101
|
Lu Z, Hunter T. Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci 2018; 43:301-310. [PMID: 29463470 PMCID: PMC5879014 DOI: 10.1016/j.tibs.2018.01.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases regulate every aspect of cellular activity, whereas metabolic enzymes are responsible for energy production and catabolic and anabolic processes. Emerging evidence demonstrates that some metabolic enzymes, such as pyruvate kinase M2 (PKM2), phosphoglycerate kinase 1 (PGK1), ketohexokinase (KHK) isoform A (KHK-A), hexokinase (HK), and nucleoside diphosphate kinase 1 and 2 (NME1/2), that phosphorylate soluble metabolites can also function as protein kinases and phosphorylate a variety of protein substrates to regulate the Warburg effect, gene expression, cell cycle progression and proliferation, apoptosis, autophagy, exosome secretion, T cell activation, iron transport, ion channel opening, and many other fundamental cellular functions. The elevated protein kinase functions of these moonlighting metabolic enzymes in tumor development make them promising therapeutic targets for cancer.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
102
|
Yu X, Mao W, Zhai Y, Tong C, Liu M, Ma L, Yu X, Li S. Anti-tumor activity of metformin: from metabolic and epigenetic perspectives. Oncotarget 2018; 8:5619-5628. [PMID: 27902459 PMCID: PMC5354934 DOI: 10.18632/oncotarget.13639] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022] Open
Abstract
Metformin has been used to treat type 2 diabetes for over 50 years. Epidemiological, preclinical and clinical studies suggest that metformin treatment reduces cancer incidence in diabetes patients. Due to its potential as an anti-cancer agent and its low cost, metformin has gained intense research interest. Its traditional anti-cancer mechanisms involve both indirect and direct insulin-dependent pathways. Here, we discussed the anti-tumor mechanism of metformin from the aspects of cell metabolism and epigenetic modifications. The effects of metformin on anti-cancer immunity and apoptosis were also described. Understanding these mechanisms will shed lights on application of metformin in clinical trials and development of anti-cancer therapy.
Collapse
Affiliation(s)
- Xilan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Wuxiang Mao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Yansheng Zhai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Chong Tong
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Min Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiaolan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|
103
|
Sivanand S, Viney I, Wellen KE. Spatiotemporal Control of Acetyl-CoA Metabolism in Chromatin Regulation. Trends Biochem Sci 2018; 43:61-74. [PMID: 29174173 PMCID: PMC5741483 DOI: 10.1016/j.tibs.2017.11.004] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
The epigenome is sensitive to the availability of metabolites that serve as substrates of chromatin-modifying enzymes. Links between acetyl-CoA metabolism, histone acetylation, and gene regulation have been documented, although how specificity in gene regulation is achieved by a metabolite has been challenging to answer. Recent studies suggest that acetyl-CoA metabolism is tightly regulated both spatially and temporally to elicit responses to nutrient availability and signaling cues. Here we discuss evidence that acetyl-CoA production is differentially regulated in the nucleus and cytosol of mammalian cells. Recent findings indicate that acetyl-CoA availability for site-specific histone acetylation is influenced through post-translational modification of acetyl-CoA-producing enzymes, as well as through dynamic regulation of the nuclear localization and chromatin recruitment of these enzymes.
Collapse
Affiliation(s)
- Sharanya Sivanand
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella Viney
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
104
|
Li X, Nai S, Ding Y, Geng Q, Zhu B, Yu K, Zhu WG, Dong MQ, Su XD, Xu X, Li J. Polo-like kinase 1 (PLK1)-dependent phosphorylation of methylenetetrahydrofolate reductase (MTHFR) regulates replication via histone methylation. Cell Cycle 2017; 16:1933-1942. [PMID: 28820331 PMCID: PMC5638376 DOI: 10.1080/15384101.2017.1363942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 01/12/2023] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the folate cycle and its genetic variations have been associated with various human diseases. Previously we identified that MTHFR is phosphorylated by cyclin-dependent kinase 1 (CDK1) at T34 and MTHFR underlies heterochromatin maintenance marked by H3K9me3 levels. Herein we demonstrate that pT34 creates a binding motif that docks MTHFR to the polo-binding domain (PBD) of polo-like kinase 1 (PLK1), a fundamental kinase that orchestrates many cell cycle events. We show that PLK1 phosphorylates MTHFR at T549 in vitro and in vivo. Further, we uncovered a role of MTHFR in replication. First, MTHFR depletion increased the fraction of cells in S phase. This defect could not be rescued by siRNA resistant plasmids harboring T549A, but could be restored by overproduction of Suv4-20H2, the H4K20 methyltransferase. Moreover, siMTHFR attenuated H4K20me3 levels, which could be rescued by Suv4-20H2 overproduction. More importantly, we also investigated MTHFR-E429A, the protein product of an MTHFR single nucleotide variant. MTHFR-E429A overexpression also increased S phase cells and decreased H4K20me3 levels, and it is linked to a poor glioma prognosis in the Chinese population. Collectively, we have unveiled a vital role of PLK1-dependent phosphorylation of MTHFR in replication via histone methylation, and implicate folate metabolism with glioma.
