101
|
Gutiérrez Aguilar GF, Alquisiras-Burgos I, Espinoza-Rojo M, Aguilera P. Glial Excitatory Amino Acid Transporters and Glucose Incorporation. ADVANCES IN NEUROBIOLOGY 2017; 16:269-282. [PMID: 28828615 DOI: 10.1007/978-3-319-55769-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Excitatory amino acid transporters (EAATs) expressed in astrocytes remove the glutamate released by neurons in and around the synaptic cleft. In this manner, astrocytes preserve the signaling functions mediated by glutamate on synapses and prevent excitotoxicity. Additionally, EAAT activation stimulates glucose utilization in astrocytes, linking neuronal activity with astrocyte metabolism. In this chapter, we briefly review the characteristics of the EAATs and the glucose transporters (GLUTs) expressed in the brain. Thereafter, we focus on the effect of EAATs activation and its association with glucose utilization in astrocytes, specifically addressing the role played by Na+ and Ca2+ ions. Next, we analyze evidence that proposes mechanisms by which the activity of GLUTs could be modulated after EAAT activation (e.g., kinases altering GLUTs traffic to cell membrane). Finally, we analyzed the current knowledge on EAAT function during energy deficiency as a possible inducer of GLUT expression to prevent neuronal damage.
Collapse
Affiliation(s)
- Germán Fernando Gutiérrez Aguilar
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, Col. La Fama, Tlalpan, Ciudad de México, 14269, México
| | - Ivan Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, Col. La Fama, Tlalpan, Ciudad de México, 14269, México
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39087, México
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, Col. La Fama, Tlalpan, Ciudad de México, 14269, México.
| |
Collapse
|
102
|
Li Q, Cai Y, Huang J, Yu X, Sun J, Yang Z, Zhou L. Resistin impairs glucose permeability in EA.hy926 cells by down-regulating GLUT1 expression. Mol Cell Endocrinol 2016; 434:127-134. [PMID: 27353463 DOI: 10.1016/j.mce.2016.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/17/2016] [Accepted: 06/25/2016] [Indexed: 11/23/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease which is now affecting the health of more and more people in the world. Resistin, discovered in 2001, is considered to be closely related to metabolic dysfunction and obesity. Previous study showed that hyperglycemia is always accompanied by a high serum resistin concentration. We therefore investigated whether resistin can mediate glucose transfer across the blood-tissue barrier. Here, we employed a transwell system to analyze glucose permeability in EA.hy926 human endothelial cells treated without or with human resistin. In EA.hy926 cells treated with resistin, the permeability to glucose was heavily impaired. This was due to the down-regulation of GLUT1 expression as a result of the treatment, rather than regulation of tight junctions. In addition, overexpression of GLUT1 in EA.hy926 cells was able to recover the blocking effect of resistin on glucose permeability. We further found that resistin could inhibit the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and consequently impede the transcription of GLUT1. The results of the present study suggested that resistin could cause glucose retention in serum and thus result in hyperglycemia. This provides a novel explanation for hyperglycemia and a potential new way of treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yuxi Cai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jing Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Xiaolan Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China.
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
103
|
Kamiński MM, Liedmann S, Milasta S, Green DR. Polarization and asymmetry in T cell metabolism. Semin Immunol 2016; 28:525-534. [DOI: 10.1016/j.smim.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
|
104
|
Zhang ZZ, Lee EE, Sudderth J, Yue Y, Zia A, Glass D, Deberardinis RJ, Wang RC. Glutathione Depletion, Pentose Phosphate Pathway Activation, and Hemolysis in Erythrocytes Protecting Cancer Cells from Vitamin C-induced Oxidative Stress. J Biol Chem 2016; 291:22861-22867. [PMID: 27660392 DOI: 10.1074/jbc.c116.748848] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 01/02/2023] Open
Abstract
The discovery that oxidized vitamin C, dehydroascorbate (DHA), can induce oxidative stress and cell death in cancer cells has rekindled interest in the use of high dose vitamin C (VC) as a cancer therapy. However, high dose VC has shown limited efficacy in clinical trials, possibly due to the decreased bioavailability of oral VC. Because human erythrocytes express high levels of Glut1, take up DHA, and reduce it to VC, we tested how erythrocytes might impact high dose VC therapies. Cancer cells are protected from VC-mediated cell death when co-cultured with physiologically relevant numbers of erythrocytes. Pharmacological doses of VC induce oxidative stress, GSH depletion, and increased glucose flux through the oxidative pentose phosphate pathway (PPP) in erythrocytes. Incubation of erythrocytes with VC induced hemolysis, which was exacerbated in erythrocytes from glucose-6-phosphate dehydrogenase (G6PD) patients and rescued by antioxidants. Thus, erythrocytes protect cancer cells from VC-induced oxidative stress and undergo hemolysis in vitro, despite activation of the PPP. These results have implications on the use of high dose VC in ongoing clinical trials and highlight the importance of the PPP in the response to oxidative stress.
