101
|
Abstract
DNA-protein crosslinks (DPCs) are a specific type of DNA lesion consisting of a protein covalently and irreversibly bound to DNA, which arise after exposure to physical and chemical crosslinking agents. DPCs can be bulky and thereby pose a barrier to DNA replication and transcription. The persistence of DPCs during S phase causes DNA replication stress and genome instability. The toxicity of DPCs is exploited in cancer therapy: many common chemotherapeutics kill cancer cells by inducing DPC formation. Recent work from several laboratories discovered a specialized repair pathway for DPCs, namely DPC proteolysis (DPCP) repair. DPCP repair is carried out by replication-coupled DNA-dependent metalloproteases: Wss1 in yeast and SPRTN in metazoans. Mutations in SPRTN cause premature ageing and liver cancer in humans and mice; thus, defective DPC repair has great clinical ramifications. In the present review, we will revise the current knowledge on the mechanisms of DPCP repair and on the regulation of DPC protease activity, while highlighting the most significant unresolved questions in the field. Finally, we will discuss the impact of faulty DPC repair on disease and cancer therapy.
Collapse
|
102
|
Hossain MA, Lin Y, Yan S. Single-Strand Break End Resection in Genome Integrity: Mechanism and Regulation by APE2. Int J Mol Sci 2018; 19:ijms19082389. [PMID: 30110897 PMCID: PMC6122073 DOI: 10.3390/ijms19082389] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/07/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022] Open
Abstract
DNA single-strand breaks (SSBs) occur more than 10,000 times per mammalian cell each day, representing the most common type of DNA damage. Unrepaired SSBs compromise DNA replication and transcription programs, leading to genome instability. Unrepaired SSBs are associated with diseases such as cancer and neurodegenerative disorders. Although canonical SSB repair pathway is activated to repair most SSBs, it remains unclear whether and how unrepaired SSBs are sensed and signaled. In this review, we propose a new concept of SSB end resection for genome integrity. We propose a four-step mechanism of SSB end resection: SSB end sensing and processing, as well as initiation, continuation, and termination of SSB end resection. We also compare different mechanisms of SSB end resection and DSB end resection in DNA repair and DNA damage response (DDR) pathways. We further discuss how SSB end resection contributes to SSB signaling and repair. We focus on the mechanism and regulation by APE2 in SSB end resection in genome integrity. Finally, we identify areas of future study that may help us gain further mechanistic insight into the process of SSB end resection. Overall, this review provides the first comprehensive perspective on SSB end resection in genome integrity.
Collapse
Affiliation(s)
- Md Akram Hossain
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
103
|
Paull TT. 20 Years of Mre11 Biology: No End in Sight. Mol Cell 2018; 71:419-427. [PMID: 30057197 DOI: 10.1016/j.molcel.2018.06.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
The Mre11 nuclease has been the subject of intensive investigation for the past 20 years because of the central role that Mre11/Rad50 complexes play in genome maintenance. The last two decades of work on this complex has led to a much deeper understanding of the structure, biochemical activities, and regulation of Mre11/Rad50 complexes from archaea, bacteria, and eukaryotic cells. This review will discuss some of the important findings over recent years that have illuminated roles for the Mre11 nuclease in these different contexts as well as the insights from structural biology that have helped us to understand its mechanisms of action.
