101
|
Neelagandan N, Lamberti I, Carvalho HJF, Gobet C, Naef F. What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis. Open Biol 2020; 10:200292. [PMID: 33292102 PMCID: PMC7776565 DOI: 10.1098/rsob.200292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein synthesis from mRNA is an energy-intensive and tightly controlled cellular process. Translation elongation is a well-coordinated, multifactorial step in translation that undergoes dynamic regulation owing to cellular state and environmental determinants. Recent studies involving genome-wide approaches have uncovered some crucial aspects of translation elongation including the mRNA itself and the nascent polypeptide chain. Additionally, these studies have fuelled quantitative and mathematical modelling of translation elongation. In this review, we provide a comprehensive overview of the key determinants of translation elongation. We discuss consequences of ribosome stalling or collision, and how the cells regulate translation in case of such events. Next, we review theoretical approaches and widely used mathematical models that have become an essential ingredient to interpret complex molecular datasets and study translation dynamics quantitatively. Finally, we review recent advances in live-cell reporter and related analysis techniques, to monitor the translation dynamics of single cells and single-mRNA molecules in real time.
Collapse
Affiliation(s)
| | | | | | | | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
102
|
Shu H, Donnard E, Liu B, Jung S, Wang R, Richter JD. FMRP links optimal codons to mRNA stability in neurons. Proc Natl Acad Sci U S A 2020; 117:30400-30411. [PMID: 33199649 PMCID: PMC7720238 DOI: 10.1073/pnas.2009161117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.
Collapse
Affiliation(s)
- Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Elisa Donnard
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Suna Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
103
|
Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ. The Ongoing Quest to Crack the Genetic Code for Protein Production. Mol Cell 2020; 80:193-209. [PMID: 33010203 DOI: 10.1016/j.molcel.2020.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023]
Abstract
Understanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation. The influences of many contributing elements are intertwined, which complicates a full understanding of the individual factors. In natural genes, a functional balance between these factors has been obtained in the course of evolution, whereas for genetic-engineering projects, our incomplete understanding still limits optimal design of synthetic genes. However, notable advances have recently been made, supported by high-throughput analysis of synthetic gene libraries as well as by state-of-the-art biomolecular techniques. We discuss here how these advances further strengthen understanding of the gene expression process and how they can be harnessed to optimize protein production.
Collapse
Affiliation(s)
- Thijs Nieuwkoop
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Max Finger-Bou
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
104
|
Liu Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun Signal 2020; 18:145. [PMID: 32907610 PMCID: PMC7488015 DOI: 10.1186/s12964-020-00642-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
The genetic code is degenerate, and most amino acids are encoded by two to six synonymous codons. Codon usage bias, the preference for certain synonymous codons, is a universal feature of all genomes examined. Synonymous codon mutations were previously thought to be silent; however, a growing body evidence now shows that codon usage regulates protein structure and gene expression through effects on co-translational protein folding, translation efficiency and accuracy, mRNA stability, and transcription. Codon usage regulates the speed of translation elongation, resulting in non-uniform ribosome decoding rates on mRNAs during translation that is adapted to co-translational protein folding process. Biochemical and genetic evidence demonstrate that codon usage plays an important role in regulating protein folding and function in both prokaryotic and eukaryotic organisms. Certain protein structural types are more sensitive than others to the effects of codon usage on protein folding, and predicted intrinsically disordered domains are more prone to misfolding caused by codon usage changes than other domain types. Bioinformatic analyses revealed that gene codon usage correlates with different protein structures in diverse organisms, indicating the existence of a codon usage code for co-translational protein folding. This review focuses on recent literature on the role and mechanism of codon usage in regulating translation kinetics and co-translational protein folding. Video abstract
![]()
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, ND13.214A, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9040, USA.
| |
Collapse
|
105
|
Chen CYA, Strouz K, Huang KL, Shyu AB. Tob2 phosphorylation regulates global mRNA turnover to reshape transcriptome and impact cell proliferation. RNA (NEW YORK, N.Y.) 2020; 26:1143-1159. [PMID: 32404348 PMCID: PMC7430666 DOI: 10.1261/rna.073528.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/08/2020] [Indexed: 05/24/2023]
Abstract
Tob2, an anti-proliferative protein, promotes deadenylation through recruiting Caf1 deadenylase to the mRNA poly(A) tail by simultaneously interacting with both Caf1 and poly(A)-binding protein (PABP). Previously, we found that changes in Tob2 phosphorylation can alter its PABP-binding ability and deadenylation-promoting function. However, it remained unknown regarding the relevant kinase(s). Moreover, it was unclear whether Tob2 phosphorylation modulates the transcriptome and whether the phosphorylation is linked to Tob2's anti-proliferative function. In this study, we found that c-Jun amino-terminal kinase (JNK) increases phosphorylation of Tob2 at many Ser/Thr sites in the intrinsically disordered region (IDR) that contains two separate PABP-interacting PAM2 motifs. JNK-induced phosphorylation or phosphomimetic mutations at these sites weaken the Tob2-PABP interaction. In contrast, JNK-independent phosphorylation of Tob2 at serine 254 (S254) greatly enhances Tob2 interaction with PABP and its ability to promote deadenylation. We discovered that both PAM2 motifs are required for Tob2 to display these features. Combining mass spectrometry analysis, poly(A) size-distribution profiling, transcriptome-wide mRNA turnover analyses, and cell proliferation assays, we found that the phosphomimetic mutation at S254 (S254D) enhances Tob2's association with PABP, leading to accelerated deadenylation and decay of mRNAs globally. Moreover, the Tob2-S254D mutant accelerates the decay of many transcripts coding for cell cycle related proteins and enhances anti-proliferation function. Our findings reveal a novel mechanism by which Ccr4-Not complex is recruited by Tob2 to the mRNA 3' poly(A)-PABP complex in a phosphorylation dependent manner to promote rapid deadenylation and decay across the transcriptome, eliciting transcriptome reprogramming and suppressed cell proliferation.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Krista Strouz
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
106
|
Zheng HX, Sun X, Zhang XS, Sui N. m 6A Editing: New Tool to Improve Crop Quality? TRENDS IN PLANT SCIENCE 2020; 25:859-867. [PMID: 32376086 DOI: 10.1016/j.tplants.2020.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
N6-methyladenosine (m6A) is the most common type of eukaryotic mRNA modification. It plays an important role in regulating plant growth and development and stress resistance. m6A modification influences nearly all aspects of RNA metabolism and functionality and has great potential for improving crop quality. However, changing m6A modification levels as a whole may have unpredictable effects, making it impossible to accurately predict the effect of specific m6A modifications on RNA. In this opinion article, the main challenges and possible solutions for exploring m6A modification functions in plant systems are discussed. An m6A editing platform that uses new high-throughput methods to identify m6A modification at single-base resolution, and genome editing for selective editing of specific m6A sites for crop improvement is proposed.
Collapse
Affiliation(s)
- Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
107
|
Elucidating the roles of naturally occurring silent mutations in Polycystic Ovary Syndrome (PCOS). Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
108
|
Computational discovery and modeling of novel gene expression rules encoded in the mRNA. Biochem Soc Trans 2020; 48:1519-1528. [PMID: 32662820 DOI: 10.1042/bst20191048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
The transcript is populated with numerous overlapping codes that regulate all steps of gene expression. Deciphering these codes is very challenging due to the large number of variables involved, the non-modular nature of the codes, biases and limitations in current experimental approaches, our limited knowledge in gene expression regulation across the tree of life, and other factors. In recent years, it has been shown that computational modeling and algorithms can significantly accelerate the discovery of novel gene expression codes. Here, we briefly summarize the latest developments and different approaches in the field.
