101
|
Mahendrawada L, Warfield L, Donczew R, Hahn S. Surprising connections between DNA binding and function for the near-complete set of yeast transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550593. [PMID: 37546716 PMCID: PMC10402042 DOI: 10.1101/2023.07.25.550593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes. How TFs locate their DNA targets and how multiple TFs cooperate to regulate individual genes is still unclear. Most yeast TFs are thought to regulate transcription via binding to upstream activating sequences, situated within a few hundred base pairs upstream of the regulated gene. While this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way with the large set of yeast TFs. Here, we have integrated information on the binding and expression targets for the near-complete set of yeast TFs. While we found many instances of functional TF binding sites in upstream regulatory regions, we found many more instances that do not fit this model. In many cases, rapid TF depletion affects gene expression where there is no detectable binding of that TF to the upstream region of the affected gene. In addition, for most TFs, only a small fraction of bound TFs regulates the nearby gene, showing that TF binding does not automatically correspond to regulation of the linked gene. Finally, we found that only a small percentage of TFs are exclusively strong activators or repressors with most TFs having dual function. Overall, our comprehensive mapping of TF binding and regulatory targets have both confirmed known TF relationships and revealed surprising properties of TF function.
Collapse
|
102
|
Lerner J, Katznelson A, Zhang J, Zaret KS. Different chromatin-scanning modes lead to targeting of compacted chromatin by pioneer factors FOXA1 and SOX2. Cell Rep 2023; 42:112748. [PMID: 37405916 PMCID: PMC10529229 DOI: 10.1016/j.celrep.2023.112748] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Pioneer transcription factors interact with nucleosomes to scan silent, compact chromatin, enabling cooperative events that modulate gene activity. While at a subset of sites pioneer factors access chromatin by assisted loading with other transcription factors, the nucleosome-binding properties of pioneer factors enable them to initiate zygotic genome activation, embryonic development, and cellular reprogramming. To better understand nucleosome targeting in vivo, we assess whether pioneer factors FoxA1 and Sox2 target stable or unstable nucleosomes and find that they target DNase-resistant, stable nucleosomes, whereas HNF4A, a non-nucleosome binding factor, targets open, DNase-sensitive chromatin. Despite FOXA1 and SOX2 targeting similar proportions of DNase-resistant chromatin, using single-molecule tracking, we find that FOXA1 uses lower nucleoplasmic diffusion and longer residence times while SOX2 uses higher nucleoplasmic diffusion and shorter residence times to scan compact chromatin, while HNF4 scans compact chromatin much less efficiently. Thus, pioneer factors target compact chromatin through distinct processes.
Collapse
Affiliation(s)
- Jonathan Lerner
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Andrew Katznelson
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
103
|
Kamagata K, Kusano R, Kanbayashi S, Banerjee T, Takahashi H. Single-molecule characterization of target search dynamics of DNA-binding proteins in DNA-condensed droplets. Nucleic Acids Res 2023; 51:6654-6667. [PMID: 37283050 PMCID: PMC10359612 DOI: 10.1093/nar/gkad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 06/08/2023] Open
Abstract
Target search models of DNA-binding proteins in cells typically consider search mechanisms that include 3D diffusion and 1D sliding, which can be characterized by single-molecule tracking on DNA. However, the finding of liquid droplets of DNA and nuclear components in cells cast doubt on extrapolation from the behavior in ideal non-condensed DNA conditions to those in cells. In this study, we investigate the target search behavior of DNA-binding proteins in reconstituted DNA-condensed droplets using single-molecule fluorescence microscopy. To mimic nuclear condensates, we reconstituted DNA-condensed droplets using dextran and PEG polymers. In the DNA-condensed droplets, we measured the translational movement of four DNA-binding proteins (p53, Nhp6A, Fis and Cas9) and p53 mutants possessing different structures, sizes, and oligomeric states. Our results demonstrate the presence of fast and slow mobility modes in DNA-condensed droplets for the four DNA-binding proteins. The slow mobility mode capability is correlated strongly to the molecular size and the number of DNA-binding domains on DNA-binding proteins, but only moderately to the affinity to single DNA segments in non-condensed conditions. The slow mobility mode in DNA-condensed droplets is interpreted as a multivalent interaction mode of the DNA-binding protein to multiple DNA segments.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Kusano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Trishit Banerjee
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
104
|
Oksuz O, Henninger JE, Warneford-Thomson R, Zheng MM, Erb H, Vancura A, Overholt KJ, Hawken SW, Banani SF, Lauman R, Reich LN, Robertson AL, Hannett NM, Lee TI, Zon LI, Bonasio R, Young RA. Transcription factors interact with RNA to regulate genes. Mol Cell 2023; 83:2449-2463.e13. [PMID: 37402367 PMCID: PMC10529847 DOI: 10.1016/j.molcel.2023.06.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/16/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Transcription factors (TFs) orchestrate the gene expression programs that define each cell's identity. The canonical TF accomplishes this with two domains, one that binds specific DNA sequences and the other that binds protein coactivators or corepressors. We find that at least half of TFs also bind RNA, doing so through a previously unrecognized domain with sequence and functional features analogous to the arginine-rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function by promoting the dynamic association between DNA, RNA, and TF on chromatin. TF-RNA interactions are a conserved feature important for vertebrate development and disrupted in disease. We propose that the ability to bind DNA, RNA, and protein is a general property of many TFs and is fundamental to their gene regulatory function.
Collapse
Affiliation(s)
- Ozgur Oksuz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Robert Warneford-Thomson
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ming M Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey Erb
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Adrienne Vancura
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kalon J Overholt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susana Wilson Hawken
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Salman F Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Lauman
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lauren N Reich
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anne L Robertson
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Nancy M Hannett
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tong I Lee
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Leonard I Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Roberto Bonasio
- Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
105
|
Pal P, Khan MY, Sharma S, Kumar Y, Mangla N, Kaushal PS, Agarwal N. ResR/McdR-regulated protein translation machinery contributes to drug resilience in Mycobacterium tuberculosis. Commun Biol 2023; 6:708. [PMID: 37433855 DOI: 10.1038/s42003-023-05059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Survival response of the human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb) to a diverse environmental cues is governed through its versatile transcription regulatory mechanisms with the help of a large pool of transcription regulators (TRs). Rv1830 is one such conserved TR, which remains uncharacterized in Mtb. It was named as McdR based on an effect on cell division upon its overexpression in Mycobacterium smegmatis. Recently, it has been implicated in antibiotic resilience in Mtb and reannotated as ResR. While Rv1830 affects cell division by modulating the expression of M. smegmatis whiB2, the underlying cause of its essentiality and regulation of drug resilience in Mtb is yet to be deciphered. Here we show that ResR/McdR, encoded by ERDMAN_2020 in virulent Mtb Erdman, is pivotal for bacterial proliferation and crucial metabolic activities. Importantly, ResR/McdR directly regulates ribosomal gene expression and protein synthesis, requiring distinct disordered N-terminal sequence. Compared to control, bacteria depleted with resR/mcdR exhibit delayed recovery post-antibiotic treatment. A similar effect upon knockdown of rplN operon genes further implicates ResR/McdR-regulated protein translation machinery in attributing drug resilience in Mtb. Overall, findings from this study suggest that chemical inhibitors of ResR/McdR may be proven effective as adjunctive therapy for shortening the duration of TB treatment.
Collapse
Affiliation(s)
- Pramila Pal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Mohd Younus Khan
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Shivani Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Nikita Mangla
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Prem S Kaushal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
106
|
Meeussen JVW, Pomp W, Brouwer I, de Jonge WJ, Patel HP, Lenstra TL. Transcription factor clusters enable target search but do not contribute to target gene activation. Nucleic Acids Res 2023; 51:5449-5468. [PMID: 36987884 PMCID: PMC10287935 DOI: 10.1093/nar/gkad227] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Many transcription factors (TFs) localize in nuclear clusters of locally increased concentrations, but how TF clustering is regulated and how it influences gene expression is not well understood. Here, we use quantitative microscopy in living cells to study the regulation and function of clustering of the budding yeast TF Gal4 in its endogenous context. Our results show that Gal4 forms clusters that overlap with the GAL loci. Cluster number, density and size are regulated in different growth conditions by the Gal4-inhibitor Gal80 and Gal4 concentration. Gal4 truncation mutants reveal that Gal4 clustering is facilitated by, but does not completely depend on DNA binding and intrinsically disordered regions. Moreover, we discover that clustering acts as a double-edged sword: self-interactions aid TF recruitment to target genes, but recruited Gal4 molecules that are not DNA-bound do not contribute to, and may even inhibit, transcription activation. We propose that cells need to balance the different effects of TF clustering on target search and transcription activation to facilitate proper gene expression.