Collapse
Affiliation(s)
- Tanya T Paull
- Howard Hughes Medical Institute; Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
104
|
Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018; 87:263-294. [PMID: 29709199 PMCID: PMC6076887 DOI: 10.1146/annurev-biochem-062917-012415] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Collapse
Affiliation(s)
- Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
105
|
Kweon SM, Zhu B, Chen Y, Aravind L, Xu SY, Feldman DE. Erasure of Tet-Oxidized 5-Methylcytosine by a SRAP Nuclease. Cell Rep 2018; 21:482-494. [PMID: 29020633 DOI: 10.1016/j.celrep.2017.09.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/15/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
Enzymatic oxidation of 5-methylcytosine (5mC) in DNA by the Tet dioxygenases reprograms genome function in embryogenesis and postnatal development. Tet-oxidized derivatives of 5mC such as 5-hydroxymethylcytosine (5hmC) act as transient intermediates in DNA demethylation or persist as durable marks, yet how these alternative fates are specified at individual CpGs is not understood. Here, we report that the SOS response-associated peptidase (SRAP) domain protein Srap1, the mammalian ortholog of an ancient protein superfamily associated with DNA damage response operons in bacteria, binds to Tet-oxidized forms of 5mC in DNA and catalyzes turnover of these bases to unmodified cytosine by an autopeptidase-coupled nuclease. Biallelic inactivation of murine Srap1 causes embryonic sublethality associated with widespread accumulation of ectopic 5hmC. These findings establish a function for a class of DNA base modification-selective nucleases and position Srap1 as a determinant of 5mC demethylation trajectories during mammalian embryonic development.
Collapse
Affiliation(s)
- Soo-Mi Kweon
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Bing Zhu
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Yibu Chen
- Bioinformatics Service, Department of Health Sciences Libraries, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | - Shuang-Yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Douglas E Feldman
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|
106
|
McDevitt S, Rusanov T, Kent T, Chandramouly G, Pomerantz RT. How RNA transcripts coordinate DNA recombination and repair. Nat Commun 2018; 9:1091. [PMID: 29545568 PMCID: PMC5854605 DOI: 10.1038/s41467-018-03483-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Genetic studies in yeast indicate that RNA transcripts facilitate homology-directed DNA repair in a manner that is dependent on RAD52. The molecular basis for so-called RNA−DNA repair, however, remains unknown. Using reconstitution assays, we demonstrate that RAD52 directly cooperates with RNA as a sequence-directed ribonucleoprotein complex to promote two related modes of RNA−DNA repair. In a RNA-bridging mechanism, RAD52 assembles recombinant RNA−DNA hybrids that coordinate synapsis and ligation of homologous DNA breaks. In an RNA-templated mechanism, RAD52-mediated RNA−DNA hybrids enable reverse transcription-dependent RNA-to-DNA sequence transfer at DNA breaks that licenses subsequent DNA recombination. Notably, we show that both mechanisms of RNA−DNA repair are promoted by transcription of a homologous DNA template in trans. In summary, these data elucidate how RNA transcripts cooperate with RAD52 to coordinate homology-directed DNA recombination and repair in the absence of a DNA donor, and demonstrate a direct role for transcription in RNA−DNA repair. Homologous recombination (HR) typically uses DNA as a donor template to accurately repair DNA breaks. Here, the authors elucidate two mechanisms by which RAD52 uses RNA as a template for HR: one involving RNA-mediated synapsis of a homologous DNA break, and the other involving reverse transcriptase dependent RNA-to-DNA sequence transfer at DNA breaks.
Collapse
Affiliation(s)
- Shane McDevitt
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Timur Rusanov
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tatiana Kent
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Gurushankar Chandramouly
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Richard T Pomerantz
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
107
|
Moiani D, Ronato DA, Brosey CA, Arvai AS, Syed A, Masson JY, Petricci E, Tainer JA. Targeting Allostery with Avatars to Design Inhibitors Assessed by Cell Activity: Dissecting MRE11 Endo- and Exonuclease Activities. Methods Enzymol 2018. [PMID: 29523233 DOI: 10.1016/bs.mie.2017.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.
