum, thus affecting the fine tuning of basal ganglia. In patients, this imbalance is manifested by akinesia, catalepsy and tremor. PD associated behavioral dysfunctions are frequently mitigated by l-DOPA (LD) therapy, a precursor for DA synthesis. Due to progressive neurodegeneration, LD eventually loses applicability in PD. Although DA is cytotoxic, it is unclear whether LD therapy can accelerate PD progression or not. LD itself does not lead to neurodegeneration in vivo, but previous reports demonstrate that LD treatment mediated excess DA can potentiate neurotoxicity when PD associated genetic or epigenetic aberrations are involved. So, minimizing DA toxicity during the therapy is an absolute necessity to halt or slowdown PD progression. The two major contributing factors associated with DA toxicity are: degradation by Monoamine oxidase and DAquinone (DAQ) formation. RESULTS Here, we report that apoptotic mitochondrial fragmentation via Calcineurin (CaN)-DRP1 axis is a common downstream event for both these initial cues, inhibiting which can protect cells from DA toxicity comprehensively. No protective effect is observed, in terms of cell survival when only PxIxIT domain of CaN is obstructed, demonstrating the importance to block DRP1-CaN axis specifically. Further, evaluation of the impact of DA exposure on PD progression in a mice model reveal that LD mediated behavioral recovery diminishes with time, mostly because of continued DAergic cell death and dendritic spine loss at striatum. CaN inhibition, alone or in combination with LD, offer long term behavioral protection. This protective effect is mediated specifically by hindering CaN-DRP1 axis, whereas inhibiting interaction between CaN and other substrates, including proteins involved in neuro-inflammation, remained ineffective when LD is co-administered. CONCLUSIONS In this study, we conclude that DA toxicity can be circumvented by CaN inhibition and it can mitigate PD related behavioral aberrations by protecting neuronal architecture at striatum. We propose that CaN inhibitors might extend the therapeutic efficacy of LD treatment.
Collapse
Affiliation(s)
- Rupsha Mondal
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chayan Banerjee
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumangal Nandy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Moumita Roy
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joy Chakraborty
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
120
|
Abu-Hanna J, Anastasakis E, Patel JA, Eddama MMR, Denton CP, Taanman JW, Abraham D, Clapp LH. Prostacyclin mimetics inhibit DRP1-mediated pro-proliferative mitochondrial fragmentation in pulmonary arterial hypertension. Vascul Pharmacol 2023; 151:107194. [PMID: 37442283 DOI: 10.1016/j.vph.2023.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiopulmonary disorder, involving the remodelling of the small pulmonary arteries. Underlying this remodelling is the hyper-proliferation of pulmonary arterial smooth muscle cells within the medial layers of these arteries and their encroachment on the lumen. Previous studies have demonstrated an association between excessive mitochondrial fragmentation, a consequence of increased expression and post-translational activation of the mitochondrial fission protein dynamin-related protein 1 (DRP1), and pathological proliferation in PASMCs derived from PAH patients. However, the impact of prostacyclin mimetics, widely used in the treatment of PAH, on this pathological mitochondrial fragmentation remains unexplored. We hypothesise that these agents, which are known to attenuate the proliferative phenotype of PAH PASMCs, do so in part by inhibiting mitochondrial fragmentation. In this study, we confirmed the previously reported increase in DRP1-mediated mitochondrial hyper-fragmentation in PAH PASMCs. We then showed that the prostacyclin mimetic treprostinil signals via either the Gs-coupled IP or EP2 receptor to inhibit mitochondrial fragmentation and the associated hyper-proliferation in a manner analogous to the DRP1 inhibitor Mdivi-1. We also showed that treprostinil recruits either the IP or EP2 receptor to activate PKA and induce the phosphorylation of DRP1 at the inhibitory residue S637 and inhibit that at the stimulatory residue S616, both of which are suggestive of reduced DRP1 fission activity. Like treprostinil, MRE-269, an IP receptor agonist, and butaprost, an EP2 receptor agonist, attenuated DRP1-mediated mitochondrial fragmentation through PKA. We conclude that prostacyclin mimetics produce their anti-proliferative effects on PAH PASMCs in part by inhibiting DRP1-mediated mitochondrial fragmentation.
Collapse
Affiliation(s)
- Jeries Abu-Hanna
- Centre for Cardiovascular Physiology and Pharmacology, Institute of Cardiovascular Science, University College London, London, United Kingdom; Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Evangelos Anastasakis
- Centre for Cardiovascular Physiology and Pharmacology, Institute of Cardiovascular Science, University College London, London, United Kingdom; Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Jigisha A Patel
- Centre for Cardiovascular Physiology and Pharmacology, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Mohammad Mahmoud Rajab Eddama
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Christopher P Denton
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David Abraham
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Lucie H Clapp
- Centre for Cardiovascular Physiology and Pharmacology, Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
121
|
Chen X, Sun Z, Zhou S, Jiang W, Li J, Song G, Zhu X. SH3 domain-binding kinase 1 promotes proliferation and inhibits apoptosis of cervical cancer via activating the Wnt/β-catenin and Raf/ERK1/2 signaling pathways. Mol Carcinog 2023; 62:1147-1162. [PMID: 37132991 DOI: 10.1002/mc.23552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
SH3 domain-binding kinase 1 (SBK1), is a member of the serine/threonine protein kinases family, and was confirmed to be upregulated in cervical cancer in our previous study. Nonetheless, the role of SBK1 in regulating cancer occurrence and development is unclear. In this study, the stable SBK1-knockdown and -overexpressed cell models were constructed by plasmid transfection technology. Cell viability and growth were assessed through CCK-8, colony formation, and BrdU methods. Cell cycle and apoptosis were analyzed by flow cytometry. The JC-1 staining assay was used to explore mitochondrial membrane potential. The scratch and Transwell assays were used to evaluate the cell metastatic ability. The nude mice models were utilized to explore the SBK1 expression affecting tumor growth in vivo. Our research indicated a high expression of SBK1 both in tissues and cells of cervical cancer. The proliferative, migratory, as well as invasive capacities of cervical cancer cells, were suppressed, and apoptosis was enhanced after SBK1 silence, whereas SBK1 upregulation led to opposite results. In addition, Wnt/β-catenin and Raf/ERK1/2 pathways were activated by SBK1 upregulation. Furthermore, downregulation of c-Raf or β-catenin, reversed the proliferation promotion and apoptosis inhibition effects in SBK1-overexpressed cells. The same results were observed with the use of the specific Raf inhibitor. SBK1 overexpression also contributed to tumor growth in vivo. Overall, SBK1 played a vital role in cervical tumorigenesis via activating the Wnt/β-catenin and Raf/ERK1/2 pathways.
