101
|
Palm U, Kumpf U, Behler N, Wulf L, Kirsch B, Wörsching J, Keeser D, Hasan A, Padberg F. Home Use, Remotely Supervised, and Remotely Controlled Transcranial Direct Current Stimulation: A Systematic Review of the Available Evidence. Neuromodulation 2017; 21:323-333. [DOI: 10.1111/ner.12686] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Ulrich Palm
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Ulrike Kumpf
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Nora Behler
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Linda Wulf
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Beatrice Kirsch
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Jana Wörsching
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy; Klinikum der Universität München; Munich Germany
| |
Collapse
|
102
|
Sellaro R, Nitsche MA, Colzato LS. The stimulated social brain: effects of transcranial direct current stimulation on social cognition. Ann N Y Acad Sci 2017; 1369:218-39. [PMID: 27206250 DOI: 10.1111/nyas.13098] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) is an increasingly popular noninvasive neuromodulatory tool in the fields of cognitive and clinical neuroscience and psychiatry. It is an inexpensive, painless, and safe brain-stimulation technique that has proven to be effective in modulating cognitive and sensory-perceptual functioning in healthy individuals and clinical populations. Importantly, recent findings have shown that tDCS may also be an effective and promising tool for probing the neural mechanisms of social cognition. In this review, we present the state-of-the-art of the field of tDCS research in social cognition. By doing so, we aim to gather knowledge of the potential of tDCS to modulate social functioning and social decision making in healthy humans, and to inspire future research investigations.
Collapse
Affiliation(s)
- Roberta Sellaro
- Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, Georg-August University Göttingen, Germany.,Leibniz Research Centre for Working Environment and Human Resources, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Lorenza S Colzato
- Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| |
Collapse
|
103
|
Medina J, Cason S. No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations. Cortex 2017; 94:131-141. [PMID: 28759803 DOI: 10.1016/j.cortex.2017.06.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 02/03/2023]
Abstract
A substantial number of studies have been published over the last decade, claiming that transcranial direct current stimulation (tDCS) can influence performance on cognitive tasks. However, there is some skepticism regarding the efficacy of tDCS, and evidence from meta-analyses are mixed. One major weakness of these meta-analyses is that they only examine outcomes in published studies. Given biases towards publishing positive results in the scientific literature, there may be a substantial "file-drawer" of unpublished negative results in the tDCS literature. Furthermore, multiple researcher degrees of freedom can also inflate published p-values. Recently, Simonsohn, Nelson and Simmons (2014) created a novel meta-analytic tool that examines the distribution of significant p-values in a literature, and compares it to expected distributions with different effect sizes. Using this tool, one can assess whether the selected studies have evidential value. Therefore, we examined a random selection of studies that used tDCS to alter performance on cognitive tasks, and tDCS studies on working memory in a recently published meta-analysis (Mancuso et al., 2016). Using a p-curve analysis, we found no evidence that the tDCS studies had evidential value (33% power or greater), with the estimate of statistical power of these studies being approximately 14% for the cognitive studies, and 5% (what would be expected from randomly generated data) for the working memory studies. It is likely that previous tDCS studies are substantially underpowered, and we provide suggestions for future research to increase the evidential value of future tDCS studies.
Collapse
Affiliation(s)
- Jared Medina
- Department of Psychological and Brain Sciences, University of Delaware, USA.
| | - Samuel Cason
- Department of Psychological and Brain Sciences, University of Delaware, USA
| |
Collapse
|
104
|
Al-Kaysi AM, Al-Ani A, Loo CK, Breakspear M, Boonstra TW. Predicting brain stimulation treatment outcomes of depressed patients through the classification of EEG oscillations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5266-5269. [PMID: 28269452 DOI: 10.1109/embc.2016.7591915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major depressive disorder (MDD) is a mental disorder that is characterized by negative thoughts, mood and behavior. Transcranial direct current stimulation (tDCS) has recently emerged as a promising brain-stimulation treatment for MDD. A standard tDCS treatment involves numerous sessions that run over a few weeks, however, not all participants respond to this type of treatment. This study aims to predict which patients improve in mood and cognition in response to tDCS treatment by analyzing electroencephalography (EEG) of MDD patients that was collected at the start of tDCS treatment. This is achieved through classifying power spectral density (PSD) of resting-state EEG using support vector machine (SVM), linear discriminate analysis (LDA) and extreme learning machine (ELM). Participants were labelled as improved/not improved based on the change in mood and cognitive scores. The obtained classification results of all channel pair combinations are used to identify the most relevant brain regions and channels for this classification task. We found the frontal channels to be particularly informative for the prediction of the clinical outcome of the tDCS treatment. Subject independent results reveal that our proposed method enables the correct identification of the treatment outcome for seven of the ten participants for mood improvement and nine of ten participants for cognitive improvement. This represents an encouraging sign that EEG-based classification may help to tailor the selection of patients for treatment with tDCS brain stimulation.
Collapse
|
105
|
Li X, Ma R, Pang L, Lv W, Xie Y, Chen Y, Zhang P, Chen J, Wu Q, Cui G, Zhang P, Zhou Y, Zhang X. Delta coherence in resting-state EEG predicts the reduction in cigarette craving after hypnotic aversion suggestions. Sci Rep 2017; 7:2430. [PMID: 28546584 PMCID: PMC5445086 DOI: 10.1038/s41598-017-01373-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/27/2017] [Indexed: 12/26/2022] Open
Abstract
Cigarette craving is a key contributor of nicotine addiction. Hypnotic aversion suggestions have been used to help smoking cessation and reduce smoking relapse rates but its neural basis is poorly understood. This study investigated the underlying neural basis of hypnosis treatment for nicotine addiction with resting state Electroencephalograph (EEG) coherence as the measure. The sample consisted of 42 male smokers. Cigarette craving was measured by the Tobacco Craving Questionnaire. The 8-minute resting state EEG was recorded in baseline state and after hypnotic induction in the hypnotic state. Then a smoking disgust suggestion was performed. A significant increase in EEG coherence in delta and theta frequency, and significant decrease in alpha and beta frequency, between the baseline and the hypnotic state was found, which may reflect alterations in consciousness after hypnotic induction. More importantly, the delta coherence between the right frontal region and the left posterior region predicted cigarette craving reduction after hypnotic aversion suggestions. This suggests that the functional connectivity between these regions plays an important role in reducing cigarette cravings via hypnotic aversion suggestions. Thus, these brain regions may serve as an important target to treat nicotine addiction, such as stimulating these brain regions via repetitive transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Xiaoming Li
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
- Department of Medical Psychology, Anhui Medical University, Hefei, Anhui, China
| | - Ru Ma
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | | | - Wanwan Lv
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Yunlu Xie
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Ying Chen
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Pengyu Zhang
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Jiawen Chen
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qichao Wu
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanbao Cui
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiaochu Zhang
- CAS Key Laboratory of Brain Function & Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China.
- School of Humanities & Social Science, University of Science & Technology of China, Beijing, China.