Collapse
|
109
|
RNA polymerase II subunit D is essential for zebrafish development. Sci Rep 2020; 10:13213. [PMID: 32764610 PMCID: PMC7413394 DOI: 10.1038/s41598-020-70110-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
DNA-directed RNA polymerase II (pol II) is composed of ten core and two dissociable subunits. The dissociable subcomplex is a heterodimer of Rpb4/Polr2d and Rpb7/Polr2g, which are encoded by RPB4/polr2d and RPB7/polr2g genes, respectively. Functional studies of Rpb4/Polr2d in yeast have revealed that Rpb4 plays a role primarily in pol II-mediated RNA synthesis and partly in various mRNA regulations including pre-mRNA splicing, nuclear export of mRNAs and decay of mRNAs. Although Rpb4 is evolutionally highly conserved from yeast to human, it is dispensable for survival in budding yeast S. cerevisiae, whereas it was indispensable for survival in fission yeast S. pombe, slime molds and fruit fly. To elucidate whether Rpb4/Polr2d is necessary for development and survival of vertebrate animals, we generated polr2d-deficient zebrafish. The polr2d mutant embryos exhibited progressive delay of somitogenesis at the onset of 11 h postfertilization (hpf). Mutant embryos then showed increased cell death at 15 hpf, displayed hypoplasia such as small eye and cardiac edema by 48 hpf and prematurely died by 60 hpf. In accordance with these developmental defects, our RT-qPCR revealed that expression of housekeeping and zygotic genes was diminished in mutants. Collectively, we conclude that Rpb4/Polr2d is indispensable for vertebrate development.
Collapse
|
110
|
Abstract
Gastrulation is a critical early morphogenetic process of animal development, during which the three germ layers; mesoderm, endoderm and ectoderm, are rearranged by internalization movements. Concurrent epiboly movements spread and thin the germ layers while convergence and extension movements shape them into an anteroposteriorly elongated body with head, trunk, tail and organ rudiments. In zebrafish, gastrulation follows the proliferative and inductive events that establish the embryonic and extraembryonic tissues and the embryonic axis. Specification of these tissues and embryonic axes are controlled by the maternal gene products deposited in the egg. These early maternally controlled processes need to generate sufficient cell numbers and establish the embryonic polarity to ensure normal gastrulation. Subsequently, after activation of the zygotic genome, the zygotic gene products govern mesoderm and endoderm induction and germ layer patterning. Gastrulation is initiated during the maternal-to-zygotic transition, a process that entails both activation of the zygotic genome and downregulation of the maternal transcripts. Genomic studies indicate that gastrulation is largely controlled by the zygotic genome. Nonetheless, genetic studies that investigate the relative contributions of maternal and zygotic gene function by comparing zygotic, maternal and maternal zygotic mutant phenotypes, reveal significant contribution of maternal gene products, transcripts and/or proteins, that persist through gastrulation, to the control of gastrulation movements. Therefore, in zebrafish, the maternally expressed gene products not only set the stage for, but they also actively participate in gastrulation morphogenesis.
Collapse
Affiliation(s)
- Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
111
|
Shi B, Zhang J, Heng J, Gong J, Zhang T, Li P, Sun BF, Yang Y, Zhang N, Zhao YL, Wang HL, Liu F, Zhang QC, Yang YG. RNA structural dynamics regulate early embryogenesis through controlling transcriptome fate and function. Genome Biol 2020; 21:120. [PMID: 32423473 PMCID: PMC7236375 DOI: 10.1186/s13059-020-02022-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vertebrate early embryogenesis is initially directed by a set of maternal RNAs and proteins, yet the mechanisms controlling this program remain largely unknown. Recent transcriptome-wide studies on RNA structure have revealed its pervasive and crucial roles in RNA processing and functions, but whether and how RNA structure regulates the fate of the maternal transcriptome have yet to be determined. RESULTS Here we establish the global map of four nucleotide-based mRNA structures by icSHAPE during zebrafish early embryogenesis. Strikingly, we observe that RNA structurally variable regions are enriched in the 3' UTR and contain cis-regulatory elements important for maternal-to-zygotic transition (MZT). We find that the RNA-binding protein Elavl1a stabilizes maternal mRNAs by binding to the cis-elements. Conversely, RNA structure formation suppresses Elavl1a's binding leading to the decay of its maternal targets. CONCLUSIONS Our study finds that RNA structurally variable regions are enriched in mRNA 3' UTRs and contain cis-regulatory elements during zebrafish early embryogenesis. We reveal that Elavl1a regulates maternal RNA stability in an RNA structure-dependent fashion. Overall, our findings reveal a broad and fundamental role of RNA structure-based regulation in vertebrate early embryogenesis.
Collapse
Affiliation(s)
- Boyang Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsong Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Heng
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Gong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ting Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bao-Fa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hai-Lin Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Feng Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
112
|
Luo Y, Schofield JA, Simon MD, Slavoff SA. Global Profiling of Cellular Substrates of Human Dcp2. Biochemistry 2020; 59:4176-4188. [PMID: 32365300 DOI: 10.1021/acs.biochem.0c00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Decapping is the first committed step in 5'-to-3' RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m6A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Collapse
Affiliation(s)
- Yang Luo
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jeremy A Schofield
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| | - Matthew D Simon
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
| |
Collapse
|
113
|
Zheng H, Li S, Zhang X, Sui N. Functional Implications of Active N 6-Methyladenosine in Plants. Front Cell Dev Biol 2020; 8:291. [PMID: 32411708 PMCID: PMC7202093 DOI: 10.3389/fcell.2020.00291] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common type of eukaryotic mRNA modification and has been found in many organisms, including mammals, and plants. It has important regulatory effects on RNA splicing, export, stability, and translation. The abundance of m6A on RNA depends on the dynamic regulation between methyltransferase ("writer") and demethylase ("eraser"), and m6A binding protein ("reader") exerts more specific regulatory function by binding m6A modification sites on RNA. Progress in research has revealed important functions of m6A modification in plants. In this review, we systematically summarize the latest advances in research on the composition and mechanism of action of the m6A system in plants. We emphasize the function of m6A modification on RNA fate, plant development, and stress resistance. Finally, we discuss the outstanding questions and opportunities exist for future research on m6A modification in plant.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
114
|
Otsuka H, Fukao A, Tomohiro T, Adachi S, Suzuki T, Takahashi A, Funakami Y, Natsume T, Yamamoto T, Duncan KE, Fujiwara T. ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism. Biochimie 2020; 174:49-56. [PMID: 32311426 DOI: 10.1016/j.biochi.2020.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Eukaryotic gene expression can be spatiotemporally tuned at the post-transcriptional level by cis-regulatory elements in mRNA sequences. An important example is the AU-rich element (ARE), which induces mRNA destabilization in a variety of biological contexts in mammals and can also mediate translational control. Regulation is mediated by trans-acting factors that recognize the ARE, such as Tristetraprolin (TTP) and BRF1/ZFP36L1. Although both proteins can destabilize their target mRNAs through the recruitment of the CCR4-NOT deadenylation complex, TTP also directly regulates translation. Whether ZFP36L1 can directly repress translation remains unknown. Here, we used an in vitro translation system derived from mammalian cell lines to address this key mechanistic issue in ARE regulation by ZFP36L1. Functional assays with mutant proteins reveal that ZFP36L1 can repress translation via AU-Rich elements independent of deadenylation. ZFP36L1-mediated translation repression requires interaction between ZFP36L1 and CNOT1, suggesting that it might use a repression mechanism similar to either TPP or miRISC. However, several lines of evidence suggest that the similarity ends there. Unlike, TTP, it does not efficiently interact with either 4E-HP or GIGYF2, suggesting it does not repress translation by recruiting these proteins to the mRNA cap. Moreover, ZFP36L1 could not repress ECMV-IRES driven translation and was resistant to pharmacological eIF4A inhibitor silvestrol, suggesting fundamental differences with miRISC repression via eIF4A. Collectively, our results reveal that ZFP36L1 represses translation directly and suggest that it does so via a novel mechanism distinct from other translational regulators that interact with the CCR4-NOT deadenylase complex.
