101
|
Gong B, Shi Q. Identifying S-nitrosylated proteins and unraveling S-nitrosoglutathione reductase-modulated sodic alkaline stress tolerance in Solanum lycopersicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:84-93. [PMID: 31277045 DOI: 10.1016/j.plaphy.2019.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 05/13/2023]
Abstract
S-nitrosylation, regulated by S-nitrosoglutathione reductase (GSNOR), is considered as an important route for nitric oxide (NO)-modulated stress tolerance in plants. However, genetic evidence for the GSNOR-mediated integrated regulation of S-nitrosylation and plant stress response remains elusive until now. In the present study, we used a site-specific nitrosoproteomic approach to identify 334 endogenously S-nitrosylated proteins with 425 S-nitrosylated sites from the wild type (WT) and GSNOR-knockdown (G) tomato plants under both control (C) and sodic alkaline stress (S) conditions. In detail, the results revealed 68, 92, 54 and 56 up-regulated, as well as 10, 36, 14 and 10 down-regulated S-nitrosylated proteins in G-C/WT-C, G-S/WT-S, WT-S/WT-C, and G-S/G-C, which is the first dataset for S-nitrosylated proteins in Solanaceae. These S-nitrosylated proteins are involved in a wide range of various metabolic, cellular and catalytic processes. Based on this data, proteins involving in NO homeostasis control, signaling of Ca2+, ethylene and MAPK, reactive oxygen species (ROS) scavenging, osmotic regulation, as well as energy support pathway have been identified and selected as the key and sensitive targets that were regulated by GSNOR-modulated S-nitrosylation in response to sodic alkaline stress. Taken together, GSNOR is actively involved in the regulation of sodic alkaline stress tolerance by S-nitrosylation. And the present study provided valuable resources and new clues for the study of S-nitrosylation-regulated metabolism in tomato plants.
Collapse
Affiliation(s)
- Biao Gong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
102
|
van Lis R, Brugière S, Baffert C, Couté Y, Nitschke W, Atteia A. Hybrid cluster proteins in a photosynthetic microalga. FEBS J 2019; 287:721-735. [PMID: 31361397 DOI: 10.1111/febs.15025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/21/2019] [Accepted: 07/28/2019] [Indexed: 11/30/2022]
Abstract
Hybrid cluster proteins (HCPs) are metalloproteins characterized by the presence of an iron-sulfur-oxygen cluster. These proteins occur in all three domains of life. In eukaryotes, HCPs have so far been found only in a few anaerobic parasites and photosynthetic microalgae. With respect to all species harboring an HCP, the green microalga Chlamydomonas reinhardtii stands out by the presence of four HCP genes. The study of the gene and protein structures as well as the phylogenetic analyses strongly support a model in which the HCP family in the alga has emerged from a single gene of alpha proteobacterial origin and then expanded by several rounds of duplications. The spectra and redox properties of HCP1 and HCP3, produced heterologously in Escherichia coli, were analyzed by electron paramagnetic resonance spectroscopy on redox-titrated samples. Both proteins contain a [4Fe-4S]-cluster as well as a [4Fe-2O-2S]-hybrid cluster with paramagnetic properties related to those of HCPs from Desulfovibrio species. Immunoblotting experiments combined with mass spectrometry-based proteomics showed that both nitrate and darkness contribute to the strong upregulation of the HCP levels in C. reinhardtii growing under oxic conditions. The link to the nitrate metabolism is discussed in the light of recent data on the potential role of HCP in S-nitrosylation in bacteria.
