101
|
Nguyen AT, Prado MA, Schmidt PJ, Sendamarai AK, Wilson-Grady JT, Min M, Campagna DR, Tian G, Shi Y, Dederer V, Kawan M, Kuehnle N, Paulo JA, Yao Y, Weiss MJ, Justice MJ, Gygi SP, Fleming MD, Finley D. UBE2O remodels the proteome during terminal erythroid differentiation. Science 2017; 357:eaan0218. [PMID: 28774900 PMCID: PMC5812729 DOI: 10.1126/science.aan0218] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022]
Abstract
During terminal differentiation, the global protein complement is remodeled, as epitomized by erythrocytes, whose cytosol is ~98% globin. The erythroid proteome undergoes a rapid transition at the reticulocyte stage; however, the mechanisms driving programmed elimination of preexisting cytosolic proteins are unclear. We found that a mutation in the murine Ube2o gene, which encodes a ubiquitin-conjugating enzyme induced during erythropoiesis, results in anemia. Proteomic analysis suggested that UBE2O is a broad-spectrum ubiquitinating enzyme that remodels the erythroid proteome. In particular, ribosome elimination, a hallmark of reticulocyte differentiation, was defective in Ube2o-/- mutants. UBE2O recognized ribosomal proteins and other substrates directly, targeting them to proteasomes for degradation. Thus, in reticulocytes, the induction of ubiquitinating factors may drive the transition from a complex to a simple proteome.
Collapse
Affiliation(s)
- Anthony T Nguyen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anoop K Sendamarai
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Mingwei Min
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Shi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Verena Dederer
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mona Kawan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Kuehnle
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Monica J Justice
- Genetics and Genome Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario M5G 0A4, Canada
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
102
|
An oasis in the desert of cancer chemotherapeutic resistance: The enlightenment from reciprocal crosstalk between signaling pathways of UPR and autophagy in cancers. Biomed Pharmacother 2017; 92:972-981. [DOI: 10.1016/j.biopha.2017.05.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/28/2017] [Accepted: 05/28/2017] [Indexed: 12/21/2022] Open
|
103
|
Ubiquitination of stalled ribosome triggers ribosome-associated quality control. Nat Commun 2017; 8:159. [PMID: 28757607 PMCID: PMC5534433 DOI: 10.1038/s41467-017-00188-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/08/2017] [Indexed: 11/08/2022] Open
Abstract
Translation arrest by polybasic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control (RQC) system. Here we report that ubiquitination of the 40S ribosomal protein uS10 by the E3 ubiquitin ligase Hel2 (or RQT1) is required for RQC. We identify a RQC-trigger (RQT) subcomplex composed of the RNA helicase-family protein Slh1/Rqt2, the ubiquitin-binding protein Cue3/Rqt3, and yKR023W/Rqt4 that is required for RQC. The defects in RQC of the RQT mutants correlate with sensitivity to anisomycin, which stalls ribosome at the rotated form. Cryo-electron microscopy analysis reveals that Hel2-bound ribosome are dominantly the rotated form with hybrid tRNAs. Ribosome profiling reveals that ribosomes stalled at the rotated state with specific pairs of codons at P-A sites serve as RQC substrates. Rqt1 specifically ubiquitinates these arrested ribosomes to target them to the RQT complex, allowing subsequent RQC reactions including dissociation of the stalled ribosome into subunits.Several protein quality control mechanisms are in place to trigger the rapid degradation of aberrant polypeptides and mRNAs. Here the authors describe a mechanism of ribosome-mediated quality control that involves the ubiquitination of ribosomal proteins by the E3 ubiquitin ligase Hel2/RQT1.
Collapse
|
104
|
Kostova KK, Hickey KL, Osuna BA, Hussmann JA, Frost A, Weinberg DE, Weissman JS. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science 2017; 357:414-417. [PMID: 28751611 PMCID: PMC5673106 DOI: 10.1126/science.aam7787] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/04/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Ribosome stalling leads to recruitment of the ribosome quality control complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a carboxyl-terminal alanine and threonine (CAT) tail through a noncanonical elongation reaction. Here we examined the role of CAT-tailing in nascent-chain degradation in budding yeast. We found that Ltn1p efficiently accessed only nascent-chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enabled degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates.