Collapse
Affiliation(s)
- Xueyan Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shanshan Nai
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Bingtao Zhu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Kai Yu
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Dong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
105
|
Histone H3 Threonine 11 Phosphorylation Is Catalyzed Directly by the Meiosis-Specific Kinase Mek1 and Provides a Molecular Readout of Mek1 Activity in Vivo. Genetics 2017; 207:1313-1333. [PMID: 28986445 DOI: 10.1534/genetics.117.300359] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae Mek1 is a CHK2/Rad53-family kinase that regulates meiotic recombination and progression upon its activation in response to DNA double-strand breaks (DSBs). The full catalog of direct Mek1 phosphorylation targets remains unknown. Here, we show that phosphorylation of histone H3 on threonine 11 (H3 T11ph) is induced by meiotic DSBs in S. cerevisiae and Schizosaccharomyces pombe Molecular genetic experiments in S. cerevisiae confirmed that Mek1 is required for H3 T11ph and revealed that phosphorylation is rapidly reversed when Mek1 kinase is no longer active. Reconstituting histone phosphorylation in vitro with recombinant proteins demonstrated that Mek1 directly catalyzes H3 T11 phosphorylation. Mutating H3 T11 to nonphosphorylatable residues conferred no detectable defects in otherwise unperturbed meiosis, although the mutations modestly reduced spore viability in certain strains where Rad51 is used for strand exchange in place of Dmc1. H3 T11ph is therefore mostly dispensable for Mek1 function. However, H3 T11ph provides an excellent marker of ongoing Mek1 kinase activity in vivo Anti-H3 T11ph chromatin immunoprecipitation followed by deep sequencing demonstrated that H3 T11ph was highly enriched at presumed sites of attachment of chromatin to chromosome axes, gave a more modest signal along chromatin loops, and was present at still lower levels immediately adjacent to DSB hotspots. These localization patterns closely tracked the distribution of Red1 and Hop1, axis proteins required for Mek1 activation. These findings provide insight into the spatial disposition of Mek1 kinase activity and the higher order organization of recombining meiotic chromosomes.
Collapse
|
106
|
Weinhouse C. Mitochondrial-epigenetic crosstalk in environmental toxicology. Toxicology 2017; 391:5-17. [PMID: 28855114 DOI: 10.1016/j.tox.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022]
Abstract
Crosstalk between the nuclear epigenome and mitochondria, both in normal physiological function and in responses to environmental toxicant exposures, is a developing sub-field of interest in environmental and molecular toxicology. The majority (∼99%) of mitochondrial proteins are encoded in the nuclear genome, so programmed communication among nuclear, cytoplasmic, and mitochondrial compartments is essential for maintaining cellular health. In this review, we will focus on correlative and mechanistic evidence for direct impacts of each system on the other, discuss demonstrated or potential crosstalk in the context of chemical insult, and highlight biological research questions for future study. We will first review the two main signaling systems: nuclear signaling to the mitochondria [anterograde signaling], best described in regulation of oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis in response to environmental signals received by the nucleus, and mitochondrial signals to the nucleus [retrograde signaling]. Both signaling systems can communicate intracellular energy needs or a need to compensate for dysfunction to maintain homeostasis, but both can also relay inappropriate signals in the presence of dysfunction in either system and contribute to adverse health outcomes. We will first review these two signaling systems and highlight known or biologically feasible epigenetic contributions to both, then briefly discuss the emerging field of epigenetic regulation of the mitochondrial genome, and finally discuss putative "crosstalk phenotypes", including biological phenomena, such as caloric restriction, maintenance of stemness, and circadian rhythm, and states of disease or loss of function, such as cancer and aging, in which both the nuclear epigenome and mitochondria are strongly implicated.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
107
|
Dutta A, Abmayr SM, Workman JL. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function. Mol Cell 2017; 63:547-552. [PMID: 27540855 DOI: 10.1016/j.molcel.2016.06.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs.