Collapse
Affiliation(s)
- Robert van Lis
- Aix Marseille Univ, CNRS, Unité de Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France.,LBE, Univ Montpellier, INRA, Narbonne, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA and INSERM, BIG-BGE, Grenoble, France
| | - Carole Baffert
- Aix Marseille Univ, CNRS, Unité de Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA and INSERM, BIG-BGE, Grenoble, France
| | - Wolfgang Nitschke
- Aix Marseille Univ, CNRS, Unité de Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France
| | - Ariane Atteia
- Aix Marseille Univ, CNRS, Unité de Bioénergétique et Ingénierie des Protéines, UMR 7281, Marseille, France.,MARBEC CNRS, IFREMER, IRD, Univ. Montpellier, UMR 9091, Sète, France
| |
Collapse
|
103
|
Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective. Nitric Oxide 2019; 89:1-13. [DOI: 10.1016/j.niox.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
|
104
|
Hagen WR. EPR spectroscopy of putative enzyme intermediates in the NO reductase and the auto‐nitrosylation reaction ofDesulfovibrio vulgarishybrid cluster protein. FEBS Lett 2019; 593:3075-3083. [DOI: 10.1002/1873-3468.13539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Wilfred R. Hagen
- Department of Biotechnology Delft University of Technology Delft the Netherlands
| |
Collapse
|
105
|
Liu W, Song J, Du X, Zhou Y, Li Y, Li R, Lyu L, He Y, Hao J, Ben J, Wang W, Shi H, Wang Q. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater 2019; 91:195-208. [PMID: 31034948 DOI: 10.1016/j.actbio.2019.04.053] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
Brain metastasis (BM) is a leading cause of mortality in patients with non-small cell lung cancer (NSCLC). However, the molecular mechanisms underlying BM of NSCLC remain largely unknown because of the lack of models to accurately investigate such a dynamic and complex process. Here we developed a multi-organ microfluidic chip as a new methodological platform to study BM. The chip consisted of two bionic organ units - an upstream "lung" and a downstream "brain" characterized by a functional "blood-brain barrier (BBB)" structure, allowing real-time visual monitoring of the entire BM process, from the growth of primary tumor to its breaking through the BBB, and finally reaching the brain parenchyma. The chip was verified by lung cancer cell lines with differing metastatic abilities and then applied for the BM research where we first demonstrated that the protein expression of Aldo-keto reductase family 1 B10 (AKR1B10) was significantly elevated in lung cancer BM. Silencing AKR1B10 in brain metastatic tumor cells suppressed their extravasation through the BBB in the in vitro Transwell model, in our ex vivo microfluidic chip, as well as the in vivo model of brain metastasis in nude mice. Moreover, AKR1B10 downregulated the expression of matrix metalloproteinase (MMP)-2 and MMP-9 via MEK/ERK signaling in metastatic lung cancers. These data suggest that our multi-organ microfluidic chip is a practical alternative to study BM pathogenesis, and AKR1B10 is a diagnostic biomarker and a prospective therapeutic target for NSCLC BM. STATEMENT OF SIGNIFICANCE: Brain metastasis (BM) of non-small cell lung cancer (NSCLC) is a complex cascade, and in particular, the process of lung cancer cells penetrating the blood-brain barrier (BBB) is very unique. However, due to the lack of reliable models that can faithfully mimic the dynamic process of BBB breaking, its molecular mechanisms have not well elucidated so far. In addition, although Aldo-keto reductase family 1 B10 (AKR1B10) has been implicated to the tumor development of liver cancer and many other cancers, little is known on its roles in the BM. Here, we established a multi-organ microfluidic bionic chip platform to recapitulate the entire BM process, and applied it to the BM pathology research, especially BBB extravasation. By using the chip and traditional models synergistically, we first demonstrated that AKR1B10 was significantly elevated in lung cancer BM, and defined the value of AKR1B10 as a diagnostic serum biomarker for lung cancer patients suffering from BM. Further, we investigated the role and mechanisms of AKR1B10 in BM that it promotes the extravasation of cancer cells through the BBB.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Jing Song
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Xiaohui Du
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yang Zhou
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yang Li
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Rui Li
- Department of Hepatological Surgery, The Second Hospital, Dalian Medical University, Dalian, China
| | - Li Lyu
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yeting He
- Department of Neurosurgery, The Second Hospital, Dalian Medical University, Dalian, China
| | - Junxia Hao
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Jing Ben
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, China.