Collapse
Affiliation(s)
- Davide Moiani
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | - Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Andrew S Arvai
- The Scripps Research Institute, La Jolla, CA, United States
| | - Aleem Syed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Québec City, QC, Canada; Laval University Cancer Research Center, Québec City, QC, Canada
| | | | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
108
|
Abstract
Accurate repair of DNA double-strand breaks (DSBs) is carried out by homologous recombination. In order to repair DNA breaks by the recombination pathway, the 5'-terminated DNA strand at DSB sites must be first nucleolytically processed to produce 3'-overhang. The process is termed DNA end resection and involves the interplay of several nuclease complexes. DNA end resection commits DSB repair to the recombination pathway including a process termed single-strand annealing, as resected DNA ends are generally nonligatable by the competing nonhomologous end-joining machinery. Biochemical reconstitution experiments provided invaluable mechanistic insights into the DNA end resection pathways. In this chapter, we describe preparation procedures of key proteins involved in DNA end resection in human cells, including the MRE11-RAD50-NBS1 complex, phosphorylated variant of CtIP, the DNA2 nuclease-helicase with its helicase partners Bloom (BLM) or Werner (WRN), as well as the single-stranded DNA-binding protein replication protein A. The availability of recombinant DNA end resection factors will help to further elucidate resection mechanisms and regulatory processes that may involve novel protein partners and posttranslational modifications.
Collapse
Affiliation(s)
- Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| |
Collapse
|
109
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
110
|
Abstract
DNA end resection initiates the largely accurate repair of DNA double-strand breaks (DSBs) by homologous recombination. Specifically, recombination requires the formation of 3' overhangs at DSB sites, which is carried out by nucleases that specifically degrade 5'-terminated DNA. In most cases, DNA end resection is a two-step process, comprising of initial short-range followed by more processive long-range resection. In this chapter, we describe selected assays that reconstitute both the short- and long-range pathways. First, we define methods to study the exonuclease and endonuclease activities of the MRE11-RAD50-NBS1 (MRN) complex in conjunction with phosphorylated cofactor CtIP. This reaction is particularly important to initiate processing of DNA breaks and to recruit components belonging to the subsequent long-range pathway. Next, we describe assays that reconstitute the concerted reactions of Bloom (BLM) or Werner (WRN) helicases that function together with the DNA2 nuclease-helicase, and which are as a complex capable to resect DNA of kilobases in length. The reconstituted reactions allow us to understand how the resection pathways function at the molecular level. The assays will be invaluable to define regulatory mechanisms and to identify inhibitory compounds, which may be valuable in cancer therapy.
Collapse
Affiliation(s)
- Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| |
Collapse
|
111
|
Teklemariam TA, Rivera OD, Nelson SW. Kinetic Analysis of the Exonuclease Activity of the Bacteriophage T4 Mre11–Rad50 Complex. Methods Enzymol 2018; 600:135-156. [DOI: 10.1016/bs.mie.2017.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
112
|
Genetic Separation of Sae2 Nuclease Activity from Mre11 Nuclease Functions in Budding Yeast. Mol Cell Biol 2017; 37:MCB.00156-17. [PMID: 28970327 DOI: 10.1128/mcb.00156-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/25/2017] [Indexed: 02/01/2023] Open
Abstract
Sae2 promotes the repair of DNA double-strand breaks in Saccharomyces cerevisiae The role of Sae2 is linked to the Mre11/Rad50/Xrs2 (MRX) complex, which is important for the processing of DNA ends into single-stranded substrates for homologous recombination. Sae2 has intrinsic endonuclease activity, but the role of this activity has not been assessed independently from its functions in promoting Mre11 nuclease activity. Here we identify and characterize separation-of-function mutants that lack intrinsic nuclease activity or the ability to promote Mre11 endonucleolytic activity. We find that the ability of Sae2 to promote MRX nuclease functions is important for DNA damage survival, particularly in the absence of Dna2 nuclease activity. In contrast, Sae2 nuclease activity is essential for DNA repair when the Mre11 nuclease is compromised. Resection of DNA breaks is impaired when either Sae2 activity is blocked, suggesting roles for both Mre11 and Sae2 nuclease activities in promoting the processing of DNA ends in vivo Finally, both activities of Sae2 are important for sporulation, indicating that the processing of meiotic breaks requires both Mre11 and Sae2 nuclease activities.
