101
|
Di Cara M, Bonanno L, Rifici C, Sessa E, D'Aleo G, Corallo F, Lo Buono V, Venuti G, Bramanti P, Marino S. Quality of life in patients with multiple sclerosis and caregivers. Predictive factors: An observational study. J Clin Neurosci 2020; 78:242-245. [DOI: 10.1016/j.jocn.2020.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/04/2020] [Indexed: 01/22/2023]
|
102
|
Martínez-Aguilar L, Pérez-Ramírez C, Maldonado-Montoro MDM, Carrasco-Campos MI, Membrive-Jiménez C, Martínez-Martínez F, García-Collado C, Calleja-Hernández MÁ, Ramírez-Tortosa MC, Jiménez-Morales A. Effect of genetic polymorphisms on therapeutic response in multiple sclerosis relapsing-remitting patients treated with interferon-beta. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 785:108322. [PMID: 32800273 DOI: 10.1016/j.mrrev.2020.108322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Abstract
Treatment with interferon beta (IFNβ) is one of the first-line treatments for multiple sclerosis. In clinical practice, however, many patients present suboptimal response to IFNβ, with the proportion of non-responders ranging from 20 to 50%. This variable response can be affected by genetic factors, such as polymorphisms in the genes involved in the disease state, pharmacodynamics, metabolism or in the action mechanism of IFNβ, which can affect the efficacy of this drug. This review assesses the impact of pharmacogenetics studies on response to IFNβ treatment among patients diagnosed with relapsing-remitting multiple sclerosis (RRMS). The results suggest that the detection of polymorphisms in several genes (CD46, CD58, FHIT, IRF5, GAPVD1, GPC5, GRBRB3, MxA, PELI3 and ZNF697) could be used in the future as predictive markers of response to IFNβ treatment in patients diagnosed with RRMS. However, few studies have been carried out and they have been performed on small sample sizes, which makes it difficult to generalize the role of these genes in IFNβ treatment. Studies on large sample sizes with longer term follow-up are therefore required to confirm these results.
Collapse
Affiliation(s)
- Laura Martínez-Aguilar
- Department of Pharmacy and Pharmaceutical Technology. Social and Legal Assistance Pharmacy Section, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Cristina Pérez-Ramírez
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen Macarena, Dr. Fedriani, 3, 41009 Sevilla, Spain.
| | | | - María Isabel Carrasco-Campos
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | - Cristina Membrive-Jiménez
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | - Fernando Martínez-Martínez
- Department of Pharmacy and Pharmaceutical Technology. Social and Legal Assistance Pharmacy Section, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n, 18071 Granada, Spain.
| | - Carlos García-Collado
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| | | | - María Carmen Ramírez-Tortosa
- Department of Biochemistry, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, s/n 18071 Granada, Spain.
| | - Alberto Jiménez-Morales
- Pharmacy Service. Pharmacogenetics Unit, University Hospital Virgen de las Nieves, UGC Provincial de Farmacia de Granada, Avda. Fuerzas Armadas, 2, Spain.
