101
|
Wills JW, Hondow N, Thomas AD, Chapman KE, Fish D, Maffeis TG, Penny MW, Brown RA, Jenkins GJS, Brown AP, White PA, Doak SH. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™). Part Fibre Toxicol 2016; 13:50. [PMID: 27613375 PMCID: PMC5016964 DOI: 10.1186/s12989-016-0161-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
Background The rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing. Method BASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells. Results For all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 μg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 μg/mL (16 nm-SiO2) and ≥100 μg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 μg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model’s 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D monocultured cells meanwhile showed extensive internalisation of both silica particles causing (geno)toxicity. Conclusions The results establish the importance of tissue microarchitecture in defining nanomaterial exposure, and suggest 3D in vitro models could play a role in bridging the gap between in vitro and in vivo outcomes in nanotoxicology. Robust exposure characterisation and uptake assessment methods (as demonstrated) are essential to interpret nano(geno)toxicity studies successfully. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0161-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John W Wills
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam D Thomas
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Katherine E Chapman
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - David Fish
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Thierry G Maffeis
- Multi-Disciplinary Nanotechnology Centre, College of Engineering, Singleton Park, Swansea University, Swansea, SA2 8PP, UK
| | - Mark W Penny
- Multi-Disciplinary Nanotechnology Centre, College of Engineering, Singleton Park, Swansea University, Swansea, SA2 8PP, UK
| | - Richard A Brown
- Multi-Disciplinary Nanotechnology Centre, College of Engineering, Singleton Park, Swansea University, Swansea, SA2 8PP, UK
| | - Gareth J S Jenkins
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Andy P Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul A White
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, K1N 9B4, ON, Canada
| | - Shareen H Doak
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
102
|
Condello M, De Berardis B, Ammendolia MG, Barone F, Condello G, Degan P, Meschini S. ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells. Toxicol In Vitro 2016; 35:169-79. [DOI: 10.1016/j.tiv.2016.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
|
103
|
Nelson BC, Wright CW, Ibuki Y, Moreno-Villanueva M, Karlsson HL, Hendriks G, Sims CM, Singh N, Doak SH. Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis 2016; 32:215-232. [PMID: 27565834 DOI: 10.1093/mutage/gew037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided.
Collapse
Affiliation(s)
- Bryant C Nelson
- National Institute of Standards and Technology, Material Measurement Laboratory - Biosystems and Biomaterials Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA,
| | - Christa W Wright
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue Building 1/Room 1309, Boston, MA 02115, USA
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Maria Moreno-Villanueva
- Department of Biology, University of Konstanz, Molecular Toxicology Group, D-78457 Konstanz, Germany
| | - Hanna L Karlsson
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giel Hendriks
- Toxys, Robert Boyleweg 4, 2333 CG Leiden, The Netherlands
| | - Christopher M Sims
- National Institute of Standards and Technology, Material Measurement Laboratory - Biosystems and Biomaterials Division, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Neenu Singh
- Faculty of Health and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK and
| | - Shareen H Doak
- Swansea University Medical School, Institute of Life Science, Centre for NanoHealth, Swansea University Medical School, Wales SA2 8PP, UK
| |
Collapse
|
104
|
Kazimirova A, Peikertova P, Barancokova M, Staruchova M, Tulinska J, Vaculik M, Vavra I, Kukutschova J, Filip P, Dusinska M. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study. ENVIRONMENTAL RESEARCH 2016; 148:443-449. [PMID: 27131798 DOI: 10.1016/j.envres.2016.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3µg/cm(2) (p=0.032).
Collapse
Affiliation(s)
- Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia.
| | - Pavlina Peikertova
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic; IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Jana Tulinska
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Miroslav Vaculik
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Ivo Vavra
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic; Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 03 Bratislava, Slovakia
| | - Jana Kukutschova
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Peter Filip
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University, Lincoln Drive 1263, 62901 Carbondale, USA
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| |
Collapse
|
105
|
Panda KK, Achary VMM, Phaomie G, Sahu HK, Parinandi NL, Panda BB. Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 806:11-23. [PMID: 27476331 DOI: 10.1016/j.mrgentox.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/10/2023]
Abstract
The silver nanoparticles (AgNPs) were synthesized extracellularly from silver nitrate (AgNO3) using kernel extract from ripe mango Mengifera indica L. under four different reaction conditions of the synthesis media such as the (i) absence of the reducing agent, trisodium citrate (AgNPI), (ii) presence of the reducing agent (AgNPII), (iii) presence of the cleansing agent, polyvinyl polypyrrolidone, PVPP (AgNPIII), and (iv) presence of the capping agent, polyvinyl pyrrolidone, PVP (AgNPIV). The synthesis of the AgNPs was monitored by UV-vis spectrophotometry. The AgNPs were characterised by the energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and small-angle X-ray scattering. Functional groups on the AgNPs were established by the Fourier transform infrared spectroscopy. The AgNPs (AgNPI, AgNPII, AgNPIII and AgNPIV) were spherical in shape with the diameters and size distribution-widths of 14.0±5.4, 19.2±6.6, 18.8±6.6 and 44.6±13.2nm, respectively. Genotoxicity of the AgNPs at concentrations ranging from 1 to 100mgL(-1) was determined by the Lathyrus sativus L. root bioassay and several endpoint assays including the generation of reactive oxygen species and cell death, lipid peroxidation, mitotic index, chromosome aberrations (CA), micronucleus formation (MN), and DNA damage as determined by the Comet assay. The dose-dependent induction of genotoxicity of the silver ion (Ag(+)) and AgNPs was in the order Ag(+)>AgNPII>AgNPI>AgNPIV>AgNPIII that corresponded with their relative potencies of induction of DNA damage and oxidative stress. Furthermore, the findings underscored the CA and MN endpoint-based genotoxicity assay which demonstrated the genotoxicity of AgNPs at concentrations (≤10mgL(-1)) lower than that (≥10mgL(-1)) tested in the Comet assay. This study demonstrated the protective action of PVPP against the genotoxicity of AgNPIII which was independent of the size of the AgNPs in the L. sativus L. root bioassay system.
Collapse
Affiliation(s)
- Kamal K Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760 007, India
| | - V Mohan M Achary
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ganngam Phaomie
- Material Chemistry Laboratory, Department of Chemistry, Berhampur University, Berhampur 760007, Odisha, India
| | - Hrushi K Sahu
- Condensed Matter Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakum 603102, Tamil Nadu, India
| | - Narasimham L Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Brahma B Panda
- Molecular Biology and Genomics Laboratory, Department of Botany, Berhampur University, Berhampur 760 007, India,.
| |
Collapse
|
106
|
Marchese Robinson RL, Lynch I, Peijnenburg W, Rumble J, Klaessig F, Marquardt C, Rauscher H, Puzyn T, Purian R, Åberg C, Karcher S, Vriens H, Hoet P, Hoover MD, Hendren CO, Harper SL. How should the completeness and quality of curated nanomaterial data be evaluated? NANOSCALE 2016; 8:9919-43. [PMID: 27143028 PMCID: PMC4899944 DOI: 10.1039/c5nr08944a] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?