Collapse
Affiliation(s)
- Hiroshi Otsuka
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | | | - Takumi Tomohiro
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama, Japan
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa, Japan
| | | | - Toru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Tadashi Yamamoto
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22, Suehiro-cho, Yokohama, Japan; Cell Signal Unit, Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Kent E Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
115
|
Mordstein C, Savisaar R, Young RS, Bazile J, Talmane L, Luft J, Liss M, Taylor MS, Hurst LD, Kudla G. Codon Usage and Splicing Jointly Influence mRNA Localization. Cell Syst 2020; 10:351-362.e8. [PMID: 32275854 PMCID: PMC7181179 DOI: 10.1016/j.cels.2020.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
In the human genome, most genes undergo splicing, and patterns of codon usage are splicing dependent: guanine and cytosine (GC) content is the highest within single-exon genes and within first exons of multi-exon genes. However, the effects of codon usage on gene expression are typically characterized in unspliced model genes. Here, we measured the effects of splicing on expression in a panel of synonymous reporter genes that varied in nucleotide composition. We found that high GC content increased protein yield, mRNA yield, cytoplasmic mRNA localization, and translation of unspliced reporters. Splicing did not affect the expression of GC-rich variants. However, splicing promoted the expression of AT-rich variants by increasing their steady-state protein and mRNA levels, in part through promoting cytoplasmic localization of mRNA. We propose that splicing promotes the nuclear export of AU-rich mRNAs and that codon- and splicing-dependent effects on expression are under evolutionary pressure in the human genome.
Collapse
Affiliation(s)
- Christine Mordstein
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Rosina Savisaar
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK; Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Robert S Young
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Jeanne Bazile
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lana Talmane
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Juliet Luft
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Michael Liss
- Thermo Fisher Scientific, GENEART GmbH, Regensburg, Germany
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
116
|
Xing Y, Gong R, Xu Y, Liu K, Zhou M. Codon usage bias affects α-amylase mRNA level by altering RNA stability and cytosine methylation patterns in Escherichia coli. Can J Microbiol 2020; 66:521-528. [PMID: 32259457 DOI: 10.1139/cjm-2019-0624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Codon usage bias exists in almost every organism and is reported to regulate protein translation efficiency and folding. Besides translation, the preliminary role of codon usage bias on gene transcription has also been revealed in some eukaryotes such as Neurospora crassa. In this study, we took as an example the α-amylase-coding gene (amyA) and examined the role of codon usage bias in regulating gene expression in the typical prokaryote Escherichia coli. We confirmed the higher translation efficiency on codon-optimized amyA RNAs and found that the RNA level itself was also affected by codon optimization. The decreased RNA level was caused at least in part by altered mRNA stability at the post-transcriptional level. Codon optimization also altered the number of cytosine methylation sites. Examination on dcm knockouts suggested that cytosine methylation may be a minor mechanism adopted by codon bias to regulate gene RNA levels. More studies are required to verify the global effect of codon usage and to reveal its detailed mechanism on transcription.
Collapse
Affiliation(s)
- Yanzi Xing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Ruiqing Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yichun Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Kunshan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
117
|
Abstract
Messenger RNAs (mRNAs) consist of a coding region (open reading frame (ORF)) and two untranslated regions (UTRs), 5'UTR and 3'UTR. Ribosomes travel along the coding region, translating nucleotide triplets (called codons) to a chain of amino acids. The coding region was long believed to mainly encode the amino acid content of proteins, whereas regulatory signals reside in the UTRs and in other genomic regions. However, in recent years we have learned that the ORF is expansively populated with various regulatory signals, or codes, which are related to all gene expression steps and additional intracellular aspects. In this paper, we review the current knowledge related to overlapping codes inside the coding regions, such as the influence of synonymous codon usage on translation speed (and, in turn, the effect of translation speed on protein folding), ribosomal frameshifting, mRNA stability, methylation, splicing, transcription and more. All these codes come together and overlap in the ORF sequence, ensuring production of the right protein at the right time.
Collapse
Affiliation(s)
- Shaked Bergman
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
118
|
Tack DC, Su Z, Yu Y, Bevilacqua PC, Assmann SM. Tissue-specific changes in the RNA structurome mediate salinity response in Arabidopsis. RNA (NEW YORK, N.Y.) 2020; 26:492-511. [PMID: 31937672 PMCID: PMC7075263 DOI: 10.1261/rna.072850.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/13/2020] [Indexed: 05/22/2023]
Abstract
Little is known concerning the effects of abiotic factors on in vivo RNA structures. We applied Structure-seq to assess the in vivo mRNA structuromes of Arabidopsis thaliana under salinity stress, which negatively impacts agriculture. Structure-seq utilizes dimethyl sulfate reactivity to identify As and Cs that lack base-pairing or protection. Salt stress refolded transcripts differentially in root versus shoot, evincing tissue specificity of the structurome. Both tissues exhibited an inverse correlation between salt stress-induced changes in transcript reactivity and changes in abundance, with stress-related mRNAs showing particular structural dynamism. This inverse correlation is more pronounced in mRNAs wherein the mean reactivity of the 5'UTR, CDS, and 3'UTR concertedly change under salinity stress, suggesting increased susceptibility to abundance control mechanisms in transcripts exhibiting this phenomenon, which we name "concordancy." Concordant salinity-induced increases in reactivity were notably observed in photosynthesis genes, thereby implicating mRNA structural loss in the well-known depression of photosynthesis by salt stress. Overall, changes in secondary structure appear to impact mRNA abundance, molding the functional specificity of the transcriptome under stress.
Collapse
Affiliation(s)
- David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Spectrum Health Office of Research, Grand Rapids, Michigan 49503, USA
| | - Zhao Su
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yunqing Yu
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
119
|
Sha QQ, Zhu YZ, Li S, Jiang Y, Chen L, Sun XH, Shen L, Ou XH, Fan HY. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res 2020; 48:879-894. [PMID: 31777931 PMCID: PMC6954448 DOI: 10.1093/nar/gkz1111] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/02/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
An important event of the maternal-to-zygotic transition (MZT) in animal embryos is the elimination of a subset of the maternal transcripts that accumulated during oogenesis. In both invertebrates and vertebrates, a maternally encoded mRNA decay pathway (M-decay) acts before zygotic genome activation (ZGA) while a second pathway, which requires zygotic transcription, subsequently clears additional mRNAs (Z-decay). To date the mechanisms that activate the Z-decay pathway in mammalian early embryos have not been investigated. Here, we identify murine maternal transcripts that are degraded after ZGA and show that inhibition of de novo transcription stabilizes these mRNAs in mouse embryos. We show that YAP1-TEAD4 transcription factor-mediated transcription is essential for Z-decay in mouse embryos and that TEAD4-triggered zygotic expression of terminal uridylyltransferases TUT4 and TUT7 and mRNA 3'-oligouridylation direct Z-decay. Components of the M-decay pathway, including BTG4 and the CCR4-NOT deadenylase, continue to function in Z-decay but require reinforcement from the zygotic factors for timely removal of maternal mRNAs. A long 3'-UTR and active translation confer resistance of Z-decay transcripts to M-decay during oocyte meiotic maturation. The Z-decay pathway is required for mouse embryo development beyond the four-cell stage and contributes to the developmental competence of preimplantation embryos.