- Center for Biomedical Engineering, University of Science & Technology of China, Hefei, Anhui, China.
| |
Collapse
|
106
|
Gu LH, Chen J, Gao LJ, Shu H, Wang Z, Liu D, Yan YN, Li SJ, Zhang ZJ. The Effect of Apolipoprotein E ε4 (APOE ε4) on Visuospatial Working Memory in Healthy Elderly and Amnestic Mild Cognitive Impairment Patients: An Event-Related Potentials Study. Front Aging Neurosci 2017; 9:145. [PMID: 28567013 PMCID: PMC5434145 DOI: 10.3389/fnagi.2017.00145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/30/2017] [Indexed: 12/17/2022] Open
Abstract
Background: Apolipoprotein E (APOE) ε4 is the only established risk gene for late-onset, sporadic Alzheimer’s disease (AD). Previous studies have provided inconsistent evidence for the effect of APOE ε4 status on the visuospatial working memory (VSWM). Objective: The aim was to investigate the effect of APOE ε4 on VSWM with an event-related potential (ERP) study in healthy controls (HC) and amnestic mild cognitive impairment (aMCI) patients. Methods: The study recorded 39 aMCI patients (27 APOE ε4 non-carriers and 12 APOE ε4 carriers) and their 43 matched controls (25 APOE ε4 non-carriers and 18 APOE ε4 carriers) with an 64-channel electroencephalogram. Participants performed an N-back task, a VSWM paradigm that manipulated the number of items to be stored in memory. Results: The present study detected reduced accuracy and delayed mean correct response time (RT) in aMCI patients compared to HC. P300, a positive component that peaks between 300 and 500 ms, was elicited by the VSWM task. In addition, aMCI patients showed decreased P300 amplitude at the central–parietal (CP1, CPz, and CP2) and parietal (P1, Pz, and P2) electrodes in 0- and 1-back task compared to HC. In both HC and aMCI patients, APOE ε4 carriers showed reduced P300 amplitude with respect to non-carriers, whereas no significant differences in accuracy or RT were detected between APOE ε4 carriers and non-carriers. Additionally, standardized low-resolution brain electromagnetic tomography analysis (s-LORETA) showed enhanced brain activation in the right parahippocampal gyrus (PHG) during P300 time range in APOE ε4 carriers with respect to non-carriers in aMCI patients. Conclusion: It demonstrated that P300 amplitude could predict VSWM deficits in aMCI patients and contribute to early detection of VSWM deficits in APOE ε4 carriers.
Collapse
Affiliation(s)
- Li-Hua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Jiu Chen
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Li-Juan Gao
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Duan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China
| | - Yan-Na Yan
- Department of Psychology, Xinxiang Medical UniversityXinxiang, China
| | - Shi-Jiang Li
- Department of Biophysics, Medical College of Wisconsin, MilwaukeeWI, United States
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast UniversityNanjing, China.,Department of Psychology, Xinxiang Medical UniversityXinxiang, China
| |
Collapse
|
107
|
Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization. Brain Res 2017; 1667:28-40. [PMID: 28502585 DOI: 10.1016/j.brainres.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 11/24/2022]
Abstract
There is considerable interest in maintaining working memory (WM) because it is essential to accomplish most cognitive tasks, and it is correlated with fluid intelligence and ecologically valid measures of daily living. Toward this end, WM training protocols aim to improve WM capacity and extend improvements to unpracticed domains, yet success is limited. One emerging approach is to couple WM training with transcranial direct current stimulation (tDCS). This pairing of WM training with tDCS in longitudinal designs promotes behavioral improvement and evidence of transfer of performance gains to untrained WM tasks. However, the mechanism(s) underlying tDCS-linked training benefits remain unclear. Our goal was to gain purchase on this question by recording high-density EEG before and after a weeklong WM training+tDCS study. Participants completed four sessions of frontoparietal tDCS (active anodal or sham) during which they performed a visuospatial WM change detection task. Participants who received active anodal tDCS demonstrated significant improvement on the WM task, unlike those who received sham stimulation. Importantly, this pattern was mirrored by neural correlates in spectral and phase synchrony analyses of the HD-EEG data. Notably, the behavioral interaction was echoed by interactions in frontal-posterior alpha band power, and theta and low alpha oscillations. These findings indicate that one mechanism by which paired tDCS+WM training operates is to enhance cortical efficiency and connectivity in task-relevant networks.
Collapse
|
108
|
The Role of the Orbitofrontal and Dorsolateral Prefrontal Cortices in Aesthetic Preference for Art. Behav Sci (Basel) 2017; 7:bs7020031. [PMID: 28492478 PMCID: PMC5485461 DOI: 10.3390/bs7020031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
The search for the underlying neural activation that occurs during subjective aesthetic experiences of artwork has been enhanced through neuroimaging techniques. Recently, the dorsolateral prefrontal cortex, alongside the orbitofrontal cortex, have been implicated in aesthetic appreciation, and this is the focus of the present paper. Here, the validity of this conclusion is examined through the discussion of its neuroanatomical connections and functional properties. It is proposed that the experimental evidence challenges the view that this area could hold a privileged position in a brain network involved in aesthetic preference.
Collapse
|
109
|
Impey D, de la Salle S, Baddeley A, Knott V. Effects of an NMDA antagonist on the auditory mismatch negativity response to transcranial direct current stimulation. J Psychopharmacol 2017; 31:614-624. [PMID: 27624152 DOI: 10.1177/0269881116665336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a weak constant current to alter cortical excitability and activity temporarily. tDCS-induced increases in neuronal excitability and performance improvements have been observed following anodal stimulation of brain regions associated with visual and motor functions, but relatively little research has been conducted with respect to auditory processing. Recently, pilot study results indicate that anodal tDCS can increase auditory deviance detection, whereas cathodal tDCS decreases auditory processing, as measured by a brain-based event-related potential (ERP), mismatch negativity (MMN). As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, the current study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS's effects on both MMN and working memory performance. The study, conducted in 12 healthy volunteers, involved four laboratory test sessions within a randomised, placebo and sham-controlled crossover design that compared pre- and post-anodal tDCS over the auditory cortex (2 mA for 20 minutes to excite cortical activity temporarily and locally) and sham stimulation (i.e. device is turned off) during both DMO (50 mL) and placebo administration. Anodal tDCS increased MMN amplitudes with placebo administration. Significant increases were not seen with sham stimulation or with anodal stimulation during DMO administration. With sham stimulation (i.e. no stimulation), DMO decreased MMN amplitudes. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS sensory and memory improvements.
Collapse
Affiliation(s)
- Danielle Impey
- 1 Clinical Neuroelectrophysiology and Cognitive Research Laboratory, University of Ottawa Institute of Mental Health Research, Ottawa, Canada.,2 School of Psychology, University of Ottawa, Ottawa, Canada
| | - Sara de la Salle
- 1 Clinical Neuroelectrophysiology and Cognitive Research Laboratory, University of Ottawa Institute of Mental Health Research, Ottawa, Canada.,2 School of Psychology, University of Ottawa, Ottawa, Canada
| | - Ashley Baddeley
- 1 Clinical Neuroelectrophysiology and Cognitive Research Laboratory, University of Ottawa Institute of Mental Health Research, Ottawa, Canada
| | - Verner Knott
- 1 Clinical Neuroelectrophysiology and Cognitive Research Laboratory, University of Ottawa Institute of Mental Health Research, Ottawa, Canada.,2 School of Psychology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
110
|
Yavari F, Nitsche MA, Ekhtiari H. Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework. Front Hum Neurosci 2017; 11:159. [PMID: 28450832 PMCID: PMC5390027 DOI: 10.3389/fnhum.2017.00159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 12/11/2022] Open
Abstract
During recent years, non-invasive brain stimulation, including transcranial electrical stimulation (tES) in general, and transcranial direct current stimulation (tDCS) in particular, have created new hopes for treatment of neurological and psychiatric diseases. Despite promising primary results in some brain disorders, a more widespread application of tES is hindered by the unsolved question of determining optimum stimulation protocols to receive meaningful therapeutic effects. tES has a large parameter space including various montages and stimulation parameters. Moreover, inter- and intra-individual differences in responding to stimulation protocols have to be taken into account. These factors contribute to the complexity of selecting potentially effective protocols for each disorder, different clusters of each disorder, and even each single patient. Expanding knowledge in different dimensions of basic and clinical neuroscience could help researchers and clinicians to select potentially effective protocols based on tES modulatory mechanisms for future clinical studies. In this article, we propose a heuristic spatiomechanistic framework which contains nine levels to address tES effects on brain functions. Three levels refer to the spatial resolution (local, small-scale networks and large-scale networks) and three levels of tES modulatory effects based on its mechanisms of action (neurochemical, neuroelectrical and oscillatory modulations). At the group level, this framework could be helpful to enable an informed and systematic exploration of various possible protocols for targeting a brain disorder or its neuroscience-based clusters. Considering recent advances in exploration of neurodiversity at the individual level with different brain mapping technologies, the proposed framework might also be used in combination with personal data to design individualized protocols for tES in the context of precision medicine in the future.