Collapse
|
113
|
Paudyal SC, Li S, Yan H, Hunter T, You Z. Dna2 initiates resection at clean DNA double-strand breaks. Nucleic Acids Res 2017; 45:11766-11781. [PMID: 28981724 PMCID: PMC5714177 DOI: 10.1093/nar/gkx830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleolytic resection of DNA double-strand breaks (DSBs) is essential for both checkpoint activation and homology-mediated repair; however, the precise mechanism of resection, especially the initiation step, remains incompletely understood. Resection of blocked ends with protein or chemical adducts is believed to be initiated by the MRN complex in conjunction with CtIP through internal cleavage of the 5' strand DNA. However, it is not clear whether resection of clean DSBs with free ends is also initiated by the same mechanism. Using the Xenopus nuclear extract system, here we show that the Dna2 nuclease directly initiates the resection of clean DSBs by cleaving the 5' strand DNA ∼10-20 nucleotides away from the ends. In the absence of Dna2, MRN together with CtIP mediate an alternative resection initiation pathway where the nuclease activity of MRN apparently directly cleaves the 5' strand DNA at more distal sites. MRN also facilitates resection initiation by promoting the recruitment of Dna2 and CtIP to the DNA substrate. The ssDNA-binding protein RPA promotes both Dna2- and CtIP-MRN-dependent resection initiation, but a RPA mutant can distinguish between these pathways. Our results strongly suggest that resection of blocked and clean DSBs is initiated via distinct mechanisms.
Collapse
Affiliation(s)
- Sharad C. Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Shan Li
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Hong Yan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tony Hunter
- Salk Institute, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
114
|
Kumar V, Fleming T, Terjung S, Gorzelanny C, Gebhardt C, Agrawal R, Mall MA, Ranzinger J, Zeier M, Madhusudhan T, Ranjan S, Isermann B, Liesz A, Deshpande D, Häring HU, Biswas SK, Reynolds PR, Hammes HP, Peperkok R, Angel P, Herzig S, Nawroth PP. Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair. Nucleic Acids Res 2017; 45:10595-10613. [PMID: 28977635 PMCID: PMC5737477 DOI: 10.1093/nar/gkx705] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Abstract
The integrity of genome is a prerequisite for healthy life. Indeed, defects in DNA repair have been associated with several human diseases, including tissue-fibrosis, neurodegeneration and cancer. Despite decades of extensive research, the spatio-mechanical processes of double-strand break (DSB)-repair, especially the auxiliary factor(s) that can stimulate accurate and timely repair, have remained elusive. Here, we report an ATM-kinase dependent, unforeseen function of the nuclear isoform of the Receptor for Advanced Glycation End-products (nRAGE) in DSB-repair. RAGE is phosphorylated at Serine376 and Serine389 by the ATM kinase and is recruited to the site of DNA-DSBs via an early DNA damage response. nRAGE preferentially co-localized with the MRE11 nuclease subunit of the MRN complex and orchestrates its nucleolytic activity to the ATR kinase signaling. This promotes efficient RPA2S4-S8 and CHK1S345 phosphorylation and thereby prevents cellular senescence, IPF and carcinoma formation. Accordingly, loss of RAGE causatively linked to perpetual DSBs signaling, cellular senescence and fibrosis. Importantly, in a mouse model of idiopathic pulmonary fibrosis (RAGE−/−), reconstitution of RAGE efficiently restored DSB-repair and reversed pathological anomalies. Collectively, this study identifies nRAGE as a master regulator of DSB-repair, the absence of which orchestrates persistent DSB signaling to senescence, tissue-fibrosis and oncogenesis.
