101
|
Fibers by Electrospinning and Their Emerging Applications in Bone Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering (BTE) is an optimized approach for bone regeneration to overcome the disadvantages of lacking donors. Biocompatibility, biodegradability, simulation of extracellular matrix (ECM), and excellent mechanical properties are essential characteristics of BTE scaffold, sometimes including drug loading capacity. Electrospinning is a simple technique to prepare fibrous scaffolds because of its efficiency, adaptability, and flexible preparation of electrospinning solution. Recent studies about electrospinning in BTE are summarized in this review. First, we summarized various types of polymers used in electrospinning and methods of electrospinning in recent work. Then, we divided them into three parts according to their main role in BTE, (1) ECM simulation, (2) mechanical support, and (3) drug delivery system.
Collapse
|
102
|
Nike DU, Katas H, Mohd NF, Hiraoka Y, Tabata Y, Idrus RBH, Fauzi MB. Characterisation of Rapid In Situ Forming Gelipin Hydrogel for Future Use in Irregular Deep Cutaneous Wound Healing. Polymers (Basel) 2021; 13:3152. [PMID: 34578052 PMCID: PMC8468405 DOI: 10.3390/polym13183152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
The irregular deep chronic wound is a grand challenge to be healed due to multiple factors including slow angiogenesis that causing regenerated tissue failure. The narrow gap of deep wounds could hinder and slow down normal wound healing. Thus, the current study aimed to develop a polymerised genipin-crosslinked gelatin (gelipin) hydrogel (GNP_GH) as a potential biodegradable filler for the abovementioned limitations. Briefly, GNP_GH bioscaffolds have been developed successfully within three-minute polymerisation at room temperature (22-24 °C). The physicochemical and biocompatibility of GNP_GH bioscaffolds were respectively evaluated. Amongst GNP_GH groups, the 0.1%GNP_GH10% displayed the highest injectability (97.3 ± 0.6%). Meanwhile, the 0.5%GNP_GH15% degraded within more than two weeks with optimum swelling capacity (108.83 ± 15.7%) and higher mechanical strength (22.6 ± 3.9 kPa) than non-crosslinked gelatin hydrogel 15% (NC_GH15%). Furthermore, 0.1%GNP_GH15% offered higher porosity (>80%) and lower wettability (48.7 ± 0.3) than NC_GH15%. Surface and cross-section SEM photographs displayed an interconnected porous structure for all GNP_GH groups. The EDX spectra and maps represented no major changes after GNP modification. Moreover, no toxicity effect of GNP_GH against dermal fibroblasts was shown during the biocompatibility test. In conclusion, the abovementioned findings indicated that gelipin has excellent physicochemical properties and acceptable biocompatibility as an acellular rapid treatment for future use in irregular deep cutaneous wounds.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nor Fatimah Mohd
- Kumpulan Perubatan Johor Ampang Puteri Specialist Hospital, Ampang, Kuala Lumpur 68000, Malaysia;
| | - Yosuke Hiraoka
- Biomaterial Group, R&D Center, Yao City 581-0000, Japan;
| | - Yasuhiko Tabata
- Department of Biomaterials, Sakyo-ku, Kyoto 606-8500, Japan;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| |
Collapse
|
103
|
Kalirajan C, Dukle A, Nathanael AJ, Oh TH, Manivasagam G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel) 2021; 13:3015. [PMID: 34503054 PMCID: PMC8433665 DOI: 10.3390/polym13173015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Natural and synthetic polymers have been explored for many years in the field of tissue engineering and regeneration. Researchers have developed many new strategies to design successful advanced polymeric biomaterials. In this review, we summarized the recent notable advancements in the preparation of smart polymeric biomaterials with self-healing and shape memory properties. We also discussed novel approaches used to develop different forms of polymeric biomaterials such as films, hydrogels and 3D printable biomaterials. In each part, the applications of the biomaterials in soft and hard tissue engineering with their in vitro and in vivo effects are underlined. The future direction of the polymeric biomaterials that could pave a path towards successful clinical implications is also underlined in this review.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (C.K.); (A.D.); (G.M.)
| |
Collapse
|
104
|
Perez‐Puyana V, Wieringa P, Yuste Y, de la Portilla F, Guererro A, Romero A, Moroni L. Fabrication of hybrid scaffolds obtained from combinations of PCL with gelatin or collagen via electrospinning for skeletal muscle tissue engineering. J Biomed Mater Res A 2021; 109:1600-1612. [PMID: 33665968 PMCID: PMC8359256 DOI: 10.1002/jbm.a.37156] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/04/2022]
Abstract
The creation of skeletal muscle tissue in vitro is a major topic of interest today in the field of biomedical research, due to the lack of treatments for muscle loss due to traumatic accidents or disease. For this reason, the intrinsic properties of nanofibrillar structures to promote cell adhesion, proliferation, and cell alignment presents an attractive tool for regenerative medicine to recreate organized tissues such as muscle. Electrospinning is one of the processing techniques often used for the fabrication of these nanofibrous structures and the combination of synthetic and natural polymers is often required to achieve optimal mechanical and physiochemical properties. Here, polycaprolactone (PCL) is selected as a synthetic polymer used for the fabrication of scaffolds, and the effect of protein addition on the final scaffolds' properties is studied. Collagen and gelatin were the proteins selected and two different concentrations were analyzed (2 and 4 wt/vol%). Different PCL/protein systems were prepared, and a structural, mechanical and functional characterization was performed. The influence of fiber alignment on the properties of the final scaffolds was assessed through morphological, mechanical and biological evaluations. A bioreactor was used to promote cell proliferation and differentiation within the scaffolds. The results revealed that protein addition produced a decrease in the fiber size of the membranes, an increase in their hydrophilicity, and a softening of their mechanical properties. The biological study showed the ability of the selected systems to harbor cells, allow their growth and, potentially, develop musculoskeletal tissues.
Collapse
Affiliation(s)
- Victor Perez‐Puyana
- Departamento de Ingeniería QuímicaUniversidad de Sevilla, Facultad de Química, Escuela Politécnica SuperiorSevillaSpain
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative Medicine, Maastricht UniversityMaastrichtThe Netherlands
| | - Paul Wieringa
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative Medicine, Maastricht UniversityMaastrichtThe Netherlands
| | - Yaiza Yuste
- Departamento de CirugíaInstitute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital, IBIS CSIC/University of SevilleSevillaSpain
| | - Fernando de la Portilla
- Departamento de CirugíaInstitute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital, IBIS CSIC/University of SevilleSevillaSpain
| | - Antonio Guererro
- Departamento de Ingeniería QuímicaUniversidad de Sevilla, Facultad de Química, Escuela Politécnica SuperiorSevillaSpain
| | - Alberto Romero
- Departamento de Ingeniería QuímicaUniversidad de Sevilla, Facultad de Química, Escuela Politécnica SuperiorSevillaSpain
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative Medicine, Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
105
|
Abstract
Iron oxide nanoparticles were employed to fabricate a soft tissue scaffold with enhanced physicochemical and biological characteristics. Growth promotion effect of L-lysine coated magnetite (Lys@Fe3O4) nanoparticles on the liver cell lines was proved previously. So, in the current experiment these nanoparticles were employed to fabricate a soft tissue scaffold with growth promoting effect on the liver cells. Lys@Fe3O4 nanoparticles were synthesized via co-precipitation reaction. Resulted particles were ~7 nm in diameter and various concentrations (3, 5, and 10 wt%) of these nanoparticles were used to fabricate nanocomposite PCL fibers. Electrospinning technique was employed and physicochemical characteristics of the resulted nanofibers were evaluated. Electron micrographs and EDX-mapping analysis showed that nanoparticles were well dispersed in the PCL fibers and no bead structure were formed. As expected, incorporation of Lys@Fe3O4 to the PCL nanofibers resulted in a reduction in hydrophobicity of the scaffold. Nanocomposite scaffolds were shown increased tensile strength with increasing concentration of employed nanoparticles. In contrast to PCL scaffold, nearly 150% increase in the cell viability was observed after 3-days exposure to the nanocomposite scaffolds. This study indicates that incorporation of magnetite nanoparticles in the PCL fibers make them more prone to cell attachment. However, incorporated nanoparticles can provide the attached cells with valuable iron element and consequently promote the cells growth rate. Based on the results, magnetite enriched PCL nanofibers could be introduced as a scaffold to enhance the biological performance for liver tissue engineering purposes.