Collapse
Affiliation(s)
- Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Sen Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lu Chen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Hong Sun
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
120
|
Ren F, Lin Q, Gong G, Du X, Dan H, Qin W, Miao R, Xiong Y, Xiao R, Li X, Gui JF, Mei J. Igf2bp3 maintains maternal RNA stability and ensures early embryo development in zebrafish. Commun Biol 2020; 3:94. [PMID: 32127635 PMCID: PMC7054421 DOI: 10.1038/s42003-020-0827-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Early embryogenesis relies on maternally inherited mRNAs. Although the mechanism of maternal mRNA degradation during maternal-to-zygotic transition (MZT) has been extensively studied in vertebrates, how the embryos maintain maternal mRNA stability remains unclear. Here, we identify Igf2bp3 as an important regulator of maternal mRNA stability in zebrafish. Depletion of maternal igf2bp3 destabilizes maternal mRNAs prior to MZT and leads to severe developmental defects, including abnormal cytoskeleton organization and cell division. However, the process of oogenesis and the expression levels of maternal mRNAs in unfertilized eggs are normal in maternal igf2bp3 mutants. Gene ontology analysis revealed that these functions are largely mediated by Igf2bp3-bound mRNAs. Indeed, Igf2bp3 depletion destabilizes while its overexpression enhances its targeting maternal mRNAs. Interestingly, igf2bp3 overexpression in wild-type embryos also causes a developmental delay. Altogether, these findings highlight an important function of Igf2bp3 in controlling early zebrafish embryogenesis by binding and regulating the stability of maternal mRNAs.
Collapse
Affiliation(s)
- Fan Ren
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Qiaohong Lin
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xian Du
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, and Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Hong Dan
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wenying Qin
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, and Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Ran Miao
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yang Xiong
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, and Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China
| | - Xiaohui Li
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 430072, Wuhan, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
121
|
Weiner I, Feldman Y, Shahar N, Yacoby I, Tuller T. CSO – A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
122
|
Forrest ME, Pinkard O, Martin S, Sweet TJ, Hanson G, Coller J. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS One 2020; 15:e0228730. [PMID: 32053646 PMCID: PMC7018022 DOI: 10.1371/journal.pone.0228730] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Messenger RNA (mRNA) degradation plays a critical role in regulating transcript levels in the cell and is a major control point for modulating gene expression. In yeast and other model organisms, codon identity is a powerful determinant of transcript stability, contributing broadly to impact half-lives. General principles governing mRNA stability are poorly understood in mammalian systems. Importantly, however, the degradation machinery is highly conserved, thus it seems logical that mammalian transcript half-lives would also be strongly influenced by coding determinants. Herein we characterize the contribution of coding sequence towards mRNA decay in human and Chinese Hamster Ovary cells. In agreement with previous studies, we observed that synonymous codon usage impacts mRNA stability in mammalian cells. Surprisingly, however, we also observe that the amino acid content of a gene is an additional determinant correlating with transcript stability. The impact of codon and amino acid identity on mRNA decay appears to be associated with underlying tRNA and intracellular amino acid concentrations. Accordingly, genes of similar physiological function appear to coordinate their mRNA stabilities in part through codon and amino acid content. Together, these results raise the possibility that intracellular tRNA and amino acid levels interplay to mediate coupling between translational elongation and mRNA degradation rate in mammals.
Collapse
Affiliation(s)
- Megan E. Forrest
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Otis Pinkard
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sophie Martin
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas J. Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
123
|
Mostafa D, Takahashi A, Yanagiya A, Yamaguchi T, Abe T, Kureha T, Kuba K, Kanegae Y, Furuta Y, Yamamoto T, Suzuki T. Essential functions of the CNOT7/8 catalytic subunits of the CCR4-NOT complex in mRNA regulation and cell viability. RNA Biol 2020; 17:403-416. [PMID: 31924127 PMCID: PMC6999631 DOI: 10.1080/15476286.2019.1709747] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shortening of mRNA poly(A) tails (deadenylation) to trigger their decay is mediated mainly by the CCR4-NOT deadenylase complex. While four catalytic subunits (CNOT6, 6L 7, and 8) have been identified in the mammalian CCR4-NOT complex, their individual biological roles are not fully understood. In this study, we addressed the contribution of CNOT7/8 to viability of primary mouse embryonic fibroblasts (MEFs). We found that MEFs lacking CNOT7/8 expression [Cnot7/8-double knockout (dKO) MEFs] undergo cell death, whereas MEFs lacking CNOT6/6L expression (Cnot6/6l-dKO MEFs) remain viable. Co-immunoprecipitation analyses showed that CNOT6/6L are also absent from the CCR4-NOT complex in Cnot7/8-dKO MEFs. In contrast, either CNOT7 or CNOT8 still interacts with other subunits in the CCR4-NOT complex in Cnot6/6l-dKO MEFs. Exogenous expression of a CNOT7 mutant lacking catalytic activity in Cnot7/8-dKO MEFs cannot recover cell viability, even though CNOT6/6L exists to some extent in the CCR4-NOT complex, confirming that CNOT7/8 is essential for viability. Bulk poly(A) tail analysis revealed that mRNAs with longer poly(A) tails are more numerous in Cnot7/8-dKO MEFs than in Cnot6/6l-dKO MEFs. Consistent with elongated poly(A) tails, more mRNAs are upregulated and stabilized in Cnot7/8-dKO MEFs than in Cnot6/6l-dKO MEFs. Importantly, Cnot6/6l-dKO mice are viable and grow normally to adulthood. Taken together, the CNOT7/8 catalytic subunits are essential for deadenylation, which is necessary to maintain cell viability, whereas CNOT6/6L are not.
Collapse
Affiliation(s)
- Dina Mostafa
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Taku Kureha
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Graduate School of Medicine, Akita University, Akita, Japan
| | - Yumi Kanegae
- Research Center for Medical Science, Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhide Furuta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Laboratory for Immunogenetics, Riken Center of Integrative Medical Sciences, Yokohama, Japan
| | - Toru Suzuki
- Laboratory for Immunogenetics, Riken Center of Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
124
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
125
|
Zebrafish embryogenesis – A framework to study regulatory RNA elements in development and disease. Dev Biol 2020; 457:172-180. [DOI: 10.1016/j.ydbio.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/26/2022]
|
126
|
|
127
|
Narula A, Ellis J, Taliaferro JM, Rissland OS. Coding regions affect mRNA stability in human cells. RNA (NEW YORK, N.Y.) 2019; 25:1751-1764. [PMID: 31527111 PMCID: PMC6859850 DOI: 10.1261/rna.073239.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 05/05/2023]
Abstract
A new paradigm has emerged that coding regions can regulate mRNA stability in model organisms. Here, due to differences in cognate tRNA abundance, synonymous codons are translated at different speeds, and slow codons then stimulate mRNA decay. To ask if this phenomenon also occurs in humans, we isolated RNA stability effects due to coding regions using the human ORFeome collection. We find that many open reading frame (ORF) characteristics, such as length and secondary structure, fail to provide explanations for how coding regions alter mRNA stability, and, instead, that the ORF relies on translation to impact mRNA stability. Consistent with what has been seen in other organisms, codon use is related to the effects of ORFs on transcript stability. Importantly, we found instability-associated codons have longer A-site dwell times, suggesting for the first time in humans a connection between elongation speed and mRNA decay. Thus, we propose that codon usage alters decoding speeds and so affects human mRNA stability.