Collapse
Affiliation(s)
- Xin Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengwei Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Zhou
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jieyi Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gendi Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
122
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
123
|
Park JD, Jang HJ, Choi SH, Jo GH, Choi JH, Hwang S, Park W, Park KS. The ELK3-DRP1 axis determines the chemosensitivity of triple-negative breast cancer cells to CDDP by regulating mitochondrial dynamics. Cell Death Discov 2023; 9:237. [PMID: 37422450 DOI: 10.1038/s41420-023-01536-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. TNBC patients have higher rates of metastasis and restricted therapy options. Although chemotherapy is the conventional treatment for TNBC, the frequent occurrence of chemoresistance significantly lowers the efficacy of treatment. Here, we demonstrated that ELK3, an oncogenic transcriptional repressor that is highly expressed in TNBC, determined the chemosensitivity of two representative TNBC cell lines (MDA-MB231 and Hs578T) to cisplatin (CDDP) by regulating mitochondrial dynamics. We observed that the knockdown of ELK3 in MDA-MB231 and Hs578T rendered these cell lines more susceptible to the effects of CDDP. We further demonstrated that the chemosensitivity of TNBC cells was caused by the CDDP-mediated acceleration of mitochondrial fission, excessive mitochondrial reactive oxygen species production, and subsequent DNA damage. In addition, we identified DNM1L, a gene encoding the dynamin-related protein 1 (a major regulator of mitochondrial fission), as a direct downstream target of ELK3. Based on these results, we propose that the suppression of ELK3 expression could be used as a potential therapeutic strategy for overcoming the chemoresistance or inducing the chemosensitivity of TNBC.
Collapse
Affiliation(s)
- Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hye Jung Jang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Gae Hoon Jo
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Jin-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
124
|
Podinić T, Werstuck G, Raha S. The Implications of Cannabinoid-Induced Metabolic Dysregulation for Cellular Differentiation and Growth. Int J Mol Sci 2023; 24:11003. [PMID: 37446181 DOI: 10.3390/ijms241311003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The endocannabinoid system (ECS) governs and coordinates several physiological processes through an integrated signaling network, which is responsible for inducing appropriate intracellular metabolic signaling cascades in response to (endo)cannabinoid stimulation. This intricate cellular system ensures the proper functioning of the immune, reproductive, and nervous systems and is involved in the regulation of appetite, memory, metabolism, and development. Cannabinoid receptors have been observed on both cellular and mitochondrial membranes in several tissues and are stimulated by various classes of cannabinoids, rendering the ECS highly versatile. In the context of growth and development, emerging evidence suggests a crucial role for the ECS in cellular growth and differentiation. Indeed, cannabinoids have the potential to disrupt key energy-sensing metabolic signaling pathways requiring mitochondrial-ER crosstalk, whose functioning is essential for successful cellular growth and differentiation. This review aims to explore the extent of cannabinoid-induced cellular dysregulation and its implications for cellular differentiation.
Collapse
Affiliation(s)
- Tina Podinić
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Geoff Werstuck
- Department of Medicine and the Thrombosis and Atherosclerosis Research Institute, David Braley Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Sandeep Raha
- The Department of Pediatrics and the Graduate Program in Medical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
125
|
Plewes MR, Przygrodzka E, Monaco CF, Snider AP, Keane JA, Burns PD, Wood JR, Cupp AS, Davis JS. Prostaglandin F2α regulates mitochondrial dynamics and mitophagy in the bovine corpus luteum. Life Sci Alliance 2023; 6:e202301968. [PMID: 37188480 PMCID: PMC10185813 DOI: 10.26508/lsa.202301968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Prostaglandins are arachidonic acid-derived lipid mediators involved in numerous physiological and pathological processes. PGF2α analogues are therapeutically used for regulating mammalian reproductive cycles and blood pressure, inducing term labor, and treating ocular disorders. PGF2α exerts effects via activation of calcium and PKC signaling, however, little is known about the cellular events imposed by PGF2α signaling. Here, we explored the early effects of PGF2α on mitochondrial dynamics and mitophagy in the bovine corpus luteum employing relevant and well characterized in vivo and in vitro approaches. We identified PKC/ERK and AMPK as critical protein kinases essential for activation of mitochondrial fission proteins, DRP1 and MFF. Furthermore, we report that PGF2α elicits increased intracellular reactive oxygen species and promotes receptor-mediated activation of PINK-Parkin mitophagy. These findings place the mitochondrium as a novel target in response to luteolytic mediator, PGF2α. Understanding intracellular processes occurring during early luteolysis may serve as a target for improving fertility.
Collapse
Affiliation(s)
- Michele R Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
- U.S Department of Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| | - Emilia Przygrodzka
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Corrine F Monaco
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Alexandria P Snider
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jessica A Keane
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Patrick D Burns
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Jennifer R Wood
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
- U.S Department of Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
126
|
Luo L, Wei D, Pan Y, Wang QX, Feng JX, Yu B, Kang T, Luo J, Yang J, Gao S. MFN2 suppresses clear cell renal cell carcinoma progression by modulating mitochondria-dependent dephosphorylation of EGFR. Cancer Commun (Lond) 2023. [PMID: 37378422 PMCID: PMC10354417 DOI: 10.1002/cac2.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most lethal renal cancer. An overwhelming increase of patients experience tumor progression and unfavorable prognosis. However, the molecular events underlying ccRCC tumorigenesis and metastasis remain unclear. Therefore, uncovering the underlying mechanisms will pave the way for developing novel therapeutic targets for ccRCC. In this study, we sought to investigate the role of mitofusin-2 (MFN2) in supressing ccRCC tumorigenesis and metastasis. METHODS The expression pattern and clinical significance of MFN2 in ccRCC were analyzed by using the Cancer Genome Atlas datasets and samples from our independent ccRCC cohort. Both in vitro and in vivo experiments, including cell proliferation, xenograft mouse models and transgenic mouse model, were used to determine the role of MFN2 in regulating the malignant behaviors of ccRCC. RNA-sequencing, mass spectrum analysis, co-immunoprecipitation, bio-layer interferometry and immunofluorescence were employed to elucidate the molecular mechanisms for the tumor-supressing role of MFN2. RESULTS we reported a tumor-suppressing pathway in ccRCC, characterized by mitochondria-dependent inactivation of epidermal growth factor receptor (EGFR) signaling. This process was mediated by the outer mitochondrial membrane (OMM) protein MFN2. MFN2 was down-regulated in ccRCC and associated with favorable prognosis of ccRCC patients. in vivo and in vitro assays demonstrated that MFN2 inhibited ccRCC tumor growth and metastasis by suppressing the EGFR signaling pathway. In a kidney-specific knockout mouse model, loss of MFN2 led to EGFR pathway activation and malignant lesions in kidney. Mechanistically, MFN2 preferably binded small GTPase Rab21 in its GTP-loading form, which was colocalized with endocytosed EGFR in ccRCC cells. Through this EGFR-Rab21-MFN2 interaction, endocytosed EGFR was docked to mitochondria and subsequently dephosphorylated by the OMM-residing tyrosine-protein phosphatase receptor type J (PTPRJ). CONCLUSIONS Our findings uncover an important non-canonical mitochondria-dependent pathway regulating EGFR signaling by the Rab21-MFN2-PTPRJ axis, which contributes to the development of novel therapeutic strategies for ccRCC.
