101
|
Scott NE, Hartland EL. Post-translational Mechanisms of Host Subversion by Bacterial Effectors. Trends Mol Med 2017; 23:1088-1102. [PMID: 29150361 DOI: 10.1016/j.molmed.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
Bacterial effector proteins are a specialized class of secreted proteins that are translocated directly into the host cytoplasm by bacterial pathogens. Effector proteins have diverse activities and targets, and many mediate post-translational modifications of host proteins. Effector proteins offer potential in novel biotechnological and medical applications as enzymes that may modify human proteins. Here, we discuss the mechanisms used by effectors to subvert the human host through blocking, blunting, or subverting immune mechanisms. This capacity allows bacteria to control host cell function to support pathogen survival, replication and dissemination to other hosts. In addition, we highlight that knowledge of effector protein activity may be used to develop chemical inhibitors as a new approach to treat bacterial infections.
Collapse
Affiliation(s)
- Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton 3168, Australia.
| |
Collapse
|
102
|
Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. Structure and Function of Viral Deubiquitinating Enzymes. J Mol Biol 2017; 429:3441-3470. [PMID: 28625850 PMCID: PMC7094624 DOI: 10.1016/j.jmb.2017.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/12/2023]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication.
Collapse
Affiliation(s)
- Ben A Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Robert C M Knaap
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada.
| |
Collapse
|
103
|
Herhaus L, Dikic I. Regulation of Salmonella-host cell interactions via the ubiquitin system. Int J Med Microbiol 2017; 308:176-184. [PMID: 29126744 DOI: 10.1016/j.ijmm.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 01/29/2023] Open
Abstract
Salmonella infections cause acute intestinal inflammatory responses through the action of bacterial effector proteins secreted into the host cytosol. These proteins promote Salmonella survival, amongst others, by deregulating the host innate immune system and interfering with host cell ubiquitylation signaling. This review describes the recent findings of dynamic changes of the host ubiquitinome during pathogen infection, how bacterial effector proteins modulate the host ubiquitin system and how the host innate immune system counteracts Salmonella invasion by using these pathogens as signaling platforms to initiate immune responses.
Collapse
Affiliation(s)
- Lina Herhaus
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
104
|
Zhang ZM, Ma KW, Gao L, Hu Z, Schwizer S, Ma W, Song J. Mechanism of host substrate acetylation by a YopJ family effector. NATURE PLANTS 2017; 3:17115. [PMID: 28737762 PMCID: PMC5546152 DOI: 10.1038/nplants.2017.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/26/2017] [Indexed: 05/22/2023]
Abstract
The Yersinia outer protein J (YopJ) family of bacterial effectors depends on a novel acetyltransferase domain to acetylate signalling proteins from plant and animal hosts. However, the underlying mechanism is unclear. Here, we report the crystal structures of PopP2, a YopJ effector produced by the plant pathogen Ralstonia solanacearum, in complex with inositol hexaphosphate (InsP6), acetyl-coenzyme A (AcCoA) and/or substrate Resistance to Ralstonia solanacearum 1 (RRS1-R)WRKY. PopP2 recognizes the WRKYGQK motif of RRS1-RWRKY to position a targeted lysine in the active site for acetylation. Importantly, the PopP2-RRS1-RWRKY association is allosterically regulated by InsP6 binding, suggesting a previously unidentified role of the eukaryote-specific cofactor in substrate interaction. Furthermore, we provide evidence for the reaction intermediate of PopP2-mediated acetylation, an acetyl-cysteine covalent adduct, lending direct support to the 'ping-pong'-like catalytic mechanism proposed for YopJ effectors. Our study provides critical mechanistic insights into the virulence activity of YopJ class of acetyltransferases.
Collapse
Affiliation(s)
- Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | - Ka-Wai Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | - Linfeng Gao
- Environmental Toxicology Program, University of California, Riverside, California 92521, USA
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Anhui 230031, China
| | - Simon Schwizer
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
- Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, California 92521, USA
- Environmental Toxicology Program, University of California, Riverside, California 92521, USA
| |
Collapse
|
105
|
Affiliation(s)
- Tycho E.T. Mevissen
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - David Komander
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
106
|
Lin YH, Machner MP. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 2017; 130:1985-1996. [PMID: 28476939 PMCID: PMC5482977 DOI: 10.1242/jcs.188482] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
107
|
Fischer A, Harrison KS, Ramirez Y, Auer D, Chowdhury SR, Prusty BK, Sauer F, Dimond Z, Kisker C, Hefty PS, Rudel T. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. eLife 2017; 6. [PMID: 28347402 PMCID: PMC5370187 DOI: 10.7554/elife.21465] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/09/2017] [Indexed: 12/25/2022] Open
Abstract
Obligate intracellular Chlamydia trachomatis replicate in a membrane-bound vacuole called inclusion, which serves as a signaling interface with the host cell. Here, we show that the chlamydial deubiquitinating enzyme (Cdu) 1 localizes in the inclusion membrane and faces the cytosol with the active deubiquitinating enzyme domain. The structure of this domain revealed high similarity to mammalian deubiquitinases with a unique α-helix close to the substrate-binding pocket. We identified the apoptosis regulator Mcl-1 as a target that interacts with Cdu1 and is stabilized by deubiquitination at the chlamydial inclusion. A chlamydial transposon insertion mutant in the Cdu1-encoding gene exhibited increased Mcl-1 and inclusion ubiquitination and reduced Mcl-1 stabilization. Additionally, inactivation of Cdu1 led to increased sensitivity of C. trachomatis for IFNγ and impaired infection in mice. Thus, the chlamydial inclusion serves as an enriched site for a deubiquitinating activity exerting a function in selective stabilization of host proteins and protection from host defense.