Collapse
Affiliation(s)
- Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany
| | - Stefan Terjung
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Christian Gorzelanny
- Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoffer Gebhardt
- Division of Dermatooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, INF 156, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, INF 156, Heidelberg, Germany
| | - Julia Ranzinger
- Department of Nephrology, University of Heidelberg, Heidelberg, INF 410, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, INF 410, Heidelberg, Germany
| | - Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Satish Ranjan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD) University Hospital München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Divija Deshpande
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany.,Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - Subrata K Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Peperkok
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control DKFZ DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Herzig
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany.,Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Helmholtz-Zentrum, München, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz-Zentrum, München, Germany
| |
Collapse
|
115
|
Yamada S, Kim S, Tischfield SE, Jasin M, Lange J, Keeney S. Genomic and chromatin features shaping meiotic double-strand break formation and repair in mice. Cell Cycle 2017; 16:1870-1884. [PMID: 28820351 PMCID: PMC5638367 DOI: 10.1080/15384101.2017.1361065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 11/12/2022] Open
Abstract
The SPO11-generated DNA double-strand breaks (DSBs) that initiate meiotic recombination occur non-randomly across genomes, but mechanisms shaping their distribution and repair remain incompletely understood. Here, we expand on recent studies of nucleotide-resolution DSB maps in mouse spermatocytes. We find that trimethylation of histone H3 lysine 36 around DSB hotspots is highly correlated, both spatially and quantitatively, with trimethylation of H3 lysine 4, consistent with coordinated formation and action of both PRDM9-dependent histone modifications. In contrast, the DSB-responsive kinase ATM contributes independently of PRDM9 to controlling hotspot activity, and combined action of ATM and PRDM9 can explain nearly two-thirds of the variation in DSB frequency between hotspots. DSBs were modestly underrepresented in most repetitive sequences such as segmental duplications and transposons. Nonetheless, numerous DSBs form within repetitive sequences in each meiosis and some classes of repeats are preferentially targeted. Implications of these findings are discussed for evolution of PRDM9 and its role in hybrid strain sterility in mice. Finally, we document the relationship between mouse strain-specific DNA sequence variants within PRDM9 recognition motifs and attendant differences in recombination outcomes. Our results provide further insights into the complex web of factors that influence meiotic recombination patterns.
Collapse
Affiliation(s)
- Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seoyoung Kim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sam E. Tischfield
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
116
|
Myler LR, Gallardo IF, Soniat MM, Deshpande RA, Gonzalez XB, Kim Y, Paull TT, Finkelstein IJ. Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair. Mol Cell 2017; 67:891-898.e4. [PMID: 28867292 PMCID: PMC5609712 DOI: 10.1016/j.molcel.2017.08.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/07/2017] [Accepted: 08/04/2017] [Indexed: 11/21/2022]
Abstract
DNA double-strand break (DSB) repair is essential for maintaining our genomes. Mre11-Rad50-Nbs1 (MRN) and Ku70-Ku80 (Ku) direct distinct DSB repair pathways, but the interplay between these complexes at a DSB remains unclear. Here, we use high-throughput single-molecule microscopy to show that MRN searches for free DNA ends by one-dimensional facilitated diffusion, even on nucleosome-coated DNA. Rad50 binds homoduplex DNA and promotes facilitated diffusion, whereas Mre11 is required for DNA end recognition and nuclease activities. MRN gains access to occluded DNA ends by removing Ku or other DNA adducts via an Mre11-dependent nucleolytic reaction. Next, MRN loads exonuclease 1 (Exo1) onto the free DNA ends to initiate DNA resection. In the presence of replication protein A (RPA), MRN acts as a processivity factor for Exo1, retaining the exonuclease on DNA for long-range resection. Our results provide a mechanism for how MRN promotes homologous recombination on nucleosome-coated DNA.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ignacio F Gallardo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael M Soniat
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rajashree A Deshpande
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xenia B Gonzalez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yoori Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
117
|
Abstract
Covalent DNA-protein crosslinks (DPCs, also known as protein adducts) of topoisomerases and other proteins with DNA are highly toxic DNA lesions. Of note, chemical agents that induce DPCs include widely used classes of chemotherapeutics. Their bulkiness blocks virtually every chromatin-based process and makes them intractable for repair by canonical repair pathways. Distinct DPC repair pathways employ unique points of attack and are crucial for the maintenance of genome stability. Tyrosyl-DNA phosphodiesterases (TDPs) directly hydrolyse the covalent linkage between protein and DNA. The MRE11-RAD50-NBS1 (MRN) nuclease complex targets the DNA component of DPCs, excising the fragment affected by the lesion, whereas proteases of the spartan (SPRTN)/weak suppressor of SMT3 protein 1 (Wss1) family target the protein component. Loss of these pathways renders cells sensitive to DPC-inducing chemotherapeutics, and DPC repair pathways are thus attractive targets for combination cancer therapy.