Collapse
Affiliation(s)
- Richard L. Marchese Robinson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - John Rumble
- R&R Data Services, 11 Montgomery Avenue, Gaithersburg MD 20877 USA
| | - Fred Klaessig
- Pennsylvania Bio Nano Systems LLC, 3805 Old Easton Road, Doylestown, PA 18902
| | - Clarissa Marquardt
- Institute of Applied Computer Sciences (IAI), Karlsruhe Institute of Technology (KIT), Hermann v. Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hubert Rauscher
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via Fermi 2749, 21027 Ispra (VA), Italy
| | - Tomasz Puzyn
- Laboratory of Environmental Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ronit Purian
- Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 Israel
| | - Christoffer Åberg
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sandra Karcher
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890
| | - Hanne Vriens
- Department of Public Health and Primary Care, K.U.Leuven, Faculty of Medicine, Unit Environment & Health – Toxicology, Herestraat 49 (O&N 706), Leuven, Belgium
| | - Peter Hoet
- Department of Public Health and Primary Care, K.U.Leuven, Faculty of Medicine, Unit Environment & Health – Toxicology, Herestraat 49 (O&N 706), Leuven, Belgium
| | - Mark D. Hoover
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505-2888
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of NanoTechnology, Duke University, PO Box 90287 121 Hudson Hall, Durham NC 27708
| | - Stacey L. Harper
- Department of Environmental and Molecular Toxicology, School of Chemical, Biological and Environmental Engineering, Oregon State University, 1007 ALS, Corvallis, OR 97331
| |
Collapse
|
107
|
Luijten M, Olthof ED, Hakkert BC, Rorije E, van der Laan JW, Woutersen RA, van Benthem J. An integrative test strategy for cancer hazard identification. Crit Rev Toxicol 2016; 46:615-39. [PMID: 27142259 DOI: 10.3109/10408444.2016.1171294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assessment of genotoxic and carcinogenic potential is considered one of the basic requirements when evaluating possible human health risks associated with exposure to chemicals. Test strategies currently in place focus primarily on identifying genotoxic potential due to the strong association between the accumulation of genetic damage and cancer. Using genotoxicity assays to predict carcinogenic potential has the significant drawback that risks from non-genotoxic carcinogens remain largely undetected unless carcinogenicity studies are performed. Furthermore, test systems already developed to reduce animal use are not easily accepted and implemented by either industries or regulators. This manuscript reviews the test methods for cancer hazard identification that have been adopted by the regulatory authorities, and discusses the most promising alternative methods that have been developed to date. Based on these findings, a generally applicable tiered test strategy is proposed that can be considered capable of detecting both genotoxic as well as non-genotoxic carcinogens and will improve understanding of the underlying mode of action. Finally, strengths and weaknesses of this new integrative test strategy for cancer hazard identification are presented.
Collapse
Affiliation(s)
- Mirjam Luijten
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Evelyn D Olthof
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Betty C Hakkert
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Emiel Rorije
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | | | - Ruud A Woutersen
- d Netherlands Organization for Applied Scientific Research (TNO) , Zeist , the Netherlands
| | - Jan van Benthem
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| |
Collapse
|
108
|
Riebeling C, Wiemann M, Schnekenburger J, Kuhlbusch TA, Wohlleben W, Luch A, Haase A. A redox proteomics approach to investigate the mode of action of nanomaterials. Toxicol Appl Pharmacol 2016; 299:24-9. [DOI: 10.1016/j.taap.2016.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
|
109
|
Cowie H, Magdolenova Z, Saunders M, Drlickova M, Correia Carreira S, Halamoda Kenzaoi B, Gombau L, Guadagnini R, Lorenzo Y, Walker L, Fjellsbø LM, Huk A, Rinna A, Tran L, Volkovova K, Boland S, Juillerat-Jeanneret L, Marano F, Collins AR, Dusinska M. Suitability of human and mammalian cells of different origin for the assessment of genotoxicity of metal and polymeric engineered nanoparticles. Nanotoxicology 2016; 9 Suppl 1:57-65. [PMID: 25923348 DOI: 10.3109/17435390.2014.940407] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.
Collapse
Affiliation(s)
- Hilary Cowie
- Institute of Occupational Medicine, Research Avenue North , Riccarton, Edinburgh , UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Rubio L, El Yamani N, Kazimirova A, Dusinska M, Marcos R. Multi-walled carbon nanotubes (NM401) induce ROS-mediated HPRT mutations in Chinese hamster lung fibroblasts. ENVIRONMENTAL RESEARCH 2016; 146:185-190. [PMID: 26774957 DOI: 10.1016/j.envres.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
Although there is an important set of data showing potential genotoxic effects of nanomaterials (NMs) at the DNA (comet assay) and chromosome (micronucleus test) levels, few studies have been conducted to analyze their potential mutagenic effects at gene level. We have determined the ability of multi-walled carbon nanotubes (MWCNT, NM401), to induce mutations in the HPRT gene in Chinese hamster lung (V79) fibroblasts. NM401, characterized in the EU NanoGenotox project, were further studied within the EU Framework Programme Seven (FP7) project NANoREG. From the proliferation assay data we selected a dose-range of 0.12 to 12µg/cm(2) At these range we have been able to observe significant cellular uptake of MWCNT by using transmission electron microscopy (TEM), as well as a concentration-dependent induction of intracellular reactive oxygen species. In addition, a clear concentration-dependent increase in the induction of HPRT mutations was also observed. Data support a potential genotoxic/ carcinogenic risk associated with MWCNT exposure.
Collapse
Affiliation(s)
- Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Naouale El Yamani
- Health Effects Laboratory-MILK, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Alena Kazimirova
- Department of Biology, Slovak Medical University, Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory-MILK, NILU-Norwegian Institute for Air Research, Kjeller, Norway.
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
111
|
Krishnaraj C, Harper SL, Yun SI. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2016; 301:480-91. [PMID: 26414925 PMCID: PMC5755690 DOI: 10.1016/j.jhazmat.2015.09.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 05/12/2023]
Abstract
The present study examines the deleterious effect of biologically synthesized silver nanoparticles in adult zebrafish. Silver nanoparticles (AgNPs) used in the study were synthesized by treating AgNO3 with aqueous leaves extract of Malva crispa Linn., a medicinal herb as source of reductants. LC50 concentration of AgNPs at 96 h was observed as 142.2 μg/l. In order to explore the underlying toxicity mechanisms of AgNPs, half of the LC50 concentration (71.1 μg/l) was exposed to adult zebrafish for 14 days. Cytological changes and intrahepatic localization of AgNPs were observed in gills and liver tissues respectively, and the results concluded a possible sign for oxidative stress. In addition to oxidative stress the genotoxic effect was observed in peripheral blood cells like presence of micronuclei, nuclear abnormalities and also loss in cell contact with irregular shape was observed in liver parenchyma cells. Hence to confirm the oxidative stress and genotoxic effects the mRNA expression of stress related (MTF-1, HSP70) and immune response related (TLR4, NFKB, IL1B, CEBP, TRF, TLR22) genes were analyzed in liver tissues and the results clearly concluded that the plant extract mediated synthesis of AgNPs leads to oxidative stress and immunotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Stacey L Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Soon-Il Yun
- Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
112
|
Alebouyeh F, Bidgoli SA, Ziarati P, Heshmati M, Qomi M. Mutagenicity Assessment of Drinking Water in Combination with Flavored Black Tea Bags: a Cross Sectional Study in Tehran. Asian Pac J Cancer Prev 2015; 16:7479-84. [PMID: 26625748 DOI: 10.7314/apjcp.2015.16.17.7479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Diseases related to water impurities may present as major public health burdens. The present study aimed to assess the mutagenicity of drinking water from different zones of Tehran, and evaluate possible health risks through making tea with tea bags, by Ames mutagenicity test using TA 100, TA 98 and YG1029 strains. For this purpose, 450 water samples were collected over the period of July to December 2014 from 5 different zones of Tehran. Except for one sample, no mutagenic potential was detected during these two seasons and the MI scores were almost normal (≤ 1-1.6) in TA 100, TA 98 and YG1029 strains. Although no mutagenic effects were considered in TA 98 and TA 100 in the test samples of our three evaluated tea bag brands, one sample from a local company showed mutagenic effects in the YG1029 strain (MI=1.7-1.9 and 2) after prolonged (10-15 min.) steeping. Despite the mild mutagenic effect discovered for one of the brand, this cross sectional study showed relative safety of water samples and black tea bags in Tehran. According to the sensitivity of YG1029 to the mutagenic potential of water and black tea, even without metabolic activation by s9 fraction, this metabolizer strain could be considered as sensitive and applicable to food samples for quantitative analysis of mutagens.