Collapse
Affiliation(s)
- Arnob Dutta
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
108
|
Liu S, Sun Y, Jiang M, Li Y, Tian Y, Xue W, Ding N, Sun Y, Cheng C, Li J, Miao X, Liu X, Zheng L, Huang K. Glyceraldehyde-3-phosphate dehydrogenase promotes liver tumorigenesis by modulating phosphoglycerate dehydrogenase. Hepatology 2017; 66:631-645. [PMID: 28387968 DOI: 10.1002/hep.29202] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023]
Abstract
UNLABELLED Up-regulated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is observed in multiple cancers with unclear mechanism. Using GAPDH transgenic mouse and a mouse model of diethylnitrosamine-induced hepatocellular carcinoma (HCC), here we show that GAPDH overexpression aggravated tumor development by activating cell proliferation and inflammation. In cultured hepatic cells, overexpression of GAPDH or a catalytic domain-deleted GAPDH (GAPDHΔCD ) affected metabolism, up-regulated phosphoglycerate dehydrogenase (PHGDH), increased histone methylation levels, and promoted proliferation. Consistently, inhibition of GAPDH by short hairpin RNA reprogrammed metabolism down-regulated PHGDH and histone methylation, and inhibited proliferation. The xenograft study suggested that HepG2 cells overexpressing GAPDH or GAPDHΔCD similarly promoted tumor development, whereas knockdown PHGDH in GAPDH overexpressing cells significantly inhibited tumor development. In liver sections of HCC patients, increased GAPDH staining was found to be positively correlated with PHGDH and histone methylation staining. CONCLUSION GAPDH increases histone methylation levels by up-regulating PHGDH, promoting diversion from glycolysis to serine biosynthesis, and consequently accelerating HCC development. (Hepatology 2017;66:631-645).
Collapse
Affiliation(s)
- Shanshan Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Yu Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ye Tian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Weili Xue
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Ninghe Ding
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Yue Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Cheng Cheng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jianshuang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaoping Miao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| |
Collapse
|
109
|
Abstract
In this review, van der Knapp and Verrijzer discuss the current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease. To make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expression response remain poorly understood. There is a growing awareness that central components of intermediary metabolism are cofactors or cosubstrates of chromatin-modifying enzymes. As such, their concentrations constitute a potential regulatory interface between the metabolic and chromatin states. In addition, there is increasing evidence for a direct involvement of classic metabolic enzymes in gene expression control. These dual-function proteins may provide a direct link between metabolic programing and the control of gene expression. Here, we discuss our current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease.
Collapse
Affiliation(s)
- Jan A van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
110
|
Yu Q, Tong C, Luo M, Xue X, Mei Q, Ma L, Yu X, Mao W, Kong L, Yu X, Li S. Regulation of SESAME-mediated H3T11 phosphorylation by glycolytic enzymes and metabolites. PLoS One 2017; 12:e0175576. [PMID: 28426732 PMCID: PMC5398556 DOI: 10.1371/journal.pone.0175576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/28/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer cells prefer aerobic glycolysis, but little is known about the underlying mechanism. Recent studies showed that the rate-limiting glycolytic enzymes, pyruvate kinase M2 (PKM2) directly phosphorylates H3 at threonine 11 (H3T11) to regulate gene expression and cell proliferation, revealing its non-metabolic functions in connecting glycolysis and histone modifications. We have reported that the yeast homolog of PKM2, Pyk1 phosphorylates H3T11 to regulate gene expression and oxidative stress resistance. But how glycolysis regulates H3T11 phosphorylation remains unclear. Here, using a series of glycolytic enzyme mutants and commercial available metabolites, we investigated the role of glycolytic enzymes and metabolites on H3T11 phosphorylation. Mutation of glycolytic genes including phosphoglucose isomerase (PGI1), enolase (ENO2), triosephosphate isomerase (TPI1), or folate biosynthesis enzyme (FOL3) significantly reduced H3T11 phosphorylation. Further study demonstrated that glycolysis regulates H3T11 phosphorylation by fueling the substrate, phosphoenonylpyruvate and the coactivator, FBP to Pyk1. Thus, our results provide a comprehensive view of how glycolysis modulates H3T11 phosphorylation.