Collapse
Affiliation(s)
- Joseph V W Meeussen
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Wim Pomp
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Wim J de Jonge
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
107
|
Wagh K, Stavreva DA, Jensen RAM, Paakinaho V, Fettweis G, Schiltz RL, Wüstner D, Mandrup S, Presman DM, Upadhyaya A, Hager GL. Dynamic switching of transcriptional regulators between two distinct low-mobility chromatin states. SCIENCE ADVANCES 2023; 9:eade1122. [PMID: 37315128 PMCID: PMC10954219 DOI: 10.1126/sciadv.ade1122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
How chromatin dynamics relate to transcriptional activity remains poorly understood. Using single-molecule tracking, coupled with machine learning, we show that histone H2B and multiple chromatin-bound transcriptional regulators display two distinct low-mobility states. Ligand activation results in a marked increase in the propensity of steroid receptors to bind in the lowest-mobility state. Mutational analysis revealed that interactions with chromatin in the lowest-mobility state require an intact DNA binding domain and oligomerization domains. These states are not spatially separated as previously believed, but individual H2B and bound-TF molecules can dynamically switch between them on time scales of seconds. Single bound-TF molecules with different mobilities exhibit different dwell time distributions, suggesting that the mobility of TFs is intimately coupled with their binding dynamics. Together, our results identify two unique and distinct low-mobility states that appear to represent common pathways for transcription activation in mammalian cells.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Diana A. Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rikke A. M. Jensen
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Biomedicine, University of Eastern Finland, Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - R. Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Diego M. Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
108
|
Jonas F, Carmi M, Krupkin B, Steinberger J, Brodsky S, Jana T, Barkai N. The molecular grammar of protein disorder guiding genome-binding locations. Nucleic Acids Res 2023; 51:4831-4844. [PMID: 36938874 PMCID: PMC10250222 DOI: 10.1093/nar/gkad184] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023] Open
Abstract
Intrinsically disordered regions (IDRs) direct transcription factors (TFs) towards selected genomic occurrences of their binding motif, as exemplified by budding yeast's Msn2. However, the sequence basis of IDR-directed TF binding selectivity remains unknown. To reveal this sequence grammar, we analyze the genomic localizations of >100 designed IDR mutants, each carrying up to 122 mutations within this 567-AA region. Our data points at multivalent interactions, carried by hydrophobic-mostly aliphatic-residues dispersed within a disordered environment and independent of linear sequence motifs, as the key determinants of Msn2 genomic localization. The implications of our results for the mechanistic basis of IDR-based TF binding preferences are discussed.
Collapse
Affiliation(s)
- Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beniamin Krupkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Joseph Steinberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Jana
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
109
|
Recio PS, Mitra NJ, Shively CA, Song D, Jaramillo G, Lewis KS, Chen X, Mitra R. Zinc cluster transcription factors frequently activate target genes using a non-canonical half-site binding mode. Nucleic Acids Res 2023; 51:5006-5021. [PMID: 37125648 PMCID: PMC10250231 DOI: 10.1093/nar/gkad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
Gene expression changes are orchestrated by transcription factors (TFs), which bind to DNA to regulate gene expression. It remains surprisingly difficult to predict basic features of the transcriptional process, including in vivo TF occupancy. Existing thermodynamic models of TF function are often not concordant with experimental measurements, suggesting undiscovered biology. Here, we analyzed one of the most well-studied TFs, the yeast zinc cluster Gal4, constructed a Shea-Ackers thermodynamic model to describe its binding, and compared the results of this model to experimentally measured Gal4p binding in vivo. We found that at many promoters, the model predicted no Gal4p binding, yet substantial binding was observed. These outlier promoters lacked canonical binding motifs, and subsequent investigation revealed Gal4p binds unexpectedly to DNA sequences with high densities of its half site (CGG). We confirmed this novel mode of binding through multiple experimental and computational paradigms; we also found most other zinc cluster TFs we tested frequently utilize this binding mode, at 27% of their targets on average. Together, these results demonstrate a novel mode of binding where zinc clusters, the largest class of TFs in yeast, bind DNA sequences with high densities of half sites.
Collapse
Affiliation(s)
- Pamela S Recio
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Nikhil J Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Christian A Shively
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - David Song
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Grace Jaramillo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Kristine Shady Lewis
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
110
|
Kumar DK, Jonas F, Jana T, Brodsky S, Carmi M, Barkai N. Complementary strategies for directing in vivo transcription factor binding through DNA binding domains and intrinsically disordered regions. Mol Cell 2023; 83:1462-1473.e5. [PMID: 37116493 DOI: 10.1016/j.molcel.2023.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 04/30/2023]
Abstract
DNA binding domains (DBDs) of transcription factors (TFs) recognize DNA sequence motifs that are highly abundant in genomes. Within cells, TFs bind a subset of motif-containing sites as directed by either their DBDs or DBD-external (nonDBD) sequences. To define the relative roles of DBDs and nonDBDs in directing binding preferences, we compared the genome-wide binding of 48 (∼30%) budding yeast TFs with their DBD-only, nonDBD-truncated, and nonDBD-only mutants. With a few exceptions, binding locations differed between DBDs and TFs, resulting from the cumulative action of multiple determinants mapped mostly to disordered nonDBD regions. Furthermore, TFs' preferences for promoters of the fuzzy nucleosome architecture were lost in DBD-only mutants, whose binding spread across promoters, implicating nonDBDs' preferences in this hallmark of budding yeast regulatory design. We conclude that DBDs and nonDBDs employ complementary DNA-targeting strategies, whose balance defines TF binding specificity along genomes.
Collapse
Affiliation(s)
- Divya Krishna Kumar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Jana
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
111
|
Martinez-Corral R, Park M, Biette KM, Friedrich D, Scholes C, Khalil AS, Gunawardena J, DePace AH. Transcriptional kinetic synergy: A complex landscape revealed by integrating modeling and synthetic biology. Cell Syst 2023; 14:324-339.e7. [PMID: 37080164 PMCID: PMC10472254 DOI: 10.1016/j.cels.2023.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/22/2022] [Accepted: 02/10/2023] [Indexed: 04/22/2023]
Abstract
Transcription factors (TFs) control gene expression, often acting synergistically. Classical thermodynamic models offer a biophysical explanation for synergy based on binding cooperativity and regulated recruitment of RNA polymerase. Because transcription requires polymerase to transition through multiple states, recent work suggests that "kinetic synergy" can arise through TFs acting on distinct steps of the transcription cycle. These types of synergy are not mutually exclusive and are difficult to disentangle conceptually and experimentally. Here, we model and build a synthetic circuit in which TFs bind to a single shared site on DNA, such that TFs cannot synergize by simultaneous binding. We model mRNA production as a function of both TF binding and regulation of the transcription cycle, revealing a complex landscape dependent on TF concentration, DNA binding affinity, and regulatory activity. We use synthetic TFs to confirm that the transcription cycle must be integrated with recruitment for a quantitative understanding of gene regulation.