Collapse
Affiliation(s)
- Farzaneh Alebouyeh
- Pharmaceutical Sciences Research Center, Islamic Azad University, Pharmaceutical Sciences Branch (IAUPS), Tehran, Iran E-mail :
| | | | | | | | | |
Collapse
|
113
|
Rasmussen K, González M, Kearns P, Sintes JR, Rossi F, Sayre P. Review of achievements of the OECD Working Party on Manufactured Nanomaterials' Testing and Assessment Programme. From exploratory testing to test guidelines. Regul Toxicol Pharmacol 2015; 74:147-60. [PMID: 26603783 DOI: 10.1016/j.yrtph.2015.11.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022]
Abstract
This paper charts the almost ten years of history of OECD's work on nanosafety, during which the programme of the OECD on the Testing and Assessment of Manufactured Nanomaterials covered the testing of eleven nanomaterials for about 59 end-points addressing physical-chemical properties, mammalian and environmental toxicity, environmental fate and material safety. An overview of the materials tested, the test methods applied and the discussions regarding the applicability of the OECD test guidelines, which are recognised methods for regulatory testing of chemicals, are given. The results indicate that many existing OECD test guidelines are suitable for nanomaterials and consequently, hazard data collected using such guidelines will fall under OECD's system of Mutual Acceptance of Data (MAD) which is a legally binding instrument to facilitate the international acceptance of information for the regulatory safety assessment of chemicals. At the same time, some OECD test guidelines and guidance documents need to be adapted to address nanomaterials while new test guidelines and guidance documents may be needed to address endpoints that are more relevant to nanomaterials. This paper presents examples of areas where test guidelines or guidance for nanomaterials are under development.
Collapse
Affiliation(s)
- Kirsten Rasmussen
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, via E. Fermi 2749, 21027, Ispra, VA, Italy.
| | - Mar González
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775, Paris Cedex 16, France
| | - Peter Kearns
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775, Paris Cedex 16, France
| | - Juan Riego Sintes
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - François Rossi
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, via E. Fermi 2749, 21027, Ispra, VA, Italy
| | - Phil Sayre
- U.S. Environmental Protection Agency, formerly with Office of Pollution Prevention and Toxics, Washington DC, 20460, USA.
| |
Collapse
|
114
|
Assessment of the genotoxic potential of two zinc oxide sources (amorphous and nanoparticles) using the in vitro micronucleus test and the in vivo wing somatic mutation and recombination test. Food Chem Toxicol 2015; 84:55-63. [DOI: 10.1016/j.fct.2015.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/24/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022]
|
115
|
Nogueira V, Lopes I, Rocha-Santos TAP, Rasteiro MG, Abrantes N, Gonçalves F, Soares AMVM, Duarte AC, Pereira R. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13212-13224. [PMID: 25940480 DOI: 10.1007/s11356-015-4581-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
The rapid development of nanotechnology and the increasing use of nanomaterials (NMs) raise concern about their fate and potential effects in the environment, especially for those that could be used for remediation purposes and that will be intentionally released to the environment. Despite the remarkable emerging literature addressing the biological effects of NMs to aquatic organisms, the existing information is still scarce and contradictory. Therefore, aimed at selecting NMs for the treatment of organic and inorganic effluents, we assessed the potential toxicity of NiO (100 and 10-20 nm), Fe2O3 (≈85 × 425 nm), and TiO2 (<25 nm), to a battery of aquatic organisms: Vibrio fischeri, Raphidocelis subcapitata, Lemna minor, Daphnia magna, Brachionus plicatilis, and Artemia salina. Also a mutagenic test was performed with two Salmonella typhimurium strains. Suspensions of each NM, prepared with the different test media, were characterized by dynamic light scattering (DLS) and eletrophoretic light scattering (ELS). For the assays with marine species, no toxicity was observed for all the compounds. In opposite, statistically significant effects were produced on all freshwater species, being D. magna the most sensitive organism. Based on the results of this study, the tested NMs can be classified in a decreasing order of toxicity NiO (100 nm) > NiO (10-20 nm) > TiO2 (<25 nm) > Fe2O3, allowing to infer that apparently Fe2O3 NMs seems to be the one with less risks for receiving aquatic systems.
Collapse
Affiliation(s)
- V Nogueira
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Huk A, Collins AR, El Yamani N, Porredon C, Azqueta A, de Lapuente J, Dusinska M. Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis 2015; 30:85-8. [PMID: 25527731 DOI: 10.1093/mutage/geu077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The comet assay is widely used to test the genotoxicity of engineered nanomaterials (ENMs) but outcomes may vary when results from different laboratories, or even within one laboratory, are compared. We address some basic methodological considerations, such as the importance of carrying out physico-chemical characterisation of the ENMs in test-medium, performing uptake and cytotoxicity tests, and testing several genotoxicity-related endpoints. In this commentary, we discuss the different ways in which concentration of ENMs can be expressed, and stress the need to include appropriate controls and reference standards to monitor variation and avoid interference. Treatment conditions, including cell number, cell culture plate format and volume of treatment medium on the plate are crucial factors that may impact on results and thus should be kept constant within the study.
Collapse
Affiliation(s)
- Anna Huk
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | - Andrew R Collins
- Department of Nutrition, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway, Department of Nutrition, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Constanca Porredon
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science Park, Parc Científic de Barcelona c/ Baldiri Reixac, 10-12, Edifici Cluster, 08028 Barcelona, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain
| | - Joaquín de Lapuente
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science Park, Parc Científic de Barcelona c/ Baldiri Reixac, 10-12, Edifici Cluster, 08028 Barcelona, Spain
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway,
| |
Collapse
|
117
|
Huk A, Izak-Nau E, El Yamani N, Uggerud H, Vadset M, Zasonska B, Duschl A, Dusinska M. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating. Part Fibre Toxicol 2015. [PMID: 26204901 PMCID: PMC4513976 DOI: 10.1186/s12989-015-0100-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background The main goal of this research was to study the interactions of a fully characterized set of silver nanomaterials (Ag ENMs) with cells in vitro, according to the standards of Good Laboratory Practices (GLP), to assure the quality of nanotoxicology research. We were interested in whether Ag ENMs synthesized by the same method, with the same size distribution, shape and specific surface area, but with different charges and surface compositions could give different biological responses. Methods A range of methods and toxicity endpoints were applied to study the impacts of interaction of the Ag ENMs with TK6 cells. As tests of viability, relative growth activity and trypan blue exclusion were applied. Genotoxicity was evaluated by the alkaline comet assay for detection of strand breaks and oxidized purines. The mutagenic potential of Ag ENMs was investigated with the in vitro HPRT gene mutation test on V79-4 cells according to the OECD protocol. Ag ENM agglomeration, dissolution as well as uptake and distribution within the cells were investigated as crucial aspects of Ag ENM toxicity. Ag ENM stabilizers were included in addition to positive and negative controls. Results Different cytotoxic effects were observed including membrane damage, cell cycle arrest and cell death. Ag ENMs also induced various kinds of DNA damage including strand breaks and DNA oxidation, and caused gene mutation. We found that positive Ag ENMs had greater impact on cyto- and genotoxicity than did Ag ENMs with neutral or negative charge, assumed to be related to their greater uptake into cells and to their presence in the nucleus and mitochondria, implying that Ag ENMs might induce toxicity by both direct and indirect mechanisms. Conclusion We showed that Ag ENMs could be cytotoxic, genotoxic and mutagenic. Our experiments with the HPRT gene mutation assay demonstrated that surface chemical composition plays a significant role in Ag ENM toxicity.
Collapse
Affiliation(s)
- Anna Huk
- Health Effects Laboratory, MILK, NILU, Kjeller, Norway. .,Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| | - Emilia Izak-Nau
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria. .,Bayer Technology Services GmbH, Leverkusen, Germany.
| | | | | | | | - Beata Zasonska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Albert Duschl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
118
|
Azqueta A, Dusinska M. The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Front Genet 2015. [PMID: 26217380 PMCID: PMC4498100 DOI: 10.3389/fgene.2015.00239] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra Pamplona, Spain
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research Kjeller, Norway
| |
Collapse
|
119
|
Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 2015; 30:577-91. [PMID: 25964273 DOI: 10.1093/mutage/gev020] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed.