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
106
|
Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 2019; 10:2195. [PMID: 31097712 PMCID: PMC6522481 DOI: 10.1038/s41467-019-10182-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Cysteine modifications emerge as important players in cellular signaling and homeostasis. Here, we present a chemical proteomics strategy for quantitative analysis of reversibly modified Cysteines using bioorthogonal cleavable-linker and switch technique (Cys-BOOST). Compared to iodoTMT for total Cysteine analysis, Cys-BOOST shows a threefold higher sensitivity and considerably higher specificity and precision. Analyzing S-nitrosylation (SNO) in S-nitrosoglutathione (GSNO)-treated and non-treated HeLa extracts Cys-BOOST identifies 8,304 SNO sites on 3,632 proteins covering a wide dynamic range of the proteome. Consensus motifs of SNO sites with differential GSNO reactivity confirm the relevance of both acid-base catalysis and local hydrophobicity for NO targeting to particular Cysteines. Applying Cys-BOOST to SH-SY5Y cells, we identify 2,151 SNO sites under basal conditions and reveal significantly changed SNO levels as response to early nitrosative stress, involving neuro(axono)genesis, glutamatergic synaptic transmission, protein folding/translation, and DNA replication. Our work suggests SNO as a global regulator of protein function akin to phosphorylation and ubiquitination. Reversible cysteine modifications play important roles in cellular redox signaling. Here, the authors develop a chemical proteomics strategy that enables the quantitative analysis of endogenous cysteine nitrosylation sites and their dynamic regulation under nitrosative stress conditions.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stavroula Markoutsa
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kim Walbrunn
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Department of Neuropediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Steven H L Verhelst
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany. .,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, Quebec, H4A 3T2, Canada. .,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
107
|
Montagna C, Rizza S, Cirotti C, Maiani E, Muscaritoli M, Musarò A, Carrí MT, Ferraro E, Cecconi F, Filomeni G. nNOS/GSNOR interaction contributes to skeletal muscle differentiation and homeostasis. Cell Death Dis 2019; 10:354. [PMID: 31043586 PMCID: PMC6494884 DOI: 10.1038/s41419-019-1584-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a crucial role in the maintenance of correct skeletal muscle function due, at least in part, to S-nitrosylation of specific protein targets. Similarly, we recently provided evidence for a muscular phenotype in mice lacking the denitrosylase S-nitrosoglutathione reductase (GSNOR). Here, we demonstrate that nNOS and GSNOR are concomitantly expressed during differentiation of C2C12. They colocalizes at the sarcolemma and co-immunoprecipitate in cells and in myofibers. We also provide evidence that GSNOR expression decreases in mouse models of muscular dystrophies and of muscle atrophy and wasting, i.e., aging and amyotrophic lateral sclerosis, suggesting a more general regulatory role of GSNOR in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Costanza Montagna
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, 2400, Copenhagen, Denmark
| | - Salvatore Rizza
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Claudia Cirotti
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Fondazione Santa Lucia, IRCCS, 00143, Rome, Italy
| | - Emiliano Maiani
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine (formerly Department of Clinical Medicine), Sapienza University of Rome, 00185, Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161, Rome, Italy
| | - Maria Teresa Carrí
- Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Fondazione Santa Lucia, IRCCS, 00143, Rome, Italy
| | - Elisabetta Ferraro
- Department of Orthopaedics and Traumatology, Hospital "Maggiore della Carità", University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.,Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.,Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Filomeni
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark. .,Department of Biology, Tor Vergata University of Rome, 00133, Rome, Italy.
| |
Collapse
|
108
|
The Porphyromonas gingivalis Hybrid Cluster Protein Hcp Is Required for Growth with Nitrite and Survival with Host Cells. Infect Immun 2019; 87:IAI.00572-18. [PMID: 30670550 DOI: 10.1128/iai.00572-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Although the periodontal pathogen Porphyromonas gingivalis must withstand high levels of nitrosative stress while in the oral cavity, the mechanisms of nitrosative stress defense are not well understood in this organism. Previously we showed that the transcriptional regulator HcpR plays a significant role in defense, and here we further defined its regulon. Our study shows that hcp (PG0893), a putative nitric oxide (NO) reductase, is the only gene significantly upregulated in response to nitrite (NO2) and that this regulation is dependent on HcpR. An isogenic mutant deficient in hcp is not able to grow with 200 μM nitrite, demonstrating that the sensitivity of the HcpR mutant is mediated through Hcp. We further define the molecular mechanisms of HcpR interaction with the hcp promoter through mutational analysis of the inverted repeat present within the promoter. Although other putative nitrosative stress protection mechanisms present on the nrfAH operon are also found in the P. gingivalis genome, we show that their gene products play no role in growth of the bacterium with nitrite. As growth of the hcp-deficient strain was also significantly diminished in the presence of a nitric oxide-producing compound, S-nitrosoglutathione (GSNO), Hcp appears to be the primary means by which P. gingivalis responds to NO2 --based stress. Finally, we show that Hcp is required for survival with host cells but that loss of Hcp has no effect on association and entry of P. gingivalis into human oral keratinocytes.