Collapse
Affiliation(s)
- Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Yihui Pan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P. R. China
| | - Qiu-Xia Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jiefeng Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
127
|
Riou M, Enache I, Sauer F, Charles AL, Geny B. Targeting Mitochondrial Metabolic Dysfunction in Pulmonary Hypertension: Toward New Therapeutic Approaches? Int J Mol Sci 2023; 24:ijms24119572. [PMID: 37298522 DOI: 10.3390/ijms24119572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary vascular remodeling leading to right heart failure and death. To date, despite the three therapeutic approaches targeting the three major endothelial dysfunction pathways based on the prostacyclin, nitric oxide/cyclic guanosine monophosphate, and endothelin pathways, PAH remains a serious disease. As such, new targets and therapeutic agents are needed. Mitochondrial metabolic dysfunction is one of the mechanisms involved in PAH pathogenesis in part through the induction of a Warburg metabolic state of enhanced glycolysis but also through the upregulation of glutaminolysis, tricarboxylic cycle and electron transport chain dysfunction, dysregulation of fatty acid oxidation or mitochondrial dynamics alterations. The aim of this review is to shed light on the main mitochondrial metabolic pathways involved in PAH and to provide an update on the resulting interesting potential therapeutic perspectives.
Collapse
Affiliation(s)
- Marianne Riou
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - Irina Enache
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - François Sauer
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Cardiology Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| | - Anne-Laure Charles
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg (FMTS), CRBS, University of Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", 1 Rue Eugène Boeckel, CS 60026, CEDEX 67084 Strasbourg, France
- Physiology and Functional Exploration Unit, University Hospital of Strasbourg, 1 Place de l'Hôpital, CEDEX 67091 Strasbourg, France
| |
Collapse
|
128
|
Park JW, Tyl MD, Cristea IM. Orchestration of Mitochondrial Function and Remodeling by Post-Translational Modifications Provide Insight into Mechanisms of Viral Infection. Biomolecules 2023; 13:biom13050869. [PMID: 37238738 DOI: 10.3390/biom13050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The regulation of mitochondria structure and function is at the core of numerous viral infections. Acting in support of the host or of virus replication, mitochondria regulation facilitates control of energy metabolism, apoptosis, and immune signaling. Accumulating studies have pointed to post-translational modification (PTM) of mitochondrial proteins as a critical component of such regulatory mechanisms. Mitochondrial PTMs have been implicated in the pathology of several diseases and emerging evidence is starting to highlight essential roles in the context of viral infections. Here, we provide an overview of the growing arsenal of PTMs decorating mitochondrial proteins and their possible contribution to the infection-induced modulation of bioenergetics, apoptosis, and immune responses. We further consider links between PTM changes and mitochondrial structure remodeling, as well as the enzymatic and non-enzymatic mechanisms underlying mitochondrial PTM regulation. Finally, we highlight some of the methods, including mass spectrometry-based analyses, available for the identification, prioritization, and mechanistic interrogation of PTMs.
Collapse
Affiliation(s)
- Ji Woo Park
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Matthew D Tyl
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
129
|
Muñoz JP, Sànchez-Fernàndez-de-Landa P, Diarte-Añazco EMG, Zorzano A, Blanco-Vaca F, Julve J. FTY720-P, a Biased S1PR Ligand, Increases Mitochondrial Function through STAT3 Activation in Cardiac Cells. Int J Mol Sci 2023; 24:ijms24087374. [PMID: 37108539 PMCID: PMC10139230 DOI: 10.3390/ijms24087374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
FTY720 is an FDA-approved sphingosine derivative drug for the treatment of multiple sclerosis. This compound blocks lymphocyte egress from lymphoid organs and autoimmunity through sphingosine 1-phosphate (S1P) receptor blockage. Drug repurposing of FTY720 has revealed improvements in glucose metabolism and metabolic diseases. Studies also demonstrate that preconditioning with this compound preserves the ATP levels during cardiac ischemia in rats. The molecular mechanisms by which FTY720 promotes metabolism are not well understood. Here, we demonstrate that nanomolar concentrations of the phosphorylated form of FTY720 (FTY720-P), the active ligand of S1P receptor (S1PR), activates mitochondrial respiration and the mitochondrial ATP production rate in AC16 human cardiomyocyte cells. Additionally, FTY720-P increases the number of mitochondrial nucleoids, promotes mitochondrial morphology alterations, and induces activation of STAT3, a transcription factor that promotes mitochondrial function. Notably, the effect of FTY720-P on mitochondrial function was suppressed in the presence of a STAT3 inhibitor. In summary, our results suggest that FTY720 promotes the activation of mitochondrial function, in part, through a STAT3 action.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
130
|
Wei Z, Lin X, Wang S, Zhang J, Ji D, Gong X, Huang ZS, Shu B, Li D. Syntheses and evaluation of acridone derivatives as anticancer agents targeting Kras promoter i-motif structure. Bioorg Chem 2023; 136:106526. [PMID: 37058782 DOI: 10.1016/j.bioorg.2023.106526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Two series of novel acridone derivatives were designed and synthesized, with their anticancer activity evaluated. Most of these compounds showed potent antiproliferative activity against cancer cell lines. Among them, compound C4 with dual 1,2,3-triazol moieties exhibited the most potent activity against Hep-G2 cells with IC50 value determined to be 6.29 ± 0.93 μM. Subsequent experiments showed that C4 could bind to and destabilize Kras gene promoter i-motif structure without significant interaction with its corresponding G-quadruplex. C4 could down-regulate Kras expression in Hep-G2 cells, possibly due to its interaction with the Kras i-motif. Further cellular studies indicated that C4 could induce apoptosis of Hep-G2 cells, possibly related to its effect on mitochondrial dysfunction. These results indicated that C4 could be further developed as a promising anticancer agent.