Collapse
Affiliation(s)
- Kimberly S Butler
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - David J Peeler
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Brendan J Casey
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Benita J Dair
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Rosalie K Elespuru
- U.S. Food and Drug Administration, Office of Medical Products and Tobacco, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Biology, Chemistry, and Materials Science, 10933 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
120
|
Maisanaba S, Pichardo S, Puerto M, Gutiérrez-Praena D, Cameán AM, Jos A. Toxicological evaluation of clay minerals and derived nanocomposites: a review. ENVIRONMENTAL RESEARCH 2015; 138:233-254. [PMID: 25732897 DOI: 10.1016/j.envres.2014.12.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 05/29/2023]
Abstract
Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on wildlife, with laboratory trials showing contradictory outcomes. Clay minerals have different applications in the environment, thus with a strict control of the concentrations used, they can provide beneficial uses. Despite the extensive number of reports available, there is also a need of systematic in vitro-in vivo extrapolation studies, with still scarce information on toxicity biomarkers such as inmunomodulatory effects or alteration of the genetic expression. In conclusion, a case by case toxicological evaluation is required taking into account that different clays have their own toxicological profiles, their modification can change this profile, and the potential increase of the human/environmental exposure to clay minerals due to their novel applications.
Collapse
Affiliation(s)
- Sara Maisanaba
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
121
|
Catalán J, Ilves M, Järventaus H, Hannukainen KS, Kontturi E, Vanhala E, Alenius H, Savolainen KM, Norppa H. Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:171-82. [PMID: 25257801 DOI: 10.1002/em.21913] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 05/11/2023]
Abstract
Nanocellulosics are among the most promising innovations for a wide-variety of applications in materials science. Although nanocellulose is presently produced only on a small scale, its possible toxic effects should be investigated at this early stage. The aim of the present study was to examine the potential genotoxicity and immunotoxicity of two celluloses in vitro - cellulose nanocrystals (CNC; mean fibril length 135 nm, mean width 7.3 nm) and a commercially available microcrystalline (non-nanoscale) cellulose (MCC; particle size ∼50 µm). Both celluloses showed 55% cytotoxicity at approximately 100 µg/ml after 4-h, 24-h, and 48-h treatment of human bronchial epithelial BEAS 2B cells, as determined by luminometric detection of ATP and cell count (dead cells identified by propidium iodide). Neither of the materials was able to induce micronuclei (MN) in binucleate or mononucleate BEAS 2B cells after a 48-h treatment (2.5-100 µg/ml). In human monocyte-derived macrophages, MCC induced a release (measured by enzyme-linked immunosorbent assay; ELISA) of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and (after lipopolysaccharide-priming) interleukin 1β (IL-1β) after a 6-h exposure to a dose of 300 µg/ml, but CNC (30-300 µg/ml) did not. In conclusion, our results show that nanosized CNC is neither genotoxic nor immunotoxic under the conditions tested, whereas non-nanosized MCC is able to induce an inflammatory response. More studies are needed, especially in vivo, to further assess if CNC and other nanocelluloses induce secondary genotoxic effects mediated by inflammation.
Collapse
Affiliation(s)
- Julia Catalán
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland; Systems Toxicology, Finnish Institute of Occupational Health, Helsinki, Finland; Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. NANOSCALE 2015; 7:2154-98. [PMID: 25580680 DOI: 10.1039/c4nr06670g] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Collapse
Affiliation(s)
- Nazanin Golbamaki
- Laboratory of Environmental Chemistry and Toxicology at the Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
123
|
Manshian BB, Soenen SJ, Al-Ali A, Brown A, Hondow N, Wills J, Jenkins GJS, Doak SH. Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicol Sci 2015; 144:246-58. [PMID: 25601991 PMCID: PMC4372665 DOI: 10.1093/toxsci/kfv002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toxicity of nanoparticles (NPs) is often correlated with the physicochemical characteristics of the materials. However, some discrepancies are noted in in-vitro studies on quantum dots (QDs) with similar physicochemical properties. This is partly related to variations in cell type. In this study, we show that epithelial (BEAS-2B), fibroblast (HFF-1), and lymphoblastoid (TK6) cells show different biological responses following exposure to QDs. These cells represented the 3 main portals of NP exposure: bronchial, skin, and circulatory. The uptake and toxicity of negatively and positively charged CdSe:ZnS QDs of the same core size but with different surface chemistries (carboxyl or amine polymer coatings) were investigated in full and reduced serum containing media following 1 and 3 cell cycles. Following thorough physicochemical characterization, cellular uptake, cytotoxicity, and gross chromosomal damage were measured. Cellular damage mechanisms in the form of reactive oxygen species and the expression of inflammatory cytokines IL-8 and TNF-α were assessed. QDs uptake and toxicity significantly varied in the different cell lines. BEAS-2B cells demonstrated the highest level of QDs uptake yet displayed a strong resilience with minimal genotoxicity following exposure to these NPs. In contrast, HFF-1 and TK6 cells were more susceptible to toxicity and genotoxicity, respectively, as a result of exposure to QDs. Thus, this study demonstrates that in addition to nanomaterial physicochemical characterization, a clear understanding of cell type-dependent variation in uptake coupled to the inherently different capacities of the cell types to cope with exposure to these exogenous materials are all required to predict genotoxicity.
Collapse
Affiliation(s)
- Bella B Manshian
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Stefaan J Soenen
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Abdullah Al-Ali
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Andy Brown
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Nicole Hondow
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - John Wills
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth J S Jenkins
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| | - Shareen H Doak
- *Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK, Department of Medicine, Biomedical NMR Unit-MoSAIC, KU Leuven, B-3000 Leuven, Belgium and Institute for Materials Research, SCaPE, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
124
|
Guérard M, Baum M, Bitsch A, Eisenbrand G, Elhajouji A, Epe B, Habermeyer M, Kaina B, Martus H, Pfuhler S, Schmitz C, Sutter A, Thomas A, Ziemann C, Froetschl R. Assessment of mechanisms driving non-linear dose–response relationships in genotoxicity testing. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:181-201. [DOI: 10.1016/j.mrrev.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 01/15/2023]
|
125
|
Marchese Robinson RL, Cronin MTD, Richarz AN, Rallo R. An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1978-99. [PMID: 26665069 PMCID: PMC4660926 DOI: 10.3762/bjnano.6.202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/27/2015] [Indexed: 05/20/2023]
Abstract
Analysis of trends in nanotoxicology data and the development of data driven models for nanotoxicity is facilitated by the reporting of data using a standardised electronic format. ISA-TAB-Nano has been proposed as such a format. However, in order to build useful datasets according to this format, a variety of issues has to be addressed. These issues include questions regarding exactly which (meta)data to report and how to report them. The current article discusses some of the challenges associated with the use of ISA-TAB-Nano and presents a set of resources designed to facilitate the manual creation of ISA-TAB-Nano datasets from the nanotoxicology literature. These resources were developed within the context of the NanoPUZZLES EU project and include data collection templates, corresponding business rules that extend the generic ISA-TAB-Nano specification as well as Python code to facilitate parsing and integration of these datasets within other nanoinformatics resources. The use of these resources is illustrated by a "Toy Dataset" presented in the Supporting Information. The strengths and weaknesses of the resources are discussed along with possible future developments.