Collapse
Affiliation(s)
- Julian Stingele
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
118
|
von Morgen P, Burdova K, Flower TG, O'Reilly NJ, Boulton SJ, Smerdon SJ, Macurek L, Hořejší Z. MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene 2017; 36:4943-4950. [PMID: 28436950 PMCID: PMC5531254 DOI: 10.1038/onc.2017.99] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023]
Abstract
The MRN (MRE11-RAD50-NBS1) complex is essential for repair of DNA double-strand breaks and stalled replication forks. Mutations of the MRN complex subunit MRE11 cause the hereditary cancer-susceptibility disease ataxia-telangiectasia-like disorder (ATLD). Here we show that MRE11 directly interacts with PIH1D1, a subunit of heat-shock protein 90 cochaperone R2TP complex, which is required for the assembly of large protein complexes, such as RNA polymerase II, small nucleolar ribonucleoproteins and mammalian target of rapamycin complex 1. The MRE11-PIH1D1 interaction is dependent on casein kinase 2 (CK2) phosphorylation of two acidic sequences within the MRE11 C terminus containing serines 558/561 and 688/689. Conversely, the PIH1D1 phospho-binding domain PIH-N is required for association with MRE11 phosphorylated by CK2. Consistent with these findings, depletion of PIH1D1 resulted in MRE11 destabilization and affected DNA-damage repair processes dependent on MRE11. Additionally, mutations of serines 688/689, which abolish PIH1D1 binding, also resulted in decreased MRE11 stability. As depletion of R2TP frequently leads to instability of its substrates and as truncation mutation of MRE11 lacking serines 688/689 leads to decreased levels of the MRN complex both in ATLD patients and an ATLD mouse model, our results suggest that the MRN complex is a novel R2TP complex substrate and that their interaction is regulated by CK2 phosphorylation.
Collapse
Affiliation(s)
- P von Morgen
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - K Burdova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - T G Flower
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - N J O'Reilly
- Peptide Chemistry, The Francis Crick Institute, London, UK
| | - S J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - S J Smerdon
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, London,UK
| | - L Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Z Hořejší
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Centre, Charterhouse Square, London, UK
| |
Collapse
|
119
|
Spehalski E, Capper KM, Smith CJ, Morgan MJ, Dinkelmann M, Buis J, Sekiguchi JM, Ferguson DO. MRE11 Promotes Tumorigenesis by Facilitating Resistance to Oncogene-Induced Replication Stress. Cancer Res 2017; 77:5327-5338. [PMID: 28819025 DOI: 10.1158/0008-5472.can-17-1355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
Hypomorphic mutations in the genes encoding the MRE11/RAD50/NBS1 (MRN) DNA repair complex lead to cancer-prone syndromes. MRN binds DNA double-strand breaks, where it functions in repair and triggers cell-cycle checkpoints via activation of the ataxia-telangiectasia mutated kinase. To gain understanding of MRN in cancer, we engineered mice with B lymphocytes lacking MRN, or harboring MRN in which MRE11 lacks nuclease activities. Both forms of MRN deficiency led to hallmarks of cancer, including oncogenic translocations involving c-Myc and the immunoglobulin locus. These preneoplastic B lymphocytes did not progress to detectable B lineage lymphoma, even in the absence of p53. Moreover, Mre11 deficiencies prevented tumorigenesis in a mouse model strongly predisposed to spontaneous B-cell lymphomas. Our findings indicate that MRN cannot be considered a standard tumor suppressor and instead imply that nuclease activities of MRE11 are required for oncogenesis. Inhibition of MRE11 nuclease activity increased DNA damage and selectively induced apoptosis in cells overexpressing oncogenes, suggesting MRE11 serves an important role in countering oncogene-induced replication stress. Thus, MRE11 may offer a target for cancer therapeutic development. More broadly, our work supports the idea that subtle enhancements of endogenous genome instability can exceed the tolerance of cancer cells and be exploited for therapeutic ends. Cancer Res; 77(19); 5327-38. ©2017 AACR.