Collapse
Affiliation(s)
| | - Minhee Park
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kelly M Biette
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dhana Friedrich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
112
|
Di Nunzio F, Uversky VN, Mouland AJ. Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle. Retrovirology 2023; 20:4. [PMID: 37029379 PMCID: PMC10081342 DOI: 10.1186/s12977-023-00619-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
A rapidly evolving understanding of phase separation in the biological and physical sciences has led to the redefining of virus-engineered replication compartments in many viruses with RNA genomes. Condensation of viral, host and genomic and subgenomic RNAs can take place to evade the innate immunity response and to help viral replication. Divergent viruses prompt liquid-liquid phase separation (LLPS) to invade the host cell. During HIV replication there are several steps involving LLPS. In this review, we characterize the ability of individual viral and host partners that assemble into biomolecular condensates (BMCs). Of note, bioinformatic analyses predict models of phase separation in line with several published observations. Importantly, viral BMCs contribute to function in key steps retroviral replication. For example, reverse transcription takes place within nuclear BMCs, called HIV-MLOs while during late replication steps, retroviral nucleocapsid acts as a driver or scaffold to recruit client viral components to aid the assembly of progeny virions. Overall, LLPS during viral infections represents a newly described biological event now appreciated in the virology field, that can also be considered as an alternative pharmacological target to current drug therapies especially when viruses become resistant to antiviral treatment.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Andrew J Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC, H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
- Department of Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
113
|
Gibson TJ, Harrison MM. Protein-intrinsic properties and context-dependent effects regulate pioneer-factor binding and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533281. [PMID: 37066406 PMCID: PMC10103944 DOI: 10.1101/2023.03.18.533281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type specific binding and activity. The mechanisms governing pioneer-factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head, and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin, and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.
Collapse
Affiliation(s)
- Tyler J. Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison Madison, WI
| |
Collapse
|
114
|
Bentley EP, Scholl D, Wright PE, Deniz AA. Coupling of binding and differential subdomain folding of the intrinsically disordered transcription factor CREB. FEBS Lett 2023; 597:917-932. [PMID: 36480418 PMCID: PMC10089947 DOI: 10.1002/1873-3468.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.
Collapse
Affiliation(s)
- Emily P. Bentley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
115
|
Chen S, Lu K, Hou Y, You Z, Shu C, Wei X, Wu T, Shi N, Zhang G, Wu J, Chen S, Zhang L, Li W, Zhang D, Ju S, Chen M, Xu B. YY1 complex in M2 macrophage promotes prostate cancer progression by upregulating IL-6. J Immunother Cancer 2023; 11:jitc-2022-006020. [PMID: 37094986 PMCID: PMC10152059 DOI: 10.1136/jitc-2022-006020] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages are mainly polarized into the M2 phenotype, remodeling the tumor microenvironment and promoting tumor progression by secreting various cytokines. METHODS Tissue microarray consisting of prostate cancer (PCa), normal prostate, and lymph node metastatic samples from patients with PCa were stained with Yin Yang 1 (YY1) and CD163. Transgenic mice overexpressing YY1 were constructed to observe PCa tumorigenesis. Furthermore, in vivo and in vitro experiments, including CRISPR-Cas9 knock-out, RNA sequencing, chromatin immunoprecipitation (ChIP) sequencing, and liquid-liquid phase separation (LLPS) assays, were performed to investigate the role and mechanism of YY1 in M2 macrophages and PCa tumor microenvironment. RESULTS YY1 was highly expressed in M2 macrophages in PCa and was associated with poorer clinical outcomes. The proportion of tumor-infiltrated M2 macrophages increased in transgenic mice overexpressing YY1. In contrast, the proliferation and activity of anti-tumoral T lymphocytes were suppressed. Treatment targeting YY1 on M2 macrophages using an M2-targeting peptide-modified liposome carrier suppressed PCa cell lung metastasis and generated synergistic anti-tumoral effects with PD-1 blockade. IL-4/STAT6 pathway regulated YY1, and YY1 increased the macrophage-induced PCa progression by upregulating IL-6. Furthermore, by conducting H3K27ac-ChIP-seq in M2 macrophages and THP-1, we found that thousands of enhancers were gained during M2 macrophage polarization, and these M2-specific enhancers were enriched in YY1 ChIP-seq signals. In addition, an M2-specific IL-6 enhancer upregulated IL-6 expression through long-range chromatin interaction with IL-6 promoter in M2 macrophages. During M2 macrophage polarization, YY1 formed an LLPS, in which p300, p65, and CEBPB acted as transcriptional cofactors. CONCLUSIONS Phase separation of the YY1 complex in M2 macrophages upregulated IL-6 by promoting IL-6 enhancer-promoter interactions, thereby increasing PCa progression.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Kai Lu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zonghao You
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoying Wei
- Department of Pathology, Southeast University Zhongda Hospital, Nanjing, China
| | - Tiange Wu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Naipeng Shi
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Jianping Wu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Lihua Zhang
- Department of Pathology, Southeast University Zhongda Hospital, Nanjing, China
| | - Wenchao Li
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Dingxiao Zhang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Shenghong Ju
- Department of Radiology, Southeast University Zhongda Hospital, Nanjing, China
| | - Ming Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Bin Xu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Institute of Medical Phenomics Research, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
116
|
Chuang CK, Chen SF, Su YH, Chen WH, Lin WM, Wang IC, Shyue SK. The Role of SCL Isoforms in Embryonic Hematopoiesis. Int J Mol Sci 2023; 24:ijms24076427. [PMID: 37047400 PMCID: PMC10094407 DOI: 10.3390/ijms24076427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
Three waves of hematopoiesis occur in the mouse embryo. The primitive hematopoiesis appears as blood islands in the extra embryonic yolk sac at E7.5. The extra embryonic pro-definitive hematopoiesis launches in late E8 and the embryonic definitive one turns on at E10.5 indicated by the emergence of hemogenic endothelial cells on the inner wall of the extra embryonic arteries and the embryonic aorta. To study the roles of SCL protein isoforms in murine hematopoiesis, the SCL-large (SCL-L) isoform was selectively destroyed with the remaining SCL-small (SCL-S) isoform intact. It was demonstrated that SCL-S was specifically expressed in the hemogenic endothelial cells (HECs) and SCL-L was only detected in the dispersed cells after budding from HECs. The SCLΔ/Δ homozygous mutant embryos only survived to E10.5 with normal extra embryonic vessels and red blood cells. In wild-type mouse embryos, a layer of neatly aligned CD34+ and CD43+ cells appeared on the endothelial wall of the aorta of the E10.5 fetus. However, the cells at the same site expressed CD31 rather than CD34 and/or CD43 in the E10.5 SCLΔ/Δ embryo, indicating that only the endothelial lineage was developed. These results reveal that the SCL-S is sufficient to sustain the primitive hematopoiesis and SCL-L is necessary to launch the definitive hematopoiesis.
Collapse
|
117
|
Monette A, Niu M, Maldonado RK, Chang J, Lambert GS, Flanagan JM, Cochrane A, Parent LJ, Mouland AJ. Influence of HIV-1 genomic RNA on the formation of Gag biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529585. [PMID: 36865181 PMCID: PMC9980109 DOI: 10.1101/2023.02.23.529585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) and the HIV-1 pr55 Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yield self-assembling BMCs having HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4 + T cell nuclear lysates led to the formation of larger BMCs as compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggests that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.