Collapse
Affiliation(s)
- Fatemeh Yavari
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human FactorsDortmund, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Centre for Working Environment and Human FactorsDortmund, Germany
- Department of Neurology, University Medical Hospital BergmannsheilBochum, Germany
| | - Hamed Ekhtiari
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical SciencesTehran, Iran
- Translational Neuroscience Program, Institute for Cognitive Science Studies (ICSS)Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
111
|
Oscillatory brain activity changes by anodal tDCS - An ECoG study on anesthetized beagles. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5258-5261. [PMID: 28269450 DOI: 10.1109/embc.2016.7591913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Measuring neuronal activity of transcranial direct current stimulation (tDCS) is essential for investigating tDCS in stimuli or after stimuli effects. The aim of this study was to investigate the oscillatory changes from anodal tDCS using electrocorticography (ECoG) on beagles. We applied 2 mA anodal tDCS and monitored the ECoG signals (32 channels, 512 Hz sampling rate) for 15 minutes in three anesthetized beagles. Then, we compared the power changes before, during, and after tDCS in six different bands (delta, theta, alpha, beta, low-gamma, and mid-gamma bands). The significantly increasing oscillatory changes from the mid-frequency bands (theta, alpha, and beta bands) to the high-frequency bands (low-gamma and mid-gamma bands) were observed. The results suggest that anodal tDCS may modulate high-frequency bands in the focal area of the cortex, which is relevant to electroencephalogram (EEG) studies.
Collapse
|
112
|
Sotnikova A, Soff C, Tagliazucchi E, Becker K, Siniatchkin M. Transcranial Direct Current Stimulation Modulates Neuronal Networks in Attention Deficit Hyperactivity Disorder. Brain Topogr 2017; 30:656-672. [DOI: 10.1007/s10548-017-0552-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
|
113
|
Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Romero Lauro LJ. Cognitive Enhancement Induced by Anodal tDCS Drives Circuit-Specific Cortical Plasticity. Cereb Cortex 2017; 28:1132-1140. [DOI: 10.1093/cercor/bhx021] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/18/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alberto Pisoni
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milano, Italy
- NeuroMi, Milan Center for Neuroscience, Milano, Italy
| | - Giulia Mattavelli
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milano, Italy
- NeuroMi, Milan Center for Neuroscience, Milano, Italy
| | - Costanza Papagno
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milano, Italy
- NeuroMi, Milan Center for Neuroscience, Milano, Italy
- CeRiN - Centro di Riabilitazione Neurocognitiva, Università degli Studi di Trento, Rovereto, Italy
| | - Mario Rosanova
- Department of Clinical Sciences, “Luigi Sacco”, Università degli Studi di Milano, Milano, Italy
- Fondazione Europea di Ricerca Biomedica, FERB Onlus, Cernusco sul Naviglio, Milano, Milano, Italy
| | - Adenauer G Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Leonor J Romero Lauro
- Department of Psychology, Università degli Studi di Milano-Bicocca, Milano, Italy
- NeuroMi, Milan Center for Neuroscience, Milano, Italy
| |
Collapse
|
114
|
Al-Kaysi AM, Al-Ani A, Loo CK, Powell TY, Martin DM, Breakspear M, Boonstra TW. Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification. J Affect Disord 2017; 208:597-603. [PMID: 28029427 DOI: 10.1016/j.jad.2016.10.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a promising treatment for major depressive disorder (MDD). Standard tDCS treatment involves numerous sessions running over a few weeks. However, not all participants respond to this type of treatment. This study aims to investigate the feasibility of identifying MDD patients that respond to tDCS treatment based on resting-state electroencephalography (EEG) recorded prior to treatment commencing. METHODS We used machine learning to predict improvement in mood and cognition during tDCS treatment from baseline EEG power spectra. Ten participants with a current diagnosis of MDD were included. Power spectral density was assessed in five frequency bands: delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (13-30Hz) and gamma (30-100Hz). Improvements in mood and cognition were assessed using the Montgomery-Åsberg Depression Rating Scale and Symbol Digit Modalities Test, respectively. We trained the classifiers using three algorithms (support vector machine, extreme learning machine and linear discriminant analysis) and a leave-one-out cross-validation approach. RESULTS Mood labels were accurately predicted in 8 out of 10 participants using EEG channels FC4-AF8 (accuracy=76%, p=0.034). Cognition labels were accurately predicted in 10 out of 10 participants using channels pair CPz-CP2 (accuracy=92%, p=0.004). LIMITATIONS Due to the limited number of participants (n=10), the presented results mainly aim to serve as a proof of concept. CONCLUSIONS These finding demonstrate the feasibility of using machine learning to identify patients that will respond to tDCS treatment. These promising results warrant a larger study to determine the clinical utility of this approach.
Collapse
Affiliation(s)
- Alaa M Al-Kaysi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Australia.
| | - Ahmed Al-Ani
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Australia
| | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, University of New South Wales, Sydney, Australia; St George Hospital, Kogarah, Australia
| | - Tamara Y Powell
- Black Dog Institute, University of New South Wales, Sydney, Australia; QIMR Berghofer Medial Research Institute, Brisbane, Australia
| | - Donel M Martin
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Michael Breakspear
- QIMR Berghofer Medial Research Institute, Brisbane, Australia; St George Hospital, Kogarah, Australia
| | - Tjeerd W Boonstra
- Black Dog Institute, University of New South Wales, Sydney, Australia; QIMR Berghofer Medial Research Institute, Brisbane, Australia
| |
Collapse
|
115
|
Thibaut A, Russo C, Morales-Quezada L, Hurtado-Puerto A, Deitos A, Freedman S, Carvalho S, Fregni F. Neural signature of tDCS, tPCS and their combination: Comparing the effects on neural plasticity. Neurosci Lett 2017; 637:207-214. [PMID: 27765610 PMCID: PMC5541936 DOI: 10.1016/j.neulet.2016.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) and transcranial direct current stimulation (tDCS) are two noninvasive neuromodulatory brain stimulation techniques whose effects on human brain and behavior have been studied individually. In the present study we aimed to quantify the effects of tDCS and tPCS, individually and in combination, on cortical activity, sensitivity and pain-related assessments in healthy individuals in order to understand their neurophysiological mechanisms and potential applications in clinical populations. A total of 48 healthy individuals participated in this randomized double blind sham controlled study. Participants were randomized to receive a single stimulation session of either: active or sham tPCS and active or sham tDCS. Quantitative electroencephalography (qEEG), sensitivity and pain assessments were used before and after each stimulation session. We observed that tPCS had a higher effect on power, as compared to tDCS, in several bandwidths on various cortical regions: the theta band in the parietal region (p=0.021), the alpha band in the temporal (p=0.009), parietal (p=0.0063), and occipital (p<0.0001) regions. We found that the combination of tPCS and tDCS significantly decreased power in the low beta bandwidth of the frontal (p=0.0006), central (p=0.0001), and occipital (p=0.0003) regions, when compared to sham stimulation. Additionally, tDCS significantly increased power in high beta over the temporal (p=0.0015) and parietal (p=0.0007) regions, as compared to sham. We found no effect on sensitivity or pain-related assessments. We concluded that tPCS and tDCS have different neurophysiological mechanisms, elicit distinct signatures, and that the combination of the two leads to no effect or a decrease on qEEG power. Further studies are required to examine the effects of these techniques on clinical populations in which EEG signatures have been found altered.