Collapse
Affiliation(s)
- Elizabeth Spehalski
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan.,Molecular and Cellular Pathology Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Kayla M Capper
- Cancer Biology Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Cheryl J Smith
- Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Mary J Morgan
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan.,Molecular and Cellular Pathology Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria Dinkelmann
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeffrey Buis
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - JoAnn M Sekiguchi
- Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan. .,Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, Michigan
| | - David O Ferguson
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
120
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
121
|
Abstract
Multiple DNA repair pathways maintain genome stability and ensure that DNA remains essentially unchanged over the life of a cell. Various human diseases occur if DNA repair is compromised, and most of these impact the nervous system, in some cases exclusively. However, it is often unclear what specific endogenous damage underpins disease pathology. Generally, the types of causative DNA damage are associated with replication, transcription, or oxidative metabolism; other direct sources of endogenous lesions may arise from aberrant topoisomerase activity or ribonucleotide incorporation into DNA. This review focuses on the etiology of DNA damage in the nervous system and the genome stability pathways that prevent human neurologic disease.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
122
|
Deshpande RA, Lee JH, Paull TT. Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucleic Acids Res 2017; 45:5255-5268. [PMID: 28369545 PMCID: PMC5435944 DOI: 10.1093/nar/gkx173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023] Open
Abstract
The Mre11-Rad50-Nbs1(Xrs2) (MRN/X) complex is critical for the repair and signaling of DNA double strand breaks. The catalytic core of MRN/X comprised of the Mre11 nuclease and Rad50 adenosine triphosphatase (ATPase) active sites dimerizes through association between the Rad50 ATPase catalytic domains and undergoes extensive conformational changes upon ATP binding. This ATP-bound 'closed' state promotes binding to DNA, tethering DNA ends and ATM activation, but prevents nucleolytic processing of DNA ends, while ATP hydrolysis is essential for Mre11 endonuclease activity at blocked DNA ends. Here we investigate the regulation of ATP hydrolysis as well as the interdependence of the two functional active sites. We find that double-stranded DNA stimulates ATP hydrolysis by hMRN over ∼20-fold in an end-dependent manner. Using catalytic site mutants to create Rad50 dimers with only one functional ATPase site, we find that both ATPase sites are required for the stimulation by DNA. MRN-mediated endonucleolytic cleavage of DNA at sites of protein adducts requires ATP hydrolysis at both sites, as does the stimulation of ATM kinase activity. These observations suggest that symmetrical engagement of the Rad50 catalytic head domains with ATP bound at both sites is important for MRN functions in eukaryotic cells.
Collapse
Affiliation(s)
- Rajashree A. Deshpande
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T. Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
123
|
Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 2017; 18:495-506. [PMID: 28512351 DOI: 10.1038/nrm.2017.48] [Citation(s) in RCA: 1129] [Impact Index Per Article: 141.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks (DSBs) are the most dangerous type of DNA damage because they can result in the loss of large chromosomal regions. In all mammalian cells, DSBs that occur throughout the cell cycle are repaired predominantly by the non-homologous DNA end joining (NHEJ) pathway. Defects in NHEJ result in sensitivity to ionizing radiation and the ablation of lymphocytes. The NHEJ pathway utilizes proteins that recognize, resect, polymerize and ligate the DNA ends in a flexible manner. This flexibility permits NHEJ to function on a wide range of DNA-end configurations, with the resulting repaired DNA junctions often containing mutations. In this Review, we discuss the most recent findings regarding the relative involvement of the different NHEJ proteins in the repair of various DNA-end configurations. We also discuss the shunting of DNA-end repair to the auxiliary pathways of alternative end joining (a-EJ) or single-strand annealing (SSA) and the relevance of these different pathways to human disease.