Collapse
Affiliation(s)
- Kamena K Kostova
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey L Hickey
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beatriz A Osuna
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey A Hussmann
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
105
|
Joazeiro CAP. Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annu Rev Cell Dev Biol 2017; 33:343-368. [PMID: 28715909 DOI: 10.1146/annurev-cellbio-111315-125249] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells of all organisms survey problems during translation elongation, which may happen as a consequence of mRNA aberrations, inefficient decoding, or other sources. In eukaryotes, ribosome-associated quality control (RQC) senses elongation-stalled ribosomes and promotes dissociation of ribosomal subunits. This so-called ribosomal rescue releases the mRNA for degradation and allows 40S subunits to be recycled for new rounds of translation. However, the nascent polypeptide chains remain linked to tRNA and associated with the rescued 60S subunits. As a final critical step in this pathway, the Ltn1/Listerin E3 ligase subunit of the RQC complex (RQCc) ubiquitylates the nascent chain, which promotes clearance of the 60S subunit while simultaneously marking the nascent chain for elimination. Here we review the ribosomal stalling and rescue steps upstream of the RQCc, where one witnesses intersection with cellular machineries implicated in translation elongation, translation termination, ribosomal subunit recycling, and mRNA quality control. We emphasize both recent progress and future directions in this area, as well as examples linking ribosomal rescue with the production of Ltn1-RQCc substrates.
Collapse
Affiliation(s)
- Claudio A P Joazeiro
- ZMBH, University of Heidelberg, 69120 Heidelberg, Germany; .,The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
106
|
Sap KA, Bezstarosti K, Dekkers DHW, Voets O, Demmers JAA. Quantitative Proteomics Reveals Extensive Changes in the Ubiquitinome after Perturbation of the Proteasome by Targeted dsRNA-Mediated Subunit Knockdown in Drosophila. J Proteome Res 2017; 16:2848-2862. [DOI: 10.1021/acs.jproteome.7b00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Karen A. Sap
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Dick H. W. Dekkers
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Olaf Voets
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jeroen A. A. Demmers
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
107
|
Garzia A, Jafarnejad SM, Meyer C, Chapat C, Gogakos T, Morozov P, Amiri M, Shapiro M, Molina H, Tuschl T, Sonenberg N. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. Nat Commun 2017; 8:16056. [PMID: 28685749 PMCID: PMC5504347 DOI: 10.1038/ncomms16056] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNALys(UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC. Translation of aberrant mRNAs causes ribosome stalling and translation arrest, followed by recycling of the stalled ribosome complex. Here the authors show that the Zinc Finger Protein 598 (ZNF598/Hel2) is implicated in sensing faulty translation of prematurely polyadenylated mRNAs through the recognition of AAA codons.
Collapse
Affiliation(s)
- Aitor Garzia
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Seyed Mehdi Jafarnejad
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Cindy Meyer
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Clément Chapat
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Tasos Gogakos
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Pavel Morozov
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Mehdi Amiri
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Maayan Shapiro
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, 1230 York Ave, Box 186, New York, New York 10065, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
108
|
Merret R, Carpentier MC, Favory JJ, Picart C, Descombin J, Bousquet-Antonelli C, Tillard P, Lejay L, Deragon JM, Charng YY. Heat Shock Protein HSP101 Affects the Release of Ribosomal Protein mRNAs for Recovery after Heat Shock. PLANT PHYSIOLOGY 2017; 174:1216-1225. [PMID: 28381501 PMCID: PMC5462041 DOI: 10.1104/pp.17.00269] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 05/21/2023]
Abstract
Heat shock (HS) is known to have a profound impact on gene expression at different levels, such as inhibition of protein synthesis, in which HS blocks translation initiation and induces the sequestration of mRNAs into stress granules (SGs) or P-bodies for storage and/or decay. SGs prevent the degradation of the stored mRNAs, which can be reengaged into translation in the recovery period. However, little is known on the mRNAs stored during the stress, how these mRNAs are released from SGs afterward, and what the functional importance is of this process. In this work, we report that Arabidopsis HEAT SHOCK PROTEIN101 (HSP101) knockout mutant (hsp101) presented a defect in translation recovery and SG dissociation after HS Using RNA sequencing and RNA immunoprecipitation approaches, we show that mRNAs encoding ribosomal proteins (RPs) were preferentially stored during HS and that these mRNAs were released and translated in an HSP101-dependent manner during recovery. By 15N incorporation and polysome profile analyses, we observed that these released mRNAs contributed to the production of new ribosomes to enhance translation. We propose that, after HS, HSP101 is required for the efficient release of RP mRNAs from SGs resulting in a rapid restoration of the translation machinery by producing new RPs.