Collapse
|
118
|
Chadwick BJ, Ross BE, Lin X. Molecular Dissection of Crz1 and Its Dynamic Subcellular Localization in Cryptococcus neoformans. J Fungi (Basel) 2023; 9:jof9020252. [PMID: 36836365 PMCID: PMC9963361 DOI: 10.3390/jof9020252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Across lower eukaryotes, the transcription factor Crz1 is dephosphorylated by calcineurin, which facilitates Crz1 translocation to the nucleus to regulate gene expression. In the fungal pathogen Cryptococcus neoformans, calcineurin-Crz1 signaling maintains calcium homeostasis, thermotolerance, cell wall integrity, and morphogenesis. How Crz1 distinguishes different stressors and differentially regulates cellular responses is poorly understood. Through monitoring Crz1 subcellular localization over time, we found that Crz1 transiently localizes to granules after exposure to high temperature or calcium. These granules also host the phosphatase calcineurin and Pub1, a ribonucleoprotein stress granule marker, suggesting a role of stress granules in modulating calcineurin-Crz1 signaling. Additionally, we constructed and analyzed an array of Crz1 truncation mutants. We identified the intrinsically disordered regions in Crz1 contribute to proper stress granule localization, nuclear localization, and function. Our results provide the groundwork for further determination of the mechanisms behind the complex regulation of Crz1.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
119
|
TFIID dependency of steady-state mRNA transcription altered epigenetically by simultaneous functional loss of Taf1 and Spt3 is Hsp104-dependent. PLoS One 2023; 18:e0281233. [PMID: 36757926 PMCID: PMC9910645 DOI: 10.1371/journal.pone.0281233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
In Saccharomyces cerevisiae, class II gene promoters have been divided into two subclasses, TFIID- and SAGA-dominated promoters or TFIID-dependent and coactivator-redundant promoters, depending on the experimental methods used to measure mRNA levels. A prior study demonstrated that Spt3, a TBP-delivering subunit of SAGA, functionally regulates the PGK1 promoter via two mechanisms: by stimulating TATA box-dependent transcriptional activity and conferring Taf1/TFIID independence. However, only the former could be restored by plasmid-borne SPT3. In the present study, we sought to determine why ectopically expressed SPT3 is unable to restore Taf1/TFIID independence to the PGK1 promoter, identifying that this function was dependent on the construction protocol for the SPT3 taf1 strain. Specifically, simultaneous functional loss of Spt3 and Taf1 during strain construction was a prerequisite to render the PGK1 promoter Taf1/TFIID-dependent in this strain. Intriguingly, genetic approaches revealed that an as-yet unidentified trans-acting factor reprogrammed the transcriptional mode of the PGK1 promoter from the Taf1/TFIID-independent state to the Taf1/TFIID-dependent state. This factor was generated in the haploid SPT3 taf1 strain in an Hsp104-dependent manner and inherited meiotically in a non-Mendelian fashion. Furthermore, RNA-seq analyses demonstrated that this factor likely affects the transcription mode of not only the PGK1 promoter, but also of many other class II gene promoters. Collectively, these findings suggest that a prion or biomolecular condensate is generated in a Hsp104-dependent manner upon simultaneous functional loss of TFIID and SAGA, and could alter the roles of these transcription complexes on a wide variety of class II gene promoters without altering their primary sequences. Therefore, these findings could provide the first evidence that TFIID dependence of class II gene transcription can be altered epigenetically, at least in Saccharomyces cerevisiae.
Collapse
|
120
|
Wang M, Li Q, Liu L. Factors and Methods for the Detection of Gene Expression Regulation. Biomolecules 2023; 13:biom13020304. [PMID: 36830673 PMCID: PMC9953580 DOI: 10.3390/biom13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene-expression regulation involves multiple processes and a range of regulatory factors. In this review, we describe the key factors that regulate gene expression, including transcription factors (TFs), chromatin accessibility, histone modifications, DNA methylation, and RNA modifications. In addition, we also describe methods that can be used to detect these regulatory factors.
Collapse
|
121
|
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83:373-392. [PMID: 36693380 PMCID: PMC9898153 DOI: 10.1016/j.molcel.2022.12.032] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.
Collapse
Affiliation(s)
- Seungsoo Kim
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
122
|
Klaus L, de Almeida BP, Vlasova A, Nemčko F, Schleiffer A, Bergauer K, Hofbauer L, Rath M, Stark A. Systematic identification and characterization of repressive domains in Drosophila transcription factors. EMBO J 2023; 42:e112100. [PMID: 36545802 PMCID: PMC9890238 DOI: 10.15252/embj.2022112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
All multicellular life relies on differential gene expression, determined by regulatory DNA elements and DNA-binding transcription factors that mediate activation and repression via cofactor recruitment. While activators have been extensively characterized, repressors are less well studied: the identities and properties of their repressive domains (RDs) are typically unknown and the specific co-repressors (CoRs) they recruit have not been determined. Here, we develop a high-throughput, next-generation sequencing-based screening method, repressive-domain (RD)-seq, to systematically identify RDs in complex DNA-fragment libraries. Screening more than 200,000 fragments covering the coding sequences of all transcription-related proteins in Drosophila melanogaster, we identify 195 RDs in known repressors and in proteins not previously associated with repression. Many RDs contain recurrent short peptide motifs, which are conserved between fly and human and are required for RD function, as demonstrated by motif mutagenesis. Moreover, we show that RDs that contain one of five distinct repressive motifs interact with and depend on different CoRs, such as Groucho, CtBP, Sin3A, or Smrter. These findings advance our understanding of repressors, their sequences, and the functional impact of sequence-altering mutations and should provide a valuable resource for further studies.
Collapse
Affiliation(s)
- Loni Klaus
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Filip Nemčko
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Katharina Bergauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Lorena Hofbauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Martina Rath
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Medical University of ViennaVienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
123
|
Duan Y, Tan Y, Wei X, Pei X, Li M. Versatile Strategy for the Construction of a Transcription Factor-Based Orthogonal Gene Expression Toolbox in Monascus spp. ACS Synth Biol 2023; 12:213-223. [PMID: 36625512 DOI: 10.1021/acssynbio.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gene expression is needed to be conducted in an orthogonal manner and controllable independently from the host's native regulatory system. However, there is a shortage of gene expression regulatory toolboxes that function orthogonally from each other and toward the host. Herein, we developed a strategy based on the mutant library to generate orthogonal gene expression toolboxes. A transcription factor, MaR, located in the Monascus azaphilone biosynthetic gene cluster, was taken as a typical example. Nine DNA-binding residues of MaR were identified by molecular simulation and site-directed mutagenesis. We created five MaR multi-site saturation mutagenesis libraries consisting of 10743 MaR variants on the basis of five cognate promoters. A functional analysis revealed that all five tested promoters were orthogonally regulated by five different MaR variants, respectively. Furthermore, fine gene expression tunability and high signal sensitivity of this toolbox are demonstrated by introducing chemically inducible expression modules, designing synthetic promoter elements, and creating protein-protein interaction between MaRs. This study paves the way for a bottom-up approach to build orthogonal gene expression toolboxes.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| |
Collapse
|
124
|
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 2023; 186:327-345.e28. [PMID: 36603581 PMCID: PMC9910284 DOI: 10.1016/j.cell.2022.12.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.
Collapse
Affiliation(s)
- Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christy Fornero
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
125
|
Vovk A, Zilman A. Effects of Sequence Composition, Patterning and Hydrodynamics on the Conformation and Dynamics of Intrinsically Disordered Proteins. Int J Mol Sci 2023; 24:1444. [PMID: 36674958 PMCID: PMC9867189 DOI: 10.3390/ijms24021444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) perform diverse functions in cellular organization, transport and signaling. Unlike the well-defined structures of the classical natively folded proteins, IDPs and IDRs dynamically span large conformational and structural ensembles. This dynamic disorder impedes the study of the relationship between the amino acid sequences of the IDPs and their spatial structures and dynamics, with different experimental techniques often offering seemingly contradictory results. Although experimental and theoretical evidence indicates that some IDP properties can be understood based on their average biophysical properties and amino acid composition, other aspects of IDP function are dictated by the specifics of the amino acid sequence. We investigate the effects of several key variables on the dimensions and the dynamics of IDPs using coarse-grained polymer models. We focus on the sequence "patchiness" informed by the sequence and biophysical properties of different classes of IDPs-and in particular FG nucleoporins of the nuclear pore complex (NPC). We show that the sequence composition and patterning are well reflected in the global conformational variables such as the radius of gyration and hydrodynamic radius, while the end-to-end distance and dynamics are highly sequence-specific. We find that in good solvent conditions highly heterogeneous sequences of IDPs can be well mapped onto averaged minimal polymer models for the purpose of prediction of the IDPs dimensions and dynamic relaxation times. The coarse-grained simulations are in a good agreement with the results of atomistic MD. We discuss the implications of these results for the interpretation of the recent experimental measurements, and for the further applications of mesoscopic models of FG nucleoporins and IDPs more broadly.