Collapse
Affiliation(s)
- Annette Fischer
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kelly S Harrison
- Department of Molecular Biosciences, University of Kansas, lawrence, United States
| | - Yesid Ramirez
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Daniela Auer
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bhupesh K Prusty
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Zoe Dimond
- Department of Molecular Biosciences, University of Kansas, lawrence, United States
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, lawrence, United States
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
108
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
109
|
Hewings DS, Flygare JA, Bogyo M, Wertz IE. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. FEBS J 2017; 284:1555-1576. [PMID: 28196299 PMCID: PMC7163952 DOI: 10.1111/febs.14039] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/21/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
The reversible post‐translational modification of proteins by ubiquitin and ubiquitin‐like proteins regulates almost all cellular processes, by affecting protein degradation, localization, and complex formation. Deubiquitinases (DUBs) are proteases that remove ubiquitin modifications or cleave ubiquitin chains. Most DUBs are cysteine proteases, which makes them well suited for study by activity‐based probes. These DUB probes report on deubiquitinase activity by reacting covalently with the active site in an enzyme‐catalyzed manner. They have proven to be important tools to study DUB selectivity and proteolytic activity in different settings, to identify novel DUBs, and to characterize deubiquitinase inhibitors. Inspired by the efficacy of activity‐based probes for DUBs, several groups have recently reported probes for the ubiquitin conjugation machinery (E1, E2, and E3 enzymes). Many of these enzymes, while not proteases, also posses active site cysteine residues and can be targeted by covalent probes. In this review, we will discuss how features of the probe (cysteine‐reactive group, recognition element, and reporter tag) affect reactivity and suitability for certain experimental applications. We will also review the diverse applications of the current probes, and discuss the need for new probe types to study emerging aspects of ubiquitin biology.
Collapse
Affiliation(s)
- David S Hewings
- Discovery Chemistry, Genentech, South San Francisco, CA, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA.,Department of Pathology, Stanford University School of Medicine, CA, USA
| | - John A Flygare
- Discovery Chemistry, Genentech, South San Francisco, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, CA, USA
| | - Ingrid E Wertz
- Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
110
|
SseK1 and SseK3 Type III Secretion System Effectors Inhibit NF-κB Signaling and Necroptotic Cell Death in Salmonella-Infected Macrophages. Infect Immun 2017; 85:IAI.00010-17. [PMID: 28069818 PMCID: PMC5328493 DOI: 10.1128/iai.00010-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/25/2022] Open
Abstract
Within host cells such as macrophages, Salmonella enterica translocates virulence (effector) proteins across its vacuolar membrane via the SPI-2 type III secretion system. Previously, it was shown that when expressed ectopically, the effectors SseK1 and SseK3 inhibit tumor necrosis factor alpha (TNF-α)-induced NF-κB activation. In this study, we show that ectopically expressed SseK1, SseK2, and SseK3 suppress TNF-α-induced, but not Toll-like receptor 4- or interleukin-induced, NF-κB activation. Inhibition required a DXD motif in SseK1 and SseK3, which is essential for the transfer of N-acetylglucosamine to arginine residues (arginine-GlcNAcylation). During macrophage infection, SseK1 and SseK3 inhibited NF-κB activity in an additive manner. SseK3-mediated inhibition of NF-κB activation did not require the only known host-binding partner of this effector, the E3-ubiquitin ligase TRIM32. SseK proteins also inhibited TNF-α-induced cell death during macrophage infection. Despite SseK1 and SseK3 inhibiting TNF-α-induced apoptosis upon ectopic expression in HeLa cells, the percentage of infected macrophages undergoing apoptosis was SseK independent. Instead, SseK proteins inhibited necroptotic cell death during macrophage infection. SseK1 and SseK3 caused GlcNAcylation of different proteins in infected macrophages, suggesting that these effectors have distinct substrate specificities. Indeed, SseK1 caused the GlcNAcylation of the death domain-containing proteins FADD and TRADD, whereas SseK3 expression resulted in weak GlcNAcylation of TRADD but not FADD. Additional, as-yet-unidentified substrates are likely to explain the additive phenotype of a Salmonella strain lacking both SseK1 and SseK3.