Collapse
Affiliation(s)
- Ashrut Narula
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - J Matthew Taliaferro
- RNA Bioscience Initiative and Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Olivia S Rissland
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
128
|
Burow DA, Martin S, Quail JF, Alhusaini N, Coller J, Cleary MD. Attenuated Codon Optimality Contributes to Neural-Specific mRNA Decay in Drosophila. Cell Rep 2019; 24:1704-1712. [PMID: 30110627 PMCID: PMC6169788 DOI: 10.1016/j.celrep.2018.07.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 06/10/2018] [Accepted: 07/11/2018] [Indexed: 11/15/2022] Open
Abstract
Tissue-specific mRNA stability is important for cell fate and physiology, but the mechanisms involved are not fully understood. We found that zygotic mRNA stability in Drosophila correlates with codon content: optimal codons are enriched in stable transcripts associated with metabolic functions like translation, while non-optimal codons are enriched in unstable transcripts, including those associated with neural development. Bioinformatic analyses and reporter assays revealed that similar codons stabilize or destabilize mRNAs in the nervous system and other tissues, but the link between codon content and stability is attenuated in the nervous system. We confirmed that optimal codons are decoded by abundant tRNAs while non-optimal codons are decoded by less abundant tRNAs in embryos and in the nervous system. We conclude that codon optimality is a general determinant of zygotic mRNA stability, and attenuation of codon optimality allows trans-acting factors to exert greater influence over mRNA decay in the nervous system. Burow et al. report that codon optimality is a general determinant of zygotic mRNA stability in Drosophila embryos, but the link between codons and stability is weak in the nervous system. Bioinformatics, reporter transcript assays, and tRNA quantitation show that the attenuation of codon optimality establishes neuralspecific mRNA decay.
Collapse
Affiliation(s)
- Dana A Burow
- Molecular and Cell Biology Unit, Quantitative and Systems Biology Program, University of California, Merced, Merced, CA 95343, USA
| | - Sophie Martin
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jade F Quail
- Molecular and Cell Biology Unit, Quantitative and Systems Biology Program, University of California, Merced, Merced, CA 95343, USA
| | - Najwa Alhusaini
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michael D Cleary
- Molecular and Cell Biology Unit, Quantitative and Systems Biology Program, University of California, Merced, Merced, CA 95343, USA.
| |
Collapse
|
129
|
Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat Commun 2019; 10:5292. [PMID: 31757970 PMCID: PMC6876564 DOI: 10.1038/s41467-019-13228-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023] Open
Abstract
Message RNA poly(A) tails are vital for their function and regulation. However, the full-length sequence of mRNA isoforms with their poly(A) tails remains undetermined. Here, we develop a method at single-cell level sensitivity that enables quantification of poly(A) tails along with the full-length cDNA while reading non-adenosine residues within poly(A) tails precisely, which we name poly(A) inclusive RNA isoform sequencing (PAIso−seq). Using this method, we can quantify isoform specific poly(A) tail length. More interestingly, we find that 17% of the mRNAs harbor non-A residues within the body of poly(A) tails in mouse GV oocytes. We show that PAIso−seq is sensitive enough to analyze single GV oocytes. These findings will not only provide an accurate and sensitive tool in studying poly(A) tails, but also open a door for the function and regulation of non-adenosine modifications within the body of poly(A) tails. The poly(A) tails on mRNA are vital for their function but it is difficult to map full-length sequences of mRNA isoforms with the entire poly(A) tails. Here the authors develop PAIso−seq which can measure isoform specific poly(A) tail length and base composition at single-cell sensitivity.
Collapse
|
130
|
Expression Analysis of mRNA Decay of Maternal Genes during Bombyx mori Maternal-to-Zygotic Transition. Int J Mol Sci 2019; 20:ijms20225651. [PMID: 31718114 PMCID: PMC6887711 DOI: 10.3390/ijms20225651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/24/2022] Open
Abstract
Maternal genes play an important role in the early embryonic development of the silkworm. Early embryonic development without new transcription depends on maternal components stored in the egg during oocyte maturation. The maternal-to-zygotic transition (MZT) is a tightly regulated process that includes maternal mRNAs elimination and zygotic transcription initiation. This process has been extensively studied within model species. Each model organism has a unique pattern of maternal transcriptional clearance classes in MZT. In this study, we identified 66 maternal genes through bioinformatics analysis and expression analysis in the eggs of silkworm virgin moths (Bombyx mori). All 66 maternal genes were expressed in vitellogenesis in day eight female pupae. During MZT, the degradation of maternal gene mRNAs could be divided into three clusters. We found that eight maternal genes of cluster 1 remained stable from 0 to 3.0 h, 17 maternal genes of cluster 2 were significantly decayed from 0.5 to 1.0 h and 41 maternal genes of cluster 3 were significantly decayed after 1.5 h. Therefore, the initial time-point of degradation of cluster 2 was earlier than that of cluster 3. The maternal gene mRNAs decay of clusters 2 and 3 is first initiated by maternal degradation activity. Our study expands upon the identification of silkworm maternal genes and provides a perspective for further research of the embryo development in Bombyx mori.
Collapse
|
131
|
Wang X, You X, Langer JD, Hou J, Rupprecht F, Vlatkovic I, Quedenau C, Tushev G, Epstein I, Schaefke B, Sun W, Fang L, Li G, Hu Y, Schuman EM, Chen W. Full-length transcriptome reconstruction reveals a large diversity of RNA and protein isoforms in rat hippocampus. Nat Commun 2019; 10:5009. [PMID: 31676752 PMCID: PMC6825209 DOI: 10.1038/s41467-019-13037-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Gene annotation is a critical resource in genomics research. Many computational approaches have been developed to assemble transcriptomes based on high-throughput short-read sequencing, however, only with limited accuracy. Here, we combine next-generation and third-generation sequencing to reconstruct a full-length transcriptome in the rat hippocampus, which is further validated using independent 5´ and 3´-end profiling approaches. In total, we detect 28,268 full-length transcripts (FLTs), covering 6,380 RefSeq genes and 849 unannotated loci. Based on these FLTs, we discover co-occurring alternative RNA processing events. Integrating with polysome profiling and ribosome footprinting data, we predict isoform-specific translational status and reconstruct an open reading frame (ORF)-eome. Notably, a high proportion of the predicted ORFs are validated by mass spectrometry-based proteomics. Moreover, we identify isoforms with subcellular localization pattern in neurons. Collectively, our data advance our knowledge of RNA and protein isoform diversity in the rat brain and provide a rich resource for functional studies.
Collapse
Affiliation(s)
- Xi Wang
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
- German Cancer Research Center, 69120, Heidelberg, Germany.
| | - Xintian You
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, 60438, Frankfurt, Germany
| | - Jingyi Hou
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Fiona Rupprecht
- Max Planck Institute for Brain Research, 60438, Frankfurt, Germany
| | - Irena Vlatkovic
- Max Planck Institute for Brain Research, 60438, Frankfurt, Germany
| | - Claudia Quedenau
- Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany
| | - Georgi Tushev
- Max Planck Institute for Brain Research, 60438, Frankfurt, Germany
| | - Irina Epstein
- Max Planck Institute for Brain Research, 60438, Frankfurt, Germany
| | - Bernhard Schaefke
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Liang Fang
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Guipeng Li
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Yuhui Hu
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438, Frankfurt, Germany
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
- Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China.
| |
Collapse
|
132
|
Sanguinetti M, Iriarte A, Amillis S, Marín M, Musto H, Ramón A. A pair of non-optimal codons are necessary for the correct biosynthesis of the Aspergillus nidulans urea transporter, UreA. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190773. [PMID: 31827830 PMCID: PMC6894576 DOI: 10.1098/rsos.190773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
In both prokaryotic and eukaryotic genomes, synonymous codons are unevenly used. Such differential usage of optimal or non-optimal codons has been suggested to play a role in the control of translation initiation and elongation, as well as at the level of transcription and mRNA stability. In the case of membrane proteins, codon usage has been proposed to assist in the establishment of a pause necessary for the correct targeting of the nascent chains to the translocon. By using as a model UreA, the Aspergillus nidulans urea transporter, we revealed that a pair of non-optimal codons encoding amino acids situated at the boundary between the N-terminus and the first transmembrane segment are necessary for proper biogenesis of the protein at 37°C. These codons presumably regulate the translation rate in a previously undescribed fashion, possibly contributing to the correct interaction of ureA-translating ribosome-nascent chain complexes with the signal recognition particle and/or other factors, while the polypeptide has not yet emerged from the ribosomal tunnel. Our results suggest that the presence of the pair of non-optimal codons would not be functionally important in all cellular conditions. Whether this mechanism would affect other proteins remains to be determined.