Collapse
Affiliation(s)
- Andrei Vovk
- Department of Physics, University of Toronto, 60 St George Street, Toronto, ON M1M 2P7, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, 60 St George Street, Toronto, ON M1M 2P7, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
126
|
Z-DNA and Z-RNA: Methods-Past and Future. Methods Mol Biol 2023; 2651:295-329. [PMID: 36892776 DOI: 10.1007/978-1-0716-3084-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A quote attributed to Yogi Berra makes the observation that "It's tough to make predictions, especially about the future," highlighting the difficulties posed to an author writing a manuscript like the present. The history of Z-DNA shows that earlier postulates about its biology have failed the test of time, both those from proponents who were wildly enthusiastic in enunciating roles that till this day still remain elusive to experimental validation and those from skeptics within the larger community who considered the field a folly, presumably because of the limitations in the methods available at that time. If anything, the biological roles we now know for Z-DNA and Z-RNA were not anticipated by anyone, even when those early predictions are interpreted in the most favorable way possible. The breakthroughs in the field were made using a combination of methods, especially those based on human and mouse genetic approaches informed by the biochemical and biophysical characterization of the Zα family of proteins. The first success was with the p150 Zα isoform of ADAR1 (adenosine deaminase RNA specific), with insights into the functions of ZBP1 (Z-DNA-binding protein 1) following soon after from the cell death community. Just as the replacement of mechanical clocks by more accurate designs changed expectations about navigation, the discovery of the roles assigned by nature to alternative conformations like Z-DNA has forever altered our view of how the genome operates. These recent advances have been driven by better methodology and by better analytical approaches. This article will briefly describe the methods that were key to these discoveries and highlight areas where new method development is likely to further advance our knowledge.
Collapse
|
127
|
Wong LL, Mugunthan S, Kundukad B, Ho JCS, Rice SA, Hinks J, Seviour T, Parikh AN, Kjelleberg S. Microbial biofilms are shaped by the constant dialogue between biological and physical forces in the extracellular matrix. Environ Microbiol 2023; 25:199-208. [PMID: 36502515 DOI: 10.1111/1462-2920.16306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - James Chin Shing Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore
| | - Scott A Rice
- CSIRO, Agriculture and Food, Microbiomes for One Systems Health, Canberra, Australia
| | - Jamie Hinks
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,WATEC Aarhus University Centre for Water Technology, Aarhus, Denmark
| | - Atul N Parikh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore.,Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
128
|
Fukuchi S, Noguchi T, Anbo H, Homma K. Exon Elongation Added Intrinsically Disordered Regions to the Encoded Proteins and Facilitated the Emergence of the Last Eukaryotic Common Ancestor. Mol Biol Evol 2022; 40:6931801. [PMID: 36529689 PMCID: PMC9825244 DOI: 10.1093/molbev/msac272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Most prokaryotic proteins consist of a single structural domain (SD) with little intrinsically disordered regions (IDRs) that by themselves do not adopt stable structures, whereas the typical eukaryotic protein comprises multiple SDs and IDRs. How eukaryotic proteins evolved to differ from prokaryotic proteins has not been fully elucidated. Here, we found that the longer the internal exons are, the more frequently they encode IDRs in eight eukaryotes including vertebrates, invertebrates, a fungus, and plants. Based on this observation, we propose the "small bang" model from the proteomic viewpoint: the protoeukaryotic genes had no introns and mostly encoded one SD each, but a majority of them were subsequently divided into multiple exons (step 1). Many exons unconstrained by SDs elongated to encode IDRs (step 2). The elongated exons encoding IDRs frequently facilitated the acquisition of multiple SDs to make the last common ancestor of eukaryotes (step 3). One prediction of the model is that long internal exons are mostly unconstrained exons. Analytical results of the eight eukaryotes are consistent with this prediction. In support of the model, we identified cases of internal exons that elongated after the rat-mouse divergence and discovered that the expanded sections are mostly in unconstrained exons and preferentially encode IDRs. The model also predicts that SDs followed by long internal exons tend to have other SDs downstream. This prediction was also verified in all the eukaryotic species analyzed. Our model accounts for the dichotomy between prokaryotic and eukaryotic proteins and proposes a selective advantage conferred by IDRs.
Collapse
Affiliation(s)
- Satoshi Fukuchi
- Program for Information Systems, Division of Informatics, Bioengineering and Bioscience, Maebashi Institute of Technology, Maebashi-shi, Japan
| | - Tamotsu Noguchi
- Pharmaceutical Education Research Center, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Hiroto Anbo
- Program for Information Systems, Division of Informatics, Bioengineering and Bioscience, Maebashi Institute of Technology, Maebashi-shi, Japan
| | | |
Collapse
|
129
|
Harlapur P, Duddu AS, Hari K, Kulkarni P, Jolly MK. Functional Resilience of Mutually Repressing Motifs Embedded in Larger Networks. Biomolecules 2022; 12:1842. [PMID: 36551270 PMCID: PMC9775907 DOI: 10.3390/biom12121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the design principles of regulatory networks driving cellular decision-making has important implications for understanding cell differentiation and guiding the design of synthetic circuits. Mutually repressing feedback loops between 'master regulators' of cell fates can exhibit multistable dynamics enabling "single-positive" phenotypes: (high A, low B) and (low A, high B) for a toggle switch, and (high A, low B, low C), (low A, high B, low C) and (low A, low B, high C) for a toggle triad. However, the dynamics of these two motifs have been interrogated in isolation in silico, but in vitro and in vivo, they often operate while embedded in larger regulatory networks. Here, we embed these motifs in complex larger networks of varying sizes and connectivity to identify hallmarks under which these motifs maintain their canonical dynamical behavior. We show that an increased number of incoming edges onto a motif leads to a decay in their canonical stand-alone behaviors. We also show that this decay can be exacerbated by adding self-inhibition but not self-activation loops on the 'master regulators'. These observations offer insights into the design principles of biological networks containing these motifs and can help devise optimal strategies for the integration of these motifs into larger synthetic networks.
Collapse
Affiliation(s)
- Pradyumna Harlapur
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Atchuta Srinivas Duddu
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
130
|
Evolution of SLiM-mediated hijack functions in intrinsically disordered viral proteins. Essays Biochem 2022; 66:945-958. [DOI: 10.1042/ebc20220059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022]
Abstract
Abstract
Viruses and their hosts are involved in an ‘arms race’ where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein. Phylogenetic reconstructions reveal that SLiMs appear and disappear multiple times across evolution, providing evidence of convergent evolution within individual viral phylogenies. Multiple functionally related SLiMs show strong coevolution signals that persist across long distances in the primary sequence and occur in unrelated viral proteins. Moreover, changes in SLiMs are associated with changes in phenotypic traits such as host range and tropism. Tracking viral evolutionary events reveals that host switch events are associated with the loss of several SLiMs, suggesting that SLiMs are under functional selection and that changes in SLiMs support viral adaptation. Fine-tuning of viral SLiM sequences can improve affinity, allowing them to outcompete host counterparts. However, viral SLiMs are not always competitive by themselves, and tethering of two suboptimal SLiMs by a disordered linker may instead enable viral hijack. Coevolution between the SLiMs and the linker indicates that the evolution of disordered regions may be more constrained than previously thought. In summary, experimental and computational studies support a role for SLiMs and intrinsic disorder in viral hijack functions and in viral adaptive evolution.
Collapse
|
131
|
Burkart RC, Eljebbawi A, Stahl Y. Come together now: Dynamic body-formation of key regulators integrates environmental cues in plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:1052107. [PMID: 36452084 PMCID: PMC9702078 DOI: 10.3389/fpls.2022.1052107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Plants as sessile organisms are constantly exposed to changing environmental conditions, challenging their growth and development. Indeed, not only above-ground organs but also the underground root system must adapt accordingly. Consequently, plants respond to these constraints at a gene-regulatory level to ensure their survival and well-being through key transcriptional regulators involved in different developmental processes. Recently, intrinsically disordered domains within these regulators are emerging as central nodes necessary not only for interactions with other factors but also for their partitioning into biomolecular condensates, so-called bodies, possibly driven by phase separation. Here, we summarize the current knowledge about body-forming transcriptional regulators important for plant development and highlight their functions in a possible environmental context. In this perspective article, we discuss potential mechanisms for the formation of membrane-less bodies as an efficient and dynamic program needed for the adaptation to external cues with a particular focus on the Arabidopsis root. Hereby, we aim to provide a perspective for future research on transcriptional regulators to investigate body formation as an expeditious mechanism of plant-environment interactions.