Collapse
|
106
|
Soares GODN, Lima FA, Goulart GAC, Oréfice RL. Physicochemical characterization of the gelatin/polycaprolactone nanofibers loaded with diclofenac potassium for topical use aiming potential anti-inflammatory action. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1962875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Flávia Alves Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Lambert Oréfice
- Department of Metallurgical, Materials and Mining Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
107
|
Joo G, Sultana T, Rahaman S, Bae SH, Jung HI, Lee BT. Polycaprolactone-gelatin membrane as a sealant biomaterial efficiently prevents postoperative anastomotic leakage with promoting tissue repair. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1530-1547. [PMID: 33849401 DOI: 10.1080/09205063.2021.1917107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anastomotic leakage due to post-surgical suture line disruption is one of the crucial factors affecting patient's survival and quality of life. To resolve the poor healing of surgical anastomosis and protect suture sites leakage, fibrous membrane sealing patch was developed using a synthetic polymer (polycaprolactone (PCL)) and biopolymer (gelatin). Electrospinning was used to develop fibrous architecture of membranes fabricated in different ratios (15% (w/v) PCL: 15% (w/v) gelatin mixing ratio of 1:1, 1:2, 1:3 and 1:4). Experimental findings suggested that, higher gelatin content in the membranes reduced the fiber diameter and contact angle, leading to a more hydrophilic scaffold facilitating attachment to the defect site. The degradation rate of various PCL-gelatin membranes (P1G1, P1G2, P1G3 and P1G4) was proportional to the gelatin content. Cytocompatibility was assessed using L929 cells while the P1G4 (PCL: gelatin 1:4 ratio) scaffold exhibited optimum outcome. From in vivo study, the wound site healed significantly without any leakage when the sutured area of rat caecum was covered with P1G4 membrane whereas rats in the control group (suture only) showed leakage after two weeks of surgery. In summary, the P1G4 membrane has potential to be applied as a post-surgical leakage-preventing tissue repair biomaterial.
Collapse
Affiliation(s)
- Gyeongjin Joo
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sohanur Rahaman
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sang Ho Bae
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea.,Department of General Surgery, Soonchunhyang University Hospital 31, Cheonan, Republic of Korea
| | - Hae Il Jung
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea.,Department of General Surgery, Soonchunhyang University Hospital 31, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
108
|
Rhyou J, Youn J, Eom S, Kim DS. Facile Fabrication of Electrospun Nanofiber Membrane-Integrated PDMS Microfluidic Chip via Silver Nanowires-Uncured PDMS Adhesive Layer. ACS Macro Lett 2021; 10:965-970. [PMID: 35549208 DOI: 10.1021/acsmacrolett.1c00256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although direct electrospinning has been frequently utilized to develop a nanofiber membrane-integrated microfluidic chip, the dielectric substrate material retards the deposition of electrospun nanofibers on the substrate, and the rough surface formed by deposited nanofibers hinders the successful sealing. In this study we introduce a facile fabrication process of an electrospun nanofiber membrane-integrated polydimethylsiloxane (PDMS) microfluidic chip, called a NFM-PDMS chip, by applying the functional layer. The functional layer consists of a silver nanowires (AgNWs)-embedded uncured PDMS adhesive layer (SNUP), which not only effectively concentrates the electric field toward the PDMS substrate, but also provides a smooth surface for robust sealing. The AgNWs in the SNUP play a crucial role as a grounded collector and enable approximately 4× faster electrospinning than the conventional method, forming a free-standing nanofiber membrane. The uncured PDMS adhesive layer in the SNUP maintains the smooth surface after electrospinning and allows the rapid and leakage-free bonding of the NFM-PDMS chip using plasma treatment. A practical application of the NFM-PDMS chip is demonstrated by culturing the human keratinocyte cell line, HaCaT cells. The HaCaT cells are well grown on the free-standing nanofiber membrane under dynamic flow conditions, maintaining good viability over 95% for 7 days of culture.
Collapse
Affiliation(s)
- Junyeol Rhyou
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50,
Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
109
|
Alam RB, Ahmad MH, Islam MR. Bio-inspired gelatin/single-walled carbon nanotube nanocomposite for transient electrochemical energy storage: An approach towards eco-friendly and sustainable energy system. Heliyon 2021; 7:e07468. [PMID: 34278039 PMCID: PMC8264608 DOI: 10.1016/j.heliyon.2021.e07468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Wide-scale production of non-biodegradable e-waste from electrical appliances are causing great harm to the environment. The use of bio-polymer based nanomaterials may offer a promising approach for the fabrication of eco-friendly sustainable devices. In this work, gelatin/single walled carbon nanotube (Gel/SWCNT) nanocomposites were prepared by a simple and economic aqueous casting method. The effect of SWCNT on the structural, surface-morphological, electrical, and electrochemical properties of the nanocomposite was studied. Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FESEM) showed an improved degree of interaction between the SWCNTs and Gel matrix. The surface wettability of the nanocomposites was found to be changed from hydrophilic to hydrophobic in nature due to the incorporation of SWCNTs into the Gel matrix. The incorporation of SWCNTs was also found to reduce the DC resistivity of the nanocomposite by 4 orders of magnitude. SWCNTs also increase the specific capacitance of the nanocomposite from 124 mF/g to 467 mF/g at a current density of 0.3 mA/g. The electrochemical impedance spectroscopy analysis revealed an increase of the pseudo-capacitance increased from 9.4 μF to 31 μF due to the incorporation of SWCNT. The Gel/SWCNT nanocomposite showed cyclic stability with capacitive retention of about 98% of its initial capacitance after completing 2000 charging/discharging cycles at a current density of 100 mA/g. The nanocomposite completely dissolves in water within 12 h, demonstrates it as a promising candidate for transient energy storage applications. The Gel/SWCNT nanocomposite may offer a new route for the synthesis of eco-friendly, biodegradable, and transient devices.
Collapse
Affiliation(s)
- Rabeya Binta Alam
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Md Hasive Ahmad
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Muhammad Rakibul Islam
- Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| |
Collapse
|
110
|
Atehortua C, Montoya Y, García A, Bustamante J. Hemolytic, Biocompatible, and Functional Effect of Cellularized Polycaprolactone-Hydrolyzed Collagen Electrospun Membranes for Possible Application as Vascular Implants. J Biomed Nanotechnol 2021; 17:1184-1198. [PMID: 34167631 DOI: 10.1166/jbn.2021.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In search of bioactive vascular prostheses that exhibit greater biocompatibility through the combination of natural and synthetic polymers, tissue engineering from a biomimetic perspective has proposed the development of three-dimensional structures as therapeutic strategies in the field of cardiovascular medicine. Techniques such as electrospinning allow obtaining of scaffolds that emulate the microarchitecture of the extracellular matrix of native vessels; thus, this study aimed to evaluate the biological influence of microarchitecture on polycaprolactone (PCL) and hydrolyzed collagen (H-Col) electrospun scaffolds, which have a homogeneous (microscale) or heterogeneous (micro-nanoscale) fibrillar structure. The hemolytic, biocompatible, and functional effect of the scaffolds in interaction with an in vitro fibroblast model was determined, in view of its potential use for vascular implants. Scaffolds were characterized by scanning electron microscopy and atomic force microscopy, Fourier transform infrared spectroscopy, wettability, static permeability, tensile test, and degradation. In addition, direct and indirect 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were used to identify the cell viability of fibroblasts, fluorescence assays were performed to establish morphological changes of the cell nuclei, and the hemolytic effect of the scaffolds was calculated. Results showed that ethanol-treated biocompositescaffolds exhibited mass losses lower than 6.65% and slow wettability and absorption, resulting from an increase in secondary structures that contribute to the crystalline phase of H-Col. The scaffolds demonstrated stable degradation in saline during the incubation period because of the availability of soluble structures in aqueous media, and the inclusion of H-Col increased the elastic properties of the scaffold. As regards hemocompatibility, the scaffolds had hemolysis levels lower than 1%; moreover, in terms of biocompatible characteristics, scaffolds exhibited good adhesion, proliferation, and cell viability and insignificant changes in the circularity of the cell nuclei. However, scaffolds with homogeneous fibers showed cell agglomerates after 48 h of interaction. By contrast, permeability decreased as the incubation period progressed, because of the cellularization of the three-dimensional structure. In conclusion, multiscale scaffolds could exhibit a suitable behavior as a bioactive small-diameter vascular implant.
Collapse
Affiliation(s)
- Camilo Atehortua
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Yuliet Montoya
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| | - Alejandra García
- Laboratorio de Síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales, Centro de Investigación en Materiales Avanzados S.C. Parque PIIT Alianza Norte 202, Apodaca 66600, México
| | - John Bustamante
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
| |
Collapse
|
111
|
Liang J, Chen H, Guo Z, Dijkstra P, Grijpma D, Poot A. Tough fibrous mats prepared by electrospinning mixtures of methacrylated poly(trimethylene carbonate) and methacrylated gelatin. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
112
|
Sánchez‐Cid P, Perez‐Puyana V, Jiménez‐Rosado M, Guerrero A, Romero A. Influence of elastin on the properties of hybrid
PCL
/elastin scaffolds for tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.50893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pablo Sánchez‐Cid
- Departamento de Ingeniería Química, Facultad de Química Universidad de Sevilla Sevilla Spain
| | - Victor Perez‐Puyana
- Departamento de Ingeniería Química, Facultad de Química Universidad de Sevilla Sevilla Spain
| | - Mercedes Jiménez‐Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior Universidad de Sevilla Sevilla Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior Universidad de Sevilla Sevilla Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química Universidad de Sevilla Sevilla Spain
| |
Collapse
|
113
|
Porrelli D, Mardirossian M, Musciacchio L, Pacor M, Berton F, Crosera M, Turco G. Antibacterial Electrospun Polycaprolactone Membranes Coated with Polysaccharides and Silver Nanoparticles for Guided Bone and Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17255-17267. [PMID: 33822574 DOI: 10.1021/acsami.1c01016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrospun polycaprolactone (PCL) membranes have been widely explored in the literature as a solution for several applications in tissue engineering and regenerative medicine. PCL hydrophobicity and its lack of bioactivity drastically limit its use in the medical field. To overcome these drawbacks, many promising strategies have been developed and proposed in the literature. In order to increase the bioactivity of electrospun PCL membranes designed for guided bone and tissue regeneration purposes, in the present work, the membranes were functionalized with a coating of bioactive lactose-modified chitosan (CTL). Since CTL can be used for the synthesis and stabilization of silver nanoparticles, a coating of this compound was employed here to provide antibacterial properties to the membranes. Scanning electron microscopy imaging revealed that the electrospinning process adopted here allowed us to obtain membranes with homogeneous fibers and without defects. Also, PCL membranes retained their mechanical properties after several weeks of aging in simulated body fluid, representing a valid support for cell growth and tissue development. CTL adsorption on membranes was investigated by fluorescence microscopy using fluorescein-labeled CTL, resulting in a homogeneous and slow release over time. Inductively coupled plasma-mass spectrometry was used to analyze the release of silver, which was shown to be stably bonded to the CTL coating and to be slowly released over time. The CTL coating improved MG63 osteoblast adhesion and proliferation on membranes. On the other hand, the presence of silver nanoparticles discouraged biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus without being cytotoxic. Overall, the stability and the biological and antibacterial properties make these membranes a valid and versatile material for applications in guided tissue regeneration and in other biomedical fields like wound healing.