Collapse
Affiliation(s)
- Rémy Merret
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.);
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.);
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.);
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Marie-Christine Carpentier
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Jean-Jacques Favory
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Claire Picart
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Julie Descombin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Cécile Bousquet-Antonelli
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Pascal Tillard
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Laurence Lejay
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Jean-Marc Deragon
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.);
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.);
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.);
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| |
Collapse
|
109
|
Panas MD, Ivanov P, Anderson P. Mechanistic insights into mammalian stress granule dynamics. J Cell Biol 2017; 215:313-323. [PMID: 27821493 PMCID: PMC5100297 DOI: 10.1083/jcb.201609081] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022] Open
Abstract
The accumulation of stalled translation preinitiation complexes (PICs) mediates the condensation of stress granules (SGs). Interactions between prion-related domains and intrinsically disordered protein regions found in SG-nucleating proteins promote the condensation of ribonucleoproteins into SGs. We propose that PIC components, especially 40S ribosomes and mRNA, recruit nucleators that trigger SG condensation. With resolution of stress, translation reinitiation reverses this process and SGs disassemble. By cooperatively modulating the assembly and disassembly of SGs, ribonucleoprotein condensation can influence the survival and recovery of cells exposed to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Marc D Panas
- Division of Rheumatology, Immunology, and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Paul Anderson
- Division of Rheumatology, Immunology, and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
110
|
Lorente J, Velandia C, Leal JA, Garcia-Mayea Y, Lyakhovich A, Kondoh H, LLeonart ME. The interplay between autophagy and tumorigenesis: exploiting autophagy as a means of anticancer therapy. Biol Rev Camb Philos Soc 2017; 93:152-165. [PMID: 28464404 DOI: 10.1111/brv.12337] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/07/2023]
Abstract
In wild-type cells, autophagy represents a tumour-suppressor mechanism, and dysfunction of the autophagy machinery increases genomic instability, DNA damage, oxidative stress and stem/progenitor expansion, which are events associated with cancer onset. Autophagy occurs at a basal level in all cells depending on cell type and cellular microenvironment. However, the role of autophagy in cancer is diverse and can promote different outcomes even in a single tumour. For example, in hypoxic tumour regions, autophagy emerges as a protective mechanism and allows cancer cell survival. By contrast, in cancer cells surrounding the tumour mass, the induction of autophagy by radio- or chemotherapy promotes cell death and significantly reduces the tumour mass. Importantly, inhibition of autophagy compromises tumorigenesis by mechanisms that are not entirely understood. The aim of this review is to explain the apparently contradictory role of autophagy as a mechanism that both promotes and inhibits tumorigenesis using different models. The induction/inhibition of autophagy as a mechanism for cancer treatment is also discussed.