Collapse
Affiliation(s)
- Richard L Marchese Robinson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Andrea-Nicole Richarz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Robert Rallo
- Departament d'Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalunya, Spain
| |
Collapse
|
126
|
Heshmati M, ArbabiBidgoli S, Khoei S, Rezayat SM, Parivar K. Mutagenic Effects of Nanosilver Consumer Products: a new Approach to Physicochemical Properties. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:1171-80. [PMID: 26664384 PMCID: PMC4673945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serious concerns have been expressed about potential health risks of Nano silver containing consumer products (AgNPs) therefore regulatory health risk assessment on such nanoparticles has become mandatory for the safe use of AgNPsinbiomedicalproducts with special concerns to the mutagenic potentials. In this study, we examined the inhibitory and mutagenicity effects of AgNPs in three different sizes of three colloidal AgNPs by Minimal Inhibitory concentration (MIC), Minimal Bactericidal Concentration (MBC) and Bacterial Reverse Mutation Assay (Ames test).All samples were characterized by transmission electron microscopy (TEM), X-Ray Diffraction (XRD) and Dynamic Light Scattering (DLS). DLS analysis showed lack of large agglomeration of the AgNPs and TEM results showed the spherical AgNPswith the average sizes of 15, 19.6, 21.8 nms. Furthermore the XRD analysis showed the crystalline samples with a face centered cubic structure of pure silver.AmestestresultsonColloidal silver nanoparticles showed lack of any mutation in TA100, TA98, YG1029S. typhymuriumstrains.In addition colloidal silver nanoparticles reduced the mutation ratesin all three strains in a concentration dependent manner .This finding creates a new issue in the possible antimutagenic effects of colloidal AgNPsas a new pharmaceutical productwhich should be consideredinfuture studiesby focusing onthephysicochemical properties of AgNPs.
Collapse
Affiliation(s)
- Masomeh Heshmati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Sepideh ArbabiBidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.,
| | - Samideh Khoei
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahdi Rezayat
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
127
|
Kwon JY, Kim HL, Lee JY, Ju YH, Kim JS, Kang SH, Kim YR, Lee JK, Jeong J, Kim MK, Maeng EH, Seo YR. Undetactable levels of genotoxicity of SiO2 nanoparticles in in vitro and in vivo tests. Int J Nanomedicine 2014; 9 Suppl 2:173-81. [PMID: 25565835 PMCID: PMC4279720 DOI: 10.2147/ijn.s57933] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Silica dioxide (SiO2) has been used in various industrial products, including paints and coatings, plastics, synthetic rubbers, and adhesives. Several studies have investigated the genotoxic effects of SiO2; however, the results remain controversial due to variations in the evaluation methods applied in determining its physicochemical properties. Thus, well characterized chemicals and standardized methods are needed for better assessment of the genotoxicity of nanoparticles. Methods The genotoxicity of SiO2 was evaluated using two types of well characterized SiO2, ie, 20 nm (−) charge (SiO EN20(−)2) and 100 nm (−) charge (SiO EN100(−)2). Four end point genotoxicity tests, ie, the bacterial mutation assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test, were conducted following the test guidelines of the Organization for Economic Cooperation and Development (OECD) with application of Good Laboratory Practice. Results No statistically significant differences were found in the bacterial mutation assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test when tested for induction of genotoxicity in both two types of SiO2 nanoparticles. Conclusion These results suggest that SiO2 nanoparticles, in particular SiO2EN20(−) and SiO2EN100(−), are not genotoxic in both in vitro and in vivo systems under OECD guidelines. Further, the results were generated in accordance with OECD test guidelines, and Good Laboratory Practice application; it can be accepted as reliable information regarding SiO2-induced genotoxicity.
Collapse
Affiliation(s)
- Jee Young Kwon
- Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, Republic of Korea
| | - Hye Lim Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, Republic of Korea
| | - Jong Yun Lee
- Korea Testing and Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yo Han Ju
- Korea Testing and Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Soo Kim
- Korea Testing and Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung Hun Kang
- Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, Republic of Korea
| | - Yu-Ri Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong-Kwon Lee
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea
| | - Jayoung Jeong
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungcheongbuk-do, Republic of Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Ho Maeng
- Korea Testing and Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
128
|
Huk A, Izak-Nau E, Reidy B, Boyles M, Duschl A, Lynch I, Dušinska M. Is the toxic potential of nanosilver dependent on its size? Part Fibre Toxicol 2014; 11:65. [PMID: 25466209 PMCID: PMC4274708 DOI: 10.1186/s12989-014-0065-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 11/10/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nanosilver is one of the most commonly used engineered nanomaterials (ENMs). In our study we focused on assessing the size-dependence of the toxicity of nanosilver (Ag ENMs), utilising materials of three sizes (50, 80 and 200 nm) synthesized by the same method, with the same chemical composition, charge and coating. METHODS Uptake and localisation (by Transmission Electron Microscopy), cell proliferation (Relative growth activity) and cytotoxic effects (Plating efficiency), inflammatory response (induction of IL-8 and MCP-1 by Enzyme linked immune sorbent assay), DNA damage (strand breaks and oxidised DNA lesions by the Comet assay) were all assessed in human lung carcinoma epithelial cells (A549), and the mutagenic potential of ENMs (Mammalian hprt gene mutation test) was assessed in V79-4 cells as per the OECD protocol. Detailed physico-chemical characterization of the ENMs was performed in water and in biological media as a prerequisite to assessment of their impacts on cells. To study the relationship between the surface area of the ENMs and the number of ENMs with the biological response observed, Ag ENMs concentrations were recalculated from μg/cm2 to ENMs cm2/cm2 and ENMs/cm2. RESULTS Studied Ag ENMs are cytotoxic and cytostatic, and induced strand breaks, DNA oxidation, inflammation and gene mutations. Results expressed in mass unit [μg/cm2] suggested that the toxicity of Ag ENMs is size dependent with 50 nm being most toxic. However, re-calculation of Ag ENMs concentrations from mass unit to surface area and number of ENMs per cm2 highlighted that 200 nm Ag ENMs, are the most toxic. Results from hprt gene mutation assay showed that Ag ENMs 200 nm are the most mutagenic irrespective of the concentration unit expressed. CONCLUSION We found that the toxicity of Ag ENMs is not always size dependent. Strong cytotoxic and genotoxic effects were observed in cells exposed to Ag ENMs 50 nm, but Ag ENMs 200 nm had the most mutagenic potential. Additionally, we showed that expression of concentrations of ENMs in mass units is not representative. Number of ENMs or surface area of ENMs (per cm2) seem more precise units with which to compare the toxicity of different ENMs.
Collapse
|
129
|
Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 2014; 88:2191-211. [PMID: 25326817 DOI: 10.1007/s00204-014-1383-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
Nanotechnology offers enormous potential for technological progress. Fortunately, early and intensive efforts have been invested in investigating toxicology and safety aspects of this new technology. However, despite there being more than 6,000 publications on nanotoxicology, some key questions still have to be answered and paradigms need to be challenged. Here, we present a view on the field of nanotoxicology to stimulate the discussion on major knowledge gaps and the critical appraisal of concepts or dogma. First, in the ongoing debate as to whether nanoparticles may harbour a specific toxicity due to their size, we support the view that there is at present no evidence of 'nanospecific' mechanisms of action; no step-change in hazard was observed so far for particles below 100 nm in one dimension. Therefore, it seems unjustified to consider all consumer products containing nanoparticles a priori as hazardous. Second, there is no evidence so far that fundamentally different biokinetics of nanoparticles would trigger toxicity. However, data are sparse whether nanoparticles may accumulate to an extent high enough to cause chronic adverse effects. To facilitate hazard assessment, we propose to group nanomaterials into three categories according to the route of exposure and mode of action, respectively: Category 1 comprises nanomaterials for which toxicity is mediated by the specific chemical properties of its components, such as released ions or functional groups on the surface. Nanomaterials belonging to this category have to be evaluated on a case-by-case basis, depending on their chemical identity. Category 2 focuses on rigid biopersistent respirable fibrous nanomaterials with a specific geometry and high aspect ratio (so-called WHO fibres). For these fibres, hazard assessment can be based on the experiences with asbestos. Category 3 focuses on respirable granular biodurable particles (GBP) which, after inhalation, may cause inflammation and secondary mutagenicity that may finally lead to lung cancer. After intravenous, oral or dermal exposure, nanoscaled GBPs investigated apparently did not show 'nanospecific' effects so far. Hazard assessment of GBPs may be based on the knowledge available for granular particles. In conclusion, we believe the proposed categorization system will facilitate future hazard assessments.