Collapse
Affiliation(s)
- Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Xiaomin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Jiahui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Waihuan East Road, Guangzhou 510006, PR China.
| |
Collapse
|
131
|
Zhang L, Sun L, Wang L, Wang J, Wang D, Jiang J, Zhang J, Zhou Q. Mitochondrial division inhibitor (mdivi-1) inhibits proliferation and epithelial-mesenchymal transition via the NF-κB pathway in thyroid cancer cells. Toxicol In Vitro 2023; 88:105552. [PMID: 36621616 DOI: 10.1016/j.tiv.2023.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Excessively fragmented mitochondria have been reported in thyroid cancer (TC). Mitochondrial division inhibitor (mdivi-1), a putative inhibitor of dynamin-related protein 1 (Drp1), prevents mitochondrial fission and thereby restricts cell proliferation across several types of primary cancer. However, the role of mdivi-1 on TC has not been sufficiently studied. This research is intended to explore the therapeutic effect of mdivi-1 in TC cells. Results demonstrated that highly invasive TC cells displayed excessive mitochondrial fission with more fragmented mitochondria. Treatment with mdivi-1 inhibited mitochondrial fission in 8505C cells as indicated by transmission electron microscope (TEM). It also impaired the proliferation and increased apoptosis in 8505C and K1 cells as shown by plate cloning assay, cell viability assay, and apoptosis assay. Mdivi-1 treatment also attenuated migratory and invasive abilities in 8505C and K1 cells as shown by the transwell assay and the wound healing assay. And we noticed the same inhibition of mdivi-1 in cell migration and cell viability after the knockdown of Drp1 in 8505C cells. This demonstrated that mdivi-1 exerted an anti-tumor effect independently of Drp1 in 8505C cells. Moreover, mdivi-1 treatment reversed epithelial-mesenchymal transition (EMT) by inhibiting the NF-κB pathway in 8505C cells. The present findings demonstrate that mdivi-1 has a therapeutic role in thyroid carcinoma.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Lirong Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Dan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Jinhui Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
132
|
Shimura T. Mitochondrial Signaling Pathways Associated with DNA Damage Responses. Int J Mol Sci 2023; 24:ijms24076128. [PMID: 37047099 PMCID: PMC10094106 DOI: 10.3390/ijms24076128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Under physiological and stress conditions, mitochondria act as a signaling platform to initiate biological events, establishing communication from the mitochondria to the rest of the cell. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species, cytochrome C, and damage-associated molecular patterns act as messengers in metabolism, oxidative stress response, bystander response, apoptosis, cellular senescence, and inflammation response. In this review paper, the mitochondrial signaling in response to DNA damage was summarized. Mitochondrial clearance via fusion, fission, and mitophagy regulates mitochondrial quality control under oxidative stress conditions. On the other hand, damaged mitochondria release their contents into the cytoplasm and then mediate various signaling pathways. The role of mitochondrial dysfunction in radiation carcinogenesis was discussed, and the recent findings on radiation-induced mitochondrial signaling and radioprotective agents that targeted mitochondria were presented. The analysis of the mitochondrial radiation effect, as hypothesized, is critical in assessing radiation risks to human health.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Saitama, Japan
| |
Collapse
|
133
|
Zhang S, Gong H, Xie H, Huangfu Z, Tang Y, Xiao M, Li M, Li Q, Wang Y. An integrated analysis of Dynamin 1 Like: A new potential prognostic indicator in hepatocellular carcinoma. Mol Carcinog 2023; 62:786-802. [PMID: 36929853 DOI: 10.1002/mc.23524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/29/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
Dynamin 1 Like (DNM1L), a member of dynamin superfamily capable of mediating mitochondrial outer membrane division, plays a key role in the progression of different types of tumors. However, the prognostic value, clinical significance of DNM1L and its specific mechanism involved in tumorigenesis of hepatocellular carcinoma (HCC) have not been investigated clearly. In this study, we found that the expression of DNM1L were significantly higher in HCC tissues than adjacent/normal liver tissues based on multiple data sets obtained from TCGA, GEO and ONCOMINE database, also its protein expression form Drp1 is significantly higher in HCC tissues than adjacent tissues, and is related to the degree of differentiation. Kaplan-Meier curves suggested that high DNM1L expression prominently correlated with poorer overall survival, progression-free survival, relapse-free survival and disease-specific survival. Multivariate analysis showed that higher DNM1L expression was independent prognostic factors of shorter overall survival and disease-free survival. Kyoto Encyclopedia of Genes and Genomes and Gene set enrichment analysis analysis combined with validation experiments revealed the regulatory role of DNM1L on key molecules in the metabolism of xenobiotics by cytochrome p450 pathway, and DNM1L may also affects invasion and metastasis capability of HCC by mediating extracellular matrix -receptor interaction pathway. Moreover, analysis showed that higher DNM1L, CYP2C9, CYP3A4, CYP1A2 expression were associated with the resistance to sorafenib therapy. TIMER and CIBERSORT analysis indicated that the increase of DNM1L expression may affect the infiltration of immune cells in the tumor microenvironment. Taken together, the above results indicated that DNM1L could be able to serve as a promising independent predictor and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Shuxian Zhang
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China.,Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hanjuan Gong
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hailun Xie
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhimin Huangfu
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yi Tang
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China.,Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ming Xiao
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China.,Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ming Li
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China.,Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qingshu Li
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China.,Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yalan Wang
- Molecular Medicine and Cancer Research Center, Basic Medicine College, Chongqing Medical University, Chongqing, People's Republic of China.,Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
134
|
Rab32 promotes glioblastoma migration and invasion via regulation of ERK/Drp1-mediated mitochondrial fission. Cell Death Dis 2023; 14:198. [PMID: 36922509 PMCID: PMC10017813 DOI: 10.1038/s41419-023-05721-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