Collapse
|
109
|
Seth P, Hsieh PN, Jamal S, Wang L, Gygi SP, Jain MK, Coller J, Stamler JS. Regulation of MicroRNA Machinery and Development by Interspecies S-Nitrosylation. Cell 2019; 176:1014-1025.e12. [PMID: 30794773 PMCID: PMC6559381 DOI: 10.1016/j.cell.2019.01.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/20/2018] [Accepted: 01/23/2019] [Indexed: 02/04/2023]
Abstract
Bioactive molecules can pass between microbiota and host to influence host cellular functions. However, general principles of interspecies communication have not been discovered. We show here in C. elegans that nitric oxide derived from resident bacteria promotes widespread S-nitrosylation of the host proteome. We further show that microbiota-dependent S-nitrosylation of C. elegans Argonaute protein (ALG-1)-at a site conserved and S-nitrosylated in mammalian Argonaute 2 (AGO2)-alters its function in controlling gene expression via microRNAs. By selectively eliminating nitric oxide generation by the microbiota or S-nitrosylation in ALG-1, we reveal unforeseen effects on host development. Thus, the microbiota can shape the post-translational landscape of the host proteome to regulate microRNA activity, gene expression, and host development. Our findings suggest a general mechanism by which the microbiota may control host cellular functions, as well as a new role for gasotransmitters.
Collapse
Affiliation(s)
- Puneet Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Paishiun N Hsieh
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, 2103 Cornell Road, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Suhib Jamal
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mukesh K Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, 2103 Cornell Road, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
110
|
Amal H, Gong G, Gjoneska E, Lewis SM, Wishnok JS, Tsai LH, Tannenbaum SR. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry 2019; 9:44. [PMID: 30696811 PMCID: PMC6351542 DOI: 10.1038/s41398-019-0388-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations in the MAPT gene, which encodes the tau protein, are associated with several neurodegenerative diseases, including frontotemporal dementia (FTD), dementia with epilepsy, and other types of dementia. The missense mutation in the Mapt gene in the P301S mouse model of FTD results in impaired synaptic function and microgliosis at three months of age, which are the earliest manifestations of disease. Here, we examined changes in the S-nitrosoproteome in 2-month-old transgenic P301S mice in order to detect molecular events corresponding to early stages of disease progression. S-nitrosylated (SNO) proteins were identified in two brain regions, cortex and hippocampus, in P301S and Wild Type (WT) littermate control mice. We found major changes in the S-nitrosoproteome between the groups in both regions. Several pathways converged to show that calcium regulation and non-canonical Wnt signaling are affected using GO and pathway analysis. Significant increase in 3-nitrotyrosine was found in the CA1 and entorhinal cortex regions, which indicates an elevation of oxidative stress and nitric oxide formation. There was evidence of increased Non-Canonical Wnt/Ca++ (NC-WCa) signaling in the cortex of the P301S mice; including increases in phosphorylated CaMKII, and S-nitrosylation of E3 ubiquitin-protein ligase RNF213 (RNF-213) leading to increased levels of nuclear factor of activated T-cells 1 (NFAT-1) and FILAMIN-A, which further amplify the NC-WCa and contribute to the pathology. These findings implicate activation of the NC-WCa pathway in tauopathy and provide novel insights into the contribution of S-nitrosylation to NC-WCa activation, and offer new potential drug targets for treatment of tauopathies.