Collapse
|
130
|
Filho JDS, Matsubara EY, Franchi LP, Martins IP, Rivera LMR, Rosolen JM, Grisolia CK. Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model. ENVIRONMENTAL RESEARCH 2014; 134:9-16. [PMID: 25042031 DOI: 10.1016/j.envres.2014.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 05/02/2023]
Abstract
This is a detailed in vivo study of the biological response to carbon nanotubes network as probed by the zebrafish model. First, we prepared pristine carbon nanotubes (CNTs) by methanol chemical vapor deposition in the presence of Mn and Co as catalysts, followed by purification in acid, which furnished curved tubes with diameters lying between 10 and 130 nm. The CNT network consisted of pristine CNTs dispersed in water in the presence of a surfactant. The CNT network pellets corresponded to agglomerated multi-walled CNTs with an average diameter of about 500 nm. Although the same pristine CNTs had been previously found to exert genotoxic effects in vitro, here we verified that the CNT network was not genotoxic in vivo. Indeed, Raman spectroscopy and microscopy conducted in the intestine of the zebrafish revealed complete clearance of the CNT network as well as minimal disturbances, such as aneurysms, hyperemia, and reversible inflammatory focus in the zebrafish gills.
Collapse
Affiliation(s)
- Jose de Souza Filho
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Elaine Y Matsubara
- Departamento de Química-FFCLRP, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP, Brasil.
| | - Leonardo Pereira Franchi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo, 14049-900, Ribeirão Preto - SP - Brazil
| | - Igor Pinheiro Martins
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Luis Miguel Ramires Rivera
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - José Mauricio Rosolen
- Departamento de Química-FFCLRP, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP, Brasil.
| | - Cesar Koppe Grisolia
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
131
|
Karlsson HL, Gliga AR, Calléja FMGR, Gonçalves CSAG, Wallinder IO, Vrieling H, Fadeel B, Hendriks G. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Part Fibre Toxicol 2014; 11:41. [PMID: 25179117 PMCID: PMC4237954 DOI: 10.1186/s12989-014-0041-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The rapid expansion of manufacturing and use of nano-sized materials fuels the demand for fast and reliable assays to identify their potential hazardous properties and underlying mechanisms. The ToxTracker assay is a recently developed mechanism-based reporter assay based on mouse embryonic stem (mES) cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress upon exposure. Here, we evaluated the ability of the ToxTracker assay to identify the hazardous properties and underlying mechanisms of a panel of metal oxide- and silver nanoparticles (NPs) as well as additional non-metallic materials (diesel, carbon nanotubes and quartz). METHODS The metal oxide- and silver nanoparticles were characterized in terms of agglomeration and ion release in cell medium (using photon cross correlation spectroscopy and inductively coupled plasma with optical emission spectroscopy, respectively) as well as acellular ROS production (DCFH-DA assay). Cellular uptake was investigated by means of transmission electron microscopy. GFP reporter induction and cytotoxicity of the NPs was simultaneously determined using flow cytometry, and genotoxicity was further tested using conventional assays (comet assay, γ-H2AX and RAD51 foci formation). RESULTS We show that the reporter cells were able to take up nanoparticles and, furthermore, that exposure to CuO, NiO and ZnO nanoparticles as well as to quartz resulted in activation of the oxidative stress reporter, although only at high cytotoxicity for ZnO. NiO NPs activated additionally a p53-associated cellular stress response, indicating additional reactive properties. Conventional assays for genotoxicity assessment confirmed the response observed in the ToxTracker assay. We show for CuO NPs that the induction of oxidative stress is likely the consequence of released Cu ions whereas the effect by NiO was related to the particles per se. The DNA replication stress-induced reporter, which is most strongly associated with carcinogenicity, was not activated by any of the tested nanoparticles. CONCLUSIONS We conclude that the ToxTracker reporter system can be used as a rapid mechanism-based tool for the identification of hazardous properties of metal oxide NPs. Furthermore, genotoxicity of metal oxide NPs seems to occur mainly via oxidative stress rather than direct DNA binding with subsequent replication stress.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Butler KS, Casey BJ, Garborcauskas GV, Dair BJ, Elespuru RK. Assessment of titanium dioxide nanoparticle effects in bacteria: Association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 768:14-22. [DOI: 10.1016/j.mrgentox.2014.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 01/24/2023]
|
133
|
Kwon JY, Lee SY, Koedrith P, Lee JY, Kim KM, Oh JM, Yang SI, Kim MK, Lee JK, Jeong J, Maeng EH, Lee BJ, Seo YR. Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 761:1-9. [PMID: 24462964 DOI: 10.1016/j.mrgentox.2014.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 11/25/2022]
Abstract
The industrial application of nanotechnology, particularly using zinc oxide (ZnO), has grown rapidly, including products such as cosmetics, food, rubber, paints, and plastics. However, despite increasing population exposure to ZnO, its potential genotoxicity remains controversial. The biological effects of nanoparticles depend on their physicochemical properties. Preparations with well-defined physico-chemical properties and standardized test methods are required for assessing the genotoxicity of nanoparticles. In this study, we have evaluated the genotoxicity of four kinds of ZnO nanoparticles: 20nm and 70nm size, positively or negatively charged. Four different genotoxicity tests (bacterial mutagenicity assay, in vitro chromosomal aberration test, in vivo comet assay, and in vivo micronucleus test, were conducted, following Organization for Economic Cooperation and Development (OECD) test guidelines with good laboratory practice (GLP) procedures. No statistically significant differences from the solvent controls were observed. These results suggest that surface-modified ZnO nanoparticles do not induce genotoxicity in in vitro or in vivo test systems.
Collapse
Affiliation(s)
- Jee Young Kwon
- Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, South Korea; Department of Biomedical Science, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung Young Lee
- Korea Testing and Research Institute, Seoul, South Korea; College of Veterinary Medicine Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| | - Preeyaporn Koedrith
- Faculty of Environment and Resource Studies, Mahidol University, Phuttamonthon District, NakhonPathom 73170, Thailand
| | - Jong Yun Lee
- Korea Testing and Research Institute, Seoul, South Korea
| | - Kyoung-Min Kim
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea
| | - Jae-Min Oh
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo, South Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin, South Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Jong Kwon Lee
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), Chungcheongbuk-do, South Korea
| | - Jayoung Jeong
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation (NIFDS), Ministry of Food and Drug Safety (MFDS), Chungcheongbuk-do, South Korea
| | - Eun Ho Maeng
- Korea Testing and Research Institute, Seoul, South Korea
| | - Beam Jun Lee
- College of Veterinary Medicine Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, South Korea.
| |
Collapse
|
134
|
Durán N, Seabra AB, de Lima R. Cytotoxicity and Genotoxicity of Biogenically Synthesized Silver Nanoparticles. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
135
|
Martinez DST, Franchi LP, Freria CM, Ferreira OP, Filho AGS, Alves OL, Takahashi CS. Carbon Nanotubes: From Synthesis to Genotoxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
136
|
McMahan RS, Lee V, Parks WC, Kavanagh TJ, Eaton DL. In vitro approaches to assessing the toxicity of quantum dots. Methods Mol Biol 2014; 1199:155-163. [PMID: 25103807 DOI: 10.1007/978-1-4939-1280-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Advances in nanotechnology have produced a new class of fluorescent nanoparticles known as quantum dots (Qdots). Compared with organic dyes and fluorescent proteins, Qdots offer several unique advantages in terms of spectral range, brightness, and photostability. Relative to other imaging modalities, optical imaging with Qdots is highly sensitive, quantitative, and capable of multiplexing. Thus, Qdots are being developed for a wide range of applications, including biomedical imaging. Qdot production has also emerged in a number of industrial applications, such as optoelectronic devices and photovoltaic cells. This widespread development and use of Qdots has outpaced research progress on their potential cytotoxicity, engendering major concerns surrounding occupational, environmental, and diagnostic exposures. Given the extensive physicochemical heterogeneity of Qdots (size, charge, chemical composition, solubility, etc.), high-throughput in vitro cytotoxicity assays represent a feasible means of determining effects of multiple variables and can inform design of lower-throughput in vivo cytotoxicity studies. Here, we describe the application of two commonly used assays, lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), for detection of Qdot-induced cytotoxicity.