| |
Collapse
|
103
|
Keyvani H, Zahednasab H, Aljanabi HAA, Asadi M, Mirzaei R, Esghaei M, Karampoor S. The role of human herpesvirus-6 and inflammatory markers in the pathogenesis of multiple sclerosis. J Neuroimmunol 2020; 346:577313. [PMID: 32673896 DOI: 10.1016/j.jneuroim.2020.577313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 10/25/2022]
Abstract
Multiple sclerosis (MS) is a destructive autoimmune neuroinflammatory and neurodegenerative disorder of the central nervous system (CNS) with unknown etiology and mechanism of pathogenesis. Pathogens, especially human herpes viruses, have been suggested as environmental factors of the MS and other neuroinflammatory disorders. This study aimed to determine the prevalence of HHV-6 antibody response in MS patients and investigate the levels of pro/anti-inflammatory cytokine and chemokines in MS patients in comparison with healthy subjects. Two hundred sixty-three patients with clinically defined MS (140 females and 123 males), along with 263 healthy subjects (140 females and 123 males), were recruited for this study. After the analysis of HHV-6 seropositivity/seronegativity, the levels of some pro/anti-inflammatory cytokines, including TNF-α, IFN-γ, IL-1β, IL-6, and IL-12 as well as two chemokines, namely CCL-2 and CCL-5 were determined by the enzyme-linked immunosorbent assay (ELISA) method in HHV-6 seropositive/seronegative MS patients and healthy subjects. Our results showed that the serum concentrations of TNF-α, IFN-γ, IL-1β, IL-6, and CCL-5 elevated in HHV-6 seropositive compared with seronegative MS patients (P < .05). Moreover, the levels of IL-12, IL-10, and CCL-2 levels were significantly lower in seropositive MS patients when compared with seronegative MS patients (P < .05). Also, our results revealed that the mean values of the expanded disability status scale (EDSS) were significantly higher in HHV-6 seropositive versus seronegative MS patients (P < .05). In conclusion, we proposed that HHV-6 infection may play a role in MS pathogenesis by changing cytokine signaling in MS patients that may lead to peripheral inflammation.
Collapse
Affiliation(s)
- Hossein Keyvani
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hussain Ali Abraham Aljanabi
- Alnahrain University College of Medicine, Bagdad, Iraq; Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Muhammad Asadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Esghaei
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
104
|
Gasperi C, Salmen A, Antony G, Bayas A, Heesen C, Kümpfel T, Linker RA, Paul F, Stangel M, Tackenberg B, Bergh FT, Warnke C, Weber F, Wiendl H, Wildemann B, Zettl UK, Ziemann U, Zipp F, Tumani H, Gold R, Hemmer B. Association of Intrathecal Immunoglobulin G Synthesis With Disability Worsening in Multiple Sclerosis. JAMA Neurol 2020; 76:841-849. [PMID: 31034002 DOI: 10.1001/jamaneurol.2019.0905] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Importance Reliable biomarkers associated with disability worsening in multiple sclerosis (MS) are still needed. Objective To determine a possible association of intrathecal IgG synthesis and early disability worsening as measured by Expanded Disability Status Scale (EDSS) scoring in patients with relapsing-remitting MS or clinically isolated syndrome. Design, Setting, and Participants Cerebrospinal fluid measurements and clinical data from the observational longitudinal German national multiple sclerosis cohort were analyzed. Patients were recruited between August 2010 and November 2015 from 18 centers. Data analysis was completed from August 2018 to December 2018. Exposure Patients were offered standard immunotherapies per national treatment guidelines. Main Outcomes and Measures A possible association between intrathecal IgG synthesis and risk of EDSS worsening 4 years after study inclusion was tested as the primary end point by multivariable binomial regression analysis. Kaplan-Meier analysis with a log-rank test was used to assess the association of intrathecal IgG synthesis with the time to EDSS worsening. Associations between intrathecal IgM or IgA synthesis and other cerebrospinal fluid parameters and EDSS worsening were analyzed as exploratory end points. Data collection began before the hypotheses were formulated. Results Of all 1376 patients in the German Competence Network of Multiple Sclerosis cohort, 703 patients were excluded owing to missing cerebrospinal fluid or EDSS data. Of the 673 included patients, 459 (68.2%) were women. The mean (SD) age at baseline was 34 (10) years. Intrathecal IgG synthesis was associated with a higher risk of EDSS worsening after 4 years (odds ratio, 2.02 [95% CI, 1.15-3.58]; P = .01), independent of the occurrence of relapses and disease-modifying therapy. Additionally, intrathecal IgG synthesis was associated with earlier EDSS worsening; 4 years after study entry, worsening occurred in 28.4% (95% CI, 22.7%-34.1%) and 18.1% (95% CI, 12.4%-23.9%) of patients with and without intrathecal IgG synthesis, respectively. No association of other routine cerebrospinal fluid parameters with EDSS worsening was found. Conclusions and Relevance Patients with new diagnoses of relapsing-remitting multiple sclerosis or clinically isolated syndrome with intrathecal IgG synthesis had a higher risk of and shorter time to EDSS worsening across a 4-year period of follow-up. Intrathecal IgG synthesis is a potentially useful marker for disability worsening in patients with multiple sclerosis and may be useful for early treatment decisions.