Collapse
|
111
|
Lehmann G, Udasin RG, Livneh I, Ciechanover A. Identification of UBact, a ubiquitin-like protein, along with other homologous components of a conjugation system and the proteasome in different gram-negative bacteria. Biochem Biophys Res Commun 2017; 483:946-950. [PMID: 28087277 DOI: 10.1016/j.bbrc.2017.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Systems analogous to the eukaryotic ubiquitin-proteasome system have been previously identified in Archaea, and Actinobacteria (gram-positive), but not in gram-negative bacteria. Here, we report the bioinformatic identification of a novel prokaryotic ubiquitin-like protein, which we name UBact. The phyletic distribution of UBact covers at least five gram-negative bacterial phyla, including Nitrospirae, Armatimonadetes, Verrucomicroba, Nitrospinae, and Planctomycetes. Additionally, it was identified in seven candidate (uncultured) phyla and one Archaeon. UBact might have been overlooked because only few species in the phyla where it is found have been sequenced. In most of the species where we identified UBact, its neighbors in the genome code for proteins homologous to those involved in conjugation and/or degradation of Pup and Pup-tagged substrates. Among them are PafA-, Dop-, Mpa- and proteasome-homologous proteins. This gene association as well as UBact's size and conserved C-terminal G[E/Q] motif, strongly suggest that UBact is used as a conjugatable tag for degradation. With regard to its C-terminus, UBact differs from ubiquitin and most ubiquitin-like proteins (including the mycobacterial Pup) in that it lacks the characteristic C-terminal di-glycine motif, and it usually ends with the sequence R[T/S]G[E/Q]. The phyla that contain UBact are thought to have diverged over 3000 million years ago, indicating that either this ubiquitin-like conjugation system evolved early in evolution or that its occurrence in distant gram-negative phyla is due to multiple instances of horizontal gene transfer.
Collapse
Affiliation(s)
- Gilad Lehmann
- The Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronald G Udasin
- The Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ido Livneh
- The Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- The Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
112
|
Grabe GJ, Zhang Y, Przydacz M, Rolhion N, Yang Y, Pruneda JN, Komander D, Holden DW, Hare SA. The Salmonella Effector SpvD Is a Cysteine Hydrolase with a Serovar-specific Polymorphism Influencing Catalytic Activity, Suppression of Immune Responses, and Bacterial Virulence. J Biol Chem 2016; 291:25853-25863. [PMID: 27789710 PMCID: PMC5207060 DOI: 10.1074/jbc.m116.752782] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/26/2016] [Indexed: 12/02/2022] Open
Abstract
Many bacterial pathogens secrete virulence (effector) proteins that interfere with immune signaling in their host. SpvD is a Salmonella enterica effector protein that we previously demonstrated to negatively regulate the NF-κB signaling pathway and promote virulence of S. enterica serovar Typhimurium in mice. To shed light on the mechanistic basis for these observations, we determined the crystal structure of SpvD and show that it adopts a papain-like fold with a characteristic cysteine-histidine-aspartate catalytic triad comprising Cys-73, His-162, and Asp-182. SpvD possessed an in vitro deconjugative activity on aminoluciferin-linked peptide and protein substrates in vitro A C73A mutation abolished SpvD activity, demonstrating that an intact catalytic triad is required for its function. Taken together, these results strongly suggest that SpvD is a cysteine protease. The amino acid sequence of SpvD is highly conserved across different S. enterica serovars, but residue 161, located close to the catalytic triad, is variable, with serovar Typhimurium SpvD having an arginine and serovar Enteritidis a glycine at this position. This variation affected hydrolytic activity of the enzyme on artificial substrates and can be explained by substrate accessibility to the active site. Interestingly, the SpvDG161 variant more potently inhibited NF-κB-mediated immune responses in cells in vitro and increased virulence of serovar Typhimurium in mice. In summary, our results explain the biochemical basis for the effect of virulence protein SpvD and demonstrate that a single amino acid polymorphism can affect the overall virulence of a bacterial pathogen in its host.
Collapse
Affiliation(s)
| | - Yue Zhang
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Michal Przydacz
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | | | - Yi Yang
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| | - Jonathan N Pruneda
- the Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom
| | - David Komander
- the Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom
| | | | - Stephen A Hare
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom and
| |
Collapse
|
113
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|