Collapse
Affiliation(s)
- Juan Lorente
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Otolaryngology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Carolina Velandia
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Otolaryngology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Jose A Leal
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Alex Lyakhovich
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| |
Collapse
|
111
|
In Vivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome. Mol Cell 2017; 66:488-502.e7. [DOI: 10.1016/j.molcel.2017.04.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/07/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
|
112
|
Simsek D, Barna M. An emerging role for the ribosome as a nexus for post-translational modifications. Curr Opin Cell Biol 2017; 45:92-101. [PMID: 28445788 DOI: 10.1016/j.ceb.2017.02.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/25/2017] [Indexed: 01/01/2023]
Abstract
The ribosome is one of life's most ancient molecular machines that has historically been viewed as a backstage participant in gene regulation, translating the genetic code across all kingdoms of life in a rote-like fashion. However, recent studies suggest that intrinsic components of the ribosome can be regulated and diversified as a means to intricately control the expression of the cellular proteome. In this review, we discuss advances in the characterization of ribosome post-translational modifications (PTMs) from past to present. We specifically focus on emerging examples of ribosome phosphorylation and ubiquitylation, which are beginning to showcase that PTMs of the ribosome are versatile, may have functional consequences for translational control, and are intimately linked to human disease. We further highlight the key questions that remain to be addressed to gain a more complete picture of the array of ribosome PTMs and the upstream enzymes that control them, which may endow ribosomes with greater regulatory potential in gene regulation and control of cellular homeostasis.
Collapse
Affiliation(s)
- Deniz Simsek
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
113
|
Sundaramoorthy E, Leonard M, Mak R, Liao J, Fulzele A, Bennett EJ. ZNF598 and RACK1 Regulate Mammalian Ribosome-Associated Quality Control Function by Mediating Regulatory 40S Ribosomal Ubiquitylation. Mol Cell 2017; 65:751-760.e4. [PMID: 28132843 DOI: 10.1016/j.molcel.2016.12.026] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/29/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
Ribosomes that experience terminal stalls during translation are resolved by ribosome-associated quality control (QC) pathways that oversee mRNA and nascent chain destruction and recycle ribosomal subunits. The proximal factors that sense stalled ribosomes and initiate mammalian ribosome-associated QC events remain undefined. We demonstrate that the ZNF598 ubiquitin ligase and the 40S ribosomal protein RACK1 help to resolve poly(A)-induced stalled ribosomes. They accomplish this by regulating distinct and overlapping regulatory 40S ribosomal ubiquitylation events. ZNF598 primarily mediates regulatory ubiquitylation of RPS10 and RPS20, whereas RACK1 regulates RPS2, RPS3, and RPS20 ubiquitylation. Gain or loss of ZNF598 function or mutations that block RPS10 or RPS20 ubiquitylation result in defective resolution of stalled ribosomes and subsequent readthrough of poly(A)-containing stall sequences. Together, our results indicate that ZNF598, RACK1, and 40S regulatory ubiquitylation plays a pivotal role in mammalian ribosome-associated QC pathways.
Collapse
Affiliation(s)
- Elayanambi Sundaramoorthy
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marilyn Leonard
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Raymond Mak
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey Liao
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amitkumar Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
114
|
Juszkiewicz S, Hegde RS. Initiation of Quality Control during Poly(A) Translation Requires Site-Specific Ribosome Ubiquitination. Mol Cell 2017; 65:743-750.e4. [PMID: 28065601 PMCID: PMC5316413 DOI: 10.1016/j.molcel.2016.11.039] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
Abstract
Diverse cellular stressors have been observed to trigger site-specific ubiquitination on several ribosomal proteins. However, the ubiquitin ligases, biochemical consequences, and physiologic pathways linked to these modifications are not known. Here, we show in mammalian cells that the ubiquitin ligase ZNF598 is required for ribosomes to terminally stall during translation of poly(A) sequences. ZNF598-mediated stalling initiated the ribosome-associated quality control (RQC) pathway for degradation of nascent truncated proteins. Biochemical ubiquitination reactions identified two sites of mono-ubiquitination on the 40S protein eS10 as the primary ribosomal target of ZNF598. Cells lacking ZNF598 activity or containing ubiquitination-resistant eS10 ribosomes failed to stall efficiently on poly(A) sequences. In the absence of stalling, read-through of poly(A) produces a poly-lysine tag, which might alter the localization and solubility of the associated protein. Thus, ribosome ubiquitination can modulate translation elongation and impacts co-translational quality control to minimize production of aberrant proteins. Poly(A), not poly-basic tracts, are the main trigger of ribosome stalling in mammals The ubiquitin ligase ZNF598 is required to stall ribosomes during poly(A) translation ZNF598 primarily mono-ubiquitinates two lysines on the 40S ribosomal protein eS10 ZNF598 deletion or mutation of its eS10 target permits increased poly(A) translation