Collapse
Affiliation(s)
- Rebecca C. Burkart
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ali Eljebbawi
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
132
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
133
|
Fernandez-Lopez R, Ruiz R, del Campo I, Gonzalez-Montes L, Boer D, de la Cruz F, Moncalian G. Structural basis of direct and inverted DNA sequence repeat recognition by helix-turn-helix transcription factors. Nucleic Acids Res 2022; 50:11938-11947. [PMID: 36370103 PMCID: PMC9723621 DOI: 10.1093/nar/gkac1024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Some transcription factors bind DNA motifs containing direct or inverted sequence repeats. Preference for each of these DNA topologies is dictated by structural constraints. Most prokaryotic regulators form symmetric oligomers, which require operators with a dyad structure. Binding to direct repeats requires breaking the internal symmetry, a property restricted to a few regulators, most of them from the AraC family. The KorA family of transcriptional repressors, involved in plasmid propagation and stability, includes members that form symmetric dimers and recognize inverted repeats. Our structural analyses show that ArdK, a member of this family, can form a symmetric dimer similar to that observed for KorA, yet it binds direct sequence repeats as a non-symmetric dimer. This is possible by the 180° rotation of one of the helix-turn-helix domains. We then probed and confirmed that ArdK shows affinity for an inverted repeat, which, surprisingly, is also recognized by a non-symmetrical dimer. Our results indicate that structural flexibility at different positions in the dimerization interface constrains transcription factors to bind DNA sequences with one of these two alternative DNA topologies.
Collapse
Affiliation(s)
- Raul Fernandez-Lopez
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011, Santander, Spain
| | - Raul Ruiz
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011, Santander, Spain
| | - Irene del Campo
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011, Santander, Spain
| | - Lorena Gonzalez-Montes
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011, Santander, Spain
| | - D Roeland Boer
- Alba Synchrotron, Cerdanyola del Vallès, 08290, Barcelona, Spain
| | | | | |
Collapse
|
134
|
Unveiling dynamic enhancer–promoter interactions in Drosophila melanogaster. Biochem Soc Trans 2022; 50:1633-1642. [DOI: 10.1042/bst20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Proper enhancer–promoter interactions are essential to maintaining specific transcriptional patterns and preventing ectopic gene expression. Drosophila is an ideal model organism to study transcriptional regulation due to extensively characterized regulatory regions and the ease of implementing new genetic and molecular techniques for quantitative analysis. The mechanisms of enhancer–promoter interactions have been investigated over a range of length scales. At a DNA level, compositions of both enhancer and promoter sequences affect transcriptional dynamics, including duration, amplitude, and frequency of transcriptional bursting. 3D chromatin topology is also important for proper enhancer–promoter contacts. By working competitively or cooperatively with one another, multiple, simultaneous enhancer–enhancer, enhancer–promoter, and promoter–promoter interactions often occur to maintain appropriate levels of mRNAs. For some long-range enhancer–promoter interactions, extra regulatory elements like insulators and tethering elements are required to promote proper interactions while blocking aberrant ones. This review provides an overview of our current understanding of the mechanism of enhancer–promoter interactions and how perturbations of such interactions affect transcription and subsequent physiological outcomes.
Collapse
|
135
|
Rocchi C, Louvat C, Miele AE, Batisse J, Guillon C, Ballut L, Lener D, Negroni M, Ruff M, Gouet P, Fiorini F. The HIV-1 Integrase C-Terminal Domain Induces TAR RNA Structural Changes Promoting Tat Binding. Int J Mol Sci 2022; 23:13742. [PMID: 36430221 PMCID: PMC9692563 DOI: 10.3390/ijms232213742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Recent evidence indicates that the HIV-1 Integrase (IN) binds the viral genomic RNA (gRNA), playing a critical role in the morphogenesis of the viral particle and in the stability of the gRNA once in the host cell. By combining biophysical, molecular biology, and biochemical approaches, we found that the 18-residues flexible C-terminal tail of IN acts as a sensor of the peculiar apical structure of the trans-activation response element RNA (TAR), interacting with its hexaloop. We show that the binding of the whole IN C-terminal domain modifies TAR structure, exposing critical nucleotides. These modifications favour the subsequent binding of the HIV transcriptional trans-activator Tat to TAR, finally displacing IN from TAR. Based on these results, we propose that IN assists the binding of Tat to TAR RNA. This working model provides a mechanistic sketch accounting for the emerging role of IN in the early stages of proviral transcription and could help in the design of anti-HIV-1 therapeutics against this new target of the viral infectious cycle.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Camille Louvat
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Adriana Erica Miele
- Institute of Analytical Sciences, UMR 5280 CNRS UCBL University of Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Julien Batisse
- Chromatin Stability and DNA Mobility, Department of Integrated Structural Biology, IGBMC, CNRS, UMR 7104—Inserm U 158, University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Christophe Guillon
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Daniela Lener
- RNA Architecture and Reactivity, IBMC, CNRS, UPR 9002, University of Strasbourg, 2, Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Matteo Negroni
- RNA Architecture and Reactivity, IBMC, CNRS, UPR 9002, University of Strasbourg, 2, Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Marc Ruff
- Chromatin Stability and DNA Mobility, Department of Integrated Structural Biology, IGBMC, CNRS, UMR 7104—Inserm U 158, University of Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry, MMSB-IBCP, UMR 5086, CNRS, University of Lyon, 7 Passage du Vercors, CEDEX 07, 69367 Lyon, France
| |
Collapse
|
136
|
Regulation of Polyhomeotic Condensates by Intrinsically Disordered Sequences That Affect Chromatin Binding. EPIGENOMES 2022; 6:epigenomes6040040. [PMID: 36412795 PMCID: PMC9680516 DOI: 10.3390/epigenomes6040040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The Polycomb group (PcG) complex PRC1 localizes in the nucleus in condensed structures called Polycomb bodies. The PRC1 subunit Polyhomeotic (Ph) contains an oligomerizing sterile alpha motif (SAM) that is implicated in both PcG body formation and chromatin organization in Drosophila and mammalian cells. A truncated version of Ph containing the SAM (mini-Ph) forms phase-separated condensates with DNA or chromatin in vitro, suggesting that PcG bodies may form through SAM-driven phase separation. In cells, Ph forms multiple small condensates, while mini-Ph typically forms a single large nuclear condensate. We therefore hypothesized that sequences outside of mini-Ph, which are predicted to be intrinsically disordered, are required for proper condensate formation. We identified three distinct low-complexity regions in Ph based on sequence composition. We systematically tested the role of each of these sequences in Ph condensates using live imaging of transfected Drosophila S2 cells. Each sequence uniquely affected Ph SAM-dependent condensate size, number, and morphology, but the most dramatic effects occurred when the central, glutamine-rich intrinsically disordered region (IDR) was removed, which resulted in large Ph condensates. Like mini-Ph condensates, condensates lacking the glutamine-rich IDR excluded chromatin. Chromatin fractionation experiments indicated that the removal of the glutamine-rich IDR reduced chromatin binding and that the removal of either of the other IDRs increased chromatin binding. Our data suggest that all three IDRs, and functional interactions among them, regulate Ph condensate size and number. Our results can be explained by a model in which tight chromatin binding by Ph IDRs antagonizes Ph SAM-driven phase separation. Our observations highlight the complexity of regulation of biological condensates housed in single proteins.