Collapse
Affiliation(s)
- Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Departamento de Evolución, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Hellas, Greece
| | - Mónica Marín
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Departamento de Evolución, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
133
|
Hia F, Yang SF, Shichino Y, Yoshinaga M, Murakawa Y, Vandenbon A, Fukao A, Fujiwara T, Landthaler M, Natsume T, Adachi S, Iwasaki S, Takeuchi O. Codon bias confers stability to human mRNAs. EMBO Rep 2019; 20:e48220. [PMID: 31482640 DOI: 10.15252/embr.201948220] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 11/09/2022] Open
Abstract
Codon bias has been implicated as one of the major factors contributing to mRNA stability in several model organisms. However, the molecular mechanisms of codon bias on mRNA stability remain unclear in humans. Here, we show that human cells possess a mechanism to modulate RNA stability through a unique codon bias. Bioinformatics analysis showed that codons could be clustered into two distinct groups-codons with G or C at the third base position (GC3) and codons with either A or T at the third base position (AT3): the former stabilizing while the latter destabilizing mRNA. Quantification of codon bias showed that increased GC3-content entails proportionately higher GC-content. Through bioinformatics, ribosome profiling, and in vitro analysis, we show that decoupling the effects of codon bias reveals two modes of mRNA regulation, one GC3- and one GC-content dependent. Employing an immunoprecipitation-based strategy, we identify ILF2 and ILF3 as RNA-binding proteins that differentially regulate global mRNA abundances based on codon bias. Our results demonstrate that codon bias is a two-pronged system that governs mRNA abundance.
Collapse
Affiliation(s)
- Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sheng Fan Yang
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhiro Murakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
| | - Alexis Vandenbon
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Department of Pharmacy, Kindai University, Higashiosaka City, Japan
| | - Markus Landthaler
- RNA Biology and Posttranscriptional Regulation, Max Delbrück Center for Molecular Medicine Berlin, Berlin Institute for Molecular Systems Biology, Berlin, Germany.,IRI Life Sciences, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
134
|
Yang Y, Wang L, Han X, Yang WL, Zhang M, Ma HL, Sun BF, Li A, Xia J, Chen J, Heng J, Wu B, Chen YS, Xu JW, Yang X, Yao H, Sun J, Lyu C, Wang HL, Huang Y, Sun YP, Zhao YL, Meng A, Ma J, Liu F, Yang YG. RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay. Mol Cell 2019; 75:1188-1202.e11. [PMID: 31399345 DOI: 10.1016/j.molcel.2019.06.033] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022]
Abstract
The maternal-to-zygotic transition (MZT) is a conserved and fundamental process during which the maternal environment is converted to an environment of embryonic-driven development through dramatic reprogramming. However, how maternally supplied transcripts are dynamically regulated during MZT remains largely unknown. Herein, through genome-wide profiling of RNA 5-methylcytosine (m5C) modification in zebrafish early embryos, we found that m5C-modified maternal mRNAs display higher stability than non-m5C-modified mRNAs during MZT. We discovered that Y-box binding protein 1 (Ybx1) preferentially recognizes m5C-modified mRNAs through π-π interactions with a key residue, Trp45, in Ybx1's cold shock domain (CSD), which plays essential roles in maternal mRNA stability and early embryogenesis of zebrafish. Together with the mRNA stabilizer Pabpc1a, Ybx1 promotes the stability of its target mRNAs in an m5C-dependent manner. Our study demonstrates an unexpected mechanism of RNA m5C-regulated maternal mRNA stabilization during zebrafish MZT, highlighting the critical role of m5C mRNA modification in early development.
Collapse
Affiliation(s)
- Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiao Han
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Lan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mengmeng Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute for Complex Systems, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hai-Li Ma
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Fa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Ang Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Heng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baixing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute for Complex Systems, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu-Sheng Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Wei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cong Lyu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hai-Lin Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Huang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201204, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Multiscale Research Institute for Complex Systems, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
135
|
|
136
|
Abstract
Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
Collapse
|
137
|
Vejnar CE, Abdel Messih M, Takacs CM, Yartseva V, Oikonomou P, Christiano R, Stoeckius M, Lau S, Lee MT, Beaudoin JD, Musaev D, Darwich-Codore H, Walther TC, Tavazoie S, Cifuentes D, Giraldez AJ. Genome wide analysis of 3' UTR sequence elements and proteins regulating mRNA stability during maternal-to-zygotic transition in zebrafish. Genome Res 2019; 29:1100-1114. [PMID: 31227602 PMCID: PMC6633259 DOI: 10.1101/gr.245159.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different cis-elements and trans-factors are integrated to determine mRNA stability remains poorly understood. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. By using a massively parallel reporter assay, we identified cis-regulatory sequences in the 3' UTR, including U-rich motifs that are associated with increased mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC, and CUGC elements emerged as destabilizing motifs, with miR-430 and AREs causing mRNA deadenylation upon genome activation. We identified trans-factors by profiling RNA-protein interactions and found that poly(U)-binding proteins are preferentially associated with 3' UTR sequences and stabilizing motifs. We show that this activity is antagonized by C-rich motifs and correlated with protein binding. Finally, we integrated these regulatory motifs into a machine learning model that predicts reporter mRNA stability in vivo.
Collapse
Affiliation(s)
- Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Mario Abdel Messih
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Carter M Takacs
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- University of New Haven, West Haven, Connecticut 06516, USA
| | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Neuroscience, Genentech, Incorporated, South San Francisco, California 94080, USA
| | - Panos Oikonomou
- Department of Systems Biology, Columbia University, New York, New York 10032, USA
| | - Romain Christiano
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Marlon Stoeckius
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- New York Genome Center, New York, New York 10013, USA
| | - Stephanie Lau
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Miler T Lee
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Jean-Denis Beaudoin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Damir Musaev
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Hiba Darwich-Codore
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02124, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | - Saeed Tavazoie
- Department of Biochemistry and Molecular Biophysics, and Department of Systems Biology, Columbia University, New York, New York 10032, USA
| | - Daniel Cifuentes
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
138
|
Wong JM, Gaitán-Espitia JD, Hofmann GE. Transcriptional profiles of early stage red sea urchins (Mesocentrotus franciscanus) reveal differential regulation of gene expression across development. Mar Genomics 2019; 48:100692. [PMID: 31227413 DOI: 10.1016/j.margen.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
The red sea urchin, Mesocentrotus franciscanus, is an ecologically important kelp forest species that also serves as a valuable fisheries resource. In this study, we have assembled and annotated a developmental transcriptome for M. franciscanus that represents eggs and six stages of early development (8- to 16-cell, morula, hatched blastula, early gastrula, prism and early pluteus). Characterization of the transcriptome revealed distinct patterns of gene expression that corresponded to major developmental and morphological processes. In addition, the period during which maternally-controlled transcription was terminated and the zygotic genome was activated, the maternal-to-zygotic transition (MZT), was found to begin during early cleavage and persist through the hatched blastula stage, an observation that is similar to the timing of the MZT in other sea urchin species. The presented developmental transcriptome will serve as a useful resource for investigating, in both an ecological and fisheries context, how the early developmental stages of this species respond to environmental stressors.