Collapse
Affiliation(s)
- Qi Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Chong Tong
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Mingdan Luo
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiangyan Xue
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Qianyun Mei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiaolan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Wuxiang Mao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Lingbao Kong
- Department of HumanPopulation Genetics, Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China
| | - Xilan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
- * E-mail: (XY); (SL)
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources,College of Life Sciences, Hubei University, Wuhan, Hubei, China
- * E-mail: (XY); (SL)
| |
Collapse
|
111
|
Metabolism and chromatin dynamics in health and disease. Mol Aspects Med 2017; 54:1-15. [DOI: 10.1016/j.mam.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
|
112
|
Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, Li C, Yang F, Zeng R, Wei P, Li D, Li W, Yang W. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res 2016; 27:329-351. [PMID: 28035139 PMCID: PMC5339831 DOI: 10.1038/cr.2016.159] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023] Open
Abstract
Pyruvate kinase M2 isoform (PKM2) catalyzes the last step of glycolysis and plays an important role in tumor cell proliferation. Recent studies have reported that PKM2 also regulates apoptosis. However, the mechanisms underlying such a role of PKM2 remain elusive. Here we show that PKM2 translocates to mitochondria under oxidative stress. In the mitochondria, PKM2 interacts with and phosphorylates Bcl2 at threonine (T) 69. This phosphorylation prevents the binding of Cul3-based E3 ligase to Bcl2 and subsequent degradation of Bcl2. A chaperone protein, HSP90α1, is required for this function of PKM2. HSP90α1's ATPase activity launches a conformational change of PKM2 and facilitates interaction between PKM2 and Bcl2. Replacement of wild-type Bcl2 with phosphorylation-deficient Bcl2 T69A mutant sensitizes glioma cells to oxidative stress-induced apoptosis and impairs brain tumor formation in an orthotopic xenograft model. Notably, a peptide that is composed of the amino acid residues from 389 to 405 of PKM2, through which PKM2 binds to Bcl2, disrupts PKM2-Bcl2 interaction, promotes Bcl2 degradation and impairs brain tumor growth. In addition, levels of Bcl2 T69 phosphorylation, conformation-altered PKM2 and Bcl2 protein correlate with one another in specimens of human glioblastoma patients. Moreover, levels of Bcl2 T69 phosphorylation and conformation-altered PKM2 correlate with both grades and prognosis of glioma malignancy. Our findings uncover a novel mechanism through which mitochondrial PKM2 phosphorylates Bcl2 and inhibits apoptosis directly, highlight the essential role of PKM2 in ROS adaptation of cancer cells, and implicate HSP90-PKM2-Bcl2 axis as a potential target for therapeutic intervention in glioblastoma.
Collapse
Affiliation(s)
- Ji Liang
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Ruixiu Cao
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Xiongjun Wang
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Yajuan Zhang
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Pan Wang
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Hong Gao
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Chen Li
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wenfeng Li
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, China
| | - Weiwei Yang
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| |
Collapse
|
113
|
Liu M, Pile LA. The Transcriptional Corepressor SIN3 Directly Regulates Genes Involved in Methionine Catabolism and Affects Histone Methylation, Linking Epigenetics and Metabolism. J Biol Chem 2016; 292:1970-1976. [PMID: 28028175 DOI: 10.1074/jbc.m116.749754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/23/2016] [Indexed: 11/06/2022] Open
Abstract
Chromatin modification and cellular metabolism are tightly connected. Chromatin modifiers regulate the expression of genes involved in metabolism and, in turn, the levels of metabolites. The generated metabolites are utilized by chromatin modifiers to affect epigenetic modification. The mechanism for this cross-talk, however, remains incompletely understood. The corepressor SIN3 controls histone acetylation through association with the histone deacetylase RPD3. The SIN3 complex is known to regulate genes involved in a number of metabolic processes. Here, we find that Drosophila SIN3 binds to the promoter region of genes involved in methionine catabolism and that this binding affects histone modification, which in turn influences gene expression. Specifically, we observe that reduced expression of SIN3 leads to an increase in S-adenosylmethionine (SAM), which is the major cellular donor of methyl groups for protein modification. Additionally, Sin3A knockdown results in an increase in global histone H3K4me3 levels. Furthermore, decreased H3K4me3 caused by knockdown of either SAM synthetase (Sam-S) or the histone methyltransferase Set1 is restored to near normal levels when SIN3 is also reduced. Taken together, these results indicate that knockdown of Sin3A directly alters the expression of methionine metabolic genes to increase SAM, which in turn leads to an increase in global H3K4me3. Our study reveals that SIN3 is an important epigenetic regulator directly connecting methionine metabolism and histone modification.