Collapse
Affiliation(s)
- Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anke Salmen
- Department of Neurology, St, Josef Hospital, Ruhr-University Bochum, Bochum, Germany.,Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Gisela Antony
- Central Information Office German Competence Network of Multiple Sclerosis, Philipps University Marburg, Marburg, Germany
| | - Antonios Bayas
- Department of Neurology, Klinikum Augsburg, Augsburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Univeritätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Berlin, Germany.,Institute of Health, Berlin, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Björn Tackenberg
- Clinical Neuroimmunology Group, Department of Neurology, Philipps-University of Marburg, Marburg, Germany
| | - Florian Then Bergh
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Clemens Warnke
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Frank Weber
- Max Planck Institute of Psychiatry, Munich, Germany.,Neurological Clinic Cham, Cham, Germany
| | - Heinz Wiendl
- Department of Neurology University of Münster, Münster, Germany.,Hertie-Institute for Clinical Brain Research, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Brigitte Wildemann
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe K Zettl
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Rhine-Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hayrettin Tumani
- Department of Neurology, University of Ulm, Ulm, Germany.,Clinic of Neurology Dietenbronn, Schwendi, Germany
| | - Ralf Gold
- Department of Neurology, St, Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | | |
Collapse
|
105
|
Arbutin Improves Functional Recovery and Attenuates Glial Activation in Lysolecethin-Induced Demyelination Model in Rat Optic Chiasm. Mol Neurobiol 2020; 57:3228-3242. [PMID: 32506379 DOI: 10.1007/s12035-020-01962-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammation, glial activation, and oxidative injury are the main pathological mechanisms of demyelination in multiple sclerosis (MS). Arbutin, a natural polyphenol compound, possesses antioxidant, anti-inflammatory, and neuroprotective properties whose therapeutic potential has not been studied in the experimental animal models of MS. In the present study, the efficiency of arbutin on lysolecthin (LPC)-induced local demyelination model was investigated. Demyelination was induced by micro-injection of 2 μl LPC (1%) into the rat optic chiasm and the treated group received daily injection of arbutin (50 mg/kg, i.p) during 2 weeks. Visual-evoked potential (VEP) recordings were used to functionally assess the visual pathway. Gene expression analysis was done to evaluate the arbutin effect on the inflammatory, stress oxidative-related mediators, and myelin markers. The myelin-specific staining was performed to assess demyelination and GFAP staining as an astrocyte marker. We found that arbutin significantly reduced P1-latency of VEPs waves and demyelination at 7 and 14 days post-demyelination. Arbutin decreased inflammatory cytokines (IL-1B, IL-17, TNF-α) and iNOS mRNA expression level. In addition, the expression level of anti-inflammatory cytokine (IL-10) and antioxidant mediators (Nrf-2 and HO-1) was enhanced by arbutin treatment. Arbutin increased MBP and Olig2 expression levels in demyelination context. Finally, arbutin attenuated GFAP as an astrocyte marker. Finally, this study demonstrates that arbutin improves functional recovery and myelin repair in the demyelinated optic chiasm through attenuation of inflammation, astrocyte activation, and oxidative stress. These findings might open new promising avenues for treating demyelinating disorders such as multiple sclerosis. Graphical abstract.