Collapse
Affiliation(s)
- Haitham Amal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Guanyu Gong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elizabeta Gjoneska
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sarah M Lewis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - John S Wishnok
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
111
|
Dyer RR, Ford KI, Robinson RAS. The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease. Methods Enzymol 2019; 626:499-538. [PMID: 31606089 PMCID: PMC6908309 DOI: 10.1016/bs.mie.2019.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a debilitating dementia with complex pathophysiological alterations including modifications to endogenous cysteine. S-nitrosylation (SNO) is a well-studied posttranslational modification (PTM) in the context of AD while S-glutathionylation (PSSG) remains less studied. Excess reactive oxygen and reactive nitrogen species (ROS/RNS) directly or indirectly generate SNO and PSSG. SNO is dysregulated in AD and plays a pervasive role in processes such as protein function, cell signaling, metabolism, and apoptosis. Despite some studies into the role of SNO in AD, multiple identified SNO proteins lack deep investigation and SNO modifications outside of brain tissues are limited, leaving the full role of SNO in AD to be elucidated. PSSG homeostasis is perturbed in AD and may affect a myriad of cellular processes. Here we overview the role of nitric oxide (NO) in AD, discuss proteomic methodologies to investigate SNO and PSSG, and review SNO and PSSG in AD. A more thorough understanding of SNO, PSSG, and other cysteinyl PTMs in AD will be helpful for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ryan R Dyer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Katarena I Ford
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Memory & Alzheimer's Center, Nashville, TN, United States; Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Brain Institute, Nashville, TN, United States.
| |
Collapse
|
112
|
Protein S-Nitrosylation: Enzymatically Controlled, but Intrinsically Unstable, Post-translational Modification. Mol Cell 2018; 69:351-353. [PMID: 29395059 DOI: 10.1016/j.molcel.2018.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reports by Seth et al. (2018) and Wolhuter et al. (2018) in this issue of Molecular Cell highlight the enzymatic synthesis, functionality, and propagation of S-nitrosylation-based signaling and address its low stability due to the elevated reactivity toward other cellular thiols.
Collapse
|
113
|
Stomberski CT, Zhou HL, Wang L, van den Akker F, Stamler JS. Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase. J Biol Chem 2018; 294:1568-1578. [PMID: 30538128 DOI: 10.1074/jbc.ra118.004947] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/05/2018] [Indexed: 11/06/2022] Open
Abstract
Protein S-nitrosylation mediates a large part of nitric oxide's influence on cellular function by providing a fundamental mechanism to control protein function across different species and cell types. At steady state, cellular S-nitrosylation reflects dynamic equilibria between S-nitrosothiols (SNOs) in proteins and small molecules (low-molecular-weight SNOs) whose levels are regulated by dedicated S-nitrosylases and denitrosylases. S-Nitroso-CoA (SNO-CoA) and its cognate denitrosylases, SNO-CoA reductases (SCoRs), are newly identified determinants of protein S-nitrosylation in both yeast and mammals. Because SNO-CoA is a minority species among potentially thousands of cellular SNOs, SCoRs must preferentially recognize this SNO substrate. However, little is known about the molecular mechanism by which cellular SNOs are recognized by their cognate enzymes. Using mammalian cells, molecular modeling, substrate-capture assays, and mutagenic analyses, we identified a single conserved surface Lys (Lys-127) residue as well as active-site interactions of the SNO group that mediate recognition of SNO-CoA by SCoR. Comparing SCoRK127A versus SCoRWT HEK293 cells, we identified a SNO-CoA-dependent nitrosoproteome, including numerous metabolic protein substrates. Finally, we discovered that the SNO-CoA/SCoR system has a role in mitochondrial metabolism. Collectively, our findings provide molecular insights into the basis of specificity in SNO-CoA-mediated metabolic signaling and suggest a role for SCoR-regulated S-nitrosylation in multiple metabolic processes.
Collapse
Affiliation(s)
- Colin T Stomberski
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hua-Lin Zhou
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106.
| |
Collapse
|
114
|
Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 2018; 565:96-100. [PMID: 30487609 PMCID: PMC6318002 DOI: 10.1038/s41586-018-0749-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.
