101
|
Metabolic regulation of ferroptosis in the tumor microenvironment. J Biol Chem 2022; 298:101617. [PMID: 35065965 PMCID: PMC8892088 DOI: 10.1016/j.jbc.2022.101617] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death triggered by impaired redox and antioxidant machinery and propagated by the accumulation of toxic lipid peroxides. A compendium of experimental studies suggest that ferroptosis is tumor-suppressive. Sensitivity or resistance to ferroptosis can be regulated by cell-autonomous and non-cell-autonomous metabolic mechanisms. This includes a role for ferroptosis that extends beyond the tumor cells themselves, mediated by components of the tumor microenvironment, including T cells and other immune cells. Herein, we review the intrinsic and extrinsic factors that promote the sensitivity of cancer cells to ferroptosis and conclude by describing approaches to harness the full utility of ferroptotic agents as therapeutic options for cancer therapy.
Collapse
|
102
|
Kumar B, Adebayo AK, Prasad M, Capitano ML, Wang R, Bhat-Nakshatri P, Anjanappa M, Simpson E, Chen D, Liu Y, Schilder JM, Colter AB, Maguire C, Temm CJ, Sandusky G, Doud EH, Wijeratne AB, Mosley AL, Broxmeyer HE, Nakshatri H. Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. SCIENCE ADVANCES 2022; 8:eabh3375. [PMID: 35020422 PMCID: PMC8754301 DOI: 10.1126/sciadv.abh3375] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/18/2021] [Indexed: 06/06/2023]
Abstract
Preclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O2, ~21%). However, O2 concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O2 environment in vivo. Although effects of O2 tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air. Similarly, sensitivity of primary cancer cells to anticancer agents is routinely examined at ambient O2. Here, we demonstrate that tumors collected, processed, and propagated at physiologic O2 compared to ambient air display distinct differences in key signaling networks including LGR5/WNT, YAP, and NRF2/KEAP1, nuclear reactive oxygen species, alternative splicing, and sensitivity to targeted therapies. Therefore, evaluating cancer cells under physioxia could more closely recapitulate their physiopathologic status in the in vivo microenvironment.
Collapse
Affiliation(s)
- Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mayuri Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maegan L. Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Edward Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Duojiao Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeanne M. Schilder
- Department of Gynecology and Obstetrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Austyn B. Colter
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Callista Maguire
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Constance J. Temm
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aruna B. Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
103
|
Bakouny Z, Sadagopan A, Ravi P, Metaferia NY, Li J, AbuHammad S, Tang S, Denize T, Garner ER, Gao X, Braun DA, Hirsch L, Steinharter JA, Bouchard G, Walton E, West D, Labaki C, Dudani S, Gan CL, Sethunath V, Carvalho FLF, Imamovic A, Ricker C, Vokes NI, Nyman J, Berchuck JE, Park J, Hirsch MS, Haq R, Mary Lee GS, McGregor BA, Chang SL, Feldman AS, Wu CJ, McDermott DF, Heng DYC, Signoretti S, Van Allen EM, Choueiri TK, Viswanathan SR. Integrative clinical and molecular characterization of translocation renal cell carcinoma. Cell Rep 2022; 38:110190. [PMID: 34986355 PMCID: PMC9127595 DOI: 10.1016/j.celrep.2021.110190] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Translocation renal cell carcinoma (tRCC) is a poorly characterized subtype of kidney cancer driven by MiT/TFE gene fusions. Here, we define the landmarks of tRCC through an integrative analysis of 152 patients with tRCC identified across genomic, clinical trial, and retrospective cohorts. Most tRCCs harbor few somatic alterations apart from MiT/TFE fusions and homozygous deletions at chromosome 9p21.3 (19.2% of cases). Transcriptionally, tRCCs display a heightened NRF2-driven antioxidant response that is associated with resistance to targeted therapies. Consistently, we find that outcomes for patients with tRCC treated with vascular endothelial growth factor receptor inhibitors (VEGFR-TKIs) are worse than those treated with immune checkpoint inhibitors (ICI). Using multiparametric immunofluorescence, we find that the tumors are infiltrated with CD8+ T cells, though the T cells harbor an exhaustion immunophenotype distinct from that of clear cell RCC. Our findings comprehensively define the clinical and molecular features of tRCC and may inspire new therapeutic hypotheses.