Collapse
Affiliation(s)
- Aurore Thibaut
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Coma Science Group, GIGA-Research, University and University Hospital of Liege, Liege, Belgium
| | - Cristina Russo
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milano, Italy
| | - Leon Morales-Quezada
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Aura Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Boston, USA
| | - Alícia Deitos
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Pain and Neuromodulation at UFRGS, Porto Alegre, Brazil
| | - Steven Freedman
- Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandra Carvalho
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Felipe Fregni
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
116
|
|
117
|
Palm U, Chalah MA, Padberg F, Al-Ani T, Abdellaoui M, Sorel M, Dimitri D, Créange A, Lefaucheur JP, Ayache SS. Effects of transcranial random noise stimulation (tRNS) on affect, pain and attention in multiple sclerosis. Restor Neurol Neurosci 2016; 34:189-99. [PMID: 26890095 DOI: 10.3233/rnn-150557] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Pain and cognitive impairment are frequent symptoms in patients with multiple sclerosis (MS). Neglecting experimental pain and paying attention to demanding tasks is reported to decrease the pain intensity. Little is known about the interaction between chronic neuropathic pain and attention disorders in MS. Recently, transcranial direct current stimulation (tDCS) was used to modulate various cognitive and motor symptoms in MS. We aimed to study the effects of transcranial random noise stimulation (tRNS), a form of transcranial electric stimulation, over the left dorsolateral prefrontal cortex (DLPFC) on attention and neuropathic pain in MS patients. METHODS 16 MS patients were included in a randomized, sham-controlled, cross-over study. Each patient randomly received two tRNS blocks, separated by three weeks of washout interval. Each block consisted of three consecutive daily sessions of either active or sham tRNS. The patients were evaluated for pain, attention and mood and further underwent an electrophysiological evaluation. RESULTS Compared to sham, tRNS showed a trend to decrease the N2-P2 amplitudes of pain related evoked potentials and improve pain ratings. Attention performance and mood scales did not change after stimulations. CONCLUSIONS This study suggests the role of tRNS in pain modulation, which could have been more evident with longer stimulation protocols.
Collapse
Affiliation(s)
- Ulrich Palm
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University Munich, Munich, Germany
| | - Moussa A Chalah
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University Munich, Munich, Germany
| | - Tarik Al-Ani
- EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Mohamed Abdellaoui
- Department of Neurology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Marc Sorel
- EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Dalia Dimitri
- Department of Neurology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Alain Créange
- EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France.,Department of Neurology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Jean-Pascal Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Samar S Ayache
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.,EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| |
Collapse
|
118
|
tDCS for the treatment of depression: a comprehensive review. Eur Arch Psychiatry Clin Neurosci 2016; 266:681-694. [PMID: 26842422 DOI: 10.1007/s00406-016-0674-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been investigated for the treatment of major depressive disorders in recent years. Here, we review the implications of current research for the clinical use of tDCS in the treatment of major depressive disorder. Meta-analyses, randomized, placebo-controlled clinical trials, open-label trials, case reports and review articles were identified through a systematic search of the literature database of the National Institutes of Health (USA). Available articles were evaluated with regard to their clinical relevance. Results of tDCS efficacy are inconsistent due to the small sample sizes, the heterogeneous patient samples and the partially high treatment resistance in some studies. Overall, tDCS has very low side effects. Meta-analyses suggest some efficacy of tDCS in the treatment of acute depressive disorder with moderate effect size, and low efficacy in treatment-resistant depression. A general statement about the efficacy of tDCS as a therapeutic tool in major depression seems to be premature. tDCS is considered as a safe therapeutic option and is associated with only minor side effects. The effectiveness of tDCS decreases with resistance to treatment. Psychotropic drugs may attenuate or amplify its effects. The use of 2 mA current strength over 20 min per day over a short time span can be considered as safe.
Collapse
|
119
|
Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder. J Neural Transm (Vienna) 2016; 124:133-144. [PMID: 27853926 DOI: 10.1007/s00702-016-1646-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
Abstract
Anodal transcranial direct current stimulation (tDCS) of the prefrontal cortex has repeatedly been shown to improve working memory. As patients with attention deficit hyperactivity disorder (ADHD) are characterized by both underactivation of the prefrontal cortex and deficits in working memory that correlate with clinical symptoms, it is hypothesized that the modulation of prefrontal activity with tDCS in patients with ADHD increases performance in working memory and reduces symptoms of ADHD. To test this hypothesis, fifteen adolescents with ADHD (12-16 years old, three girls and 12 boys) were treated according to the randomized, double-blinded, sham-controlled, crossover design with either 1 mA anodal tDCS over the left dorsolateral prefrontal cortex or with the sham protocol 5 days each with a 2 weeks pause between these conditions. Anodal tDCS caused a significant reduction in clinical symptoms of inattention and impulsivity in adolescents with ADHD compared to sham stimulation. The clinical effects were supported by a significant reduction in inattention and hyperactivity in a standardized working memory test (QbTest). The described effects were more pronounced 7 days after the end of stimulation, a fact which emphasizes the long-lasting clinical and neuropsychological changes after tDCS. This study provides the first evidence that tDCS may reduce symptoms of ADHD and improve neuropsychological functioning in adolescents and points on the potential of tDCS as a form of treatment for ADHD.
Collapse
|
120
|
Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2016; 128:56-92. [PMID: 27866120 DOI: 10.1016/j.clinph.2016.10.087] [Citation(s) in RCA: 1171] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022]
Abstract
A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS in a therapeutic setting. In addition, the easy management and low cost of tDCS devices allow at home use by the patient, but this might raise ethical and legal concerns with regard to potential misuse or overuse. We must be careful to avoid inappropriate applications of this technique by ensuring rigorous training of the professionals and education of the patients.
Collapse
|
121
|
Cortical neurostimulation for neuropathic pain: state of the art and perspectives. Pain 2016; 157 Suppl 1:S81-S89. [PMID: 26785160 DOI: 10.1097/j.pain.0000000000000401] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of neuropathic pain by neuromodulation is an objective for more than 40 years in modern clinical practice. With respect to spinal cord and deep brain structures, the cerebral cortex is the most recently evaluated target of invasive neuromodulation therapy for pain. In the early 90s, the first successes of invasive epidural motor cortex stimulation (EMCS) were published. A few years later was developed repetitive transcranial magnetic stimulation (rTMS), a noninvasive stimulation technique. Then, electrical transcranial stimulation returned valid and is currently in full development, with transcranial direct current stimulation (tDCS). Regarding transcranial approaches, the main studied and validated target was still the motor cortex, but other cortical targets are under investigation. The mechanisms of action of these techniques share similarities, especially between EMCS and rTMS, but they also have differences that could justify specific indications and applications. It is therefore important to know the principles and to assess the merit of these techniques on the basis of a rigorous assessment of the results, to avoid fad. Various types of chronic neuropathic pain syndromes can be significantly relieved by EMCS or repeated daily sessions of high-frequency (5-20 Hz) rTMS or anodal tDCS over weeks, at least when pain is lateralized and stimulation is applied to the motor cortex contralateral to pain side. However, cortical stimulation therapy remains to be optimized, especially by improving EMCS electrode design, rTMS targeting, or tDCS montage, to reduce the rate of nonresponders, who do not experience clinically relevant effects of these techniques.