Collapse
Affiliation(s)
- Mengying Liu
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Lori A Pile
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202.
| |
Collapse
|
114
|
Abstract
Alterations in the epigenome and metabolism both affect molecular rewiring in cancer cells and facilitate cancer development and progression. However, recent evidence suggests the existence of important bidirectional regulatory mechanisms between metabolic remodelling and the epigenome (specifically methylation and acetylation of histones) in cancer. Most chromatin-modifying enzymes require substrates or cofactors that are intermediates of cell metabolism. Such metabolites, and often the enzymes that produce them, can transfer into the nucleus, directly linking metabolism to nuclear transcription. We discuss how metabolic remodelling can contribute to tumour epigenetic alterations, thereby affecting cancer cell differentiation, proliferation and/or apoptosis, as well as therapeutic responses.
Collapse
Affiliation(s)
- Adam Kinnaird
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Division of Urology, Department of Surgery, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Steven Zhao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
115
|
Non-metabolic functions of glycolytic enzymes in tumorigenesis. Oncogene 2016; 36:2629-2636. [PMID: 27797379 DOI: 10.1038/onc.2016.410] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
Abstract
Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.
Collapse
|
116
|
Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol 2016; 429:1946-1957. [PMID: 27769718 DOI: 10.1016/j.jmb.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles. Here, we review the broad functions of histone modifications in initiating cell fate transitions, with particular focus on their contribution to the control of expression of key genes required for the differentiation programs and chromatin reorganization that accompanies these cell fates.
Collapse
|
117
|
Liang X, Liu L, Fu T, Zhou Q, Zhou D, Xiao L, Liu J, Kong Y, Xie H, Yi F, Lai L, Vega RB, Kelly DP, Smith SR, Gan Z. Exercise Inducible Lactate Dehydrogenase B Regulates Mitochondrial Function in Skeletal Muscle. J Biol Chem 2016; 291:25306-25318. [PMID: 27738103 DOI: 10.1074/jbc.m116.749424] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/01/2016] [Indexed: 02/05/2023] Open
Abstract
Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, which are critical fuel metabolites of skeletal muscle particularly during exercise. However, the physiological relevance of LDH remains poorly understood. Here we show that Ldhb expression is induced by exercise in human muscle and negatively correlated with changes in intramuscular pH levels, a marker of lactate production, during isometric exercise. We found that the expression of Ldhb is regulated by exercise-induced peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Ldhb gene promoter reporter studies demonstrated that PGC-1α activates Ldhb gene expression through multiple conserved estrogen-related receptor (ERR) and myocyte enhancer factor 2 (MEF2) binding sites. Transgenic mice overexpressing Ldhb in muscle (muscle creatine kinase (MCK)-Ldhb) exhibited increased exercise performance and enhanced oxygen consumption during exercise. MCK-Ldhb muscle was shown to have enhanced mitochondrial enzyme activity and increased mitochondrial gene expression, suggesting an adaptive oxidative muscle transformation. In addition, mitochondrial respiration capacity was increased and lactate production decreased in MCK-Ldhb skeletal myotubes in culture. Together, these results identified a previously unrecognized Ldhb-driven alteration in muscle mitochondrial function and suggested a mechanism for the adaptive metabolic response induced by exercise training.
Collapse
Affiliation(s)
- Xijun Liang
- From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Lin Liu
- From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Tingting Fu
- From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Qian Zhou
- From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Danxia Zhou
- From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Liwei Xiao
- From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Jing Liu
- From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Yan Kong
- the Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Xie
- the Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
| | - Fanchao Yi
- the Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
| | - Ling Lai
- the Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, and
| | - Rick B Vega
- the Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, and
| | - Daniel P Kelly
- the Diabetes and Obesity Research Center, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, and
| | - Steven R Smith
- the Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
| | - Zhenji Gan
- From the State Key Laboratory of Pharmaceutical Biotechnology and Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China, .,the Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| |
Collapse
|
118
|
Xu W, Wang F, Yu Z, Xin F. Epigenetics and Cellular Metabolism. GENETICS & EPIGENETICS 2016; 8:43-51. [PMID: 27695375 PMCID: PMC5038610 DOI: 10.4137/geg.s32160] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 01/03/2023]
Abstract
Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.