Collapse
Affiliation(s)
- Ziad Bakouny
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Praful Ravi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Nebiyou Y Metaferia
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Shatha AbuHammad
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Stephen Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Thomas Denize
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Emma R Garner
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Xin Gao
- Harvard Medical School, Boston, MA, USA; Department of Internal Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Yale Cancer Center / Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Laure Hirsch
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA
| | - John A Steinharter
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gabrielle Bouchard
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Destiny West
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chris Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Shaan Dudani
- Division of Medical Oncology/Hematology, William Osler Health System, Brampton, ON, Canada
| | - Chun-Loo Gan
- Division of Medical Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Vidyalakshmi Sethunath
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | | | - Alma Imamovic
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Cora Ricker
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Natalie I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jackson Nyman
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jacob E Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle S Hirsch
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Bradley A McGregor
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Steven L Chang
- Harvard Medical School, Boston, MA, USA; Division of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam S Feldman
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Daniel Y C Heng
- Division of Medical Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
104
|
Hu M, Lei XY, Larson JD, McAlonis M, Ford K, McDonald D, Mach K, Rusert JM, Wechsler-Reya RJ, Mali P. Integrated genome and tissue engineering enables screening of cancer vulnerabilities in physiologically relevant perfusable ex vivo cultures. Biomaterials 2022; 280:121276. [PMID: 34890975 PMCID: PMC9328412 DOI: 10.1016/j.biomaterials.2021.121276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
Genetic screens are powerful tools for both resolving biological function and identifying potential therapeutic targets, but require physiologically accurate systems to glean biologically useful information. Here, we enable genetic screens in physiologically relevant ex vivo cancer tissue models by integrating CRISPR-Cas-based genome engineering and biofabrication technologies. We first present a novel method for generating perfusable tissue constructs, and validate its functionality by using it to generate three-dimensional perfusable dense cultures of cancer cell lines and sustain otherwise ex vivo unculturable patient-derived xenografts. Using this system we enable large-scale CRISPR screens in perfused tissue cultures, as well as emulate a novel point-of-care diagnostics scenario of a clinically actionable CRISPR knockout (CRISPRko) screen of genes with FDA-approved drug treatments in ex vivo PDX cell cultures. Our results reveal differences across in vitro and in vivo cancer model systems, and highlight the utility of programmable tissue engineered models for screening therapeutically relevant cancer vulnerabilities.
Collapse
Affiliation(s)
- Michael Hu
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Xin Yi Lei
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Jon D Larson
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | | | - Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Daniella McDonald
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, USA
| | - Krystal Mach
- Department of Biological Sciences, University of California San Diego, La Jolla, USA
| | - Jessica M Rusert
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, USA.
| |
Collapse
|
105
|
Tabnak P, HajiEsmailPoor Z, Soraneh S. Ferroptosis in Lung Cancer: From Molecular Mechanisms to Prognostic and Therapeutic Opportunities. Front Oncol 2021; 11:792827. [PMID: 34926310 PMCID: PMC8674733 DOI: 10.3389/fonc.2021.792827] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the second commonly diagnosed malignancy worldwide and has the highest mortality rate among all cancers. Tremendous efforts have been made to develop novel strategies against lung cancer; however, the overall survival of patients still is low. Uncovering underlying molecular mechanisms of this disease can open up new horizons for its treatment. Ferroptosis is a newly discovered type of programmed cell death that, in an iron-dependent manner, peroxidizes unsaturated phospholipids and results in the accumulation of radical oxygen species. Subsequent oxidative damage caused by ferroptosis contributes to cell death in tumor cells. Therefore, understanding its molecular mechanisms in lung cancer appears as a promising strategy to induce ferroptosis selectively. According to evidence published up to now, significant numbers of research have been done to identify ferroptosis regulators in lung cancer. Therefore, this review aims to provide a comprehensive standpoint of molecular mechanisms of ferroptosis in lung cancer and address these molecules’ prognostic and therapeutic values, hoping that the road for future studies in this field will be paved more efficiently.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Soroush Soraneh
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
106
|
Demuynck R, Efimova I, Naessens F, Krysko DV. Immunogenic ferroptosis and where to find it? J Immunother Cancer 2021; 9:jitc-2021-003430. [PMID: 34903554 PMCID: PMC8671998 DOI: 10.1136/jitc-2021-003430] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a recently discovered form of regulated cell death that is morphologically, genetically, and biochemically distinct from apoptosis and necroptosis, and its potential use in anticancer therapy is emerging. The strong immunogenicity of (early) ferroptotic cancer cells broadens the current concept of immunogenic cell death and opens up new possibilities for cancer treatment. In particular, induction of immunogenic ferroptosis could be beneficial for patients with cancers resistant to apoptosis and necroptosis. However, ferroptotic cancer cells may be a rich source of oxidized lipids, which contribute to decreased phagocytosis and antigen cross-presentation by dendritic cells and thus may favor tumor evasion. This could explain the non-immunogenicity of late ferroptotic cells. Besides the presence of lactate in the tumor microenvironment, acidification and hypoxia are essential factors promoting ferroptosis resistance and affecting its immunogenicity. Here, we critically discuss the crucial mediators controlling the immunogenicity of ferroptosis that modulate the induction of antitumor immunity. We emphasize that it will be necessary to also identify the tolerogenic (ie, immunosuppressive) nature of ferroptosis, which can lead to tumor evasion.