Collapse
|
137
|
Chen Y, Cattoglio C, Dailey GM, Zhu Q, Tjian R, Darzacq X. Mechanisms governing target search and binding dynamics of hypoxia-inducible factors. eLife 2022; 11:e75064. [PMID: 36322456 PMCID: PMC9681212 DOI: 10.7554/elife.75064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Transcription factors (TFs) are classically attributed a modular construction, containing well-structured sequence-specific DNA-binding domains (DBDs) paired with disordered activation domains (ADs) responsible for protein-protein interactions targeting co-factors or the core transcription initiation machinery. However, this simple division of labor model struggles to explain why TFs with identical DNA-binding sequence specificity determined in vitro exhibit distinct binding profiles in vivo. The family of hypoxia-inducible factors (HIFs) offer a stark example: aberrantly expressed in several cancer types, HIF-1α and HIF-2α subunit isoforms recognize the same DNA motif in vitro - the hypoxia response element (HRE) - but only share a subset of their target genes in vivo, while eliciting contrasting effects on cancer development and progression under certain circumstances. To probe the mechanisms mediating isoform-specific gene regulation, we used live-cell single particle tracking (SPT) to investigate HIF nuclear dynamics and how they change upon genetic perturbation or drug treatment. We found that HIF-α subunits and their dimerization partner HIF-1β exhibit distinct diffusion and binding characteristics that are exquisitely sensitive to concentration and subunit stoichiometry. Using domain-swap variants, mutations, and a HIF-2α specific inhibitor, we found that although the DBD and dimerization domains are important, another main determinant of chromatin binding and diffusion behavior is the AD-containing intrinsically disordered region (IDR). Using Cut&Run and RNA-seq as orthogonal genomic approaches, we also confirmed IDR-dependent binding and activation of a specific subset of HIF target genes. These findings reveal a previously unappreciated role of IDRs in regulating the TF search and binding process that contribute to functional target site selectivity on chromatin.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Qiulin Zhu
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
138
|
Henikoff S, Ahmad K. In situ tools for chromatin structural epigenomics. Protein Sci 2022; 31:e4458. [PMID: 36170035 PMCID: PMC9601787 DOI: 10.1002/pro.4458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Technological progress over the past 15 years has fueled an explosion in genome-wide chromatin profiling tools that take advantage of low-cost short-read sequencing technologies to map particular chromatin features. Here, we survey the recent development of epigenomic tools that provide precise positions of chromatin proteins genome-wide in intact cells or nuclei. Some profiling tools are based on tethering Micrococcal Nuclease to chromatin proteins of interest in situ, whereas others similarly tether Tn5 transposase to integrate DNA sequencing adapters (tagmentation) and so eliminate the need for library preparation. These in situ cleavage and tagmentation tools have gained in popularity over the past few years, with many protocol enhancements and adaptations for single-cell and spatial chromatin profiling. The application of experimental and computational tools to address problems in gene regulation, eukaryotic development, and human disease are helping to define the emerging field of chromatin structural epigenomics.
Collapse
Affiliation(s)
- Steven Henikoff
- Fred Hutchinson Cancer CenterSeattleWashingtonUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | - Kami Ahmad
- Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| |
Collapse
|
139
|
Richter WF, Nayak S, Iwasa J, Taatjes DJ. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 2022; 23:732-749. [PMID: 35725906 PMCID: PMC9207880 DOI: 10.1038/s41580-022-00498-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
The Mediator complex, which in humans is 1.4 MDa in size and includes 26 subunits, controls many aspects of RNA polymerase II (Pol II) function. Apart from its size, a defining feature of Mediator is its intrinsic disorder and conformational flexibility, which contributes to its ability to undergo phase separation and to interact with a myriad of regulatory factors. In this Review, we discuss Mediator structure and function, with emphasis on recent cryogenic electron microscopy data of the 4.0-MDa transcription preinitiation complex. We further discuss how Mediator and sequence-specific DNA-binding transcription factors enable enhancer-dependent regulation of Pol II function at distal gene promoters, through the formation of molecular condensates (or transcription hubs) and chromatin loops. Mediator regulation of Pol II reinitiation is also discussed, in the context of transcription bursting. We propose a working model for Mediator function that combines experimental results and theoretical considerations related to enhancer-promoter interactions, which reconciles contradictory data regarding whether enhancer-promoter communication is direct or indirect. We conclude with a discussion of Mediator's potential as a therapeutic target and of future research directions.
Collapse
Affiliation(s)
- William F Richter
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Shraddha Nayak
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
140
|
“Structure”-function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation. Mol Cell 2022; 82:3970-3984. [DOI: 10.1016/j.molcel.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
|
141
|
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet 2022; 38:1019-1047. [PMID: 35811173 PMCID: PMC9474616 DOI: 10.1016/j.tig.2022.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
Gene regulation by transcriptional enhancers is the dominant mechanism driving cell type- and signal-specific transcriptional diversity in metazoans. However, over four decades since the original discovery, how enhancers operate in the nuclear space remains largely enigmatic. Recent multidisciplinary efforts combining real-time imaging, genome sequencing, and biophysical strategies provide insightful but conflicting models of enhancer-mediated gene control. Here, we review the discovery and progress in enhancer biology, emphasizing the recent findings that acutely activated enhancers assemble regulatory machinery as mesoscale architectural structures with distinct physical properties. These findings help formulate novel models that explain several mysterious features of the assembly of transcriptional enhancers and the mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Tom Suter
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Wang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Cellular and Molecular Medicine Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lu Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
142
|
Staller MV. Transcription factors perform a 2-step search of the nucleus. Genetics 2022; 222:iyac111. [PMID: 35939561 PMCID: PMC9526044 DOI: 10.1093/genetics/iyac111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 01/02/2023] Open
Abstract
Transcription factors regulate gene expression by binding to regulatory DNA and recruiting regulatory protein complexes. The DNA-binding and protein-binding functions of transcription factors are traditionally described as independent functions performed by modular protein domains. Here, I argue that genome binding can be a 2-part process with both DNA-binding and protein-binding steps, enabling transcription factors to perform a 2-step search of the nucleus to find their appropriate binding sites in a eukaryotic genome. I support this hypothesis with new and old results in the literature, discuss how this hypothesis parsimoniously resolves outstanding problems, and present testable predictions.
Collapse
Affiliation(s)
- Max Valentín Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
143
|
Schütz S, Bergsdorf C, Goretzki B, Lingel A, Renatus M, Gossert AD, Jahnke W. The disordered MAX N-terminus modulates DNA binding of the transcription factor MYC:MAX. J Mol Biol 2022; 434:167833. [PMID: 36174765 DOI: 10.1016/j.jmb.2022.167833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/15/2022]
Abstract
The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using Nuclear Magnetic resonance (NMR) spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.
Collapse
Affiliation(s)
- Stefan Schütz
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Christian Bergsdorf
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Benedikt Goretzki
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas Lingel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| |
Collapse
|
144
|
Baughman HER, Narang D, Chen W, Villagrán Suárez AC, Lee J, Bachochin MJ, Gunther TR, Wolynes PG, Komives EA. An intrinsically disordered transcription activation domain increases the DNA binding affinity and reduces the specificity of NFκB p50/RelA. J Biol Chem 2022; 298:102349. [PMID: 35934050 PMCID: PMC9440430 DOI: 10.1016/j.jbc.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Many transcription factors contain intrinsically disordered transcription activation domains (TADs), which mediate interactions with coactivators to activate transcription. Historically, DNA-binding domains and TADs have been considered as modular units, but recent studies have shown that TADs can influence DNA binding. Whether these results can be generalized to more TADs is not clear. Here, we biophysically characterized the NFκB p50/RelA heterodimer including the RelA TAD and investigated the TAD's influence on NFκB-DNA interactions. In solution, we show the RelA TAD is disordered but compact, with helical tendency in two regions that interact with coactivators. We determined that the presence of the TAD increased the stoichiometry of NFκB-DNA complexes containing promoter DNA sequences with tandem κB recognition motifs by promoting the binding of NFκB dimers in excess of the number of κB sites. In addition, we measured the binding affinity of p50/RelA for DNA containing tandem κB sites and single κB sites. While the presence of the TAD enhanced the binding affinity of p50/RelA for all κB sequences tested, it also increased the affinity for nonspecific DNA sequences by over 10-fold, leading to an overall decrease in specificity for κB DNA sequences. In contrast, previous studies have generally reported that TADs decrease DNA-binding affinity and increase sequence specificity. Our results reveal a novel function of the RelA TAD in promoting binding to nonconsensus DNA, which sheds light on previous observations of extensive nonconsensus DNA binding by NFκB in vivo in response to strong inflammatory signals.