Collapse
Affiliation(s)
- Wenyi Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhongsheng Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
119
|
Huang XY, Chao DY, Koprivova A, Danku J, Wirtz M, Müller S, Sandoval FJ, Bauwe H, Roje S, Dilkes B, Hell R, Kopriva S, Salt DE. Nuclear Localised MORE SULPHUR ACCUMULATION1 Epigenetically Regulates Sulphur Homeostasis in Arabidopsis thaliana. PLoS Genet 2016; 12:e1006298. [PMID: 27622452 PMCID: PMC5021336 DOI: 10.1371/journal.pgen.1006298] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S-adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over-accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation. Sulphur is an essential element for all living organisms including plants. Plants take up sulphur from the soil mainly in the form of inorganic sulphate. The uptake of sulphate and assimilation of sulphur have been well studied. However, the regulation of sulphur accumulation in plants remains largely unknown. In this study, we characterize the high leaf sulphur mutant more sulphur accumulation1 (msa1-1) and demonstrate the function of MSA1 in controlling sulphur accumulation in Arabidopsis thaliana. The MSA1 protein is localized to the nucleus and is required for the biosynthesis of S-adenosylmethionine (SAM) which is a universal methyl donor for many methylation reactions, including DNA methylation. Loss of function of MSA1 reduces the SAM level in roots and affects genome-wide DNA methylation, including the methylation of sulphate transporter genes. We show that the high sulphur phenotype of msa1-1 requires elevated expression of the sulphate transporter genes which are differentially methylated in msa1-1. Our results suggest a connection between sulphur homeostasis and DNA methylation that is mediated by MSA1.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Dai-Yin Chao
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Anna Koprivova
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - John Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Steffen Müller
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Francisco J. Sandoval
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
120
|
Liang J, Cao R, Zhang Y, Xia Y, Zheng Y, Li X, Wang L, Yang W, Lu Z. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun 2016; 7:12431. [PMID: 27485204 PMCID: PMC4976202 DOI: 10.1038/ncomms12431] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/01/2016] [Indexed: 12/23/2022] Open
Abstract
Many types of human tumour cells overexpress the dual-specificity phosphatase Cdc25A. Cdc25A dephosphorylates cyclin-dependent kinase and regulates the cell cycle, but other substrates of Cdc25A and their relevant cellular functions have yet to be identified. We demonstrate here that EGFR activation results in c-Src-mediated Cdc25A phosphorylation at Y59, which interacts with nuclear pyruvate kinase M2 (PKM2). Cdc25A dephosphorylates PKM2 at S37, and promotes PKM2-dependent β-catenin transactivation and c-Myc-upregulated expression of the glycolytic genes GLUT1, PKM2 and LDHA, and of CDC25A; thus, Cdc25A upregulates itself in a positive feedback loop. Cdc25A-mediated PKM2 dephosphorylation promotes the Warburg effect, cell proliferation and brain tumorigenesis. In addition, we identify positive correlations among Cdc25A Y59 phosphorylation, Cdc25A and PKM2 in human glioblastoma specimens. Furthermore, levels of Cdc25A Y59 phosphorylation correlate with grades of glioma malignancy and prognosis. These findings reveal an instrumental function of Cdc25A in controlling cell metabolism, which is essential for EGFR-promoted tumorigenesis.