The highly widespread and infiltrative nature of glioblastoma multiforme (GBM) makes complete surgical resection hard, causing high recurrence rate and poor patients' prognosis. However, the mechanism underlying GBM migration and invasion is still unclear. In this study, we investigated the role of a Ras-related protein Rab32 on GBM and uncovered its underlying molecular and subcellular mechanisms that contributed to GBM aggressiveness. The correlation of Rab32 expression with patient prognosis and tumor grade was investigated by public dataset analysis and clinical specimen validation. The effect of Rab32 on migration and invasion of GBM had been evaluated using wound healing assay, cell invasion assay, as well as protein analysis upon Rab32 manipulations. Mitochondrial dynamics of cells upon Rab32 alterations were detected by immunofluorescence staining and western blotting. Both the subcutaneous and intracranial xenograft tumor model were utilized to evaluate the effect of Rab32 on GBM in vivo. The expression level of Rab32 is significantly elevated in the GBM, especially in the most malignant mesenchymal subtype, and is positively correlated with tumor pathological grade and poor prognosis. Knockdown of Rab32 attenuated the capability of GBM's migration and invasion. It also suppressed the expression levels of invasion-related proteins (MMP2 and MMP9) as well as mesenchymal transition markers (N-cadherin, vimentin). Interestingly, Rab32 transported Drp1 to mitochondrial from the cytoplasm and modulated mitochondrial fission in an ERK1/2 signaling-dependent manner. Furthermore, silencing of Rab32 in vivo suppressed tumor malignancy via ERK/Drp1 axis. Rab32 regulates ERK1/2/Drp1-dependent mitochondrial fission and causes mesenchymal transition, promoting migration and invasion of GBM. It serves as a novel therapeutic target for GBM, especially for the most malignant mesenchymal subtype. Schematic of Rab32 promotes GBM aggressiveness via regulation of ERK/Drp1-mediated mitochondrial fission. Rab32 transports Drp1 from the cytoplasm to the mitochondria and recruits ERK1/2 to activate the ser616 site of Drp1, which in turn mediates mitochondrial fission and promotes mesenchymal transition, migration and invasion of GBM.
Collapse
|
135
|
Moore J, Ewoldt J, Venturini G, Pereira AC, Padilha K, Lawton M, Lin W, Goel R, Luptak I, Perissi V, Seidman CE, Seidman J, Chin MT, Chen C, Emili A. Multi-Omics Profiling of Hypertrophic Cardiomyopathy Reveals Altered Mechanisms in Mitochondrial Dynamics and Excitation-Contraction Coupling. Int J Mol Sci 2023; 24:4724. [PMID: 36902152 PMCID: PMC10002553 DOI: 10.3390/ijms24054724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jourdan Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
| | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Matthew Lawton
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Raghuveera Goel
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Valentina Perissi
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jonathan Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02145, USA
| | - Christopher Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
136
|
Coscia SM, Thompson CP, Tang Q, Baltrusaitis EE, Rhodenhiser JA, Quintero-Carmona OA, Ostap EM, Lakadamyali M, Holzbaur ELF. Myo19 tethers mitochondria to endoplasmic reticulum-associated actin to promote mitochondrial fission. J Cell Sci 2023; 136:jcs260612. [PMID: 36744380 PMCID: PMC10022680 DOI: 10.1242/jcs.260612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial homeostasis requires a dynamic balance of fission and fusion. The actin cytoskeleton promotes fission, and we found that the mitochondrially localized myosin, myosin 19 (Myo19), is integral to this process. Myo19 knockdown induced mitochondrial elongation, whereas Myo19 overexpression induced fragmentation. This mitochondrial fragmentation was blocked by a Myo19 mutation predicted to inhibit ATPase activity and strong actin binding but not by mutations predicted to affect the working stroke of the motor that preserve ATPase activity. Super-resolution imaging indicated a dispersed localization of Myo19 on mitochondria, which we found to be dependent on metaxins. These observations suggest that Myo19 acts as a dynamic actin-binding tether that facilitates mitochondrial fragmentation. Myo19-driven fragmentation was blocked by depletion of either the CAAX splice variant of the endoplasmic reticulum (ER)-anchored formin INF2 or the mitochondrially localized F-actin nucleator Spire1C (a splice variant of Spire1), which together polymerize actin at sites of mitochondria-ER contact for fission. These observations imply that Myo19 promotes fission by stabilizing mitochondria-ER contacts; we used a split-luciferase system to demonstrate a reduction in these contacts following Myo19 depletion. Our data support a model in which Myo19 tethers mitochondria to ER-associated actin to promote mitochondrial fission.
Collapse
Affiliation(s)
- Stephen M. Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cameron P. Thompson
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qing Tang
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elana E. Baltrusaitis
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | - E. Michael Ostap
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L. F. Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
137
|
Hu SL, Mamun AA, Shaw J, Li SL, Shi YF, Jin XM, Yu YX, Pang CZ, Li ZY, Lu JJ, Cai YP, Wang XY, Xiao J. TBK1-medicated DRP1 phosphorylation orchestrates mitochondrial dynamics and autophagy activation in osteoarthritis. Acta Pharmacol Sin 2023; 44:610-621. [PMID: 36008706 PMCID: PMC9958127 DOI: 10.1038/s41401-022-00967-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Mitochondrial dynamics, including mitochondrial fission and fusion, are critical for maintaining mitochondrial functions. Evidence shows that TANK-binding kinase 1 (TBK1) regulates mitochondrial fusion and fission and then mitophagy. Since a previous study demonstrates a strong correlation between mitophagy and osteoarthritis (OA), we herein investigated the potential role of TBK1 in OA process and mitochondrial functions. We demonstrated a strong correlation between TBK1 and OA, evidenced by significantly downregulated expression of TBK1 in cartilage tissue samples of OA patients and in the chondrocytes of aged mice, as well as TNF-α-stimulated phosphorylation of TBK1 in primary mouse chondrocytes. TBK1 overexpression significantly attenuated TNF-α-induced apoptosis and abnormal mitochondrial function in primary mouse chondrocytes. Furthermore, TBK1 overexpression induced remodeling of mitochondrial morphology by directly phosphorylating dynamin-related protein 1 (DRP1) at Ser637, abolishing the fission of DRP1 and preventing its fragmentation function. Moreover, TBK1 recruitment and DRP1 phosphorylation at Ser637 was necessary for engulfing damaged mitochondria by autophagosomal membranes during mitophagy. Moreover, we demonstrated that APMK/ULK1 signaling contributed to TBK1 activation. In OA mouse models established by surgical destabilization of the medial meniscus, intraarticular injection of lentivirus-TBK1 significantly ameliorated cartilage degradation via regulation of autophagy and alleviation of cell apoptosis. In conclusion, our results suggest that the TBK1/DRP1 pathway is involved in OA and pharmacological targeting of the TBK1-DRP1 cascade provides prospective therapeutic benefits for the treatment of OA.