Collapse
|
122
|
Effects of transcranial direct current stimulation on the functional coupling of the sensorimotor cortical network. Neuroimage 2016; 140:50-6. [DOI: 10.1016/j.neuroimage.2016.01.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/21/2022] Open
|
123
|
Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex—correlation or causality in stimulation-mediated effects? Neurosci Biobehav Rev 2016; 69:333-56. [DOI: 10.1016/j.neubiorev.2016.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
|
124
|
Cunillera T, Brignani D, Cucurell D, Fuentemilla L, Miniussi C. The right inferior frontal cortex in response inhibition: A tDCS–ERP co-registration study. Neuroimage 2016; 140:66-75. [DOI: 10.1016/j.neuroimage.2015.11.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 01/17/2023] Open
|
125
|
Palm U, Keeser D, Hasan A, Kupka MJ, Blautzik J, Sarubin N, Kaymakanova F, Unger I, Falkai P, Meindl T, Ertl-Wagner B, Padberg F. Prefrontal Transcranial Direct Current Stimulation for Treatment of Schizophrenia With Predominant Negative Symptoms: A Double-Blind, Sham-Controlled Proof-of-Concept Study. Schizophr Bull 2016; 42:1253-61. [PMID: 27098066 PMCID: PMC4988747 DOI: 10.1093/schbul/sbw041] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Negative symptoms are highly relevant in the long-term course of schizophrenia and are an important target domain for the development of novel interventions. Recently, transcranial direct current stimulation (tDCS) of the prefrontal cortex has been investigated as a treatment option in schizophrenia. In this proof-of-concept study, 20 schizophrenia patients with predominantly negative symptoms were randomized to either 10 sessions of add-on active (2 mA, 20min) or sham tDCS (anode: left DLPFC/F3; cathode: right supraorbital/F4). Primary outcome measure was the change in the Scale for the Assessment of Negative Symptoms (SANS) sum score; secondary outcomes included reduction in Positive and Negative Syndrome Scale (PANSS) scores and improvement of depressive symptoms, cognitive processing speed, and executive functioning. Sixteen patients underwent 4 functional connectivity magnetic resonance imaging (fcMRI) scans (pre and post 1st and pre and post 10th tDCS) to investigate changes in resting state network connectivity after tDCS. Per-protocol analysis showed a significantly greater decrease in SANS score after active (-36.1%) than after sham tDCS (-0.7%). PANSS sum scores decreased significantly more with active (-23.4%) than with sham stimulation (-2.2%). Explorative analysis of fcMRI data indicated changes in subgenual cortex and dorsolateral prefrontal cortex (DLPFC) connectivity within frontal-thalamic-temporo-parietal networks. The results of this first proof-of-concept study indicate that prefrontal tDCS may be a promising intervention for treatment of schizophrenia with predominant negative symptoms. Large-scale randomized controlled studies are needed to further establish prefrontal tDCS as novel treatment for negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Ulrich Palm
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University Munich, Munich, Germany;
| | - Daniel Keeser
- Institute for Clinical Radiology, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Michael J Kupka
- Institute for Clinical Radiology, Ludwig Maximilian University Munich, Munich, Germany
| | - Janusch Blautzik
- Institute for Clinical Radiology, Ludwig Maximilian University Munich, Munich, Germany
| | - Nina Sarubin
- Hochschule Fresenius, University of Applied Sciences, Psychology School, Munich, Germany
| | | | | | | | - Thomas Meindl
- Institute for Clinical Radiology, Ludwig Maximilian University Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig Maximilian University Munich, Munich, Germany
| | | |
Collapse
|
126
|
Boonstra TW, Nikolin S, Meisener AC, Martin DM, Loo CK. Change in Mean Frequency of Resting-State Electroencephalography after Transcranial Direct Current Stimulation. Front Hum Neurosci 2016; 10:270. [PMID: 27375462 PMCID: PMC4893480 DOI: 10.3389/fnhum.2016.00270] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is proposed as a tool to investigate cognitive functioning in healthy people and as a treatment for various neuropathological disorders. However, the underlying cortical mechanisms remain poorly understood. We aim to investigate whether resting-state electroencephalography (EEG) can be used to monitor the effects of tDCS on cortical activity. To this end we tested whether the spectral content of ongoing EEG activity is significantly different after a single session of active tDCS compared to sham stimulation. Twenty participants were tested in a sham-controlled, randomized, crossover design. Resting-state EEG was acquired before, during and after active tDCS to the left dorsolateral prefrontal cortex (15 min of 2 mA tDCS) and sham stimulation. Electrodes with a diameter of 3.14 cm2 were used for EEG and tDCS. Partial least squares (PLS) analysis was used to examine differences in power spectral density (PSD) and the EEG mean frequency to quantify the slowing of EEG activity after stimulation. PLS revealed a significant increase in spectral power at frequencies below 15 Hz and a decrease at frequencies above 15 Hz after active tDCS (P = 0.001). The EEG mean frequency was significantly reduced after both active tDCS (P < 0.0005) and sham tDCS (P = 0.001), though the decrease in mean frequency was smaller after sham tDCS than after active tDCS (P = 0.073). Anodal tDCS of the left DLPFC using a high current density bi-frontal electrode montage resulted in general slowing of resting-state EEG. The similar findings observed following sham stimulation question whether the standard sham protocol is an appropriate control condition for tDCS.
Collapse
Affiliation(s)
- Tjeerd W Boonstra
- School of Psychiatry, University of New South WalesSydney, NSW, Australia; Black Dog Institute, University of New South WalesSydney, NSW, Australia
| | - Stevan Nikolin
- School of Psychiatry, University of New South WalesSydney, NSW, Australia; Black Dog Institute, University of New South WalesSydney, NSW, Australia
| | - Ann-Christin Meisener
- School of Psychiatry, University of New South WalesSydney, NSW, Australia; Institute of Cognitive Science, University of OsnabruckLower Saxony, Germany
| | - Donel M Martin
- School of Psychiatry, University of New South WalesSydney, NSW, Australia; Black Dog Institute, University of New South WalesSydney, NSW, Australia
| | - Colleen K Loo
- School of Psychiatry, University of New South WalesSydney, NSW, Australia; Black Dog Institute, University of New South WalesSydney, NSW, Australia; Department of Psychiatry, St. George Hospital, South Eastern Sydney HealthSydney, NSW, Australia
| |
Collapse
|
127
|
The effect of the interval-between-sessions on prefrontal transcranial direct current stimulation (tDCS) on cognitive outcomes: a systematic review and meta-analysis. J Neural Transm (Vienna) 2016; 123:1159-72. [PMID: 27145765 DOI: 10.1007/s00702-016-1558-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/15/2016] [Indexed: 12/28/2022]
Abstract
Recently, there has been wide interest in the effects of transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) on cognitive functioning. However, many methodological questions remain unanswered. One of them is whether the time interval between active and sham-controlled stimulation sessions, i.e. the interval between sessions (IBS), influences DLPFC tDCS effects on cognitive functioning. Therefore, a systematic review and meta-analysis was performed of experimental studies published in PubMed, Science Direct, and other databases from the first data available to February 2016. Single session sham-controlled within-subject studies reporting the effects of tDCS of the DLPFC on cognitive functioning in healthy controls and neuropsychiatric patients were included. Cognitive tasks were categorized in tasks assessing memory, attention, and executive functioning. Evaluation of 188 trials showed that anodal vs. sham tDCS significantly decreased response times and increased accuracy, and specifically for the executive functioning tasks, in a sample of healthy participants and neuropsychiatric patients (although a slightly different pattern of improvement was found in analyses for both samples separately). The effects of cathodal vs. sham tDCS (45 trials), on the other hand, were not significant. IBS ranged from less than 1 h to up to 1 week (i.e. cathodal tDCS) or 2 weeks (i.e. anodal tDCS). This IBS length had no influence on the estimated effect size when performing a meta-regression of IBS on reaction time and accuracy outcomes in all three cognitive categories, both for anodal and cathodal stimulation. Practical recommendations and limitations of the study are further discussed.