Collapse
Affiliation(s)
- Ji Liang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Ruixiu Cao
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Yajuan Zhang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Cancer, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Liwei Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.,National Laboratory of Oncogene and Cancer Related Genes Foundation, Shanghai 200127, China
| | - Weiwei Yang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
121
|
Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, He J, Hunter T, Wang L, Lu Z. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Mol Cell 2016; 61:705-719. [PMID: 26942675 DOI: 10.1016/j.molcel.2016.02.009] [Citation(s) in RCA: 338] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 12/31/2022]
Abstract
It is unclear how the Warburg effect that exemplifies enhanced glycolysis in the cytosol is coordinated with suppressed mitochondrial pyruvate metabolism. We demonstrate here that hypoxia, EGFR activation, and expression of K-Ras G12V and B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 (PGK1); this is mediated by ERK-dependent PGK1 S203 phosphorylation and subsequent PIN1-mediated cis-trans isomerization. Mitochondrial PGK1 acts as a protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1) at T338, which activates PDHK1 to phosphorylate and inhibit the pyruvate dehydrogenase (PDH) complex. This reduces mitochondrial pyruvate utilization, suppresses reactive oxygen species production, increases lactate production, and promotes brain tumorigenesis. Furthermore, PGK1 S203 and PDHK1 T338 phosphorylation levels correlate with PDH S293 inactivating phosphorylation levels and poor prognosis in glioblastoma patients. This work highlights that PGK1 acts as a protein kinase in coordinating glycolysis and the tricarboxylic acid (TCA) cycle, which is instrumental in cancer metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Xinjian Li
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuhui Jiang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Weiwei Yang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H Hawke
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Kenneth Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie He
- Laboratory of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 10002, China
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Liwei Wang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
122
|
Boukouris AE, Zervopoulos SD, Michelakis ED. Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription. Trends Biochem Sci 2016; 41:712-730. [PMID: 27345518 DOI: 10.1016/j.tibs.2016.05.013] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/30/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
During evolution, cells acquired the ability to sense and adapt to varying environmental conditions, particularly in terms of fuel supply. Adaptation to fuel availability is crucial for major cell decisions and requires metabolic alterations and differential gene expression that are often epigenetically driven. A new mechanistic link between metabolic flux and regulation of gene expression is through moonlighting of metabolic enzymes in the nucleus. This facilitates delivery of membrane-impermeable or unstable metabolites to the nucleus, including key substrates for epigenetic mechanisms such as acetyl-CoA which is used in histone acetylation. This metabolism-epigenetics axis facilitates adaptation to a changing environment in normal (e.g., development, stem cell differentiation) and disease states (e.g., cancer), providing a potential novel therapeutic target.
Collapse
|
123
|
Affiliation(s)
- Xinjian Li
- a Brain Tumor Center , Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Yanhua Zheng
- a Brain Tumor Center , Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Zhimin Lu
- a Brain Tumor Center , Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Molecular and Cellular Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,c Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston , Houston , TX , USA
| |
Collapse
|
124
|
Zhao Z, Wang L, Di L. Compartmentation of metabolites in regulating epigenome of cancer. Mol Med 2016; 22:349-360. [PMID: 27258652 DOI: 10.2119/molmed.2016.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
Covalent modification of DNA and histones are important epigenetic events and the genome wide reshaping of epigenetic markers is common in cancer. The epigenetic markers are produced by enzymatic reactions and some of these reactions require the presence of metabolites as cofactors (termed Epigenetic Enzyme Required Metabolites, EERMs). Recent studies found that the abundance of these EERMs correlates with epigenetic enzyme activities. Also, the subcellular compartmentation, especially the nuclear localization of these EERMs may play a role in regulating the activities of epigenetic enzymes. Moreover, gene specific recruitment of enzymes which produce the EERMs in the proximity of the epigenetic modification events accompanying the gene expression regulation, were proposed. Therefore, it is of importance to summarize these findings of the EERMs in regulating the epigenetic modifications at both DNA and histone levels, and to understand how EERMs contribute to cancer development by addressing their global versus local distribution.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
125
|
PARP Inhibition Suppresses Growth of EGFR-Mutant Cancers by Targeting Nuclear PKM2. Cell Rep 2016; 15:843-856. [PMID: 27149849 DOI: 10.1016/j.celrep.2016.03.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/20/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Upon growth factor stimulation or in some EGFR mutant cancer cells, PKM2 translocates into the nucleus to induce glycolysis and cell growth. Here, we report that nuclear PKM2 binds directly to poly-ADP ribose, and this PAR-binding capability is critical for its nuclear localization. Accordingly, PARP inhibition prevents nuclear retention of PKM2 and therefore suppresses cell proliferation and tumor growth. In addition, we found that PAR level correlates with nuclear localization of PKM2 in EGFR mutant brain and lung cancers, suggesting that PAR-dependent nuclear localization of PKM2 likely contributes to tumor progression in EGFR mutant glioblastoma and lung cancers. In addition, some EGFR-inhibitor-resistant lung cancer cells are sensitive to PARP inhibitors. Taken together, our data indicate that suppression of PKM2 nuclear function by PARP inhibitors represents a treatment strategy for EGFR-inhibitor-resistant cancers.