Collapse
Affiliation(s)
| | | | - Jessica Sudderth
- the Children's Medical Center Research Institute, the University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | | | - Ayesha Zia
- Pediatrics, the University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Donald Glass
- From the Departments of Dermatology and.,the Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ralph J Deberardinis
- the Children's Medical Center Research Institute, the University of Texas Southwestern Medical Center, Dallas, Texas 75390, and.,Pediatrics, the University of Texas Southwestern Medical Center, Dallas, Texas 75390.,the Eugene McDermott Center for Human Growth and Development, the University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
105
|
Meireles P, Sales-Dias J, Andrade CM, Mello-Vieira J, Mancio-Silva L, Simas JP, Staines HM, Prudêncio M. GLUT1-mediated glucose uptake plays a crucial role during Plasmodium hepatic infection. Cell Microbiol 2016; 19. [PMID: 27404888 PMCID: PMC5297879 DOI: 10.1111/cmi.12646] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
Intracellular pathogens have evolved mechanisms to ensure their survival and development inside their host cells. Here, we show that glucose is a pivotal modulator of hepatic infection by the rodent malaria parasite Plasmodium berghei and that glucose uptake via the GLUT1 transporter is specifically enhanced in P. berghei‐infected cells. We further show that ATP levels of cells containing developing parasites are decreased, which is known to enhance membrane GLUT1 activity. In addition, GLUT1 molecules are translocated to the membrane of the hepatic cell, increasing glucose uptake at later stages of infection. Chemical inhibition of GLUT1 activity leads to a decrease in glucose uptake and the consequent impairment of hepatic infection, both in vitro and in vivo. Our results reveal that changes in GLUT1 conformation and cellular localization seem to be part of an adaptive host response to maintain adequate cellular nutrition and energy levels, ensuring host cell survival and supporting P. berghei hepatic development.
Collapse
Affiliation(s)
- Patrícia Meireles
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Sales-Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carolina M Andrade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Mello-Vieira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Liliana Mancio-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Henry M Staines
- Institute for Infection & Immunity, St. George's, University of London, Cranmer Terrace, London, UK
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
106
|
Mendez-Flores OG, Hernández-Kelly LC, Suárez-Pozos E, Najimi M, Ortega A. Coupling of glutamate and glucose uptake in cultured Bergmann glial cells. Neurochem Int 2016; 98:72-81. [PMID: 27184733 DOI: 10.1016/j.neuint.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 11/17/2022]
Abstract
Glutamate, the main excitatory neurotransmitter in the vertebrate brain, exerts its actions through specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of sodium-dependent, glutamate uptake transporters mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing neuronal death. The sustained sodium influx associated to glutamate removal in glial cells, activates the sodium/potassium ATPase restoring the ionic balance, additionally, glutamate entrance activates glutamine synthetase, both events are energy demanding, therefore glia cells increase their ATP expenditure favouring glucose uptake, and triggering several signal transduction pathways linked to proper neuronal glutamate availability, via the glutamate/glutamine shuttle. To further characterize these complex transporters interactions, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity, plasma membrane localization and protein levels of glucose transporters was detected upon d-aspartate exposure. Interestingly, this increase is the result of a protein kinase C-dependent signaling cascade. Furthermore, a glutamate-dependent glucose and glutamate transporters co-immunoprecipitation was detected. These results favour the notion that glial cells are involved in glutamatergic neuronal physiology.
Collapse
Affiliation(s)
- Orquidia G Mendez-Flores
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional (IPN), México D.F. 07000, Mexico
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional (IPN), México D.F. 07000, Mexico
| | - Edna Suárez-Pozos
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional (IPN), México D.F. 07000, Mexico
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St Luc, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional (IPN), México D.F. 07000, Mexico.
| |
Collapse
|
107
|
Selwan EM, Finicle BT, Kim SM, Edinger AL. Attacking the supply wagons to starve cancer cells to death. FEBS Lett 2016; 590:885-907. [PMID: 26938658 DOI: 10.1002/1873-3468.12121] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
The constitutive anabolism of cancer cells not only supports proliferation but also addicts tumor cells to a steady influx of exogenous nutrients. Limiting access to metabolic substrates could be an effective and selective means to block cancer growth. In this review, we define the pathways by which cancer cells acquire the raw materials for anabolism, highlight the actionable proteins in each pathway, and discuss the status of therapeutic interventions that disrupt nutrient acquisition. Critical open questions to be answered before apical metabolic inhibitors can be successfully and safely deployed in the clinic are also outlined. In summary, recent studies provide strong support that substrate limitation is a powerful therapeutic strategy to effectively, and safely, starve cancer cells to death.