Collapse
Affiliation(s)
- Juliet M Wong
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Juan D Gaitán-Espitia
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
139
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
140
|
Teixeira FK, Lehmann R. Translational Control during Developmental Transitions. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032987. [PMID: 30082467 DOI: 10.1101/cshperspect.a032987] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The many steps of gene expression, from the transcription of a gene to the production of its protein product, are well understood. Yet, transcriptional regulation has been the focal point for the study of gene expression during development. However, quantitative studies reveal that messenger RNA (mRNA) levels are not necessarily good predictors of the respective proteins' levels in a cell. This discrepancy is, at least in part, the result of developmentally regulated, translational mechanisms that control the spatiotemporal regulation of gene expression. In this review, we focus on translational regulatory mechanisms mediating global transitions in gene expression: the shift from the maternal to the embryonic developmental program in the early embryo and the switch from the self-renewal of stem cells to differentiation in the adult.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
141
|
Wu Q, Medina SG, Kushawah G, DeVore ML, Castellano LA, Hand JM, Wright M, Bazzini AA. Translation affects mRNA stability in a codon-dependent manner in human cells. eLife 2019; 8:45396. [PMID: 31012849 PMCID: PMC6529216 DOI: 10.7554/elife.45396] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/20/2019] [Indexed: 12/26/2022] Open
Abstract
mRNA translation decodes nucleotide into amino acid sequences. However, translation has also been shown to affect mRNA stability depending on codon composition in model organisms, although universality of this mechanism remains unclear. Here, using three independent approaches to measure exogenous and endogenous mRNA decay, we define which codons are associated with stable or unstable mRNAs in human cells. We demonstrate that the regulatory information affecting mRNA stability is encoded in codons and not in nucleotides. Stabilizing codons tend to be associated with higher tRNA levels and higher charged/total tRNA ratios. While mRNAs enriched in destabilizing codons tend to possess shorter poly(A)-tails, the poly(A)-tail is not required for the codon-mediated mRNA stability. This mechanism depends on translation; however, the number of ribosome loads into a mRNA modulates the codon-mediated effects on gene expression. This work provides definitive evidence that translation strongly affects mRNA stability in a codon-dependent manner in human cells. Proteins are made by joining together building blocks called amino acids into strings. The proteins are ‘translated’ from genetic sequences called mRNA molecules. These sequences can be thought of as series of ‘letters’, which are read in groups of three known as codons. Molecules called tRNAs recognize the codons and add the matching amino acids to the end of the protein. Each tRNA can recognize one or several codons, and the levels of different tRNAs inside the cell vary. There are 61 codons that code for amino acids, but only 20 amino acids. This means that some codons produce the same amino acid. Despite this, there is evidence to suggest that not all of the codons that produce the same amino acid are exactly equivalent. In bacteria, yeast and zebrafish, some codons seem to make the mRNA molecule more stable, and others make it less stable. This might help the cell to control how many proteins it makes. It was not clear whether the same is true for humans. To find out, Wu et al. used three separate methods to examine mRNA stability in four types of human cell. Overall, the results revealed that some codons help to stabilize the mRNA, while others make the mRNA molecule break down faster. The effect seems to depend on the supply of tRNAs that have a charged amino acid; mRNA molecules were more likely to self-destruct in cells that contained codons with low levels of the tRNA molecules. Wu et al. also found that conditions in the cell can alter how strongly the codons affect mRNA stability. For example, a cell that has been infected by a virus reduces translation. Under these conditions, the identity of the codons in the mRNA has less effect on the stability of the mRNA molecule. Changes to protein production happen in many diseases. Understanding what controls these changes could help to reveal more about our fundamental biology, and what happens when it goes wrong.
Collapse
Affiliation(s)
- Qiushuang Wu
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Gopal Kushawah
- Stowers Institute for Medical Research, Kansas City, United States
| | | | | | - Jacqelyn M Hand
- Stowers Institute for Medical Research, Kansas City, United States
| | - Matthew Wright
- Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
142
|
PABP Cooperates with the CCR4-NOT Complex to Promote mRNA Deadenylation and Block Precocious Decay. Mol Cell 2019; 70:1081-1088.e5. [PMID: 29932901 DOI: 10.1016/j.molcel.2018.05.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/16/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Multiple deadenylases are known in vertebrates, the PAN2-PAN3 (PAN2/3) and CCR4-NOT (CNOT) complexes, and PARN, yet their differential functions remain ambiguous. Moreover, the role of poly(A) binding protein (PABP) is obscure, limiting our understanding of the deadenylation mechanism. Here, we show that CNOT serves as a predominant nonspecific deadenylase for cytoplasmic poly(A)+ RNAs, and PABP promotes deadenylation while preventing premature uridylation and decay. PAN2/3 selectively trims long tails (>∼150 nt) with minimal effect on transcriptome, whereas PARN does not affect mRNA deadenylation. CAF1 and CCR4, catalytic subunits of CNOT, display distinct activities: CAF1 trims naked poly(A) segments and is blocked by PABPC, whereas CCR4 is activated by PABPC to shorten PABPC-protected sequences. Concerted actions of CAF1 and CCR4 delineate the ∼27 nt periodic PABPC footprints along shortening tail. Our study unveils distinct functions of deadenylases and PABPC, re-drawing the view on mRNA deadenylation and regulation.
Collapse
|
143
|
Webster MW, Chen YH, Stowell JAW, Alhusaini N, Sweet T, Graveley BR, Coller J, Passmore LA. mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases. Mol Cell 2019; 70:1089-1100.e8. [PMID: 29932902 PMCID: PMC6024076 DOI: 10.1016/j.molcel.2018.05.033] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023]
Abstract
Translation and decay of eukaryotic mRNAs is controlled by shortening of the poly(A) tail and release of the poly(A)-binding protein Pab1/PABP. The Ccr4-Not complex contains two exonucleases—Ccr4 and Caf1/Pop2—that mediate mRNA deadenylation. Here, using a fully reconstituted biochemical system with proteins from the fission yeast Schizosaccharomyces pombe, we show that Pab1 interacts with Ccr4-Not, stimulates deadenylation, and differentiates the roles of the nuclease enzymes. Surprisingly, Pab1 release relies on Ccr4 activity. In agreement with this, in vivo experiments in budding yeast show that Ccr4 is a general deadenylase that acts on all mRNAs. In contrast, Caf1 only trims poly(A) not bound by Pab1. As a consequence, Caf1 is a specialized deadenylase required for the selective deadenylation of transcripts with lower rates of translation elongation and reduced Pab1 occupancy. These findings reveal a coupling between the rates of translation and deadenylation that is dependent on Pab1 and Ccr4-Not. Poly(A)-binding protein is efficiently released by Ccr4-Not nuclease activity Ccr4, but not Caf1, removes poly(A) tails bound to Pab1 Ccr4 acts on all transcripts and Caf1 acts on transcripts with low codon optimality Deadenylation by Ccr4-Not connects translation with mRNA stability
Collapse
Affiliation(s)
| | - Ying-Hsin Chen
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | - Najwa Alhusaini
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Thomas Sweet
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Brenton R Graveley
- Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jeff Coller
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA.