Collapse
Affiliation(s)
- Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Micol Pacor
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Federico Berton
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
114
|
Jiang C, Wang K, Liu Y, Zhang C, Wang B. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering. ACS Biomater Sci Eng 2021; 7:2627-2637. [PMID: 33821604 DOI: 10.1021/acsbiomaterials.1c00097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Incorporating conductive materials in scaffolds has shown advantages in regulating adhesion, mitigation, and proliferation of electroactive cells for tissue engineering applications. Among various conductive materials, carbon nanotubes (CNTs) have shown great promises in tissue engineering because of their good mechanical properties. However, the broad application of CNTs in tissue engineering is limited by current methods to incorporate CNTs in polymers that require miscible solvents to dissolve CNTs and polymers or CNT surface modification. These methods either limit polymer selections or adversely affect the properties of polymer/CNT composites. Here, we report a novel method to fabricate polymer/CNT composite yarns by electrospinning polycaprolactone/gelatin into a bath of CNT dispersion and extracting electrospun fibers out of the bath. The concentration of CNTs in the bath affects the thermal and mechanical properties and the yarns' degradation behavior. In vitro biological test results show that within a limited range of CNT concentrations in the bath, the yarns exhibit good biocompatibility and the ability to guide cell elongation and alignment. We also report the design and fabrication of a vascular scaffold by knitting the yarns into a textile fabric and combining the textile fabric with gelatin. The scaffold has similar mechanical properties to native vessels and supports cell proliferation. This work demonstrates that the wet electrospun polymer/CNT yarns are good candidates for constructing vascular scaffolds and provides a novel method to incorporate CNTs or other functional materials into biopolymers for tissue engineering applications.
Collapse
Affiliation(s)
- Chen Jiang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr NW, Atlanta 30332, Georgia, United States.,Georgia Tech Manufacturing Institute, Callaway Manufacturing Research Center Building, 813 Ferst Dr NW, Atlanta 30332, Georgia, United States
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Callaway Manufacturing Research Center Building, 813 Ferst Dr NW, Atlanta 30332, Georgia, United States
| | - Yi Liu
- Georgia Tech Manufacturing Institute, Callaway Manufacturing Research Center Building, 813 Ferst Dr NW, Atlanta 30332, Georgia, United States.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, North Ave NW, Atlanta 30332, Georgia, United States
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Callaway Manufacturing Research Center Building, 813 Ferst Dr NW, Atlanta 30332, Georgia, United States.,H. Milton Stewart School of Industrial and System Engineering, Georgia Institute of Technology, 755 Ferst Dr NW, Atlanta 30332, Georgia, United States
| | - Ben Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr NW, Atlanta 30332, Georgia, United States.,Georgia Tech Manufacturing Institute, Callaway Manufacturing Research Center Building, 813 Ferst Dr NW, Atlanta 30332, Georgia, United States.,H. Milton Stewart School of Industrial and System Engineering, Georgia Institute of Technology, 755 Ferst Dr NW, Atlanta 30332, Georgia, United States
| |
Collapse
|
115
|
Yang Y, Xu T, Zhang Q, Piao Y, Bei HP, Zhao X. Biomimetic, Stiff, and Adhesive Periosteum with Osteogenic-Angiogenic Coupling Effect for Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006598. [PMID: 33705605 DOI: 10.1002/smll.202006598] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Indexed: 05/14/2023]
Abstract
Current periosteal grafts have limitations related to low mechanical strength, tissue adhesiveness, and poor osteogenesis and angiogenesis potential. Here, a periosteum mimicking bone aid (PMBA) with similar structure and function to natural periosteum is developed by electrospinning photocrosslinkable methacrylated gelatin (GelMA), l-arginine-based unsaturated poly(ester amide) (Arg-UPEA), and methacrylated hydroxyapatite nanoparticles (nHAMA). Such combination of materials enhances the material mechanical strength, favors the tissue adhesion, and guarantees the sustained activation of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway, with well-coordinated osteogenic-angiogenic coupling effect for accelerated bone regeneration. This work presents a proof-of-concept demonstration of thoroughly considering the progression of implant biomaterials: that is, the initial material components (i.e., GelMA, Arg-UPEA, and nHAMA) equip the scaffold with suitable structure and function, while its degradation products (i.e., Ca2+ and l-arginine) are involved in long-term mediation of physiological activities. It is envisioned that the strategy will inspire the design of high-performance bioscaffolds toward bone and periosteum tissue engineering.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Tianpeng Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yun Piao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
116
|
Peng W, Ren S, Zhang Y, Fan R, Zhou Y, Li L, Xu X, Xu Y. MgO Nanoparticles-Incorporated PCL/Gelatin-Derived Coaxial Electrospinning Nanocellulose Membranes for Periodontal Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:668428. [PMID: 33842452 PMCID: PMC8026878 DOI: 10.3389/fbioe.2021.668428] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Electrospinning technique has attracted considerable attention in fabrication of cellulose nanofibrils or nanocellulose membranes, in which polycaprolactone (PCL) could be used as a promising precursor to prepare various cellulose nanofibril membranes for periodontal tissue regeneration. Conventional bio-membranes and cellulose films used in guided tissue regeneration (GTR) can prevent the downgrowth of epithelial cells, fibroblasts, and connective tissue in the area of tooth root but have limitations related to osteogenic and antimicrobial properties. Cellulose nanofibrils can be used as an ideal drug delivery material to encapsulate and carry some drugs. In this study, magnesium oxide (MgO) nanoparticles-incorporated PCL/gelatin core-shell nanocellulose periodontal membranes were fabricated using coaxial electrospinning technique, which was termed as Coaxial-MgO. The membranes using single-nozzle electrospinning technique, namely Blending-MgO and Blending-Blank, were used as control. The morphology and physicochemical property of these nanocellulose membranes were characterized by scanning electron microscopy (SEM), energy-dispersive spectrum of X-ray (EDS), transmission electron microscopy (TEM), contact angle, and thermogravimetric analysis (TGA). The results showed that the incorporation of MgO nanoparticles barely affected the morphology and mechanical property of nanocellulose membranes. Coaxial-MgO with core-shell fiber structure had better hydrophilic property and sustainable release of magnesium ion (Mg2+). CCK-8 cell proliferation and EdU staining demonstrated that Coaxial-MgO membranes showed better human periodontal ligament stem cells (hPDLSCs) proliferation rates compared with the other group due to its gelatin shell with great biocompatibility and hydrophilicity. SEM and immunofluorescence assay results illustrated that the Coaxial-MgO scaffold significantly enhanced hPDLSCs adhesion. In vitro osteogenic and antibacterial properties showed that Coaxial-MgO membrane enhanced alkaline phosphatase (ALP) activity, formation of mineralized nodules, osteogenic-related genes [ALP, collagen type 1 (COL1), runt-related transcription factor 2 (Runx2)], and high antibacterial properties toward Escherichia coli (E. coli) and Actinobacillus actinomycetemcomitans (A. a) when compared with controls. Our findings suggested that MgO nanoparticles-incorporated coaxial electrospinning PCL-derived nanocellulose periodontal membranes might have great prospects for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruyi Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
117
|
Renkler NZ, Ergene E, Gokyer S, Tuzlakoglu Ozturk M, Yilgor Huri P, Tuzlakoglu K. Facile modification of polycaprolactone nanofibers with egg white protein. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:34. [PMID: 33763760 PMCID: PMC7990845 DOI: 10.1007/s10856-021-06505-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Synthetic polymers remain to be a major choice for scaffold fabrication due to their structural stability and mechanical strength. However, the lack of functional moieties limits their application for cell-based therapies which necessitate modification and functionalization. Blending synthetic polymers with natural components is a simple and effective way to achieve the desired biological properties for a scaffold. Herein, nanofibrous mats made of polycaprolactone (PCL) and egg white protein (EWP) blend were developed and further evaluated for use as a scaffold for tissue engineering applications. Homogeneous distribution of EWP was achieved throughout the nanofibrous mats, as shown by immunohistochemistry. ATR-FTIR analysis and contact angle measurements have further confirmed the presence of EWP on the surface of the samples. The swelling test showed that PCL/EWP nanofibers have higher water uptake than PCL nanofibrous mats. Also, EWP addition on the nanofibrous mats resulted in an increase in the tensile strength and Young's modulus of the mats, indicating that the presence of protein can greatly enhance the mechanical properties of the mats. A significantly higher, more uniform, and dispersed cell spreading was observed on days 7 and 14 than that on neat PCL mats, demonstrating the importance of providing the required cues for cell homing by the availability of EWP. Hence, EWP is shown to be a simple and low-cost source for the functionalization of PCL nanofibrous mats. EWP is, therefore, a facile candidate to enhance cellular interactions of synthetic polymers for a wide range of tissue engineering applications.