Collapse
Affiliation(s)
- Elizabeth M Selwan
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Seong M Kim
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, CA, USA
| |
Collapse
|
108
|
Pascual JM, Ronen GM. Glucose Transporter Type I Deficiency (G1D) at 25 (1990-2015): Presumptions, Facts, and the Lives of Persons With This Rare Disease. Pediatr Neurol 2015; 53:379-93. [PMID: 26341673 PMCID: PMC4609610 DOI: 10.1016/j.pediatrneurol.2015.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND As is often the case for rare diseases, the number of published reviews and case reports of glucose transporter type I deficiency (G1D) approaches or exceeds that of original research. This can indicate medical interest, but also scientific stagnation. METHODS In assessing this state of affairs here, we focus not on what is peculiar or disparate about G1D, but on the assumptions that have reigned thus far undisputed, and critique them as a potential impediment to progress. To summarize the most common G1D phenotype, we trace the 25-year story of G1D in parallel with the natural history of one of two index patients, identified in 1990 by one of us (G.M.R.) and brought up to date by the other (J.M.P.) while later examining widely repeated but little-scrutinized statements. Among them are those that pertain to assumptions about brain fuels; energy failure; cerebrospinal glucose concentration; the purpose of ketogenic diet; the role of the defective blood-brain barrier; genotype-phenotype correlations; a bewildering array of phenotypes; ictogenesis, seizures, and the electroencephalograph; the use of mice to model the disorder; and what treatments may and may not be expected to accomplish. RESULTS We reach the forgone conclusion that the proper study of mankind-and of one of its ailments (G1D) -is man itself (rather than mice, isolated cells, or extrapolated inferences) and propose a framework for rigorous investigation that we hope will lead to a better understanding and to better treatments for this and for rare disorders in general. CONCLUSIONS These considerations, together with experience drawn from other disorders, lead, as a logical consequence, to the nullification of the view that therapeutic development (i.e., trials) for rare diseases could or should be accelerated without the most vigorous scientific scrutiny: trial and error constitute an inseparable couple, such that, at the present time, hastening the former is bound to precipitate the latter.
Collapse
Affiliation(s)
- Juan M. Pascual
- Rare Brain Disorders Program, Departments of Neurology and Neurotherapeutics, Physiology and Pediatrics, and Eugene McDermott Center for Human Growth and Development / Center for Human Genetics. The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gabriel M. Ronen
- Department of Pediatrics, McMaster Child Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
109
|
Abstract
In this issue, Lee et al. (2015) show that PKC directly phosphorylates the glucose transporter Glut1, in order to promote glucose uptake in response to growth factor signaling.
Collapse
Affiliation(s)
- Peter J Siska
- Department of Pharmacology and Cancer Biology, Department of Immunology, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Jeffrey C Rathmell
- Department of Pharmacology and Cancer Biology, Department of Immunology, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
110
|
Makinoshima H, Takita M, Saruwatari K, Umemura S, Obata Y, Ishii G, Matsumoto S, Sugiyama E, Ochiai A, Abe R, Goto K, Esumi H, Tsuchihara K. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma. J Biol Chem 2015; 290:17495-504. [PMID: 26023239 PMCID: PMC4498084 DOI: 10.1074/jbc.m115.660498] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 12/31/2022] Open
Abstract
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.
Collapse
Affiliation(s)
- Hideki Makinoshima
- From the Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan,
| | - Masahiro Takita
- From the Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan, the Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561
| | | | | | | | - Genichiro Ishii
- Pathology Divisions, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan, and
| | - Shingo Matsumoto
- From the Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan, the Thoracic Oncology and
| | | | - Atsushi Ochiai
- Pathology Divisions, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan, and
| | - Ryo Abe
- the Divisions of Immunobiology and
| | | | - Hiroyasu Esumi
- Clinical Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Katsuya Tsuchihara
- From the Division of Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan, the Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561
| |
Collapse
|