Collapse
|
115
|
Kobayashi M, Oshima S, Maeyashiki C, Nibe Y, Otsubo K, Matsuzawa Y, Nemoto Y, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Watanabe M. The ubiquitin hybrid gene UBA52 regulates ubiquitination of ribosome and sustains embryonic development. Sci Rep 2016; 6:36780. [PMID: 27829658 PMCID: PMC5103194 DOI: 10.1038/srep36780] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/20/2016] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a crucial post-translational modification; however, the functions of ubiquitin-coding genes remain unclear. UBA52 encodes a fusion protein comprising ubiquitin at the N-terminus and ribosomal protein L40 (RPL40) at the C-terminus. Here we showed that Uba52-deficient mice die during embryogenesis. UBA52-deficient cells exhibited normal levels of total ubiquitin. However, UBA52-deficient cells displayed decreased protein synthesis and cell-cycle arrest. The overexpression of UBA52 ameliorated the cell-cycle arrest caused by UBA52 deficiency. Surprisingly, RPL40 expression itself is insufficient to regulate cyclin D expression. The cleavage of RPL40 from UBA52 was required for maintaining protein synthesis. Furthermore, we found that RPL40 formed a ribosomal complex with ubiquitin cleaved from UBA52. UBA52 supplies RPL40 and ubiquitin simultaneously to the ribosome. Our study demonstrated that the ubiquitin-coding gene UBA52 is not just an ubiquitin supplier to the ubiquitin pool but is also a regulator of the ribosomal protein complex. These findings provide novel insights into the regulation of ubiquitin-dependent translation and embryonic development.
Collapse
Affiliation(s)
- Masanori Kobayashi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yoichi Nibe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kana Otsubo
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yu Matsuzawa
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yasuhiro Nemoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Takashi Nagaishi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.,Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
116
|
Harper JW, Bennett EJ. Proteome complexity and the forces that drive proteome imbalance. Nature 2016; 537:328-38. [PMID: 27629639 DOI: 10.1038/nature19947] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is a complex microcosm of structural and regulatory networks that requires continuous surveillance and modification to meet the dynamic needs of the cell. It is therefore crucial that the protein flux of the cell remains in balance to ensure proper cell function. Genetic alterations that range from chromosome imbalance to oncogene activation can affect the speed, fidelity and capacity of protein biogenesis and degradation systems, which often results in proteome imbalance. An improved understanding of the causes and consequences of proteome imbalance is helping to reveal how these systems can be targeted to treat diseases such as cancer.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
117
|
Sung MK, Reitsma JM, Sweredoski MJ, Hess S, Deshaies RJ. Ribosomal proteins produced in excess are degraded by the ubiquitin-proteasome system. Mol Biol Cell 2016; 27:2642-52. [PMID: 27385339 PMCID: PMC5007085 DOI: 10.1091/mbc.e16-05-0290] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
Overexpression of ribosomal proteins in yeast is prevented by ubiquitination of unassembled ribosomal proteins in the nucleus and/or nucleolus followed by proteasome-dependent degradation. Brief inhibition of proteasome causes strong accumulation of multiple ribosomal proteins in an insoluble fraction, suggesting that this is a general phenomenon. Ribosome assembly is an essential process that consumes prodigious quantities of cellular resources. Ribosomal proteins cannot be overproduced in Saccharomyces cerevisiae because the excess proteins are rapidly degraded. However, the responsible quality control (QC) mechanisms remain poorly characterized. Here we demonstrate that overexpression of multiple proteins of the small and large yeast ribosomal subunits is suppressed. Rpl26 overexpressed from a plasmid can be detected in the nucleolus and nucleoplasm, but it largely fails to assemble into ribosomes and is rapidly degraded. However, if the endogenous RPL26 loci are deleted, plasmid-encoded Rpl26 assembles into ribosomes and localizes to the cytosol. Chemical and genetic perturbation studies indicate that overexpressed ribosomal proteins are degraded by the ubiquitin–proteasome system and not by autophagy. Inhibition of the proteasome led to accumulation of multiple endogenous ribosomal proteins in insoluble aggregates, consistent with the operation of this QC mechanism in the absence of ribosomal protein overexpression. Our studies reveal that ribosomal proteins that fail to assemble into ribosomes are rapidly distinguished from their assembled counterparts and ubiquitinated and degraded within the nuclear compartment.