Collapse
Affiliation(s)
- Robin Demuynck
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Iuliia Efimova
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Faye Naessens
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium .,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pathophysiology, I M Sechenov First Moscow State Medical University, Moskva, Russian Federation.,Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Niznij Novgorod, Russian Federation
| |
Collapse
|
107
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
108
|
Guan Q, Zhou LL, Dong YB. Ferroptosis in cancer therapeutics: a materials chemistry perspective. J Mater Chem B 2021; 9:8906-8936. [PMID: 34505861 DOI: 10.1039/d1tb01654g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ferroptosis, distinct from apoptosis, is a regulated form of cell death caused by lipid peroxidation that has attracted extensive research interest since it was first defined in 2012. Over the past five years, an increasing number of studies have revealed the close relationship between ferroptosis and materials chemistry, in particular nanobiotechnology, and have concluded that nanotechnology-triggered ferroptosis is an efficient and promising antitumor strategy that provides an alternative therapeutic approach, especially for apoptosis-resistant tumors. In this review, we summarize recent advances in ferroptosis-induced tumor therapy at the intersection of materials chemistry, redox biology, and tumor biology. The biological features and molecular mechanisms of ferroptosis are first outlined, followed by a summary of the feasible strategies to induce ferroptosis using nanomaterials and the applications of ferroptosis in combined tumor therapy. Finally, the existing challenges and future development directions in this emerging field are discussed, with the aim of promoting the progress of ferroptosis-based oncotherapy in materials science and nanoscience and enriching the antitumor arsenal.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
109
|
Redox Control of the Dormant Cancer Cell Life Cycle. Cells 2021; 10:cells10102707. [PMID: 34685686 PMCID: PMC8535080 DOI: 10.3390/cells10102707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
Following efficient tumor therapy, some cancer cells may survive through a dormancy process, contributing to tumor recurrence and worse outcomes. Dormancy is considered a process where most cancer cells in a tumor cell population are quiescent with no, or only slow, proliferation. Recent advances indicate that redox mechanisms control the dormant cancer cell life cycle, including dormancy entrance, long-term dormancy, and metastatic relapse. This regulatory network is orchestrated mainly through redox modification on key regulators or global change of reactive oxygen species (ROS) levels in dormant cancer cells. Encouragingly, several strategies targeting redox signaling, including sleeping, awaking, or killing dormant cancer cells are currently under early clinical evaluation. However, the molecular mechanisms underlying redox control of the dormant cancer cell cycle are poorly understood and need further exploration. In this review, we discuss the underlying molecular basis of redox signaling in the cell life cycle of dormant cancer and the potential redox-based targeting strategies for eliminating dormant cancer cells.
Collapse
|
110
|
Wang CC. Metabolic Stress Adaptations Underlie Mammary Gland Morphogenesis and Breast Cancer Progression. Cells 2021; 10:2641. [PMID: 34685621 PMCID: PMC8534177 DOI: 10.3390/cells10102641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancers display dynamic reprogrammed metabolic activities as cancers develop from premalignant lesions to primary tumors, and then metastasize. Numerous advances focus on how tumors develop pro-proliferative metabolic signaling that differs them from adjacent, non-transformed epithelial tissues. This leads to targetable oncogene-driven liabilities among breast cancer subtypes. Other advances demonstrate how microenvironments trigger stress-response at single-cell resolution. Microenvironmental heterogeneities give rise to cell regulatory states in cancer cell spheroids in three-dimensional cultures and at stratified terminal end buds during mammary gland morphogenesis, where stress and survival signaling juxtapose. The cell-state specificity in stress signaling networks recapture metabolic evolution during cancer progression. Understanding lineage-specific metabolic phenotypes in experimental models is useful for gaining a deeper understanding of subtype-selective breast cancer metabolism.
Collapse
Affiliation(s)
- Chun-Chao Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; ; Tel.: +886-3-516-2589
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
111
|
Abstract
Tumour initiation and progression requires the metabolic reprogramming of cancer cells. Cancer cells autonomously alter their flux through various metabolic pathways in order to meet the increased bioenergetic and biosynthetic demand as well as mitigate oxidative stress required for cancer cell proliferation and survival. Cancer driver mutations coupled with environmental nutrient availability control flux through these metabolic pathways. Metabolites, when aberrantly accumulated, can also promote tumorigenesis. The development and application of new technologies over the last few decades has not only revealed the heterogeneity and plasticity of tumours but also allowed us to uncover new metabolic pathways involved in supporting tumour growth. The tumour microenvironment (TME), which can be depleted of certain nutrients, forces cancer cells to adapt by inducing nutrient scavenging mechanisms to sustain cancer cell proliferation. There is growing appreciation that the metabolism of cell types other than cancer cells within the TME, including endothelial cells, fibroblasts and immune cells, can modulate tumour progression. Because metastases are a major cause of death of patients with cancer, efforts are underway to understand how metabolism is harnessed by metastatic cells. Additionally, there is a new interest in exploiting cancer genetic analysis for patient stratification and/or dietary interventions in combination with therapies that target metabolism. In this Perspective, we highlight these main themes that are currently under investigation in the context of in vivo tumour metabolism, specifically emphasizing questions that remain unanswered.