Collapse
Affiliation(s)
- Sun-Li Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Sun-Long Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi-Feng Shi
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xue-Man Jin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying-Xin Yu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chao-Zhi Pang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ze-Yang Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia-Jie Lu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue-Piao Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang-Yang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
138
|
Liu X, Guo C, Zhang Q. Novel insights into the involvement of mitochondrial fission/fusion in heart failure: From molecular mechanisms to targeted therapies. Cell Stress Chaperones 2023; 28:133-144. [PMID: 36652120 PMCID: PMC10050249 DOI: 10.1007/s12192-023-01321-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are dynamic organelles that alter their morphology through fission (fragmentation) and fusion (elongation). These morphological changes correlate highly with mitochondrial functional adaptations to stressors, such as hypoxia, pressure overload, and inflammation, and are important in the setting of heart failure. Pathological mitochondrial remodeling, characterized by increased fission and reduced fusion, is associated with impaired mitochondrial respiration, increased mitochondrial oxidative stress, abnormal cytoplasmic calcium handling, and increased cardiomyocyte apoptosis. Considering the impact of the mitochondrial morphology on mitochondrial behavior and cardiomyocyte performance, altered mitochondrial dynamics could be expected to induce or exacerbate the pathogenesis and progression of heart failure. However, whether alterations in mitochondrial fission and fusion accelerate or retard the progression of heart failure has been the subject of intense debate. In this review, we first describe the physiological processes and regulatory mechanisms of mitochondrial fission and fusion. Then, we extensively discuss the pathological contributions of mitochondrial fission and fusion to heart failure. Lastly, we examine potential therapeutic approaches targeting mitochondrial fission/fusion to treat patients with heart failure.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chenchen Guo
- Neck, Shoulder, Waist and Leg Pain Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiming Zhang
- Department of First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China.
| |
Collapse
|
139
|
Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem Soc Trans 2023; 51:41-56. [PMID: 36815717 PMCID: PMC9988003 DOI: 10.1042/bst20220014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evidence also posits these organelles as hubs for innate immune signalling and activation, particularly in macrophages. Macrophages are front-line cellular defenders against endogenous and exogenous threats in mammals. These cells use an array of receptors and downstream signalling molecules to respond to a diverse range of stimuli, with mitochondrial biology implicated in many of these responses. Mitochondria have the capacity to both divide through mitochondrial fission and coalesce through mitochondrial fusion. Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular functions, including innate immune pathways in macrophages. In these cells, mitochondrial fission has primarily been associated with pro-inflammatory responses and metabolic adaptation, so can be considered as a combative strategy utilised by immune cells. In contrast, mitochondrial fusion has a more protective role in limiting cell death under conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strategy. Here we broadly review the role of mitochondria in macrophage functions, with a focus on how regulated mitochondrial dynamics control different functional responses in these cells.
Collapse
|
140
|
Rodríguez AG, Rodríguez JZ, Barreto A, Sanabria-Barrera S, Iglesias J, Morales L. Impact of Acute High Glucose on Mitochondrial Function in a Model of Endothelial Cells: Role of PDGF-C. Int J Mol Sci 2023; 24:ijms24054394. [PMID: 36901825 PMCID: PMC10003065 DOI: 10.3390/ijms24054394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
An increase in plasma high glucose promotes endothelial dysfunction mainly through increasing mitochondrial ROS production. High glucose ROS-induced has been implicated in the fragmentation of the mitochondrial network, mainly by an unbalance expression of mitochondrial fusion and fission proteins. Mitochondrial dynamics alterations affect cellular bioenergetics. Here, we assessed the effect of PDGF-C on mitochondrial dynamics and glycolytic and mitochondrial metabolism in a model of endothelial dysfunction induced by high glucose. High glucose induced a fragmented mitochondrial phenotype associated with the reduced expression of OPA1 protein, high DRP1pSer616 levels and reduced basal respiration, maximal respiration, spare respiratory capacity, non-mitochondrial oxygen consumption and ATP production, regarding normal glucose. In these conditions, PDGF-C significantly increased the expression of OPA1 fusion protein, diminished DRP1pSer616 levels and restored the mitochondrial network. On mitochondrial function, PDGF-C increased the non-mitochondrial oxygen consumption diminished by high glucose conditions. These results suggest that PDGF-C modulates the damage induced by HG on the mitochondrial network and morphology of human aortic endothelial cells; additionally, it compensates for the alteration in the energetic phenotype induced by HG.
Collapse
Affiliation(s)
- Adriana Grismaldo Rodríguez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence: (A.G.R.); (L.M.); Tel.: +57-3114566976 (A.G.R.); +57-3132107272 (L.M.)
| | - Jairo Zamudio Rodríguez
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Alfonso Barreto
- Immunology and Cell Biology Group, Faculty of Sciences, Microbiology Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Sandra Sanabria-Barrera
- Bioengineering FCV Research Group, Department of Innovation and Technological Development, Fundación Cardiovascular de Colombia, Floridablanca 680004, Colombia
| | - José Iglesias
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ludis Morales
- Experimental and Computational Biochemistry Group, Faculty of Sciences, Nutrition and Biochemistry Department, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence: (A.G.R.); (L.M.); Tel.: +57-3114566976 (A.G.R.); +57-3132107272 (L.M.)
| |
Collapse
|
141
|
Gallo Cantafio ME, Torcasio R, Viglietto G, Amodio N. Non-Coding RNA-Dependent Regulation of Mitochondrial Dynamics in Cancer Pathophysiology. Noncoding RNA 2023; 9:ncrna9010016. [PMID: 36827549 PMCID: PMC9964195 DOI: 10.3390/ncrna9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondria are essential organelles which dynamically change their shape and number to adapt to various environmental signals in diverse physio-pathological contexts. Mitochondrial dynamics refers to the delicate balance between mitochondrial fission (or fragmentation) and fusion, that plays a pivotal role in maintaining mitochondrial homeostasis and quality control, impinging on other mitochondrial processes such as metabolism, apoptosis, mitophagy, and autophagy. In this review, we will discuss how dysregulated mitochondrial dynamics can affect different cancer hallmarks, significantly impacting tumor growth, survival, invasion, and chemoresistance. Special emphasis will be given to emerging non-coding RNA molecules targeting the main fusion/fission effectors, acting as novel relevant upstream regulators of the mitochondrial dynamics rheostat in a wide range of tumors.