Collapse
Affiliation(s)
| | - Emre Ergene
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | - Seyda Gokyer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | | | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | - Kadriye Tuzlakoglu
- Department of Polymer Engineering, Yalova University, 77200, Yalova, Turkey
| |
Collapse
|
118
|
Shi R, Zhang J, Niu K, Li W, Jiang N, Li J, Yu Q, Wu C. Electrospun artificial periosteum loaded with DFO contributes to osteogenesis via the TGF-β1/Smad2 pathway. Biomater Sci 2021; 9:2090-2102. [PMID: 33475652 DOI: 10.1039/d0bm01304h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deferoxamine (DFO), an iron chelator regarded as a hypoxic analogue, has been reported to be involved in angiogenesis and osteogenic differentiation. In this study, DFO was loaded into nanospheres, Then, DFO-loaded NPs and free DFO were co-encapsulated in nanofibers through coaxial electrospinning and its effects on cell viability, migration, and osteogenic differentiation, and the potential mechanisms were investigated. The results suggested that DFO maintained cell viability and promoted the migration of human mesenchymal stem cells (hMSCs) and MC3T3-E1 cells. ALP activity, calcium deposition, and expression of osteogenesis-related markers, including collagen, osteocalcin, and osteopontin, were all increased with DFO. Moreover, hypoxia-inducible factor-1α, transforming growth factor-β, and Smad2 were upregulated with DFO, which indicated activation of the TGF-β1/Smad2 signalling pathway. This may contribute to osteogenic differentiation of cells.
Collapse
Affiliation(s)
- Rui Shi
- Beijing Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
120
|
Raj Preeth D, Saravanan S, Shairam M, Selvakumar N, Selestin Raja I, Dhanasekaran A, Vimalraj S, Rajalakshmi S. Bioactive Zinc(II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci 2021; 160:105768. [PMID: 33607242 DOI: 10.1016/j.ejps.2021.105768] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Bone tissue regeneration is augmented by biocompatible nanofiber scaffolds, that supports reliable and enhanced bone formation. Zinc is an essential mineral that is vital for routine skeletal growth and it emerges to be able to improve bone regeneration. Phytochemicals, particularly flavonoids have achieved prominent interest for their therapeutic ability, they have demonstrated promising effects on bone by encouraging osteoblastogenesis, which finally leads to bone formation. In this study, we have synthesized bioactive zinc(II) quercetin complex material and used for nanofibers scaffold fabrication to enhance bone tissue regeneration property. Two derivatives of zinc(II) quercetin complexes [(Zn(quercetin) (H2O)2) (Zn+Q), and Zn(quercetin)(phenanthroline) (Zn+Q(PHt)) have been synthesized and characterized using UV-Visible spectrophotometer and Fourier Transform-IR spectroscopy. The UV-Visible absorption and IR spectra prove the B-ring chelation of the flavonoid quercetin to zinc(II) rather C-ring chelation. The potential ability of the above synthesized metal complexes on osteogenesis and angiogenesis have been studied. Besides the bioactivity of the metal complexes, the control quercetin has also been examined. The chick embryo chorioallantoic membrane (CAM) assay demonstrated that the angiogenic parameters were increased by the (Zn+Q(PHt)) complex. Amongst, (Zn+Q(PHt)) complex showed significant activity and thereby this complex has been further examined for the bone tissue activity by incorporating the complex into a nanofiber through electrospinning method. At the molecular level, Runx2, mRNA and protein, ALP and type 1 collagen mRNAs, and osteoblast-specific microRNA, pre-mir-15b were examined using real time RT-PCR and Western blot assay. Histology studies showed that the (PCL/gelatin/Zn+Q(PHt)) was biocompatibility in-ovo. Overall, the present study showed that quercetin-zinc complex (Zn+Q(PHt)) incorporated into PCL/gelatin nanofiber can act as a pharmacological agent for treating bone associated defects and promote bone regeneration.
Collapse
Affiliation(s)
- Desingh Raj Preeth
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advance Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Manickaraj Shairam
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India
| | | | | | | | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Guindy, Chennai 600 025, India; Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | - Subramaniyam Rajalakshmi
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT, Campus, Chrompet, Chennai 600 044, India.
| |
Collapse
|
121
|
Boosting in vitro cartilage tissue engineering through the fabrication of polycaprolactone-gelatin 3D scaffolds with specific depth-dependent fiber alignments and mechanical stimulation. J Mech Behav Biomed Mater 2021; 117:104373. [PMID: 33618241 DOI: 10.1016/j.jmbbm.2021.104373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
Abstract
Due to the limited self-healing ability of natural cartilage, several tissue engineering strategies have been explored to develop functional replacements. Still, most of these approaches do not attempt to recreate in vitro the anisotropic organization of its extracellular matrix, which is essential for a suitable load-bearing function. In this work, different depth-dependent alignments of polycaprolactone-gelatin electrospun fibers were assembled into three-dimensional scaffold architectures to assess variations on chondrocyte response under static, unconfined compressed and perfused culture conditions. The in vitro results confirmed that not only the 3D scaffolds specific depth-dependent fiber alignments potentiated chondrocyte proliferation and migration towards the fibrous systems, but also the mechanical stimulation protocols applied were able to enhance significantly cell metabolic activity and extracellular matrix deposition, respectively.
Collapse
|
122
|
Fanaee S, Labbaf S, Enayati MH, Karamali F, Esfahani MHN. A nano approach towards the creation of a biointerface as stimulator of osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111746. [PMID: 33545888 DOI: 10.1016/j.msec.2020.111746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/21/2023]
Abstract
There is a great need for tissue engineering constructs with the ability to modulate stem cell behavior. The initial adhesion, growth and differentiation of stem cell are a key strategy in bone tissue engineering and it can be controlled through biomaterial-cell interface. Here we engineered a polycaprolactone/gelatin/bioactive glass (PCL/GT/BG) nanocomposite scaffold coated with Fibronectin (FN) as a potential candidate to aid the bone regeneration process by giving cells a temporary template to grow into. For this purpose, initially BG nanoparticles (nBG) of 70 ± 15 nm were synthesized, characterized and then impregnated into PCL/GT matrix to create a nanocomposite fibrous mesh. An optimized structure was selected based on fiber uniformity, diameter, and the mechanical properties. Cell adhesion, growth, and the expression of osteogenic-related genes as a result of FN tethering, through specific surface interactions, was evaluated. Furthermore, the potential of optimized nanofiberous structure as a drug delivery vehicle for the local release of therapeutic agents was studied by using amoxicillin as a model drug. The release profile revealed that around 70% of drug was released in an hour for non-crosslinked fibers (burst release) followed by a gradual release up to 72 h. The release profile was steadier for crosslinked fibers. The scaffold also showed an antibacterial effect against ubiquitous gram-positive Staphylococcus aureus. The current study provides an insight for future researchers who aim to create nanocomposite materials as multifunctional scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sajjad Fanaee
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Hossein Enayati
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fereshteh Karamali
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad-Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
123
|
Voniatis C, Barczikai D, Gyulai G, Jedlovszky-Hajdu A. Fabrication and characterisation of electrospun Polycaprolactone/Polysuccinimide composite meshes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
124
|
Hashemi SF, Mehrabi M, Ehterami A, Gharravi AM, Bitaraf FS, Salehi M. In-vitro and in-vivo studies of PLA / PCL / gelatin composite scaffold containing ascorbic acid for bone regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102077] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
125
|
Giuntoli G, Muzio G, Actis C, Ganora A, Calzone S, Bruno M, Ciardelli G, Carmagnola I, Tonda-Turo C. In-vitro Characterization of a Hernia Mesh Featuring a Nanostructured Coating. Front Bioeng Biotechnol 2021; 8:589223. [PMID: 33553112 PMCID: PMC7856147 DOI: 10.3389/fbioe.2020.589223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Abdominal hernia repair is a frequently performed surgical procedure worldwide. Currently, the use of polypropylene (PP) surgical meshes for the repair of abdominal hernias constitutes the primary surgical approach, being widely accepted as superior to primary suture repair. Surgical meshes act as a reinforcement for the weakened or damaged tissues and support tissue restoration. However, implanted meshes could suffer from poor integration with the surrounding tissues. In this context, the present study describes the preliminary evaluation of a PCL-Gel-based nanofibrous coating as an element to develop a multicomponent hernia mesh device (meshPCL-Gel) that could overcome this limitation thanks to the presence of a nanostructured biomimetic substrate for enhanced cell attachment and new tissue formation. Through the electrospinning technique, a commercial PP hernia mesh was coated with a nanofibrous membrane from a polycaprolactone (PCL) and gelatin (Gel) blend (PCL-Gel). Resulting PCL-Gel nanofibers were homogeneous and defect-free, with an average diameter of 0.15 ± 0.04 μm. The presence of Gel decreased PCL hydrophobicity, so that membranes average water contact angle dropped from 138.9 ± 1.1° (PCL) to 99.9 ± 21.6°, while it slightly influenced mechanical properties, which remained comparable to those of PCL (E = 15.7 ± 2.7 MPa, σ R = 7.7 ± 0.6 ε R = 118.8 ± 13.2%). Hydrolytic and enzymatic degradation was conducted on PCL-Gel up to 28 days, with maximum weight losses around 20 and 40%, respectively. The meshPCL-Gel device was obtained with few simple steps, with no influences on the original mechanical properties of the bare mesh, and good stability under physiological conditions. The biocompatibility of meshPCL-Gel was assessed by culturing BJ human fibroblasts on the device, up to 7 days. After 24 h, cells adhered to the nanofibrous substrate, and after 72 h their metabolic activity was about 70% with respect to control cells. The absence of detectable lactate dehydrogenase in the culture medium indicated that no necrosis induction occurred. Hence, the developed nanostructured coating provided the meshPCL-Gel device with chemical and topographical cues similar to the native extracellular matrix ones, that could be exploited for enhancing the biological response and, consequently, mesh integration, in abdominal wall hernia repair.