Collapse
Affiliation(s)
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
112
|
Nguyen LV, Caldas C. Functional genomics approaches to improve pre-clinical drug screening and biomarker discovery. EMBO Mol Med 2021; 13:e13189. [PMID: 34254730 PMCID: PMC8422077 DOI: 10.15252/emmm.202013189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/23/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in sequencing technology have enabled the genomic and transcriptomic characterization of human malignancies with unprecedented detail. However, this wealth of information has been slow to translate into clinically meaningful outcomes. Different models to study human cancers have been established and extensively characterized. Using these models, functional genomic screens and pre-clinical drug screening platforms have identified genetic dependencies that can be exploited with drug therapy. These genetic dependencies can also be used as biomarkers to predict response to treatment. For many cancers, the identification of such biomarkers remains elusive. In this review, we discuss the development and characterization of models used to study human cancers, RNA interference and CRISPR screens to identify genetic dependencies, large-scale pharmacogenomics studies and drug screening approaches to improve pre-clinical drug screening and biomarker discovery.
Collapse
Affiliation(s)
- Long V Nguyen
- Department of Oncology and Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
- Cancer Research UK Cambridge Cancer CentreCambridgeUK
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
- Cancer Research UK Cambridge Cancer CentreCambridgeUK
| |
Collapse
|
113
|
SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med 2021; 19:367. [PMID: 34446045 PMCID: PMC8393811 DOI: 10.1186/s12967-021-03042-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/14/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Solute carrier family 7 member 11(SLC7A11) is a component of cysteine/glutamate transporter, which plays a key role in tumor growth; however, its underlying effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aimed to clarify SLC7A11's expression and correlation with nuclear expression of nuclear factor erythroid-2 (NRF2)-associated radioresistance in ESCC. METHODS We included 127 ESCC patients who received radical chemoradiotherapy. Immunohistochemical staining was used to detect SLC7A11 and NRF2 nuclear expression, and the relationship between clinicopathological characteristics and survival rates or therapy response were evaluated. Western blot, dual-reporter assays and Chromatin immunoprecipitation (ChIP)-sequencing were used to analyze their relationship in vitro. Their roles in radioresistance were then investigated through multiple validation steps. RESULTS NRF2 nuclear expression and SLC7A11 expression were overexpressed in ESCC tissues and were positively correlated with one another. NRF2 nuclear expression was significantly associated with tumor length, lymph node metastasis, and TNM stage, while SLC7A11 expression was associated with lymph node metastasis. Patients with high NRF2 nuclear expression and SLC7A11 expression had significantly shorter overall and progression-free survival, and poor treatment response. The multivariate model showed that NRF2 nuclear expression and SLC7A11 expression, sex and tumor location are independent prognostic factors. In vitro analysis confirmed that hyperactivation of NRF2 induced SLC7A11 expression by directly binding to its promoter region, promoting radioresistance, reducing radiotherapy-induced lipid peroxidation levels, PTGS2 expression, and radiotherapy-related ferroptosis morphologic features. CONCLUSION Our study reveals a connection between high SLC7A11 expression and NRF2 nuclear expression in patients with ESCC that was related to worse survival and poorer therapy outcomes. SLC7A11-mediated ferroptosis inhibition induced NRF2-associated radioresistance, highlighting potential of NRF2/SLC7A11/ferroptosis axis as future therapeutic targets against therapy resistance biomarker.
Collapse
|
114
|
Abstract
Lipid metabolism is altered in the acidic tumor microenvironment. Here, the authors show that polyunsaturated fatty acid supplementation, together with concomitant inhibition of lipid droplet biogenesis, induces ferroptosis in acidic cancer cells. These findings highlight the potential to exploit cancer dependence on exogenous lipids as a therapeutic vulnerability.