Collapse
Affiliation(s)
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
142
|
Cagnin S, Knedlik T, Vianello C, Magalhães Rebelo AP, De Mario A, Giacomello M. Comparison among Neuroblastoma Stages Suggests the Involvement of Mitochondria in Tumor Progression. Biomedicines 2023; 11:biomedicines11020596. [PMID: 36831133 PMCID: PMC9953471 DOI: 10.3390/biomedicines11020596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial tumor of early childhood and accounts for 15% of all pediatric cancer mortalities. However, the precise pathways and genes underlying its progression are unknown. Therefore, we performed a differential gene expression analysis of neuroblastoma stage 1 and stage 4 + 4S to discover biological processes associated with NB progression. From this preliminary analysis, we found that NB samples (stage 4 + 4S) are characterized by altered expression of some proteins involved in mitochondria function and mitochondria-ER contact sites (MERCS). Although further analyses remain necessary, this review may provide new hints to better understand NB molecular etiopathogenesis, by suggesting that MERCS alterations could be involved in the progression of NB.
Collapse
Affiliation(s)
- Stefano Cagnin
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- CIR-Myo Myology Center, University of Padova, 35121 Padua, Italy
| | - Tomas Knedlik
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Caterina Vianello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | | | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: (A.D.M.); (M.G.)
| | - Marta Giacomello
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
- Correspondence: (A.D.M.); (M.G.)
| |
Collapse
|
143
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
144
|
Dong J, Liu J, Zhang B, Liang C, Hua J, Meng Q, Wei M, Wang W, Yu X, Xu J. Mitochondria-Related Transcriptome Characterization Associated with the Immune Microenvironment, Therapeutic Response and Survival Prediction in Pancreatic Cancer. Int J Mol Sci 2023; 24:3270. [PMID: 36834681 PMCID: PMC9966003 DOI: 10.3390/ijms24043270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background: Pancreatic cancer (PC) is one of the most lethal tumors. Mitochondrial dysfunction has been reported to be involved in cancer development; however, its role in PC has remained unclear. (2) Methods: The differentially expressed NMGs were selected between PC and normal pancreatic tissue. The NMG-related prognostic signature was established by LASSO regression. A nomogram was developed based on the 12-gene signature combined with other significant pathological features. An extensive analysis of the 12 critical NMGs was performed in multiple dimensions. The expression of some key genes was verified in our external cohort. (3) Results: Mitochondria-related transcriptome features was obviously altered in PC compared with normal pancreas tissue. The 12-NMG signature showed good performance in predicting prognosis in various cohorts. The high- and low-risk groups exhibited notable diversity in gene mutation characteristics, biological characteristics, chemotherapy response, and the tumor immune microenvironment. Critical gene expression was demonstrated in our cohort at the mRNA and protein levels and in organelle localization. (4) Conclusions: Our study analyzed the mitochondrial molecular characterization of PC, proving the crucial role of NMGs in PC development. The established NMG signature helps classify patient subtypes in terms of prognosis prediction, treatment response, immunological features, and biological function, providing a potential therapeutic strategy targeting mitochondrial transcriptome characterization.
Collapse
Affiliation(s)
- Jia Dong
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
145
|
Abstract
The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents. The recent development of BH3 mimetics that inhibit pro-survival BCL-2 family proteins has allowed these apoptotic vulnerabilities to be targeted with demonstrable clinical success. Here, we review the key concepts that are vital for understanding, uncovering, and exploiting apoptotic vulnerabilities in cancer for the potential improvement of patient outcomes.
Collapse
Affiliation(s)
- Kristopher A. Sarosiek
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
146
|
Wang Y, Wang HM, Zhou Y, Hu LH, Wan JM, Yang JH, Niu HB, Hong XP, Hu P, Chen LB, Hu P, Chen LB. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity. Zool Res 2023; 44:126-141. [PMID: 36419379 PMCID: PMC9841188 DOI: 10.24272/j.issn.2095-8137.2022.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Temperature tolerance restricts the distribution of a species. However, the molecular and cellular mechanisms that set the thermal tolerance limits of an organism are poorly understood. Here, we report on the function of dual-specificity phosphatase 1 (DUSP1) in thermal tolerance regulation. Notably, we found that dusp1 -/- zebrafish grew normally but survived within a narrowed temperature range. The higher susceptibility of these mutant fish to both cold and heat challenges was attributed to accelerated cell death caused by aggravated mitochondrial dysfunction and over-production of reactive oxygen species in the gills. The DUSP1-MAPK-DRP1 axis was identified as a key pathway regulating these processes in both fish and human cells. These observations suggest that DUSP1 may play a role in maintaining mitochondrial integrity and redox homeostasis. We therefore propose that maintenance of cellular redox homeostasis may be a key mechanism for coping with cellular thermal stress and that the interplay between signaling pathways regulating redox homeostasis in the most thermosensitive tissue (i.e., gills) may play an important role in setting the thermal tolerance limit of zebrafish.