Collapse
Affiliation(s)
- Giulia Giuntoli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
- Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| |
Collapse
|
126
|
|
127
|
An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
128
|
Lim JW, Jang KJ, Son H, Park S, Kim JE, Kim HB, Seonwoo H, Choung YH, Lee MC, Chung JH. Aligned Nanofiber-Guided Bone Regeneration Barrier Incorporated with Equine Bone-Derived Hydroxyapatite for Alveolar Bone Regeneration. Polymers (Basel) 2020; 13:polym13010060. [PMID: 33375761 PMCID: PMC7796229 DOI: 10.3390/polym13010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023] Open
Abstract
Post-surgery failure of dental implants due to alveolar bone loss is currently critical, disturbing the quality of life of senior dental patients. To overcome this problem, bioceramic or bone graft material is loaded into the defect. However, connective tissue invasion instead of osteogenic tissue limits bone tissue regeneration. The guided bone regeneration concept was adapted to solve this problem and still has room for improvements, such as biochemical similarity or oriented structure. In this article, an aligned electrospun-guided bone regeneration barrier with xenograft equine bone-derived nano hydroxyapatite (EBNH-RB) was fabricated by electrospinning EBNH/PCL solution on high-speed rotating drum collector and fiber characterization, viability and differentiation enhancing properties of mesenchymal dental pulp stem cell on the barrier was determined. EBNH-RB showed biochemical and structural similarity to natural bone tissue electron microscopy image analysis and x-ray diffractometer analysis, and had a significantly better effect in promoting osteogenesis based on the increased bioceramic content by promoting cell viability, calcium deposition and osteogenic marker expression, suggesting that they can be successfully applied to regenerate alveolar bone as a guided bone regeneration barrier.
Collapse
Affiliation(s)
- Jae Woon Lim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.W.L.); (H.S.); (S.P.); (J.E.K.); (H.B.K.)
| | - Kyoung Je Jang
- Division of Agro-System Engineering, Gyeongsang National University, Jinju 52828, Korea;
| | - Hyunmok Son
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.W.L.); (H.S.); (S.P.); (J.E.K.); (H.B.K.)
| | - Sangbae Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.W.L.); (H.S.); (S.P.); (J.E.K.); (H.B.K.)
| | - Jae Eun Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.W.L.); (H.S.); (S.P.); (J.E.K.); (H.B.K.)
| | - Hong Bae Kim
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.W.L.); (H.S.); (S.P.); (J.E.K.); (H.B.K.)
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, College of Life Science and Natural Resources, Sunchon National University, Sunchon 57922, Korea;
| | - Yun Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea;
- Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
| | - Myung Chul Lee
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.W.L.); (H.S.); (S.P.); (J.E.K.); (H.B.K.)
- Correspondence: (M.C.L.); (J.H.C.)
| | - Jong Hoon Chung
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Korea; (J.W.L.); (H.S.); (S.P.); (J.E.K.); (H.B.K.)
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: (M.C.L.); (J.H.C.)
| |
Collapse
|
129
|
Toprak Ö, Topuz B, Monsef YA, Oto Ç, Orhan K, Karakeçili A. BMP-6 carrying metal organic framework-embedded in bioresorbable electrospun fibers for enhanced bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111738. [PMID: 33545881 DOI: 10.1016/j.msec.2020.111738] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Biomolecule carrier structures have attracted substantial interest owing to their potential utilizations in the field of bone tissue engineering. In this study, MOF-embedded electrospun fiber scaffold for the controlled release of BMP-6 was developed for the first time, to enrich bone regeneration efficacy. The scaffolds were achieved by first, one-pot rapid crystallization of BMP-6 encapsulated ZIF-8 nanocrystals-as a novel carrier for growth factor molecules- and then electrospinning of the blending solution composed of poly (ε-caprolactone) and BMP-6 encapsulated ZIF-8 nanocrystals. BMP-6 molecule encapsulation efficiency for ZIF-8 nanocrystals was calculated as 98%. The in-vitro studies showed that, the bioactivity of BMP-6 was preserved and the release lasted up to 30 days. The release kinetics fitted the Korsmeyer-Peppas model exhibiting a pseudo-Fickian behavior. The in-vitro osteogenesis studies revealed the superior effect of sustained release of BMP-6 towards osteogenic differentiation of MC3T3-E1 pre-osteoblasts. In-vivo studies also revealed that the sustained slow release of BMP-6 was responsible for the generation of well-mineralized, new bone formation in a rat cranial defect. Our results proved that; MOF-carriers embedded in electrospun scaffolds can be used as an effective platform for bone regeneration in bone tissue engineering applications. The proposed approach can easily be adapted for various growth factor molecules for different tissue engineering applications.
Collapse
Affiliation(s)
- Özge Toprak
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Berna Topuz
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Yanad Abou Monsef
- Ankara University, Faculty of Veterinary Medicine, Department of Pathology, 06110 Ankara, Turkey
| | - Çağdaş Oto
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, 06110 Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of DentoMaxillofacial Radiology, 06100, Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey.
| |
Collapse
|
130
|
Sohrabi M, Eftekhari Yekta B, Rezaie H, Naimi-Jamal MR, Kumar A, Cochis A, Miola M, Rimondini L. Enhancing Mechanical Properties and Biological Performances of Injectable Bioactive Glass by Gelatin and Chitosan for Bone Small Defect Repair. Biomedicines 2020; 8:biomedicines8120616. [PMID: 33334044 PMCID: PMC7765522 DOI: 10.3390/biomedicines8120616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/19/2022] Open
Abstract
Bioactive glass (BG) represents a promising biomaterial for bone healing; here injectable BG pastes biological properties were improved by the addition of gelatin or chitosan, as well as mechanical resistance was enhanced by adding 10 or 20 wt% 3-Glycidyloxypropyl trimethoxysilane (GPTMS) cross-linker. Composite pastes exhibited bioactivity as apatite formation was observed by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) after 14 days immersion in simulated body fluid (SBF); moreover, polymers did not enhance degradability as weight loss was >10% after 30 days in physiological conditions. BG-gelatin-20 wt% GPTMS composites demonstrated the highest compressive strength (4.8 ± 0.5 MPa) in comparison with the bulk control paste made of 100% BG in water (1.9 ± 0.1 MPa). Cytocompatibility was demonstrated towards human mesenchymal stem cells (hMSC), osteoblasts progenitors, and endothelial cells. The presence of 20 wt% GPTMS conferred antibacterial properties thus inhibiting the joint pathogens Staphylococcus aureus and Staphylococcus epidermidis infection. Finally, hMSC osteogenesis was successfully supported in a 3D model as demonstrated by alkaline phosphatase release and osteogenic genes expression.
Collapse
Affiliation(s)
- Mehri Sohrabi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.); (H.R.)
| | - Bijan Eftekhari Yekta
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.); (H.R.)
- Correspondence: (B.E.Y.); (L.R.)
| | - Hamidreza Rezaie
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran; (M.S.); (H.R.)
| | - Mohammad Reza Naimi-Jamal
- Department of Chemistry, Research Laboratory of Green Organic Synthesis and Polymers, Iran University of Science and Technology, Tehran 1684613114, Iran;
| | - Ajay Kumar
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, University of Piemonte Orientale UPO, 28100 Novara, Italy; (A.K.); (A.C.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, University of Piemonte Orientale UPO, 28100 Novara, Italy; (A.K.); (A.C.)
| | - Marta Miola
- Institute of Materials Engineering and Physics, Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases–CAAD, University of Piemonte Orientale UPO, 28100 Novara, Italy; (A.K.); (A.C.)