Collapse
Affiliation(s)
- Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
115
|
Mishra R, Nawas AF, Mendelson CR. Role of NRF2 in immune modulator expression in developing lung. FASEB J 2021; 35:e21758. [PMID: 34245611 DOI: 10.1096/fj.202100129rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022]
Abstract
After birth, the alveolar epithelium is exposed to environmental pathogens and high O2 tensions. The alveolar type II cells may protect this epithelium through surfactant production. Surfactant protein, SP-A, an immune modulator, is developmentally upregulated in fetal lung with surfactant phospholipid synthesis. Herein, we observed that the redox-regulated transcription factor, NRF2, and co-regulated C/EBPβ and PPARγ, were markedly induced during cAMP-mediated differentiation of cultured human fetal lung (HFL) epithelial cells. This occurred with enhanced expression of immune modulators, SP-A, TDO2, AhR, and NQO1. Like SP-A, cAMP induction of NRF2 was prevented when cells were exposed to hypoxia. NRF2 knockdown inhibited induction of C/EBPβ, PPARγ, and immune modulators. Binding of endogenous NRF2 to promoters of SP-A and other immune modulator genes increased during HFL cell differentiation. In mouse fetal lung (MFL), a developmental increase in Nrf2, SP-A, Tdo2, Ahr, and Nqo1 and decrease in Keap1 occurred from 14.5 to 18.5 dpc. Developmental induction of Nrf2 in MFL was associated with increased nuclear localization of NF-κB p65, a decline in p38 MAPK phosphorylation, increase in the MAPK phosphatase, DUSP1, induction of the histone acetylase, CBP, and decline in the histone deacetylase, HDAC4. Thus, together with surfactant production, type II cells protect the alveolar epithelium through increased expression of NRF2 and immune modulators to prevent inflammation and oxidative stress. Our findings further suggest that lung cancer cells have usurped this developmental pathway to promote immune tolerance and enhance survival.
Collapse
Affiliation(s)
- Ritu Mishra
- Department of Biochemistry, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Afshan Fathima Nawas
- Department of Biochemistry, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carole R Mendelson
- Department of Biochemistry, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics & Gynecology, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Med Center, Dallas, TX, USA
| |
Collapse
|
116
|
Abstract
The gene expression program induced by NRF2 transcription factor plays a critical role in cell defense responses against a broad variety of cellular stresses, most importantly oxidative stress. NRF2 stability is fine-tuned regulated by KEAP1, which drives its degradation in the absence of oxidative stress. In the context of cancer, NRF2 cytoprotective functions were initially linked to anti-oncogenic properties. However, in the last few decades, growing evidence indicates that NRF2 acts as a tumor driver, inducing metastasis and resistance to chemotherapy. Constitutive activation of NRF2 has been found to be frequent in several tumors, including some lung cancer sub-types and it has been associated to the maintenance of a malignant cell phenotype. This apparently contradictory effect of the NRF2/KEAP1 signaling pathway in cancer (cell protection against cancer versus pro-tumoral properties) has generated a great controversy about its functions in this disease. In this review, we will describe the molecular mechanism regulating this signaling pathway in physiological conditions and summarize the most important findings related to the role of NRF2/KEAP1 in lung cancer. The focus will be placed on NRF2 activation mechanisms, the implication of those in lung cancer progression and current therapeutic strategies directed at blocking NRF2 action.
Collapse
|
117
|
Qin Y, Qiao Y, Wang D, Tang C, Yan G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother 2021; 141:111872. [PMID: 34246187 DOI: 10.1016/j.biopha.2021.111872] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a type of regulated cell death driven by iron dependent accumulation of cellular reactive oxygen species (ROS) when glutathione (GSH)-dependent lipid peroxidation repair systems are compromised. Nuclear receptor co-activator 4 (NCOA4)-mediated selective autophagy of ferritin, termed ferritinophagy, involves the regulation of ferroptosis. Emerging evidence has revealed that ferritinophagy and ferroptosis exert a significant role in the occurrence and development of cardiovascular disease. In the present review, we aimed to present a brief overview of ferritinophagy and ferroptosis focusing on the underlying mechanism and regulations involved. We summarize and discuss relevant research progress on the role of ferritinophagy and ferroptosis in cardiovascular diseases accompanied with potential applications of ferritinophagy and ferroptosis modulators in the treatment of ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Yong Qiao
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Dong Wang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Chengchun Tang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| | - Gaoliang Yan
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| |
Collapse
|
118
|