Collapse
|
128
|
Tschirdewahn J, Vignaud P, Pfeiffer A, Nolden J, Padberg F, Palm U. [Transcranial direct current stimulation (tDCS) for the treatment of depression]. MMW Fortschr Med 2016; 157:46-8. [PMID: 26977515 DOI: 10.1007/s15006-015-7540-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
129
|
Weigl M, Mecklinger A, Rosburg T. Transcranial direct current stimulation over the left dorsolateral prefrontal cortex modulates auditory mismatch negativity. Clin Neurophysiol 2016; 127:2263-72. [DOI: 10.1016/j.clinph.2016.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/23/2023]
|
130
|
A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimul 2016; 9:501-17. [PMID: 27160468 DOI: 10.1016/j.brs.2016.04.006] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Research into the effects of transcranial direct current stimulation of the dorsolateral prefrontal cortex on cognitive functioning is increasing rapidly. However, methodological heterogeneity in prefrontal tDCS research is also increasing, particularly in technical stimulation parameters that might influence tDCS effects. OBJECTIVE To systematically examine the influence of technical stimulation parameters on DLPFC-tDCS effects. METHODS We performed a systematic review and meta-analysis of tDCS studies targeting the DLPFC published from the first data available to February 2016. Only single-session, sham-controlled, within-subject studies reporting the effects of tDCS on cognition in healthy controls and neuropsychiatric patients were included. RESULTS Evaluation of 61 studies showed that after single-session a-tDCS, but not c-tDCS, participants responded faster and more accurately on cognitive tasks. Sub-analyses specified that following a-tDCS, healthy subjects responded faster, while neuropsychiatric patients responded more accurately. Importantly, different stimulation parameters affected a-tDCS effects, but not c-tDCS effects, on accuracy in healthy samples vs. PATIENTS increased current density and density charge resulted in improved accuracy in healthy samples, most prominently in females; for neuropsychiatric patients, task performance during a-tDCS resulted in stronger increases in accuracy rates compared to task performance following a-tDCS. CONCLUSIONS Healthy participants respond faster, but not more accurate on cognitive tasks after a-tDCS. However, increasing the current density and/or charge might be able to enhance response accuracy, particularly in females. In contrast, online task performance leads to greater increases in response accuracy than offline task performance in neuropsychiatric patients. Possible implications and practical recommendations are discussed.
Collapse
|
131
|
Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. Does Transcranial Direct Current Stimulation Improve Healthy Working Memory?: A Meta-analytic Review. J Cogn Neurosci 2016; 28:1063-89. [PMID: 27054400 DOI: 10.1162/jocn_a_00956] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been reported to improve working memory (WM) performance in healthy individuals, suggesting its value as a means of cognitive enhancement. However, recent meta-analyses concluded that tDCS has little or no effect on WM in healthy participants. In this article, we review reasons why these meta-analyses may have underestimated the effect of tDCS on WM and report a more comprehensive and arguably more sensitive meta-analysis. Consistent with our interest in enhancement, we focused on anodal stimulation. Thirty-one articles matched inclusion criteria and were included in four primary meta-analyses assessing the WM effects of anodal stimulation over the left and right dorsolateral pFC (DLPFC) and right parietal lobe as well as left DLPFC stimulation coupled with WM training. These analyses revealed a small but significant effect of left DLPFC stimulation coupled with WM training. Left DLPFC stimulation alone also enhanced WM performance, but the effect was reduced to nonsignificance after correction for publication bias. No other effects were significant, including a variety of tested moderators. Additional meta-analyses were undertaken with study selection criteria based on previous meta-analyses, to reassess the findings from these studies using the analytic methods of this study. These analyses revealed a mix of significant and nonsignificant small effects. We conclude that the primary WM enhancement potential of tDCS probably lies in its use during training.
Collapse
|
132
|
Ebajemito JK, Furlan L, Nissen C, Sterr A. Application of Transcranial Direct Current Stimulation in Neurorehabilitation: The Modulatory Effect of Sleep. Front Neurol 2016; 7:54. [PMID: 27092103 PMCID: PMC4822081 DOI: 10.3389/fneur.2016.00054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
The relationship between sleep disorders and neurological disorders is often reciprocal, such that sleep disorders are worsened by neurological symptoms and that neurological disorders are aggravated by poor sleep. Animal and human studies further suggest that sleep disruption not only worsens single neurological symptoms but may also lead to long-term negative outcomes. This suggests that sleep may play a fundamental role in neurorehabilitation and recovery. We further propose that sleep may not only alter the efficacy of behavioral treatments but also plasticity-enhancing adjunctive neurostimulation methods, such as transcranial direct current stimulation (tDCS). At present, sleep receives little attention in the fields of neurorehabilitation and neurostimulation. In this review, we draw together the strands of evidence from both fields of research to highlight the proposition that sleep is an important parameter to consider in the application of tDCS as a primary or adjunct rehabilitation intervention.
Collapse
Affiliation(s)
- James K Ebajemito
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey , Guildford , UK
| | - Leonardo Furlan
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey , Guildford , UK
| | - Christoph Nissen
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center , Freiburg , Germany
| | - Annette Sterr
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Neurology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
133
|
Jantz TK, Katz B, Reuter-Lorenz PA. Uncertainty and Promise: the Effects of Transcranial Direct Current Stimulation on Working Memory. Curr Behav Neurosci Rep 2016. [DOI: 10.1007/s40473-016-0071-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
134
|
Yuan Y, Leung AWS, Duan H, Zhang L, Zhang K, Wu J, Qin S. The effects of long-term stress on neural dynamics of working memory processing: An investigation using ERP. Sci Rep 2016; 6:23217. [PMID: 27000528 PMCID: PMC4802387 DOI: 10.1038/srep23217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 03/02/2016] [Indexed: 11/09/2022] Open
Abstract
This study examined the neural dynamics of working memory (WM) processing under long-term stress. Forty participants who had been exposed to a long period of major exam preparation (six months) and twenty-one control participants performed a numerical n-back task (n = 1, 2) while electroencephalograms were recorded. Psychological and endocrinal measurements confirmed significantly higher levels of long-term stress for participants in the exam group. The exam group showed significantly increased P2 amplitude in the frontal-central sites in the 1-back and 2-back conditions, whereas other ERP components, including the P1, N1 and P3 and behavioral performance, were unchanged. Notably, the P2 effect was most pronounced in participants in the exam group who reported perceiving high levels of stress. The perceived stress scores positively correlated with the P2 amplitude in the 1-back and 2-back conditions. These results suggest that long-term stress has an impact on attention and the initiation of the updating process in WM.
Collapse
Affiliation(s)
- Yiran Yuan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ada W S Leung
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University, Alberta, T6G 2G4, Canada.,Rotman Research Institute, Baycrest Centre for Geriatric Care, Ontario, Toronto, M6A 2E1, Canada
| | - Hongxia Duan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kan Zhang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianhui Wu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, U.S.A
| |
Collapse
|
135
|
To WT, Hart J, De Ridder D, Vanneste S. Considering the influence of stimulation parameters on the effect of conventional and high-definition transcranial direct current stimulation. Expert Rev Med Devices 2016; 13:391-404. [DOI: 10.1586/17434440.2016.1153968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
136
|
Hill AT, Fitzgerald PB, Hoy KE. Effects of Anodal Transcranial Direct Current Stimulation on Working Memory: A Systematic Review and Meta-Analysis of Findings From Healthy and Neuropsychiatric Populations. Brain Stimul 2016; 9:197-208. [DOI: 10.1016/j.brs.2015.10.006] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/25/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
|
137
|
Johannesen JK, Bi J, Jiang R, Kenney JG, Chen CMA. Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. ACTA ACUST UNITED AC 2016; 2:3. [PMID: 27375854 PMCID: PMC4928381 DOI: 10.1186/s40810-016-0017-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background With millisecond-level resolution, electroencephalographic (EEG) recording provides a sensitive tool to assay neural dynamics of human cognition. However, selection of EEG features used to answer experimental questions is typically determined a priori. The utility of machine learning was investigated as a computational framework for extracting the most relevant features from EEG data empirically. Methods Schizophrenia (SZ; n = 40) and healthy community (HC; n = 12) subjects completed a Sternberg Working Memory Task (SWMT) during EEG recording. EEG was analyzed to extract 5 frequency components (theta1, theta2, alpha, beta, gamma) at 4 processing stages (baseline, encoding, retention, retrieval) and 3 scalp sites (frontal-Fz, central-Cz, occipital-Oz) separately for correctly and incorrectly answered trials. The 1-norm support vector machine (SVM) method was used to build EEG classifiers of SWMT trial accuracy (correct vs. incorrect; Model 1) and diagnosis (HC vs. SZ; Model 2). External validity of SVM models was examined in relation to neuropsychological test performance and diagnostic classification using conventional regression-based analyses. Results SWMT performance was significantly reduced in SZ (p < .001). Model 1 correctly classified trial accuracy at 84 % in HC, and at 74 % when cross-validated in SZ data. Frontal gamma at encoding and central theta at retention provided highest weightings, accounting for 76 % of variance in SWMT scores and 42 % variance in neuropsychological test performance across samples. Model 2 identified frontal theta at baseline and frontal alpha during retrieval as primary classifiers of diagnosis, providing 87 % classification accuracy as a discriminant function. Conclusions EEG features derived by SVM are consistent with literature reports of gamma’s role in memory encoding, engagement of theta during memory retention, and elevated resting low-frequency activity in schizophrenia. Tests of model performance and cross-validation support the stability and generalizability of results, and utility of SVM as an analytic approach for EEG feature selection.