| | | |
Collapse
|
144
|
MicroRNAs in the Progress of Diabetic Nephropathy: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3513179. [PMID: 30984273 PMCID: PMC6431481 DOI: 10.1155/2019/3513179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/24/2019] [Indexed: 12/14/2022]
Abstract
Background We conducted a systematic review and meta-analysis of existing literature to evaluate the different outcomes of microRNAs (miRNAs) in diabetic nephropathy (DN), including urinary albumin excretion rates, urinary albumin creatinine rates, glomerular filtration rate, HbAc1, and creatinine. Methods Electronic databases including PUBMED, MEDLINE, and EMBASE were searched for eligible publications to July 2018. The following comparisons between treatment groups were included: normal group versus DN group; control group versus micro/macroalbuminuria group. Results Twelve eligible studies that included 2500 participants were finally recruited in this meta-analysis. Fifteen miRNAs (miRNA-21, miRNA-181b, miRNA-194, miRNA-30, miRNA-215, and others) were upregulated whereas seven miRNAs (miRNA-26a, miRNA-126, miRNA-424, miRNA-574-3p, miR-223, miR-155, and miR-192) were downregulated in the DN group compared with control groups. The miR-133b, miR-342, miR-30, miR-192, miR-194, and miR-215 were significantly correlated in urinary albumin excretion rates (r=0.33, 95% CI= 0.26-0.39). miR-192, miR-217, miR-15b, miR-34a, and miR-636 were correlated with urinary albumin creatinine rates (r=0.69; 95% CI=0.12-0.92), while miR-133b, miR-345, miR-33, miR-326, miR-574-3p, miR-126, miR-217, miR-15b, miR-34a, and miR-636 were significantly correlated with HbAc1 (r =0.23, 95% CI = 0.15-0.31). There were twelve miRNAs that were closely related to the glomerular filtration rate (r=0.28, 95% CI =0.21-0.34). Creatinine (r=0.33, 95% CI = 0.22-0.40) was significantly different between normal and DN groups. Conclusions The meta-analysis acquired the correlations between miRNAs and outcomes including UAER, UACR, eGFR, HbAc1, and creatinine in DN. It suggested that miRNAs may participate in the pathogenesis of DN process.
Collapse
|
145
|
Eraslan B, Wang D, Gusic M, Prokisch H, Hallström BM, Uhlén M, Asplund A, Pontén F, Wieland T, Hopf T, Hahne H, Kuster B, Gagneur J. Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues. Mol Syst Biol 2019; 15:e8513. [PMID: 30777893 PMCID: PMC6379048 DOI: 10.15252/msb.20188513] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.
Collapse
Affiliation(s)
- Basak Eraslan
- Computational Biology, Department of Informatics, Technical University of Munich, Garching Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dongxue Wang
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Björn M Hallström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Frederik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Wieland
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Thomas Hopf
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | | | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Center For Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Julien Gagneur
- Computational Biology, Department of Informatics, Technical University of Munich, Garching Munich, Germany
| |
Collapse
|
146
|
Chang H, Yeo J, Kim JG, Kim H, Lim J, Lee M, Kim HH, Ohk J, Jeon HY, Lee H, Jung H, Kim KW, Kim VN. Terminal Uridylyltransferases Execute Programmed Clearance of Maternal Transcriptome in Vertebrate Embryos. Mol Cell 2019; 70:72-82.e7. [PMID: 29625039 DOI: 10.1016/j.molcel.2018.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 12/26/2022]
Abstract
During the maternal-to-zygotic transition (MZT), maternal RNAs are actively degraded and replaced by newly synthesized zygotic transcripts in a highly coordinated manner. However, it remains largely unknown how maternal mRNA decay is triggered in early vertebrate embryos. Here, through genome-wide profiling of RNA abundance and 3' modification, we show that uridylation is induced at the onset of maternal mRNA clearance. The temporal control of uridylation is conserved in vertebrates. When the homologs of terminal uridylyltransferases TUT4 and TUT7 (TUT4/7) are depleted in zebrafish and Xenopus, maternal mRNA clearance is significantly delayed, leading to developmental defects during gastrulation. Short-tailed mRNAs are selectively uridylated by TUT4/7, with the highly uridylated transcripts degraded faster during the MZT than those with unmodified poly(A) tails. Our study demonstrates that uridylation plays a crucial role in timely mRNA degradation, thereby allowing the progression of early development.
Collapse
Affiliation(s)
- Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Jinah Yeo
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Jeong-Gyun Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Seoul National University, Seoul 08826, Korea
| | - Hyunjoon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Jaechul Lim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mihye Lee
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Hyun Ho Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Seoul National University, Seoul 08826, Korea
| | - Jiyeon Ohk
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hee-Yeon Jeon
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunsook Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hosung Jung
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyu-Won Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
147
|
He F, Celik A, Wu C, Jacobson A. General decapping activators target different subsets of inefficiently translated mRNAs. eLife 2018; 7:34409. [PMID: 30520724 PMCID: PMC6300357 DOI: 10.7554/elife.34409] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
The Dcp1-Dcp2 decapping enzyme and the decapping activators Pat1, Dhh1, and Lsm1 regulate mRNA decapping, but their mechanistic integration is unknown. We analyzed the gene expression consequences of deleting PAT1, LSM1, or DHH1, or the DCP2 C-terminal domain, and found that: i) the Dcp2 C-terminal domain is an effector of both negative and positive regulation; ii) rather than being global activators of decapping, Pat1, Lsm1, and Dhh1 directly target specific subsets of yeast mRNAs and loss of the functions of each of these factors has substantial indirect consequences for genome-wide mRNA expression; and iii) transcripts targeted by Pat1, Lsm1, and Dhh1 exhibit only partial overlap, are generally translated inefficiently, and, as expected, are targeted to decapping-dependent decay. Our results define the roles of Pat1, Lsm1, and Dhh1 in decapping of general mRNAs and suggest that these factors may monitor mRNA translation and target unique features of individual mRNAs.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| |
Collapse
|
148
|
Mugridge JS, Coller J, Gross JD. Structural and molecular mechanisms for the control of eukaryotic 5'-3' mRNA decay. Nat Struct Mol Biol 2018; 25:1077-1085. [PMID: 30518847 DOI: 10.1038/s41594-018-0164-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
5'-3' RNA decay pathways are critical for quality control and regulation of gene expression. Structural and biochemical studies have provided insights into the key nucleases that carry out deadenylation, decapping, and exonucleolysis during 5'-3' decay, but detailed understanding of how these activities are coordinated is only beginning to emerge. Here we review recent mechanistic insights into the control of 5'-3' RNA decay, including coupling between translation and decay, coordination between the complexes and activities that process 5' and 3' RNA termini, conformational control of enzymatic activity, liquid phase separation, and RNA modifications.
Collapse
Affiliation(s)
- Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeff Coller
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
149
|
Abstract
The three RAS genes - HRAS, NRAS and KRAS - are collectively mutated in one-third of human cancers, where they act as prototypic oncogenes. Interestingly, there are rather distinct patterns to RAS mutations; the isoform mutated as well as the position and type of substitution vary between different cancers. As RAS genes are among the earliest, if not the first, genes mutated in a variety of cancers, understanding how these mutation patterns arise could inform on not only how cancer begins but also the factors influencing this event, which has implications for cancer prevention. To this end, we suggest that there is a narrow window or 'sweet spot' by which oncogenic RAS signalling can promote tumour initiation in normal cells. As a consequence, RAS mutation patterns in each normal cell are a product of the specific RAS isoform mutated, as well as the position of the mutation and type of substitution to achieve an ideal level of signalling.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
150
|
|