Wang S, Yi X, Wu Z, Guo S, Dai W, Wang H, Shi Q, Zeng K, Guo W, Li C. CAMKK2 Defines Ferroptosis Sensitivity of Melanoma Cells by Regulating AMPK‒NRF2 Pathway. J Invest Dermatol 2021; 142:189-200.e8. [PMID: 34242660 DOI: 10.1016/j.jid.2021.05.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Melanoma is the most lethal skin cancer caused by the malignant transformation of epidermal melanocytes. Recent progress in targeted therapy and immunotherapy has significantly improved the treatment outcome, but the survival of patients with advanced melanoma remains suboptimal. Ferroptosis, a cell death modality triggered by iron-dependent lipid peroxidation, reportedly participates in cancer pathogenesis and can mediate the effect of anti-PD-1 immunotherapy in melanoma. However, the detailed regulatory mechanism of ferroptosis remains far from being understood. In this study, we report that CAMKK2 defines the ferroptosis sensitivity of melanoma cells by regulating the AMPK‒NRF2 pathway. We first found that CAMKK2 was prominently activated in ferroptosis. Then we proved that CAMKK2 negatively regulated ferroptosis through the activation of NRF2 and the suppression of lipid peroxidation. Subsequent mechanistic studies revealed that AMPK connected CAMKK2 upregulation to NRF2-dependent antioxidative machinery in ferroptosis. In addition, the suppression of CAMKK2 increased the efficacy of ferroptosis inducer and anti-PD-1 immunotherapy in the preclinical xenograft tumor model by inhibiting the AMPK‒NRF2 pathway and promoting ferroptosis. Taken together, CAMKK2 plays a protective role in ferroptosis by activating the AMPK‒NRF2 pathway. Targeting CAMKK2 could be a potential approach to increase the efficacy of ferroptosis inducers and immunotherapy for melanoma treatment.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenjie Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
119
|
Jenkins T, Gouge J. Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs. Antioxidants (Basel) 2021; 10:1030. [PMID: 34202320 PMCID: PMC8300779 DOI: 10.3390/antiox10071030] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in cell proliferation and differentiation. They are also by-products of aerobic living conditions. Their inherent reactivity poses a threat for all cellular components. Cells have, therefore, evolved complex pathways to sense and maintain the redox balance. Among them, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial role: it is activated under oxidative conditions and is responsible for the expression of the detoxification machinery and antiapoptotic factors. It is, however, a double edge sword: whilst it prevents tumorigenesis in healthy cells, its constitutive activation in cancer promotes tumour growth and metastasis. In addition, recent data have highlighted the importance of Nrf2 in evading programmed cell death. In this review, we will focus on the activation of the Nrf2 pathway in the cytoplasm, the molecular basis underlying Nrf2 binding to the DNA, and the dysregulation of this pathway in cancer, before discussing how Nrf2 contributes to the prevention of apoptosis and ferroptosis in cancer and how it is likely to be linked to detoxifying enzymes containing selenium.
Collapse
Affiliation(s)
- Tabitha Jenkins
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
120
|
N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells. Brain Res Bull 2021; 174:250-259. [PMID: 34171402 DOI: 10.1016/j.brainresbull.2021.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
Ferroptosis, a new type of programmed cell death discovered in recent years, plays an important role in many neurodegenerative diseases. N2L is a novel lipoic acid-niacin dimer regulating lipid metabolism with multifunction, including antioxidant effect. It also exerts neuroprotective effects against glutamate- or β-amyloid (Aβ) -induced cell death. Because reactive oxygen species (ROS) play an essential role in ferroptosis, we hypothesize that N2L might protect cells from ferroptosis. Here, we investigated the protective effect of N2L and the underlying mechanism(s) under RAS-selective lethality 3 (RSL3) treatment in HT22 cells. RSL3 decreased the cell viability and induced excessive accumulation of ROS in HT22 cells. N2L pretreatment effectively protected HT22 cells against lipid peroxidation. What's more, N2L recovered glutathione peroxidase 4 (GPX4) expression and blocked the increase of Cyclooxygenase-2 (cox-2) and acyl-CoA synthetase long-chain family member 4 (ACSL4) protein expressions. Moreover, N2L also significantly prevented Ferritin Heavy Chain 1 (FTH1) from downregulation and maintained iron homeostasis. Finally, N2L pretreatment could decrease c-Jun N-terminal kinase (JNK) / extracellular regulated protein kinases (ERK) activation induced by RSL3. Taken together, our results showed that N2L could protect HT22 cells from RSL3-induced ferroptosis through decreasing lipid peroxidation and JNK/ERK activation. And N2L could be a ferroptosis inhibitor for the therapy of ferroptosis-related diseases, such as Alzheimer's disease.
Collapse
|
121
|
Yuan Y, Zhai Y, Chen J, Xu X, Wang H. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules 2021; 11:923. [PMID: 34206421 PMCID: PMC8301948 DOI: 10.3390/biom11070923] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
Kaempferol has been shown to protect cells against cerebral ischemia/reperfusion injury through inhibition of apoptosis. In the present study, we sought to investigate whether ferroptosis is involved in the oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal injury and the effects of kaempferol on ferroptosis in OGD/R-treated neurons. Western blot, immunofluorescence, and transmission electron microscopy were used to analyze ferroptosis, whereas cell death was detected using lactate dehydrogenase (LDH) release. We found that OGD/R attenuated SLC7A11 and glutathione peroxidase 4 (GPX4) levels as well as decreased endogenous antioxidants including nicotinamide adenine dinucleotide phosphate (NADPH), glutathione (GSH), and superoxide dismutase (SOD) in neurons. Notably, OGD/R enhanced the accumulation of lipid peroxidation, leading to the induction of ferroptosis in neurons. However, kaempferol activated nuclear factor-E2-related factor 2 (Nrf2)/SLC7A11/GPX4 signaling, augmented antioxidant capacity, and suppressed the accumulation of lipid peroxidation in OGD/R-treated neurons. Furthermore, kaempferol significantly reversed OGD/R-induced ferroptosis. Nevertheless, inhibition of Nrf2 by ML385 blocked the protective effects of kaempferol on antioxidant capacity, lipid peroxidation, and ferroptosis in OGD/R-treated neurons. These results suggest that ferroptosis may be a significant cause of cell death associated with OGD/R. Kaempferol provides protection from OGD/R-induced ferroptosis partly by activating Nrf2/SLC7A11/GPX4 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China; (Y.Y.); (Y.Z.); (J.C.); (X.X.)