Collapse
Affiliation(s)
- Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hua-Min Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Yan Zhou
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ling-Hong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Jing-Ming Wan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Ji-Hui Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Hong-Bo Niu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Xiu-Ping Hong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Peng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China
| | - Liang-Biao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 200120, China,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 200120, China,Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 200120, China,E-mail:
| | | | | | | | | | | | | |
Collapse
|
147
|
Easton ZJW, Luo X, Li L, Regnault TRH. The impact of hyperglycemia upon BeWo trophoblast cell metabolic function: A multi-OMICS and functional metabolic analysis. PLoS One 2023; 18:e0283118. [PMID: 36930661 PMCID: PMC10022812 DOI: 10.1371/journal.pone.0283118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Pre-existing and gestationally-developed diabetes mellitus have been linked with impairments in placental villous trophoblast cell metabolic function, that are thought to underlie the development of metabolic diseases early in the lives of the exposed offspring. Previous research using placental cell lines and ex vivo trophoblast preparations have highlighted hyperglycemia is an important independent regulator of placental function. However, it is poorly understood if hyperglycemia directly influences aspects of placental metabolic function, including nutrient storage and mitochondrial respiration, that are altered in term diabetic placentae. The current study examined metabolic and mitochondrial function as well as nutrient storage in both undifferentiated cytotrophoblast and differentiated syncytiotrophoblast BeWo cells cultured under hyperglycemia conditions (25 mM glucose) for 72 hours to further characterize the direct impacts of placental hyperglycemic exposure. Hyperglycemic-exposed BeWo trophoblasts displayed increased glycogen and triglyceride nutrient stores, but real-time functional readouts of metabolic enzyme activity and mitochondrial respiratory activity were not altered. However, specific investigation into mitochondrial dynamics highlighted increased expression of markers associated with mitochondrial fission that could indicate high glucose-exposed trophoblasts are transitioning towards mitochondrial dysfunction. To further characterize the impacts of independent hyperglycemia, the current study subsequently utilized a multi-omics approach and evaluated the transcriptomic and metabolomic signatures of BeWo cytotrophoblasts. BeWo cytotrophoblasts exposed to hyperglycemia displayed increased mRNA expression of ACSL1, HSD11B2, RPS6KA5, and LAP3 and reduced mRNA expression of CYP2F1, and HK2, concomitant with increased levels of: lactate, malonate, and riboflavin metabolites. These changes highlighted important underlying alterations to glucose, glutathione, fatty acid, and glucocorticoid metabolism in BeWo trophoblasts exposed to hyperglycemia. Overall, these results demonstrate that hyperglycemia is an important independent regulator of key areas of placental metabolism, nutrient storage, and mitochondrial function, and these data continue to expand our knowledge on mechanisms governing the development of placental dysfunction.
Collapse
Affiliation(s)
- Zachary J W Easton
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Xian Luo
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Liang Li
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London Health Science Centre-Victoria Hospital, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
148
|
Punter KB, Chu C, Chan EYW. Mitochondrial dynamics and oxidative phosphorylation as critical targets in cancer. Endocr Relat Cancer 2023; 30:ERC-22-0229. [PMID: 36356297 DOI: 10.1530/erc-22-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
It has long been recognised that cancer cells critically depend on reprogrammed patterns of metabolism that can enable robust and abnormally high levels of cell proliferation. As mitochondria form hubs of cellular metabolic activity, it is reasonable to propose that pathways within these organelles can form targets that can be manipulated to compromise the ability of cancer cells to cause disease. However, mitochondria are highly multi-functional, and the full range of mechanistic inter-connections are still being unravelled to enable the full potential of targeting mitochondria in cancer therapeutics. Here, we aim to highlight the potential of modulating mitochondrial dynamics to target key metabolic or apoptotic pathways in cancer cells. Distinct roles have been demonstrated for mitochondrial fission and fusion in different cancer contexts. Targeting of factors mediating mitochondrial dynamics may be directly related to impairment of oxidative phosphorylation, which is essential to sustain cancer cell growth and can also alter sensitivity to chemotherapeutic compounds. This area is still lacking a unified model, although further investigation will more comprehensively map the underlying molecular mechanisms to enable better rational therapeutic strategies based on these pathways.
Collapse
Affiliation(s)
- Kaylee B Punter
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, Canada
| | - Charles Chu
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, Canada
| | - Edmond Y W Chan
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
149
|
Acosta-Casique A, Montes-Alvarado JB, Barragán M, Larrauri-Rodríguez KA, Perez-Gonzalez A, Delgado-Magallón A, Millán-Perez-Peña L, Rosas-Murrieta NH, Maycotte P. ERK activation modulates invasiveness and Reactive Oxygen Species (ROS) production in triple negative breast cancer cell lines. Cell Signal 2023; 101:110487. [PMID: 36216165 DOI: 10.1016/j.cellsig.2022.110487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Triple negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis and still lacks a targeted therapy. In this study, we found increased ERK phosphorylation in TNBC cell lines and an important role for ERK in sustaining the migration of TNBC cells. Although ROS have been suggested to have an important role in sustaining MAPK signaling, antioxidant treatment increased ERK phosphorylation, probably suggesting increased invasive potential. Interestingly, treatment with PD0325901 (PD), a MEK inhibitor, decreased ROS levels in TNBC cells and decreased mitochondrial fragmentation in the MDAMB231 cell line. Our data supports an important role for MEK/ERK in TNBC, sustaining cellular migration, regulating mitochondrial dynamics and ROS production in this breast cancer subtype.
Collapse
Affiliation(s)
- Adilene Acosta-Casique
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - José B Montes-Alvarado
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Minuet Barragán
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Karen A Larrauri-Rodríguez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Andrea Perez-Gonzalez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Alam Delgado-Magallón
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Lourdes Millán-Perez-Peña
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Nora H Rosas-Murrieta
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| |
Collapse
|
150
|
Malheiro RF, Carmo H, Carvalho F, Silva JP. Cannabinoid-mediated targeting of mitochondria on the modulation of mitochondrial function and dynamics. Pharmacol Res 2023; 187:106603. [PMID: 36516885 DOI: 10.1016/j.phrs.2022.106603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria play a critical role in the regulation of several biological processes (e.g., programmed cell death, inflammation, neurotransmission, cell differentiation). In recent years, accumulating findings have evidenced that cannabinoids, a group of endogenous and exogenous (synthetic and plant-derived) psychoactive compounds that bind to cannabinoid receptors, may modulate mitochondrial function and dynamics. As such, mitochondria have gained increasing interest as central mediators in cannabinoids' pharmacological and toxicological signatures. Here, we review the mechanisms underlying the cannabinoids' modulation of mitochondrial activity and dynamics, as well as the potential implications of such mitochondrial processes' disruption on cell homeostasis and disease. Interestingly, cannabinoids may target different mitochondrial processes (e.g., regulation of intracellular calcium levels, bioenergetic metabolism, apoptosis, and mitochondrial dynamics, including mitochondrial fission and fusion, transport, mitophagy, and biogenesis), by modulating multiple and complex signaling pathways. Of note, the outcome may depend on the experimental models used, as well as the chemical structure, concentration, and exposure settings to the cannabinoid, originating equivocal data. Notably, this interaction seems to represent not only an important feature of cannabinoids' toxicological signatures, with potential implications for the onset of distinct pathological conditions (e.g., cancer, neurodegenerative diseases, metabolic syndromes), but also an opportunity to develop novel therapeutic strategies for such pathologies, which is also discussed in this review.
Collapse
Affiliation(s)
- Rui Filipe Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|