Collapse
Affiliation(s)
- Hannah E R Baughman
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Dominic Narang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Amalia C Villagrán Suárez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Joan Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Maxwell J Bachochin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tristan R Gunther
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
145
|
Zoller B, Gregor T, Tkačik G. Eukaryotic gene regulation at equilibrium, or non? CURRENT OPINION IN SYSTEMS BIOLOGY 2022; 31:100435. [PMID: 36590072 PMCID: PMC9802646 DOI: 10.1016/j.coisb.2022.100435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Models of transcriptional regulation that assume equilibrium binding of transcription factors have been less successful at predicting gene expression from sequence in eukaryotes than in bacteria. This could be due to the non-equilibrium nature of eukaryotic regulation. Unfortunately, the space of possible non-equilibrium mechanisms is vast and predominantly uninteresting. The key question is therefore how this space can be navigated efficiently, to focus on mechanisms and models that are biologically relevant. In this review, we advocate for the normative role of theory-theory that prescribes rather than just describes-in providing such a focus. Theory should expand its remit beyond inferring mechanistic models from data, towards identifying non-equilibrium gene regulatory schemes that may have been evolutionarily selected, despite their energy consumption, because they are precise, reliable, fast, or otherwise outperform regulation at equilibrium. We illustrate our reasoning by toy examples for which we provide simulation code.
Collapse
Affiliation(s)
- Benjamin Zoller
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology UMR3738, Institut Pasteur, Paris, France
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology UMR3738, Institut Pasteur, Paris, France
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
146
|
Bauer M, Payer B, Filion GJ. Causality in transcription and genome folding: Insights from X inactivation. Bioessays 2022; 44:e2200105. [PMID: 36028473 DOI: 10.1002/bies.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022]
Abstract
The spatial organization of genomes is becoming increasingly understood. In mammals, where it is most investigated, this organization ties in with transcription, so an important research objective is to understand whether gene activity is a cause or a consequence of genome folding in space. In this regard, the phenomena of X-chromosome inactivation and reactivation open a unique window of investigation because of the singularities of the inactive X chromosome. Here we focus on the cause-consequence nexus between genome conformation and transcription and explain how recent results about the structural changes associated with inactivation and reactivation of the X chromosome shed light on this problem.
Collapse
Affiliation(s)
- Moritz Bauer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillaume J Filion
- Dept. Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
147
|
Monette A, Niu M, Nijhoff Asser M, Gorelick RJ, Mouland AJ. Scaffolding viral protein NC nucleates phase separation of the HIV-1 biomolecular condensate. Cell Rep 2022; 40:111251. [PMID: 36001979 DOI: 10.1016/j.celrep.2022.111251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Membraneless biomolecular condensates (BMCs) contribute to the replication of a growing number of viruses but remain to be functionally characterized. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) proteins phase separated into condensates regulating virus assembly. Here we discover that intrinsically disordered human immunodeficiency virus-type 1 (HIV-1) core proteins condense with the viral genomic RNA (vRNA) to assemble as BMCs attaining a geometry characteristic of viral reverse transcription complexes. We explore the predisposition, mechanisms, and pharmacologic sensitivity of HIV-1 core BMCs in living cells. HIV-1 vRNA-interacting NC condensates were found to be scaffolds onto which client capsid, reverse transcriptase, and integrase condensates assemble. HIV-1 core BMCs exhibit fundamental characteristics of BMCs and are drug-sensitive. Lastly, protease-mediated maturation of Gag and Gag-Pol precursor proteins yield abundant and visible BMCs in cells. This study redefines HIV-1 core components as fluid BMCs and advances our understanding of the nature of viral cores during ingress.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.
| | - Meijuan Niu
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Maya Nijhoff Asser
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Lab, Lady Davis Institute at the Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
148
|
Mellul M, Lahav S, Imashimizu M, Tokunaga Y, Lukatsky DB, Ram O. Repetitive DNA symmetry elements negatively regulate gene expression in embryonic stem cells. Biophys J 2022; 121:3126-3135. [PMID: 35810331 PMCID: PMC9463640 DOI: 10.1016/j.bpj.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factor (TF) binding to genomic DNA elements constitutes one of the key mechanisms that regulates gene expression program in cells. Both consensus and nonconsensus DNA sequence elements influence the recognition specificity of TFs. Based on the analysis of experimentally determined c-Myc binding preferences to genomic DNA, here we statistically predict that certain repetitive, nonconsensus DNA symmetry elements can relatively reduce TF-DNA binding preferences. This is in contrast to a different set of repetitive, nonconsensus symmetry elements that can increase the strength of TF-DNA binding. Using c-Myc enhancer reporter system containing consensus motif flanked by nonconsensus sequences in embryonic stem cells, we directly demonstrate that the enrichment in such negatively regulating repetitive symmetry elements is sufficient to reduce the gene expression level compared with native genomic sequences. Negatively regulating repetitive symmetry elements around consensus c-Myc motif and DNA sequences containing consensus c-Myc motif flanked by entirely randomized sequences show similar expression baseline. A possible explanation for this observation is that rather than complete repression, negatively regulating repetitive symmetry elements play a regulatory role in fine-tuning the reduction of gene expression, most probably by binding TFs other than c-Myc.
Collapse
Affiliation(s)
- Meir Mellul
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Shlomtzion Lahav
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yuji Tokunaga
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - David B Lukatsky
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Oren Ram
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
149
|
Clanor PB, Buchholz CN, Hayes JE, Friedman MA, White AM, Enke RA, Berndsen CE. Structural and functional analysis of the human cone‐rod homeobox transcription factor. Proteins 2022; 90:1584-1593. [PMID: 35255174 PMCID: PMC9271546 DOI: 10.1002/prot.26332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
The cone‐rod homeobox (CRX) protein is a critical K50 homeodomain transcription factor responsible for the differentiation and maintenance of photoreceptor neurons in the vertebrate retina. Mutant alleles in the human gene encoding CRX result in a variety of distinct blinding retinopathies, including retinitis pigmentosa, cone‐rod dystrophy, and Leber congenital amaurosis. Despite the success of using in vitro biochemistry, animal models, and genomics approaches to study this clinically relevant transcription factor over the past 25 years since its initial characterization, there are no high‐resolution structures in the published literature for the CRX protein. In this study, we use bioinformatic approaches and small‐angle X‐ray scattering (SAXS) structural analysis to further understand the biochemical complexity of the human CRX homeodomain (CRX‐HD). We find that the CRX‐HD is a compact, globular monomer in solution that can specifically bind functional cis‐regulatory elements encoded upstream of retina‐specific genes. This study presents the first structural analysis of CRX, paving the way for a new approach to studying the biochemistry of this protein and its disease‐causing mutant protein variants.
Collapse
Affiliation(s)
| | - Christine N. Buchholz
- Department of Chemistry and Biochemistry James Madison University Harrisonburg Virginia USA
| | - Jonathan E. Hayes
- Department of Chemistry and Biochemistry James Madison University Harrisonburg Virginia USA
| | | | - Andrew M. White
- Department of Chemistry and Biochemistry James Madison University Harrisonburg Virginia USA
| | - Ray A. Enke
- Department of Biology James Madison University Harrisonburg Virginia USA
- Center for Genome and Metagenome Studies James Madison University Harrisonburg Virginia USA
| | - Christopher E. Berndsen
- Department of Chemistry and Biochemistry James Madison University Harrisonburg Virginia USA
- Center for Genome and Metagenome Studies James Madison University Harrisonburg Virginia USA
| |
Collapse
|
150
|
Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol 2022; 29:781-790. [PMID: 35948766 DOI: 10.1038/s41594-022-00811-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.
Collapse
|