| |
Collapse
|
122
|
Ge M, Tian H, Mao L, Li D, Lin J, Hu H, Huang S, Zhang C, Mei X. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther 2021; 27:1023-1040. [PMID: 33951302 PMCID: PMC8339532 DOI: 10.1111/cns.13657] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
AIM Spinal cord injury (SCI) involves multiple pathological processes. Ferroptosis has been shown to play a critical role in the injury process. We wanted to explore whether zinc can inhibit ferroptosis, reduce inflammation, and then exert a neuroprotective effect. METHODS The Alice method was used to establish a spinal cord injury model. The Basso Mouse Scale (BMS), Nissl staining, hematoxylin-eosin staining, and immunofluorescence analysis were used to investigate the protective effect of zinc on neurons on spinal cord neurons and the recovery of motor function. The regulation of the nuclear factor E2/heme oxygenase-1 (NRF2/HO-1) pathway was assessed, the levels of essential ferroptosis proteins were measured, and the changes in mitochondria were confirmed by transmission electron microscopy and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide (JC-1) staining. In vitro experiments using VSC4.1 (spinal cord anterior horn motor neuroma cell line), 4-hydroxynonenal (4HNE), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), lipid peroxides, and finally the levels of inflammatory factors were detected to assess the effect of zinc. RESULTS Zinc reversed behavioral and structural changes after SCI. Zinc increased the expression of NRF2/HO-1, thereby increasing the content of glutathione peroxidase 4 (GPX4), SOD, and GHS and reducing the levels of lipid peroxides, MDA, and ROS. Zinc also rescued injured mitochondria and effectively reduced spinal cord injury and the levels of inflammatory factors, and the NRF2 inhibitor Brusatol reversed the effects of zinc. CONCLUSION Zinc promoted the degradation of oxidative stress products and lipid peroxides through the NRF2/HO-1 and GPX4 signaling pathways to inhibit ferroptosis in neurons.
Collapse
Affiliation(s)
- Ming‐hao Ge
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - He Tian
- Department of Histology and EmbryologyJinzhou Medical UniversityJinzhouChina
| | - Liang Mao
- Department of OncologyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Dao‐yong Li
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Jia‐quan Lin
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Heng‐shuo Hu
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Shuo‐cheng Huang
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Chuan‐jie Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xi‐fan Mei
- Department of OrthopedicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
123
|
Li C, Brant E, Budak H, Zhang B. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B 2021; 22:253-284. [PMID: 33835761 PMCID: PMC8042526 DOI: 10.1631/jzus.b2100009] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.
Collapse
Affiliation(s)
- Chao Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Eleanor Brant
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT 59802, USA.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
124
|
Castells-Roca L, Tejero E, Rodríguez-Santiago B, Surrallés J. CRISPR Screens in Synthetic Lethality and Combinatorial Therapies for Cancer. Cancers (Basel) 2021; 13:1591. [PMID: 33808217 PMCID: PMC8037779 DOI: 10.3390/cancers13071591] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a complex disease resulting from the accumulation of genetic dysfunctions. Tumor heterogeneity causes the molecular variety that divergently controls responses to chemotherapy, leading to the recurrent problem of cancer reappearance. For many decades, efforts have focused on identifying essential tumoral genes and cancer driver mutations. More recently, prompted by the clinical success of the synthetic lethality (SL)-based therapy of the PARP inhibitors in homologous recombinant deficient tumors, scientists have centered their novel research on SL interactions (SLI). The state of the art to find new genetic interactions are currently large-scale forward genetic CRISPR screens. CRISPR technology has rapidly evolved to be a common tool in the vast majority of laboratories, as tools to implement CRISPR screen protocols are available to all researchers. Taking advantage of SLI, combinatorial therapies have become the ultimate model to treat cancer with lower toxicity, and therefore better efficiency. This review explores the CRISPR screen methodology, integrates the up-to-date published findings on CRISPR screens in the cancer field and proposes future directions to uncover cancer regulation and individual responses to chemotherapy.