Collapse
Affiliation(s)
- Ryan S McMahan
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | | | | | | | | |
Collapse
|
137
|
Analysis of Nanoparticle-Induced DNA Damage by the Comet Assay. GENOTOXICITY AND DNA REPAIR 2014. [DOI: 10.1007/978-1-4939-1068-7_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
138
|
Moche H, Chevalier D, Barois N, Lorge E, Claude N, Nesslany F. Tungsten Carbide-Cobalt as a Nanoparticulate Reference Positive Control in In Vitro Genotoxicity Assays. Toxicol Sci 2013; 137:125-34. [DOI: 10.1093/toxsci/kft222] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
139
|
Pfuhler S, Elespuru R, Aardema MJ, Doak SH, Maria Donner E, Honma M, Kirsch-Volders M, Landsiedel R, Manjanatha M, Singer T, Kim JH. Genotoxicity of nanomaterials: refining strategies and tests for hazard identification. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:229-239. [PMID: 23519787 DOI: 10.1002/em.21770] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 02/08/2013] [Accepted: 02/04/2013] [Indexed: 05/27/2023]
Abstract
A workshop addressing strategies for the genotoxicity assessment of nanomaterials (NMs) was held on October 23, 2010 in Fort Worth Texas, USA. The workshop was organized by the Environmental Mutagen Society and the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute. The workshop was attended by more than 80 participants from academia, regulatory agencies, and industry from North America, Europe and Japan. A plenary session featured summaries of the current status and issues related to the testing of NMs for genotoxic properties, as well as an update on international activities and regulatory approaches. This was followed by breakout sessions and a plenary session devoted to independent discussions of in vitro assays, in vivo assays, and the need for new assays or new approaches to develop a testing strategy for NMs. Each of the standard assays was critiqued as a resource for evaluation of NMs, and it became apparent that none was appropriate without special considerations or modifications. The need for nanospecific positive controls was questioned, as was the utility of bacterial assays. The latter was thought to increase the importance of including mammalian cell gene mutation assays into the test battery. For in-vivo testing, to inform the selection of appropriate tests or protocols, it was suggested to run repeated dose studies first to learn about disposition, potential accumulation, and possible tissue damage. It was acknowledged that mechanisms may be at play that a standard genotoxicity battery may not be able to capture.
Collapse
|
140
|
Fraga S, Faria H, Soares ME, Duarte JA, Soares L, Pereira E, Costa-Pereira C, Teixeira JP, de Lourdes Bastos M, Carmo H. Influence of the surface coating on the cytotoxicity, genotoxicity and uptake of gold nanoparticles in human HepG2 cells. J Appl Toxicol 2013; 33:1111-9. [PMID: 23529830 DOI: 10.1002/jat.2865] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/28/2012] [Accepted: 01/17/2013] [Indexed: 02/06/2023]
Abstract
The toxicological profile of gold nanoparticles (AuNPs) remains controversial. Significant efforts to develop surface coatings to improve biocompatibility have been carried out. In vivo biodistribution studies have shown that the liver is a target for AuNPs accumulation. Therefore, we investigated the effects induced by ~20 nm spherical AuNPs (0-200 μM Au) with two surface coatings, citrate (Cit) compared with 11-mercaptoundecanoic acid (11-MUA), in human liver HepG2 cells. Cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release assays after 24 to 72 h of incubation. DNA damage was assessed by the comet assay, 24 h after incubation with the capped AuNPs. Uptake and subcellular distribution of the tested AuNPs was evaluated by quantifying the gold intracellular content by graphite furnace atomic absorption spectrometry (GFAAS) and transmission electron microscopy (TEM), respectively. The obtained results indicate that both differently coated AuNPs did not induce significant cytotoxicity. An inverse concentration-dependent increase in comet tail intensity and tail moment was observed in Cit-AuNPs- but not in MUA-AuNPs-exposed cells. Both AuNPs were internalized in a concentration-dependent manner. However, no differences were found in the extent of the internalization between the two types of NPs. Electron-dense deposits of agglomerates of Cit- and MUA-AuNPs were observed either inside endosomes or in the intercellular spaces. In spite of the absence of cytotoxicity, DNA damage was observed after exposure to the lower concentrations of Cit- but not to MUA-AuNPs. Thus, our data supports the importance of the surface properties to increase the biocompatibility and safety of AuNPs.
Collapse
Affiliation(s)
- Sónia Fraga
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Kim HR, Park YJ, Shin DY, Oh SM, Chung KH. Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2013; 28:e2013003. [PMID: 23440978 PMCID: PMC3577117 DOI: 10.5620/eht.2013.28.e2013003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/06/2012] [Indexed: 05/28/2023]
Abstract
OBJECTIVES We investigated the genotoxic effects of 40-59 nm silver nanoparticles (Ag-NPs) by bacterial reverse mutation assay (Ames test), in vitro comet assay and micronucleus (MN) assay. In particular, we directly compared the effect of cytochalasin B (cytoB) and rat liver homogenate (S9 mix) in the formation of MN by Ag-NPs. METHODS Before testing, we confirmed that Ag-NPs were completely dispersed in the experimental medium by sonication (three times in 1 minute) and filtration (0.2 µm pore size filter), and then we measured their size in a zeta potential analyzer. After that the genotoxicity were measured and especially, S9 mix and with and without cytoB were compared one another in MN assay. RESULTS Ames test using Salmonella typhimurium TA98, TA100, TA1535 and TA1537 strains revealed that Ag-NPs with or without S9 mix did not display a mutagenic effect. The genotoxicity of Ag-NPs was also evaluated in a mammalian cell system using Chinese hamster ovary cells. The results revealed that Ag-NPs stimulated DNA breakage and MN formation with or without S9 mix in a dose-dependent manner (from 0.01 µg/mL to 10 µg/mL). In particular, MN induction was affected by cytoB. CONCLUSIONS All of our findings, with the exception of the Ames test results, indicate that Ag-NPs show genotoxic effects in mammalian cell system. In addition, present study suggests the potential error due to use of cytoB in genotoxic test of nanoparticles.
Collapse
Affiliation(s)
- Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Da Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Seung Min Oh
- Fusion Technology Laboratory, Hoseo University, Asan, Korea
| | | |
Collapse
|
142
|
Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem Soc Rev 2013; 42:8339-59. [DOI: 10.1039/c3cs60145e] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
143
|
|
144
|
Genotoxic and mutagenic effects of lipid-coated CdSe/ZnS quantum dots. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 750:129-38. [DOI: 10.1016/j.mrgentox.2012.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/31/2012] [Accepted: 10/20/2012] [Indexed: 11/22/2022]
|
145
|
Hamzeh M, Sunahara GI. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol In Vitro 2012; 27:864-73. [PMID: 23274916 DOI: 10.1016/j.tiv.2012.12.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
There are increasing safety concerns about the development and abundant use of nanoparticles. The unique physical and chemical characteristics of titanium dioxide (TiO2) nanoparticles result in different chemical and biological activities compared to their larger micron-sized counterparts, and can subsequently play an important role in influencing toxicity. Therefore, our objective was to investigate the cytotoxicity and genotoxicity of commercially available TiO2 nanoparticles with respect to their selected physicochemical properties, as well as the role of surface coating of these nanoparticles. While all types of tested TiO2 samples decrease cell viability in a mass-based concentration- and size-dependent manner, the polyacrylate-coated nano-TiO2 product was only cytotoxic at higher concentrations. A similar pattern of response was observed for induction of apoptosis/necrosis, and no DNA damage was detected in the polyacrylate-coated nano-TiO2 model. Given the increasing production of TiO2 nanoparticles, toxicological studies should take into account the physiochemical properties of these nanoparticles that may help researchers to develop new nanoparticles with minimum toxicity.