Collapse
Affiliation(s)
- Min-Kyung Sung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
118
|
Heidelberger JB, Wagner SA, Beli P. Mass Spectrometry-Based Proteomics for Investigating DNA Damage-Associated Protein Ubiquitylation. Front Genet 2016; 7:109. [PMID: 27379159 PMCID: PMC4905943 DOI: 10.3389/fgene.2016.00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/30/2016] [Indexed: 11/13/2022] Open
Abstract
Modification of proteins with the 76 amino acid protein ubiquitin plays essential roles in cellular signaling. Development of methods for specific enrichment of ubiquitin remnant peptides and advances in high-resolution mass spectrometry have enabled proteome-wide identification of endogenous ubiquitylation sites. Moreover, ubiquitin remnant profiling has emerged as a powerful approach for investigating changes in protein ubiquitylation in response to cellular perturbations, such as DNA damage, as well as for identification of substrates of ubiquitin-modifying enzymes. Despite these advances, interrogation of ubiquitin chain topologies on substrate proteins remains a challenging task. Here, we describe mass spectrometry-based approaches for quantitative analyses of site-specific protein ubiquitylation and highlight recent studies that employed these methods for investigation of ubiquitylation in the context of the cellular DNA damage response. Furthermore, we provide an overview of experimental strategies for probing ubiquitin chain topologies on proteins and discuss how these methods can be applied to analyze functions of ubiquitylation in the DNA damage response.
Collapse
Affiliation(s)
| | - Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology Mainz, Germany
| |
Collapse
|
119
|
Gendron JM, Webb K, Yang B, Rising L, Zuzow N, Bennett EJ. Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction. Mol Cell Proteomics 2016; 15:2576-93. [PMID: 27185884 DOI: 10.1074/mcp.m116.058420] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 01/01/2023] Open
Abstract
Protein homeostasis dysfunction has been implicated in the development and progression of aging related human pathologies. There is a need for the establishment of quantitative methods to evaluate global protein homoeostasis function. As the ubiquitin (ub) proteasome system plays a key role in regulating protein homeostasis, we applied quantitative proteomic methods to evaluate the sensitivity of site-specific ubiquitylation events as markers for protein homeostasis dysfunction. Here, we demonstrate that the ub-modified proteome can exceed the sensitivity of engineered fluorescent reporters as a marker for proteasome dysfunction and can provide unique signatures for distinct proteome challenges which is not possible with engineered reporters. We demonstrate that combining ub-proteomics with subcellular fractionation can effectively separate degradative and regulatory ubiquitylation events on distinct protein populations. Using a recently developed potent inhibitor of the critical protein homeostasis factor p97/VCP, we demonstrate that distinct insults to protein homeostasis function can elicit robust and largely unique alterations to the ub-modified proteome. Taken together, we demonstrate that proteomic approaches to monitor the ub-modified proteome can be used to evaluate global protein homeostasis and can be used to monitor distinct functional outcomes for spatially separated protein populations.
Collapse
Affiliation(s)
- Joshua M Gendron
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Kristofor Webb
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Bing Yang
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Lisa Rising
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Nathan Zuzow
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Eric J Bennett
- From the ‡Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California
| |
Collapse
|
120
|
Ribosome-associated protein quality control. Nat Struct Mol Biol 2016; 23:7-15. [PMID: 26733220 DOI: 10.1038/nsmb.3147] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation.
Collapse
|
121
|
Unfolded protein response: Regulatory ribosomal ubiquitylation. Nat Rev Mol Cell Biol 2015; 16:392. [PMID: 26081608 DOI: 10.1038/nrm4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|