- Correspondence: (B.E.Y.); (L.R.)
| |
Collapse
|
131
|
Singh M, Chauhan D, Das AK, Iqbal Z, Solanki PR. PVA
/
PMMA
polymer blended composite electrospun nanofibers mat and their potential use as an anti‐biofilm product. J Appl Polym Sci 2020. [DOI: 10.1002/app.50340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Manvi Singh
- Special Centre for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
- Department of Pharmaceutics School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India
| | - Deepika Chauhan
- Special Centre for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| | - Ayan K. Das
- Department of Microbiology Hamdard Institute of Medical Sciences and Research, Jamia Hamdard New Delhi 110062 India
| | - Zeenat Iqbal
- Department of Pharmaceutics School of Pharmaceutical Education and Research, Jamia Hamdard New Delhi 110062 India
| | - Pratima R. Solanki
- Special Centre for Nanoscience Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
132
|
Etemadi N, Mehdikhani M, Poorazizi E, Rafienia M. Novel bilayer electrospun poly(caprolactone)/ silk fibroin/ strontium carbonate fibrous nanocomposite membrane for guided bone regeneration. J Appl Polym Sci 2020. [DOI: 10.1002/app.50264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Niloofar Etemadi
- Department of Materials Engineering, Najafabad Branch Islamic Azad University Najafabad Iran
- Medical Image and Signal Processing Research Center Isfahan University of Medical Sciences Isfahan Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Elahe Poorazizi
- Department of Biochemistry, Najafabad Branch Islamic Azad University Najafabad Iran
| | - Mohammad Rafienia
- Biosensor Research Center (BRC) Isfahan University of Medical Sciences (IUMS) Isfahan Iran
| |
Collapse
|
133
|
Park JK, Pham-Nguyen OV, Yoo HS. Coaxial Electrospun Nanofibers with Different Shell Contents to Control Cell Adhesion and Viability. ACS OMEGA 2020; 5:28178-28185. [PMID: 33163800 PMCID: PMC7643203 DOI: 10.1021/acsomega.0c03902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/09/2020] [Indexed: 05/04/2023]
Abstract
Electrospun nanofibers are widely employed as cell culture matrices because their biomimetic structures resemble a natural extracellular matrix. However, due to the limited cell infiltration into nanofibers, three-dimensional (3D) construction of a cell matrix is not easily accomplished. In this study, we developed a method for the partial digestion of a nanofiber into fragmented nanofibers composed of gelatin and polycaprolactone (PCL). The PCL shells of the coaxial fragments were subsequently removed with different concentrations of chloroform to control the remaining PCL on the shell. The swelling and exposure of the gelatin core were manipulated by the remaining PCL shells. When cells were cultivated with the fragmented nanofibers, they were spontaneously assembled on the cell sheets. The cell adhesion and proliferation were significantly affected by the amount of PCL shells on the fragmented nanofibers.
Collapse
Affiliation(s)
- Jae Keun Park
- Department
of Biomedical Materials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
| | - Oanh-Vu Pham-Nguyen
- Department
of Biomedical Materials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department
of Biomedical Materials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
- Institute
of Bioscience and Biotechnology, Kangwon
National University, Chuncheon 24341, Republic of Korea
- . Website: http://nano-bio.kangwon.ac.kr
| |
Collapse
|
134
|
Synergistic effects of gelatin and nanotopographical patterns on biomedical PCL patches for enhanced mechanical and adhesion properties. J Mech Behav Biomed Mater 2020; 114:104167. [PMID: 33168488 DOI: 10.1016/j.jmbbm.2020.104167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
Biomedical patches have been known as important biomaterial-based medical devices for the clinical treatment of tissue and organ diseases. Inspired by the extracellular matrix-like aligned nanotopographical pattern as well as the unique physical and biocompatible properties of gelatin, we developed strength-enhanced biomedical patches by coating gelatin onto the nanopatterned surface of polycaprolactone (PCL). The relative contributions of the nanotopographical pattern (physical factor) and gelatin coating (chemical factor) in enhancing the mechanical and adhesive properties of PCL were quantitatively investigated. The nanotopographical pattern increased the surface area of PCL, allowing more gelatin to be coated on its surface. The biomedical patch made from gelatin-coated nanopatterned PCL showed strong mechanical and adhesive properties (tensile strength: ~14.5 MPa; Young's modulus: ~60.2 MPa; and normal and shear adhesive forces: ~1.81 N/cm2 and ~352.3 kPa) as well as good biocompatibility. Although the nanotopographical pattern or gelatin coating alone could enhance these physical properties of PCL in both dry and wet environmental conditions, both factors in combination further strengthened the properties, indicating the importance of synergistic cues in driving the mechanical behavior of biomedical materials. This strength-enhanced biomedical patch will be especially useful for the treatment of tissues such as cartilage, tendon, and bone.
Collapse
|
135
|
Liu S, Huo Z, Zhang H, Hu Q, Ramalingam M. 3D printing‐assisted
combinatorial approach for designing mechanically‐tunable and vascular supportive nanofibrous membranes to repair perforated eardrum. J Appl Polym Sci 2020. [DOI: 10.1002/app.50132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suihong Liu
- Rapid Manufacturing Engineering Center Shanghai University Shanghai China
| | - Zirong Huo
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center Shanghai University Shanghai China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center Shanghai University Shanghai China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics Shanghai University Shanghai China
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering Vellore Institute of Technology Vellore India
| |
Collapse
|
136
|
Saadipour M, Karkhaneh A, Haghbin Nazarpak M. An investigation into curcumin release from PLA particles loaded in PCL-GELATIN fibers for skin application. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1838520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Misagh Saadipour
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | |
Collapse
|
137
|
Guo X, Liu Y, Bera H, Zhang H, Chen Y, Cun D, Foderà V, Yang M. α-Lactalbumin-Based Nanofiber Dressings Improve Burn Wound Healing and Reduce Scarring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45702-45713. [PMID: 32667794 DOI: 10.1021/acsami.0c05175] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Skin wound especially burn injury is a major threat for public health. One of the pursuits in the current wound healing research is to identify new promising biological materials, which can not only promote tissue repair but also reduce scar formation. In this current study, the potentials of α-lactalbumin (ALA), a tryptophan-rich dietary protein acting as a precursor of neurotransmitter serotonin, to promote the burn wound healing and reduce the scar formation were investigated. The ALA was initially electrospun with polycaprolactone (PCL) to accomplish electrospun nanofibrous mats (ENMs), subsequently assessed for their physicochemical attributes and wound healing efficiency on a burn rat model, and then their healing mechanisms at cellular and molecular levels were explored. The results showed that ALA and PCL were physicochemically compatible in ENMs. The average diameter of various nanofibers was within 183-344 nm. Their wettability and mechanical properties could be readily modulated by adjusting the mass ratios of ALA and PCL from 1/9 to 1/2. The selected ENMs exhibited negligible cytotoxicity and satisfactory adhesion to fibroblasts and promoting the proliferation of the fibroblasts. As compared to pristine PCL based ENMs, the composite scaffolds could accelerate the wound healing process and exhibit effects comparable to a marketed wound dressing over 16 days. Moreover, the ALA/PCL based ENMs could increase the synthesis of type I collagen and decrease the expression of α-smooth muscle actin, conferring that the novel wound dressings could reduce the formation of scars. Collectively, this study demonstrates that the ALA is a promising biological material and could promote the regeneration of burn skins with reduced scar formation, when being loaded on ultrafine fibrous scaffolds, mimicking the structure of the natural extra cellular matrix.
Collapse
Affiliation(s)
- Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, No. 83 Road, Shenhe District, 110016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
138
|
Chang M, Lin H, Fu H, Wang J, Yang Y, Wan Z, Han G. CREB activation affects mesenchymal stem cell migration and differentiation in periodontal tissues due to orthodontic force. Int J Biochem Cell Biol 2020; 129:105862. [PMID: 33045372 DOI: 10.1016/j.biocel.2020.105862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022]
Abstract
During the orthodontic tooth movement, cells in periodontal ligament could differentiate into osteoblasts to synthesize alveolar bone as well as affect the proliferation, migration and differentiation of mesenchymal stem cells, which also contribute to bone remodeling. However, the mechanism is still largely elusive. Here, we evaluated the expression of CREB at the tension site of mouse periodontal ligament under orthodontic mechanical strain and in the cyclic tension strain treated human periodontal ligament cells. Then, through gain and loss of function analysis, we revealed that CREB in PDLCs promotes SDF-1 and FGF2 secretion, which enhance the migration and osteoblastic differentiation of BMSCs. We further discovered that CREB transcriptionally activates FGF2 and SDF-1 expressions by binding to the promoter regions.In conclusion, this study confirms that CREB is an upregulated gene in periodontal ligament under orthodontic tension strain stimulation and plays an important role in regulating BMSCs' physiological activity in orthodontic tension strain-induced bone formation.