Collapse
|
124
|
Vaz B, Popovic M, Ramadan K. DNA-Protein Crosslink Proteolysis Repair. Trends Biochem Sci 2017; 42:483-495. [PMID: 28416269 DOI: 10.1016/j.tibs.2017.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Proteins that are covalently bound to DNA constitute a specific type of DNA lesion known as DNA-protein crosslinks (DPCs). DPCs represent physical obstacles to the progression of DNA replication. If not repaired, DPCs cause stalling of DNA replication forks that consequently leads to DNA double-strand breaks, the most cytotoxic DNA lesion. Although DPCs are common DNA lesions, the mechanism of DPC repair was unclear until now. Recent work unveiled that DPC repair is orchestrated by proteolysis performed by two distinct metalloproteases, SPARTAN in metazoans and Wss1 in yeast. This review summarizes recent discoveries on two proteases in DNA replication-coupled DPC repair and establishes DPC proteolysis repair as a separate DNA repair pathway for genome stability and protection from accelerated aging and cancer.
Collapse
Affiliation(s)
- Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Marta Popovic
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
125
|
Park YB, Hohl M, Padjasek M, Jeong E, Jin KS, Krężel A, Petrini JHJ, Cho Y. Eukaryotic Rad50 functions as a rod-shaped dimer. Nat Struct Mol Biol 2017; 24:248-257. [PMID: 28134932 PMCID: PMC5625350 DOI: 10.1038/nsmb.3369] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 11/08/2022]
Abstract
The Rad50 hook interface is crucial for assembly and various functions of the Mre11 complex. Previous analyses suggested that Rad50 molecules interact within (intracomplex) or between (intercomplex) dimeric complexes. In this study, we determined the structure of the human Rad50 hook and coiled-coil domains. The data suggest that the predominant structure is the intracomplex, in which the two parallel coiled coils proximal to the hook form a rod shape, and that a novel interface within the coiled-coil domains of Rad50 stabilizes the interaction of Rad50 protomers in the dimeric assembly. In yeast, removal of the coiled-coil interface compromised Tel1 activation without affecting DNA repair, while simultaneous disruption of that interface and the hook phenocopied a null mutation. The results demonstrate that the hook and coiled-coil interfaces coordinately promote intracomplex assembly and define the intracomplex as the functional form of the Mre11 complex.
Collapse
Affiliation(s)
- Young Bong Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Marcel Hohl
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Michał Padjasek
- Laboratory of Chemical Biology, University of Wrocław, Wrocław, Poland
| | - Eunyoung Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea
| | - Artur Krężel
- Laboratory of Chemical Biology, University of Wrocław, Wrocław, Poland
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
126
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
127
|
Hoa NN, Shimizu T, Zhou ZW, Wang ZQ, Deshpande RA, Paull TT, Akter S, Tsuda M, Furuta R, Tsutsui K, Takeda S, Sasanuma H. Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes. Mol Cell 2016; 64:580-592. [PMID: 27814490 DOI: 10.1016/j.molcel.2016.10.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/22/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
Abstract
The Mre11/Rad50/Nbs1 complex initiates double-strand break repair by homologous recombination (HR). Loss of Mre11 or its nuclease activity in mouse cells is known to cause genome aberrations and cellular senescence, although the molecular basis for this phenotype is not clear. To identify the origin of these defects, we characterized Mre11-deficient (MRE11-/-) and nuclease-deficient Mre11 (MRE11-/H129N) chicken DT40 and human lymphoblast cell lines. These cells exhibit increased spontaneous chromosomal DSBs and extreme sensitivity to topoisomerase 2 poisons. The defects in Mre11 compromise the repair of etoposide-induced Top2-DNA covalent complexes, and MRE11-/- and MRE11-/H129N cells accumulate high levels of Top2 covalent conjugates even in the absence of exogenous damage. We demonstrate that both the genome instability and mortality of MRE11-/- and MRE11-/H129N cells are significantly reversed by overexpression of Tdp2, an enzyme that eliminates covalent Top2 conjugates; thus, the essential role of Mre11 nuclease activity is likely to remove these lesions.
Collapse
Affiliation(s)
- Nguyen Ngoc Hoa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsubasa Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Zhong Wei Zhou
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Rajashree A Deshpande
- Howard Hughes Medical Institute, Department of Molecular Biosciences, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryohei Furuta
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|