Collapse
Affiliation(s)
- Jason K Johannesen
- VA Connecticut Healthcare System, Psychology Service, 116-B, 950 Campbell Ave, West Haven, CT 06516, USA; Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jinbo Bi
- Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Ruhua Jiang
- Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Joshua G Kenney
- VA Connecticut Healthcare System, Psychology Service, 116-B, 950 Campbell Ave, West Haven, CT 06516, USA; Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chi-Ming A Chen
- Psychological Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
138
|
Chawke C, Kanai R. Alteration of Political Belief by Non-invasive Brain Stimulation. Front Hum Neurosci 2016; 9:621. [PMID: 26834603 PMCID: PMC4720781 DOI: 10.3389/fnhum.2015.00621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 10/29/2015] [Indexed: 11/15/2022] Open
Abstract
People generally have imperfect introspective access to the mechanisms underlying their political beliefs, yet can confidently communicate the reasoning that goes into their decision making process. An innate desire for certainty and security in ones beliefs may play an important and somewhat automatic role in motivating the maintenance or rejection of partisan support. The aim of the current study was to clarify the role of the DLPFC in the alteration of political beliefs. Recent neuroimaging studies have focused on the association between the DLPFC (a region involved in the regulation of cognitive conflict and error feedback processing) and reduced affiliation with opposing political candidates. As such, this study used a method of non-invasive brain simulation (tRNS) to enhance activity of the bilateral DLPFC during the incorporation of political campaign information. These findings indicate a crucial role for this region in political belief formation. However, enhanced activation of DLPFC does not necessarily result in the specific rejection of political beliefs. In contrast to the hypothesis the results appear to indicate a significant increase in conservative values regardless of participant's initial political orientation and the political campaign advertisement they were exposed to.
Collapse
Affiliation(s)
| | - Ryota Kanai
- School of Psychology, University of SussexBrighton, UK; Sackler Centre for Consciousness ScienceBrighton, UK; Department of Neuroinformatics, Araya Brain ImagingTokyo, Japan
| |
Collapse
|
139
|
Krone L, Frase L, Piosczyk H, Selhausen P, Zittel S, Jahn F, Kuhn M, Feige B, Mainberger F, Klöppel S, Riemann D, Spiegelhalder K, Baglioni C, Sterr A, Nissen C. Top-down control of arousal and sleep: Fundamentals and clinical implications. Sleep Med Rev 2016; 31:17-24. [PMID: 26883160 DOI: 10.1016/j.smrv.2015.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/07/2023]
Abstract
Mammalian sleep emerges from attenuated activity in the ascending reticular arousal system (ARAS), the main arousal network of the brain. This system originates in the brainstem and activates the thalamus and cortex during wakefulness via a well-characterized 'bottom-up' pathway. Recent studies propose that a less investigated cortico-thalamic 'top-down' pathway also regulates sleep. The present work integrates the current evidence on sleep regulation with a focus on the 'top-down' pathway and explores the potential to translate this information into clinically relevant interventions. Specifically, we elaborate the concept that arousal and sleep continuity in humans can be modulated by non-invasive brain stimulation (NIBS) techniques that increase or decrease cortical excitability. Based on preclinical studies, the modulatory effects of the stimulation are thought to extend to subcortical arousal networks. Further exploration of the 'top-down' regulation of sleep and its modulation through non-invasive brain stimulation techniques may contribute to the development of novel treatments for clinical conditions of disrupted arousal and sleep, which are among the major health problems worldwide.
Collapse
Affiliation(s)
- Lukas Krone
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Hannah Piosczyk
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Peter Selhausen
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Sulamith Zittel
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Friederike Jahn
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Marion Kuhn
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Bernd Feige
- Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Florian Mainberger
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany
| | - Dieter Riemann
- Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Kai Spiegelhalder
- Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | - Chiara Baglioni
- Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany
| | | | - Christoph Nissen
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, Germany; Department of Clinical Psychology and Psychophysiology/ Sleep Medicine, University of Freiburg Medical Center, Germany.
| |
Collapse
|
140
|
Hone-Blanchet A, Ciraulo DA, Pascual-Leone A, Fecteau S. Noninvasive brain stimulation to suppress craving in substance use disorders: Review of human evidence and methodological considerations for future work. Neurosci Biobehav Rev 2015; 59:184-200. [PMID: 26449761 PMCID: PMC5365234 DOI: 10.1016/j.neubiorev.2015.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/10/2015] [Accepted: 10/01/2015] [Indexed: 12/19/2022]
Abstract
Substance use disorders (SUDs) can be viewed as a pathology of neuroadaptation. The pharmacological overstimulation of neural mechanisms of reward, motivated learning and memory leads to drug-seeking behavior. A critical characteristic of SUDs is the appearance of craving, the motivated desire and urge to use, which is a main focus of current pharmacological and behavioral therapies. Recent proof-of-concept studies have tested the effects of noninvasive brain stimulation on craving. Although its mechanisms of action are not fully understood, this approach shows interesting potential in tuning down craving and possibly consumption of diverse substances. This article reviews available results on the use of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) in SUDs, specifically tobacco, alcohol and psychostimulant use disorders. We discuss several important factors that need to be addressed in future works to improve clinical assessment and effects of noninvasive brain stimulation in SUDs. Factors discussed include brain stimulation devices and parameters, study designs, brain states and subjects' characteristics.
Collapse
Affiliation(s)
- Antoine Hone-Blanchet
- Laboratory of Canada Research Chair in Cognitive Neuroplasticity, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Domenic A Ciraulo
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Translational Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shirley Fecteau
- Laboratory of Canada Research Chair in Cognitive Neuroplasticity, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Faculté de Médecine, Université Laval, Québec, QC, Canada; Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Translational Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
141
|
London RE, Slagter HA. Effects of Transcranial Direct Current Stimulation over Left Dorsolateral pFC on the Attentional Blink Depend on Individual Baseline Performance. J Cogn Neurosci 2015; 27:2382-93. [DOI: 10.1162/jocn_a_00867] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by anodal transcranial direct current stimulation (tDCS) over left dorsolateral pFC (DLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the so-called “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed a standard AB task before (baseline), during, and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over left DLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Indeed, individual differences analyses revealed that anodal tDCS decreased the AB in participants with a large baseline AB but increased the AB in participants with a small baseline AB. This effect was only observed during (but not after) stimulation, was not found for cathodal tDCS, and could not be explained by regression to the mean. Notably, the effects of tDCS were not apparent at the group level, highlighting the importance of taking individual variability in performance into account when evaluating the effectiveness of tDCS. These findings support the idea that left DLPFC plays a critical role in the AB and in conscious access more generally. They are also in line with the notion that there is an optimal level of prefrontal activity for cognitive function, with both too little and too much activity hurting performance.