Collapse
Affiliation(s)
- Maolin Chang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haidi Fu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Yang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ziqiu Wan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangli Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
139
|
Ranjbar-Mohammadi M, Mousavi E, Mostakhdem Hashemi M, Abbasian M, Asadi J, Esmaili E, Fesharaki M, Asadi P, Arab-Bafrani Z. Efficient co-cultivation of human fibroblast cells (HFCs) and adipose-derived stem cells (ADSs) on gelatin/PLCL nanofiber. IET Nanobiotechnol 2020; 14:73-77. [PMID: 31935681 DOI: 10.1049/iet-nbt.2019.0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, we investigated whether the nanofibers produced by natural-synthetic polymers can probably promote the proliferation of co-cultured adipose-derived stem cells/human fibroblast cells (ADSs/HFCs) and synthesis of collagen. Nanofiber was fabricated by blending gelatin and poly (L-lactide co-ɛ-caprolactone) (PLCL) polymer nanofiber (Gel/PLCL). Cell morphology and the interaction between cells and Gel/PLCL nanofiber were evaluated by FESEM and fluorescent microscopy. MTS assay and quantitative real-time polymerase chain reaction were applied to assess the proliferation of co-cultured ADSs/HFCs and the collagen type I and III synthesis, respectively. The concentrations of two cytokines including fibroblast growth factor-basic and transforming growth factor-β1 were also measured in culture medium of co-cultured ADSs/HDCs using enzyme-linked immunosorbent assay assay. Actually, nanofibers exhibited proper structural properties in terms of stability in cell proliferation and toxicity analysis processes. Gel/PLCL nanofiber promoted the growth and the adhesion of HFCs. Our results showed in contact co-culture of ADSs/HFCs on the Gel/PLCL nanofiber increased cellular adhesion and proliferation synergistically compared to non-coated plate. Also, synthesis of collagen and cytokines secretion of co-cultured ADSs/HFCs on Gel/PLCL scaffolds is significantly higher than non-coated plates. To conclude, the results suggest that Gel/PLCL nanofiber can imitate physiological characteristics in vivo and enhance the efficacy of co-cultured ADSs/HFCs in wound healing process.
Collapse
Affiliation(s)
| | - Elham Mousavi
- Department of medical microbiology, Faculty of Medicine, Kerman University of medical sciences, Kerman, Iran
| | | | - Mahdi Abbasian
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ehsan Esmaili
- Health Management and Social Development Research Center, Golestan University of medical sciences, Gorgan, Iran
| | - Mehrafarin Fesharaki
- Department of Cell Sciences Research Center Medical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouyan Asadi
- Medical Cellular & Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Arab-Bafrani
- Health technology Research Center, Oxin Sabz Espadan Company, Esfahan University of Medical Sciences, Iran.
| |
Collapse
|
140
|
Guner MB, Dalgic AD, Tezcaner A, Yilanci S, Keskin D. A dual-phase scaffold produced by rotary jet spinning and electrospinning for tendon tissue engineering. Biomed Mater 2020; 15:065014. [PMID: 32438362 DOI: 10.1088/1748-605x/ab9550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tendon is a highly hierarchical and oriented tissue that provides high mechanical strength. Tendon injuries lead to loss of function, disability, and a decrease in quality of life. The limited healing capacity of tendon tissue leads to scar tissue formation, which can affect mechanical strength and cause a re-tear. Tissue engineering can be the solution to achieving complete and proper healing of tendon. The developed constructs should be mechanically strong while maintaining a suitable environment for cell proliferation. In this study, a dual-phase fibrous scaffold was produced by combining fibrous mats produced by rotary jet spinning (RJS) and wet electrospinning (WES), with the intent of improving the healing capacity of the construct. Dual-phase scaffolds were formed from aligned poly(ϵ-caprolactone) (PCL) fibers (Shell) produced by RJS and randomly oriented PCL or PCL/gelatin fibers (Core) produced by WES systems. The scaffolds mimicked i) the repair phase of tendon healing, in which randomly-oriented collagen type III is deposited by randomly-oriented WES fibers and ii) the remodeling stage, in which aligned collagen type I fibers are deposited by aligned RJS fibers. In vitro studies showed that the presence of randomly-oriented core fibers inside the aligned PCL fiber shell of the dual-phase scaffold increased the initial attachment and viability of cells. Scanning electron microscopy and confocal microscopy analysis showed that the presence of aligned RJS fibers supported the elongation of cells through aligned fibers which improves tendon tissue healing by guiding oriented cell proliferation and extracellular matrix deposition. Tenogenic differentiation of human adipose-derived mesenchymal stem cells on scaffolds was studied when supplemented with growth differentiation factor 5 (GDF-5). GDF-5 treatment improved the viability, collagen type III deposition and scaffold penetration of human adipose derived stem cells. The developed FSPCL/ESPCL-Gel 3:1 scaffold (FS = centrifugal force spinning/RJS, ES = wet electrospinning, Gel = gelatin) sustained high mechanical strength, and improved cell viability and orientation while supporting tenogenic differentiation.
Collapse
Affiliation(s)
- Mustafa Bahadir Guner
- Graduate Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| | - Ali Deniz Dalgic
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| | - Aysen Tezcaner
- Graduate Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| | - Sedat Yilanci
- Department of Plastic Reconstructive and Aesthetics Surgery, Liv Hospital, Ankara, Turkey
| | - Dilek Keskin
- Graduate Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
141
|
Combination of nano-hydroxyapatite and curcumin in a biopolymer blend matrix: Characteristics and drug release performance of fibrous composite material systems. Int J Pharm 2020; 590:119933. [PMID: 33011251 DOI: 10.1016/j.ijpharm.2020.119933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/20/2022]
Abstract
The design of appropriate materials is required for biomedical applications (e.g. drug delivery systems) in improving people's health care processes. This study focused on the incorporation of nanosized hydroxyapatite (n-HA) with different ratios (ranging from 0.1 wt% to 0.5 wt%) into the poly (ε-caprolactone)/ poly (ethylene oxide) (PCL/PEO) blend matrix loaded or unloaded with curcumin. Composite fibrous material systems were successfully fabricated by the electrospinning technique without the occurrence of bead defects. In addition to the morphological and physicochemical properties of the material systems obtained, the in vitro curcumin release performance was investigated. Further, anti-cancer activity against breast cancer cell line (MCF-7) was examined by MTT assay. Fourier transform infrared spectroscopy and X-ray diffraction characterizations of the fabricated fibrous materials exhibited the interaction of PCL/PEO, n-HA, and curcumin. The 0.3 wt% n-HA incorporated fibrous materials showed a much slower curcumin release manner along with the highest cytotoxicity against MCF-7 cells. The findings obtained from this research are expected to contribute to the appropriate design of nanofiber-based composite materials not only for drug delivery systems but also for the fabrication of biomaterials toward different biomedical applications.
Collapse
|
142
|
Baghbadorani MA, Bigham A, Rafienia M, Salehi H. A ternary nanocomposite fibrous scaffold composed of poly(ε‐caprolactone)/Gelatin/Gehlenite (
Ca
2
Al
2
SiO
7
): Physical, chemical, and biological properties in vitro. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Moloud A. Baghbadorani
- Student Research Committee, School of Advanced Technology in Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Ashkan Bigham
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine (ATiM) Isfahan University of Medical Sciences Isfahan Iran
| | - Mohammad Rafienia
- Biosensor Research Center Isfahan University of Medical Sciences Isfahan Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
143
|
Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. Int J Biol Macromol 2020; 161:377-388. [DOI: 10.1016/j.ijbiomac.2020.06.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
|
144
|
Manatunga DC, Godakanda VU, Herath HMLPB, de Silva RM, Yeh CY, Chen JY, Akshitha de Silva AA, Rajapaksha S, Nilmini R, Nalin de Silva KM. Nanofibrous cosmetic face mask for transdermal delivery of nano gold: synthesis, characterization, release and zebra fish employed toxicity studies. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201266. [PMID: 33047067 PMCID: PMC7540761 DOI: 10.1098/rsos.201266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/24/2020] [Indexed: 05/08/2023]
Abstract
This study involves the generation of gold nanoparticles (Au NPs) via a novel natural/non-toxic methodology using tea and orange-peel extracts. These were then embedded into a novel blend composed of a polyethylene oxide and gelatin (PEO-Gel) fibre mat. The scanning electron microscopy results indicated that the addition of both collagen (COL) and ascorbic acid (AA) into the PEO-Gel system (PEO-Gel-AA-COL system) enhances the Au NP incorporation into nanofibres leading to a diameter of 164.60 ± 20.95 and 192.43 ± 39.14 nm in contrast to the spraying observed with the Au PEO-Gel system alone. Releasing studies conducted over 30 min indicated that the PEO-Gel-AA-COL-orange peel Au (OpAu) system accounts for a higher content of Au release than the green tea Au (GtAu) NP system where a maximum release could be attained within 10-30 min depending on the amount of Au NPs that have been incorporated. Moreover, the transdermal diffusion studies conducted using Strat membrane indicated that Au NPs from both formulations (PEO-Gel-AA-COL-GtAu nanofibre, PEO-Gel-AA-COL-OpAu nanofibre) have diffused through the stratum corneum and trapped in the dermis and epidermis indicating its transdermal deliverability. Additionally, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that nanofibres have similar radical scavenging activity like AA standard. Toxicity evaluation on a zebra fish embryo model confirmed that both GtAu NPs and OpAu NPs do not induce any teratogenic activity and are safe to be used in the range of 1.0-167 µg ml-1.