Collapse
Affiliation(s)
- Mahsa Hamzeh
- National Research Council Canada, 6100 Royalmount Ave., Montréal, QC H4P 2R2, Canada.
| | | |
Collapse
|
146
|
Jomini S, Labille J, Bauda P, Pagnout C. Modifications of the bacterial reverse mutation test reveals mutagenicity of TiO(2) nanoparticles and byproducts from a sunscreen TiO(2)-based nanocomposite. Toxicol Lett 2012; 215:54-61. [PMID: 23026263 DOI: 10.1016/j.toxlet.2012.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/08/2012] [Accepted: 09/19/2012] [Indexed: 02/04/2023]
Abstract
The bacterial reverse mutation test, recommended by the Organization for Economic Co-operation and Development (OECD) to determine genotoxicity of chemical compounds, has been recently used by several authors to investigate nanoparticles. Surprisingly, test results have been negative, whereas in vitro mammalian cell tests often give positive genotoxic responses. In the present study, we used the fluctuation test procedure with the Salmonella typhimurium strains TA97a, TA98, TA100 and TA102 to determine the mutagenic potential of TiO(2) nanoparticles (NP-TiO(2)) and showed that, when it is used conventionally, this test is not suitable for nanoparticle genotoxicity assessment. Indeed, the medium used during exposure prevents electrostatic interactions between bacterial cells and nanoparticles, leading to false-negative responses. We showed that a simple pre-exposure of bacteria to NP-TiO(2) in a low ionic strength solution (NaCl 10mM) at a pH below the nanoparticle isoelectric points (pH 5.5) can strongly improve the accuracy of the test. Thus, based on these improvements, we have demonstrated the genotoxicity of the engineered NP-TiO(2) tested and a NP-TiO(2) byproduct from a sunscreen nanocomposite. It was also shown that strain TA102 is more sensitive than the other strains, suggesting an oxidative stress-mediated mechanism of genotoxicity.
Collapse
Affiliation(s)
- Stéphane Jomini
- Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), UMR 7146, CNRS-UPV-M, Université de Lorraine, Metz, France
| | | | | | | |
Collapse
|
147
|
Toduka Y, Toyooka T, Ibuki Y. Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species-mediated fluorescence-correlation with genotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7629-36. [PMID: 22703531 DOI: 10.1021/es300433x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We recently clarified that the side-scatter(ed) light (SSC) of flow cytometry (FCM) could be used as a guide to measure the uptake potential of nanoparticles [ Suzuki et al. Environ. Sci. Technol. 2007 , 41 , 3018 - 3024 ]. In this paper, the method was improved so as to be able to determine simultaneously the uptake potential of nanoparticles and the production of reactive oxygen species (ROS), and correlations with genotoxicity were evaluated. In the FCM analysis, SSC and fluorescence of 6-carboxy-2,7'-diclorodihydrofluorescein diacetate, di(acetoxy ester) based on ROS production were concurrently detected after treatments with ZnO, CuO, Fe(3)O(4), TiO(2), and Ag nanoparticles. The ZnO and CuO nanoparticles caused high ROS production, which was more significant in the cells with higher SSC intensity. The increase of SSC intensity was more significant for TiO(2) than ZnO and CuO, whereas ROS production was higher for ZnO and CuO than TiO(2), suggesting that the extent of ROS production based on the uptake of nanoparticles differed with each kind of nanoparticle. ROS production was correlated with generation of the phosphorylated histone H2AX (γ-H2AX), a marker of DNA damage, and an antioxidant, n-acetylcysteine, could partially suppress the γ-H2AX. This method makes it possible to predict not only uptake potential but also genotoxicity.
Collapse
Affiliation(s)
- Yousuke Toduka
- Institute for Environmental Sciences, University of Shizuoka , 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
148
|
Woodruff RS, Li Y, Yan J, Bishop M, Jones MY, Watanabe F, Biris AS, Rice P, Zhou T, Chen T. Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol 2012; 32:934-43. [PMID: 22744910 DOI: 10.1002/jat.2781] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 11/10/2022]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are being used increasingly for various industrial and consumer products, including cosmetics and sunscreens because of their photoactive properties. Therefore, the toxicity of TiO2-NPs needs to be thoroughly understood. In the present study, the genotoxicity of 10nm uncoated sphere TiO2-NPs with an anatase crystalline structure, which has been well characterized in a previous study, was assessed using the Salmonella reverse mutation assay (Ames test) and the single-cell gel electrophoresis (Comet) assay. For the Ames test, Salmonella strains TA102, TA100, TA1537, TA98 and TA1535 were preincubated with eight different concentrations of the TiO2-NPs for 4 h at 37 °C, ranging from 0 to 4915.2 µg per plate. No mutation induction was found. Analyses with transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) showed that the TiO2-NPs were not able to enter the bacterial cell. For the Comet assay, TK6 cells were treated with 0-200 µg ml(-1) TiO2-NPs for 24 h at 37 °C to detect DNA damage. Although the TK6 cells did take up TiO2-NPs, no significant induction of DNA breakage or oxidative DNA damage was observed in the treated cells using the standard alkaline Comet assay and the endonuclease III (EndoIII) and human 8-hydroxyguanine DNA-glycosylase (hOGG1)-modified Comet assay, respectively. These results suggest that TiO2-NPs are not genotoxic under the conditions of the Ames test and Comet assay.
Collapse
Affiliation(s)
- Robert S Woodruff
- Division of Microbiology, Arkansas Regional Laboratory, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Doak SH, Pfuhler S. Preface. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 745:1-3. [DOI: 10.1016/j.mrgentox.2012.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
150
|
Downs TR, Crosby ME, Hu T, Kumar S, Sullivan A, Sarlo K, Reeder B, Lynch M, Wagner M, Mills T, Pfuhler S. Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutat Res 2012; 745:38-50. [PMID: 22504169 DOI: 10.1016/j.mrgentox.2012.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 11/27/2022]
Abstract
While the collection of genotoxicity data and insights into potential mechanisms of action for nano-sized particulate materials (NPs) are steadily increasing, there is great uncertainty whether current standard assays are suitable to appropriately characterize potential risks. We investigated the effects of NPs in an in vivo Comet/micronucleus (MN) combination assay and in an in vitro MN assay performed with human blood. We also incorporated additional endpoints into the in vivo study in an effort to delineate primary from secondary mechanisms. Amorphous silica NPs (15 and 55 nm) were chosen for their known reactivity, while gold nano/microparticles (2, 20, and 200 nm) were selected for their wide size range and lower reactivity. DNA damage in liver, lung and blood cells and micronuclei in circulating reticulocytes were measured after 3 consecutive intravenous injections to male Wistar rats at 48, 24 and 4h before sacrifice. Gold nano/microparticles were negative for MN induction in vitro and in vivo, and for the induction of DNA damage in all tissues. Silica particles, however, caused a small but reproducible increase in DNA damage and micronucleated reticulocytes when tested at their maximum tolerated dose (MTD). No genotoxic effects were observed at lower doses, and the in vitro MN assay was also negative. We hypothesize that silica NPs initiate secondary genotoxic effects through release of inflammatory cell-derived oxidants, similar to that described for crystalline silica (quartz). Such a mechanism is supported by the occurrence of increased neutrophilic infiltration, necrosis, and apoptotic cells in the liver, and induction of inflammatory markers TNF-α and IL-6 in plasma at the MTDs. These results were fairly consistent between silica NPs and the quartz control, thereby strengthening the argument that silica NPs may act in a similar, thresholded manner. The observed profile is supportive of a secondary genotoxicity mechanism that is driven by inflammation.
Collapse
Affiliation(s)
- Thomas R Downs
- The Procter and Gamble Co., Miami Valley Innovation Center, 11810 East Miami River Road, Cincinnati, OH 45252, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|