Collapse
|
142
|
White RS, Siegel SJ. Cellular and circuit models of increased resting-state network gamma activity in schizophrenia. Neuroscience 2015; 321:66-76. [PMID: 26577758 DOI: 10.1016/j.neuroscience.2015.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/27/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a disorder characterized by positive symptoms (hallucinations, delusions), negative symptoms (blunted affect, alogia, reduced sociability, and anhedonia), as well as persistent cognitive deficits (memory, concentration, and learning). While the biology underlying subjective experiences is difficult to study, abnormalities in electroencephalographic (EEG) measures offer a means to dissect potential circuit and cellular changes in brain function. EEG is indispensable for studying cerebral information processing due to the introduction of techniques for the decomposition of event-related activity into its frequency components. Specifically, brain activity in the gamma frequency range (30-80Hz) is thought to underlie cognitive function and may be used as an endophenotype to aid in diagnosis and treatment of SCZ. In this review we address evidence indicating that there is increased resting-state gamma power in SCZ. We address how modeling this aspect of the illness in animals may help treatment development as well as providing insights into the etiology of SCZ.
Collapse
Affiliation(s)
- R S White
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - S J Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
143
|
Thibaut A, Di Perri C, Chatelle C, Bruno MA, Bahri MA, Wannez S, Piarulli A, Bernard C, Martial C, Heine L, Hustinx R, Laureys S. Clinical Response to tDCS Depends on Residual Brain Metabolism and Grey Matter Integrity in Patients With Minimally Conscious State. Brain Stimul 2015; 8:1116-23. [DOI: 10.1016/j.brs.2015.07.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/08/2015] [Accepted: 07/09/2015] [Indexed: 11/17/2022] Open
|
144
|
Abstract
Transcranial direct current stimulation (tDCS) is a technique for noninvasively stimulating specific cortical regions of the brain with small (<2 mA) and constant direct current on the scalp. tDCS has been widely applied, not only for medical treatment, but also for cognitive and somatosensory function enhancement, motor learning improvement, and social behavioral change. However, the mechanism that underlies the effect of tDCS is unclear. In this study, we performed simultaneous electroencephalogram (EEG) monitoring during tDCS to understand the dynamic electrophysiological changes throughout the stimulation. A total of 10 healthy individuals participated in this experiment. We recorded EEGs with direct current stimulation, as well as during a 5-min resting state before and after the stimulation. All participants kept their eyes closed during the experiment. Anode and cathode patches of tDCS were placed on the left and the right dorsolateral prefrontal cortex, respectively. In addition, an EEG electrode was placed on the medial prefrontal cortex. The beta-frequency power increased promptly after starting the stimulation. The significant beta-power increase was maintained during the stimulation. Other frequency bands did not show any significant changes. The results indicate that tDCS of the left dorsolateral prefrontal cortex changed the brain to a ready state for efficient cognitive functioning by increasing the beta-frequency power. This is the first attempt to simultaneously stimulate the cortex and record the EEG and then systematically analyze the prestimulation, during-stimulation, and poststimulation EEG data.
Collapse
|
145
|
Moliadze V, Andreas S, Lyzhko E, Schmanke T, Gurashvili T, Freitag CM, Siniatchkin M. Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: Self-reports and resting state EEG analysis. Brain Res Bull 2015; 119:25-33. [PMID: 26449209 DOI: 10.1016/j.brainresbull.2015.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising and well-tolerated method of non-invasive brain stimulation, by which cortical excitability can be modulated. However, the effects of tDCS on the developing brain are still unknown, and knowledge about its tolerability in children and adolescents is still lacking. Safety and tolerability of tDCS was assessed in children and adolescents by self-reports and spectral characteristics of electroencephalogram (EEG) recordings. Nineteen typically developing children and adolescents aged 11-16 years participated in the study. Anodal and cathodal tDCS as well as sham stimulation were applied for a duration of 10 min over the left primary motor cortex (M1), each with an intensity of 1 mA. Subjects were unable to identify whether they had received active or sham stimulation, and all participants tolerated the stimulation well with a low rate of adverse events in both groups and no serious adverse events. No pathological oscillations, in particular, no markers of epileptiform activity after 1mA tDCS were detected in any of the EEG analyses. In summary, our study demonstrates that tDCS with 1mA intensity over 10 min is well tolerated, and thus may be used as an experimental and treatment method in the pediatric population.
Collapse
Affiliation(s)
- Vera Moliadze
- Department of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Preußerstraße 1-9, 24105 Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany.
| | - Saskia Andreas
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Ekaterina Lyzhko
- Department of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Preußerstraße 1-9, 24105 Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany; Institute of Mathematical Problems of Biology, Pushchino, Moscow Region, Russia
| | - Till Schmanke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Tea Gurashvili
- Department of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Preußerstraße 1-9, 24105 Kiel, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| | - Michael Siniatchkin
- Department of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UK-SH), Campus Kiel, Preußerstraße 1-9, 24105 Kiel, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy Goethe-University, Deutschordenstr. 50, D-60528 Frankfurt am Main, Germany
| |
Collapse
|
146
|
Antal A, Keeser D, Priori A, Padberg F, Nitsche M. Conceptual and Procedural Shortcomings of the Systematic Review “Evidence That Transcranial Direct Current Stimulation (tDCS) Generates Little-to-no Reliable Neurophysiologic Effect Beyond MEP Amplitude Modulation in Healthy Human Subjects: A Systematic Review” by Horvath and Co-workers. Brain Stimul 2015; 8:846-9. [DOI: 10.1016/j.brs.2015.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
|
147
|
Sellers KK, Mellin JM, Lustenberger CM, Boyle MR, Lee WH, Peterchev AV, Fröhlich F. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test. Behav Brain Res 2015; 290:32-44. [PMID: 25934490 DOI: 10.1016/j.bbr.2015.04.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/14/2015] [Accepted: 04/19/2015] [Indexed: 01/23/2023]
Abstract
Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement.
Collapse
Affiliation(s)
- Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | - Juliann M Mellin
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | | | - Michael R Boyle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill NC 27599
| | - Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham NC 27710; Department of Biomedical Engineering, Duke University, Durham NC 27710; Department of Electrical and Computer Engineering, Duke University, Durham NC 27710
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill NC 27599.
| |
Collapse
|
148
|
Roy A, Baxter B, He B. High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a simultaneous tDCS-EEG study. IEEE Trans Biomed Eng 2015; 61:1967-78. [PMID: 24956615 DOI: 10.1109/tbme.2014.2311071] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high-definition transcranial direct current stimulation (tDCS) using high-resolution electroencephalography (EEG). Previous studies have pointed to the after-effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event-related synchronization (ERS) were observed during and after the application of high-definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of eight subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high-definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event-related desynchronization and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high-resolution EEG during high-definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration.
Collapse
|
149
|
When problem size matters: differential effects of brain stimulation on arithmetic problem solving and neural oscillations. PLoS One 2015; 10:e0120665. [PMID: 25789486 PMCID: PMC4366159 DOI: 10.1371/journal.pone.0120665] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/05/2015] [Indexed: 01/28/2023] Open
Abstract
The problem size effect is a well-established finding in arithmetic problem solving and is characterized by worse performance in problems with larger compared to smaller operand size. Solving small and large arithmetic problems has also been shown to involve different cognitive processes and distinct electroencephalography (EEG) oscillations over the left posterior parietal cortex (LPPC). In this study, we aimed to provide further evidence for these dissociations by using transcranial direct current stimulation (tDCS). Participants underwent anodal (30min, 1.5 mA, LPPC) and sham tDCS. After the stimulation, we recorded their neural activity using EEG while the participants solved small and large arithmetic problems. We found that the tDCS effects on performance and oscillatory activity critically depended on the problem size. While anodal tDCS improved response latencies in large arithmetic problems, it decreased solution rates in small arithmetic problems. Likewise, the lower-alpha desynchronization in large problems increased, whereas the theta synchronization in small problems decreased. These findings reveal that the LPPC is differentially involved in solving small and large arithmetic problems and demonstrate that the effects of brain stimulation strikingly differ depending on the involved neuro-cognitive processes.
Collapse
|
150
|
Ulam F, Shelton C, Richards L, Davis L, Hunter B, Fregni F, Higgins K. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury. Clin Neurophysiol 2015; 126:486-96. [DOI: 10.1016/j.clinph.2014.05.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/25/2014] [Accepted: 05/22/2014] [Indexed: 11/30/2022]
|