Collapse
Affiliation(s)
- D. C. Manatunga
- Centre for Advanced Materials and Devices, Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - V. U. Godakanda
- Centre for Advanced Materials and Devices, Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - H. M. L. P. B. Herath
- Centre for Advanced Materials and Devices, Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Rohini M. de Silva
- Centre for Advanced Materials and Devices, Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Chen-Yu Yeh
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Jiann-Yeu Chen
- Research Centre for Sustainable Energy and Nanotechnology (RCSEN), National Chung Hsing University, Taichung 402, Taiwan
| | | | - S. Rajapaksha
- Department of Engineering Technology, Faculty of Technology, University of Sri Jayawardenapura, Sri Lanka
| | - Renuka Nilmini
- Department of Engineering Technology, Faculty of Technology, University of Sri Jayawardenapura, Sri Lanka
| | - K. M. Nalin de Silva
- Centre for Advanced Materials and Devices, Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| |
Collapse
|
145
|
Toriello M, Afsari M, Shon HK, Tijing LD. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. MEMBRANES 2020; 10:membranes10090204. [PMID: 32872232 PMCID: PMC7559347 DOI: 10.3390/membranes10090204] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.
Collapse
Affiliation(s)
- Mariela Toriello
- Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia;
| | - Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Leonard D. Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
- Correspondence:
| |
Collapse
|
146
|
Tang J, Wu C, Chen S, Qiao Z, Borovskikh P, Shchegolkov A, Chen L, Wei D, Sun J, Fan H. Combining Electrospinning and Electrospraying to Prepare a Biomimetic Neural Scaffold with Synergistic Cues of Topography and Electrotransduction. ACS APPLIED BIO MATERIALS 2020; 3:5148-5159. [PMID: 35021691 DOI: 10.1021/acsabm.0c00595] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nerve tissue consists of aligned fibrous nerve bundles, in which neurons communicate and transmit information through electrical signals. Hence, biocompatibility, oriented fibrous structure, and electrical conductivity are key factors for the biomimetic design of nerve scaffolds. Herein, we built a technical platform to combine electrospinning and electrospraying for preparing a biomimetic scaffold with conductivity and aligned fibrous structure. The highly aligned polycaprolactone (PCL) microfibrous scaffolds with co-sprayed collagen and conductive polypyrrole nanoparticles (PPy NPs) showed good bioactivity, supplying a platform for exploring the effects of topographical guidance, fiber conductivity, and its mediated external electrical signals on neurogenesis. The results revealed that collagen-coated highly aligned PCL microfibrous scaffold induced PC12 cells oriented and elongated along the direction of fibers. In addition, the improved conductivity of PPy-coated aligned fibers and its mediated external electrical stimulation collectively contributed to the functional expression, including elongation, gene expression, and protein expression, of PC12 cells. We further demonstrated the potential mechanism where the fiber conductivity and its mediated external electrical signals resulted in the upregulation of voltage-gated calcium channel, leading to the influx of Ca2+, thereby activating intracellular signaling cascades, ultimately enhancing neurogenesis. This approach provides a strategy to design aligned fibrillary scaffolds with bioactive adhesion domains and electroconductivity for neural regeneration.
Collapse
Affiliation(s)
- Jiajia Tang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Pavel Borovskikh
- School of Business, Economics and Law, Martin-Luther-University Halle-Wittenberg, Universitätsplatz 10, 06108 Halle (Saale), Germany
| | - Alexandr Shchegolkov
- Institute of Technology,Tambov State Technical University, 106 Sovetskaya Street, Tambov 392000, Russia Federation
| | - Lu Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
147
|
Sadeghi-Soureh S, Jafari R, Gholikhani-Darbroud R, Pilehvar-Soltanahmadi Y. Potential of Chrysin‐loaded PCL/gelatin nanofibers for modulation of macrophage functional polarity towards anti-inflammatory/pro-regenerative phenotype. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
148
|
Chen H, Shi Y, Sun L, Ni S. Electrospun composite nanofibers with all-trans retinoic acid and MWCNTs-OH against cancer stem cells. Life Sci 2020; 258:118152. [PMID: 32735881 DOI: 10.1016/j.lfs.2020.118152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 01/22/2023]
Abstract
AIMS Cancer stem cells (CSCs) are the source of tumors and play a key role in the resistance of cancer to therapies. To improve the current therapies against CSCs, in this work we developed a novel system of electrospun polycaprolactone (PCL) nanofibers containing hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) and all-trans retinoic acid (ATRA). MATERIALS AND METHODS The nanofiber membranes were forged by electrospinning, and the physical and chemical properties of the nanofiber membranes were evaluated by scanning electron microscopy, XRD and Raman etc. The photothermal properties of nanofiber membranes and their effects on CSCs differentiation and cytotoxicity were investigated. Finally, the anti-tumor effect of nanofiber membranes in vivo was evaluated. KEY FINDINGS The nanofibers formed under optimal conditions were smooth without beads. The nanofibrous membranes with MWCNTs-OH could increase temperature of the medium under near-infrared (NIR) illumination to suppress the viability of glioma stem cells (GSCs). Meanwhile, the added ATRA could further induce the differentiation of GSCs to destroy their stemness and reduce their resistance to heat treatment. Compared with no NIR irradiation, after 2min NIR irradiation, the membranes reduced the in-vitro viability of GSCs by 13.41%, 14.83%, and 26.71% after 1, 2, and 3 days, respectively. After 3 min daily illumination for 3 days, the viability of GSCs was only 22.75%, and similar results were observed in vivo. SIGNIFICANCE These results showed efficiently cytotoxicity to CSCs by combining heat therapy and differentiation therapy. The nanofiber membranes if inserted at the site after surgical tumor removal, may hinder tumor recurrence.
Collapse
Affiliation(s)
- Haijun Chen
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yue Shi
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Lei Sun
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
149
|
Yusof MR, Shamsudin R, Zakaria S, Azmi Abdul Hamid M, Yalcinkaya F, Abdullah Y, Yacob N. Electron-Beam Irradiation of the PLLA/CMS/β-TCP Composite Nanofibers Obtained by Electrospinning. Polymers (Basel) 2020; 12:polym12071593. [PMID: 32709111 PMCID: PMC7408529 DOI: 10.3390/polym12071593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
Nanofibrous materials produced by electrospinning processes have potential advantages in tissue engineering because of their biocompatibility, biodegradability, biomimetic architecture, and excellent mechanical properties. The aim of the current work is to study the influence of the electron beam on the poly L-lactide acid/ carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers for potential applications as bone-tissue scaffolds. The composite nanofibers were prepared by electrospinning in the combination of 5% v/v carboxy-methyl starch (CMS) and 0.25 wt% of β-TCP with the PLLA as a matrix component. The composites nanofibers were exposed under 5, 30, and 100 kGy of irradiation dose. The electron-beam irradiation showed no morphological damage to the fibers, and slight reduction in the water-contact angle and mechanical strength at the higher-irradiation doses. The chain scission was found to be a dominant effect; the higher doses of electron-beam irradiation thus increased the in vitro degradation rate of the composite nanofibers. The chemical interaction due to irradiation was indicated by the Fourier transform infrared (FTIR) spectrum and thermal behavior was investigated by a differential scanning calorimeter (DSC). The results showed that the electron-beam-induced poly L-lactide acid/carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers may have great potential for bone-tissue engineering.
Collapse
Affiliation(s)
- Mohd Reusmaazran Yusof
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
- Correspondence: (M.R.Y.); (M.A.A.H.); (F.Y.); Tel.: +60-03-89213404 (M.R.Y.)
| | - Roslinda Shamsudin
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
| | - Sarani Zakaria
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
| | - Muhammad Azmi Abdul Hamid
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
- Correspondence: (M.R.Y.); (M.A.A.H.); (F.Y.); Tel.: +60-03-89213404 (M.R.Y.)
| | - Fatma Yalcinkaya
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic
- Correspondence: (M.R.Y.); (M.A.A.H.); (F.Y.); Tel.: +60-03-89213404 (M.R.Y.)
| | - Yusof Abdullah
- Material Technology Group, Malaysian Nuclear Agency, Bangi, Kajang, 43300 Selangor, Malaysia;
| | - Norzita Yacob
- Faculty of Sciences and Technology, National University of Malaysia, Bandar Baru Bangi, 43600 Selangor, Malaysia; (R.S.); (S.Z.); (N.Y.)
| |
Collapse
|
150
|
Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2020; 12:E1566. [PMID: 32679750 PMCID: PMC7408565 DOI: 10.3390/polym12071566] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Biomaterials have been used since ancient times. However, it was not until the late 1960s when their development prospered, increasing the research on them. In recent years, the study of biomaterials has focused mainly on tissue regeneration, requiring a biomaterial that can support cells during their growth and fulfill the function of the replaced tissue until its regeneration. These materials, called scaffolds, have been developed with a wide variety of materials and processes, with the polymer ones being the most advanced. For this reason, the need arises for a review that compiles the techniques most used in the development of polymer-based scaffolds. This review has focused on three of the most used techniques: freeze-drying, electrospinning and 3D printing, focusing on current and future trends. In addition, the advantages and disadvantages of each of them have been compared.
Collapse
Affiliation(s)
- Victor Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| |
Collapse
|