Collapse
|
115
|
Rizza S, Filomeni G. Role, Targets and Regulation of (de)nitrosylation in Malignancy. Front Oncol 2018; 8:334. [PMID: 30234010 PMCID: PMC6131587 DOI: 10.3389/fonc.2018.00334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Salvatore Rizza
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
116
|
Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11:11/8/dmm033332. [PMID: 30082427 PMCID: PMC6124554 DOI: 10.1242/dmm.033332] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a signaling molecule that plays important roles in diverse biological processes and thus its dysregulation is involved in the pathogenesis of various disorders. In cancer, NO has broad and sometimes dichotomous roles; it is involved in cancer initiation and progression, but also restricts cancer proliferation and invasion, and contributes to the anti-tumor immune response. The importance of NO in a range of cellular processes is exemplified by its tight spatial and dosage control at multiple levels, including via its transcriptional, post-translational and metabolic regulation. In this Review, we focus on the regulation of NO via the synthesis and availability of its precursor, arginine, and discuss the implications of this metabolic regulation for cancer biology and therapy. Despite the established contribution of NO to cancer pathogenesis, the implementation of NO-related cancer therapeutics remains limited, likely due to the challenge of targeting and inducing its protective functions in a cell- and dosage-specific manner. A better understanding of how arginine regulates the production of NO in cancer might thus support the development of anti-cancer drugs that target this key metabolic pathway, and other metabolic pathways involved in NO production.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
117
|
Regulation of SCF TIR1/AFBs E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling. Redox Biol 2018; 18:200-210. [PMID: 30031268 PMCID: PMC6076216 DOI: 10.1016/j.redox.2018.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
The F-box proteins (FBPs) TIR1/AFBs are the substrate recognition subunits of SKP1–cullin–F-box (SCF) ubiquitin ligase complexes and together with Aux/IAAs form the auxin co-receptor. Although tremendous knowledge on auxin perception and signaling has been gained in the last years, SCFTIR1/AFBs complex assembly and stabilization are emerging as new layers of regulation. Here, we investigated how nitric oxide (NO), through S-nitrosylation of ASK1 is involved in SCFTIR1/AFBs assembly. We demonstrate that ASK1 is S-nitrosylated and S-glutathionylated in cysteine (Cys) 37 and Cys118 residues in vitro. Both, in vitro and in vivo protein-protein interaction assays show that NO enhances ASK1 binding to CUL1 and TIR1/AFB2, required for SCFTIR1/AFB2 assembly. In addition, we demonstrate that Cys37 and Cys118 are essential residues for proper activation of auxin signaling pathway in planta. Phylogenetic analysis revealed that Cys37 residue is only conserved in SKP proteins in Angiosperms, suggesting that S-nitrosylation on Cys37 could represent an evolutionary adaption for SKP1 function in flowering plants. Collectively, these findings indicate that multiple events of redox modifications might be part of a fine-tuning regulation of SCFTIR1/AFBs for proper auxin signal transduction. ASK1 adaptor protein of the SCFTIR1/AFB E3 ligase complex is redox regulated. NO regulates ASK1 function by S-nitrosylation in Cys37 and Cys118 residues. NO enhances ASK1-CUL1 and ASK1-TIR1/AFB2 protein-protein interactions required for SCFTIR1/AFB2 assembly in vitro and in vivo. S-nitrosylated residues in ASK1 are essential for activation of auxin signaling pathway in plants.
Collapse
|
118
|
Leitsch D, Williams CF, Hrdý I. Redox Pathways as Drug Targets in Microaerophilic Parasites. Trends Parasitol 2018; 34:576-589. [PMID: 29807758 DOI: 10.1016/j.pt.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/06/2023]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia jointly cause hundreds of millions of infections in humans every year. Other microaerophilic parasites such as Tritrichomonas foetus and Spironucleus spp. pose a relevant health problem in veterinary medicine. Unfortunately, vaccines against these pathogens are unavailable, but their microaerophilic lifestyle opens opportunities for specifically developed chemotherapeutics. In particular, their high sensitivity towards oxygen can be exploited by targeting redox enzymes. This review focusses on the redox pathways of microaerophilic parasites and on drugs, either already in use or currently in the state of development, which target these pathways.
Collapse
Affiliation(s)
- David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Austria.
| | - Catrin F Williams
- School of Engineering, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ivan Hrdý
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
119
|
S-nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proc Natl Acad Sci U S A 2018; 115:E3388-E3397. [PMID: 29581312 DOI: 10.1073/pnas.1722452115] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
S-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S-nitrosoglutathione reductase (GSNOR) regulates protein S-nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S-nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S-nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.
Collapse
|