Collapse
|
126
|
Torres A, Makowski L, Wellen KE. Immunometabolism: Metabolism fine-tunes macrophage activation. eLife 2016; 5. [PMID: 26894957 PMCID: PMC4769164 DOI: 10.7554/elife.14354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 01/11/2023] Open
Abstract
A signaling pathway that rewires metabolism in macrophages to trigger changes in gene expression has been identified.
Collapse
Affiliation(s)
- AnnMarie Torres
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Liza Makowski
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| |
Collapse
|
127
|
He CL, Bian YY, Xue Y, Liu ZX, Zhou KQ, Yao CF, Lin Y, Zou HF, Luo FX, Qu YY, Zhao JY, Ye ML, Zhao SM, Xu W. Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1. Sci Rep 2016; 6:21524. [PMID: 26876154 PMCID: PMC4753445 DOI: 10.1038/srep21524] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/26/2016] [Indexed: 02/05/2023] Open
Abstract
In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC). Phosphorylation of S202/203 of AKT1S1 by PKM2 released AKT1S1 from raptor and facilitated its binding to 14-3-3, resulted in hormonal- and nutrient-signals independent activation of mTORC1 signaling and led accelerated oncogenic growth and autophagy inhibition in cancer cells. Decreasing S202/203 phosphorylation by TEPP-46 treatment reversed these effects. In RCCs and breast cancers, PKM2 overexpression was correlated with elevated S202/203 phosphorylation, activated mTORC1 and inhibited autophagy. Our results provided the first phosphorylome of PKM2 and revealed a constitutive mTORC1 activating mechanism in cancer cells.
Collapse
Affiliation(s)
- Chang-Liang He
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yang-Yang Bian
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Yu Xue
- Department of Medical Engineering, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Ze-Xian Liu
- Department of Medical Engineering, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Kai-Qiang Zhou
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Cui-Fang Yao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Yan Lin
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
| | - Han-Fa Zou
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Fang-Xiu Luo
- Department of Pathology, Affiliated Ruijin Hospital of Shanghai Jiaotong University, Shanghai, 201821 P.R. China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jian-Yuan Zhao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ming-Liang Ye
- Chinese Academy of Sciences, Dalian Institute Chemical Physics, National Chromatography R&A Center, Key Lab Separation Science Analytic Chemistry, Dalian 116023, P.R. China
| | - Shi-Min Zhao
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Xu
- State Key Lab of Genetic Engineering, Obstetrics & Gynecology Hospital of Fudan University and School of Life Sciences, Shanghai 200090, P.R. China
- Institutes of Biomedical Sciences and Collaborative Innovation Center for Genetics and Development Biology, Fudan University, Shanghai 200032, P.R. China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
128
|
Suganuma T, Workman JL. Histone modification as a reflection of metabolism. Cell Cycle 2016; 15:481-2. [PMID: 26726751 PMCID: PMC5154252 DOI: 10.1080/15384101.2015.1128190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022] Open
|
129
|
Su X, Wellen KE, Rabinowitz JD. Metabolic control of methylation and acetylation. Curr Opin Chem Biol 2015; 30:52-60. [PMID: 26629854 DOI: 10.1016/j.cbpa.2015.10.030] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Methylation and acetylation of DNA and histone proteins are the chemical basis for epigenetics. From bacteria to humans, methylation and acetylation are sensitive to cellular metabolic status. Modification rates depend on the availability of one-carbon and two-carbon substrates (S-adenosylmethionine, acetyl-CoA, and in bacteria also acetyl-phosphate). In addition, they are sensitive to demodification enzyme cofactors (α-ketoglutarate, NAD(+)) and structural analog metabolites that function as epigenetic enzyme inhibitors (e.g., S-adenosylhomocysteine, 2-hydroxyglutarate). Methylation and acetylation likely initially evolved to tailor protein activities in microbes to their metabolic milieu. While the extracellular environment of mammals is more tightly controlled, the combined impact of nutrient abundance and metabolic enzyme expression impacts epigenetics in mammals sufficiently to drive important biological outcomes such as stem cell fate and cancer.
Collapse
Affiliation(s)
- Xiaoyang Su
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|