Collapse
Affiliation(s)
- Laia Castells-Roca
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eudald Tejero
- Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Benjamín Rodríguez-Santiago
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|
125
|
Tang Y, Li C, Zhang YJ, Wu ZH. Ferroptosis-Related Long Non-Coding RNA signature predicts the prognosis of Head and neck squamous cell carcinoma. Int J Biol Sci 2021; 17:702-711. [PMID: 33767582 PMCID: PMC7975700 DOI: 10.7150/ijbs.55552] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) are head and neck cancers. On the other hand, ferroptosis is a novel iron-dependent and ROS reliant type of cell death observed various disease conditions. Method: We constructed a prognostic multilncRNA signature based on ferroptosis-related differentially expressed lncRNAs in HNSCC. Results: We identified 25 differently expressed lncRNAs associated with prognosis of HNSCC. Kaplan-Meier analyses revealed the high-risk lncRNAs signature associated with poor prognosis of HNSCC. Moreover, the AUC of the lncRNAs signature was 0.782, underscoring their utility in prediction HNSCC prognosis. Indeed, our risk assessment model was superior to traditional clinicopathological features in predicting HNSCC prognosis. GSEA revealed the immune and tumor-related pathways in the low risk group individuals. Moreover, TCGA revealed T cell functions including cytolytic activity, HLA, regulation of inflammationp, co-stimulation, co-inhibition and coordination of type II INF response were significantly different between the low-risk and high-risk groups. Immune checkpoints such as PDCD-1 (PD-1), CTLA4 and LAG3, were also expressed differently between the two risk groups. Conclusion: A novel ferroptosis-related lncRNAs signature impacts on the prognosis of HNSCC.
Collapse
Affiliation(s)
- Yun Tang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Li
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - You-Jing Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and technology, Wuhan, China
| | - Zeng-Hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
126
|
Metabolic Regulation of Ferroptosis in Cancer. BIOLOGY 2021; 10:biology10020083. [PMID: 33499222 PMCID: PMC7911352 DOI: 10.3390/biology10020083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Ferroptosis is a recently defined nonapoptotic form of cell death that is associated with various human diseases, including cancer. As ferroptosis is caused by an overdose of lipid peroxidation resulting from dysregulation of the cellular antioxidant system, it is inherently closely associated with cellular metabolism. Here, we provide an updated review of the recent studies that have shown mechanisms of metabolic regulation of ferroptosis in the context of cancer. Abstract Ferroptosis is a unique cell death mechanism that is executed by the excessive accumulation of lipid peroxidation in cells. The relevance of ferroptosis in multiple human diseases such as neurodegeneration, organ damage, and cancer is becoming increasingly evident. As ferroptosis is deeply intertwined with metabolic pathways such as iron, cyst(e)ine, glutathione, and lipid metabolism, a better understanding of how ferroptosis is regulated by these pathways will enable the precise utilization or prevention of ferroptosis for therapeutic uses. In this review, we present an update of the mechanisms underlying diverse metabolic pathways that can regulate ferroptosis in cancer.
Collapse
|
127
|
Chen X, Comish PB, Tang D, Kang R. Characteristics and Biomarkers of Ferroptosis. Front Cell Dev Biol 2021; 9:637162. [PMID: 33553189 PMCID: PMC7859349 DOI: 10.3389/fcell.2021.637162] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
The induction and consequences of regulated cell death (RCD) are accompanied by changes in gene and protein expression, biochemical pathways, as well as cell morphology and size. Such RCDs have a significant impact on development, tissue homeostasis, and the occurrence and progression of disease. Among different forms of RCD, ferroptosis appears to be the main cause of tissue damage driven by iron overload and lipid peroxidation. In fact, the dysfunctional ferroptotic response is implicated in a variety of pathological conditions and diseases, such as neurodegenerative diseases, tissue ischemia-reperfusion injury, tumorigenesis, infections, and immune diseases. Ferroptotic response can be fine-tuned through various oxidative stress and antioxidant defense pathways, coupling with metabolism, gene transcription, and protein degradation machinery. Accordingly, a series of ferroptosis inducers or inhibitors targeting redox- or iron metabolism-related proteins or signal transduction have been developed. Although this kind of RCD has recently attracted great interest in basic and clinical research, detecting and monitoring a ferroptotic response still faces challenges. In this mini-review, we not only summarize the latest knowledge about the characteristics of ferroptosis in vitro and in vivo, but also discuss the specificity and limitations of current biomarkers of ferroptosis.
Collapse
Affiliation(s)
- Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Paul B Comish
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
128
|
Abstract
Takahashi et al. (2020) conduct a focused CRISPR/Cas9 screen against NRF2 target and other redox regulatory genes in both 2D- and 3D-culture systems, uncovering a vulnerability of spheroid cancer cells deprived of extracellular matrix to undergo ferroptosis.
Collapse
|