Collapse
|
106
|
Zahoor I, Giri S. Specialized Pro-Resolving Lipid Mediators: Emerging Therapeutic Candidates for Multiple Sclerosis. Clin Rev Allergy Immunol 2020; 60:147-163. [PMID: 32495237 DOI: 10.1007/s12016-020-08796-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease in which unresolved and uncontrolled inflammation disrupts normal cellular homeostasis and leads to a pathological disease state. It has long been recognized that endogenously derived metabolic by-products of omega fatty acids, known as specialized pro-resolving lipid mediators (SPMs), are instrumental in resolving the pathologic inflammation. However, there is minimal data available on the functional status of SPMs in MS, despite the fact that MS presents a classical model of chronic inflammation. Studies to date indicate that dysfunction of the SPM biosynthetic pathway is responsible for their altered levels in patient-derived biofluids, which contributes to heightened inflammation and disease severity. Collectively, current findings suggest the contentious role of SPMs in MS due to variable outcomes in biological matrices across studies conducted so far, which could, in part, also be attributed to differences in population characteristics. It seems that SPMs have neuroprotective action on MS by exerting proresolving effects on brain microglia in its preclinical model; however, there are no reports demonstrating the direct effect of SPMs on oligodendrocytes or neurons. This reveals that "one size does not fit all" notion holds significance for MS in terms of the status of SPMs in other inflammatory conditions. The lack of clarity served as the impetus for this review, which is the first of its kind to summarize the relevant data regarding the role of SPMs in MS and the potential to target them for biomarker development and future alternative therapies for this disease. Understanding the mechanisms behind biological actions of SPMs as resolution mediators may prevent or even cure MS and other neurodegenerative pathologies.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Research Division, Education & Research Building, Henry Ford Hospital, Room 4023, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| | - Shailendra Giri
- Department of Neurology, Research Division, Education & Research Building, Henry Ford Hospital, Room 4051, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
107
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
108
|
Arslan D, Aksakal AB, Erdem Ö, Tuncer MA. A case of drug-induced bullous pemphigoid associated with teriflunomide: A patient with relapsing multiple sclerosis. Mult Scler Relat Disord 2020; 43:102157. [PMID: 32446168 DOI: 10.1016/j.msard.2020.102157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND There aren't many reported skin changes associated with teriflunomide use in patients with multiple sclerosis (MS) mm Only one life-threatening gross skin change has been reported so far; a patient with toxic epidermal necrolysis. There are also a few case reports about cutaneous adverse effects of teriflunomide, such as eczema, rash and palmar pustular psoriasis. METHODS We herein report the first case of bullous drug reaction in a patient receiving teriflunomide treatment. RESULTS A 55-year-old women with relapsing multiple sclerosis (RMS) was diagnosed teriflunomide induced bullous pemphigoid as it was detected in the first three months following the initiation of therapy. It is fully recovered after withdrawal of teriflunomide, in combination with systemic steroid treatment. DISCUSSION We report the first case of bullous drug reaction associated with teriflunomide. Multiple drugs have been implicated in the pathogenesis of the disease so far. It is important to point out some immunosuppressants may trigger autoimmune diseases like bullous pemphigoid. CONCLUSION Considering recently reported skin reactions associated with teriflunomide, neurologists and patients should be careful on potential warning symptoms and signs of cutaneous drug reactions of this drug.
Collapse
Affiliation(s)
- Doruk Arslan
- Hacettepe University, Department of Neurology, Hacettepe, 06230, Ankara, Turkey.
| | | | - Özlem Erdem
- Gazi University, Department of Pathology, Turkey
| | - Meryem Aslı Tuncer
- Hacettepe University, Department of Neurology, Hacettepe, 06230, Ankara, Turkey
| |
Collapse
|
109
|
Okolicsanyi RK, Bluhm J, Miller C, Griffiths LR, Haupt LM. An investigation of genetic polymorphisms in heparan sulfate proteoglycan core proteins and key modification enzymes in an Australian Caucasian multiple sclerosis population. Hum Genomics 2020; 14:18. [PMID: 32398079 PMCID: PMC7218574 DOI: 10.1186/s40246-020-00264-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system in young adults. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to the cell surface and the extracellular matrix. HSPG biosynthesis is a complex process involving enzymatic attachment of heparan sulfate (HS) chains to a core protein. HS side chains mediate specific ligand and growth factor interactions directing cellular processes including cell adhesion, migration and differentiation. Two main families of HSPGs exist, the syndecans (SDC1-4) and glypicans (GPC1-6). The SDCs are transmembrane proteins, while the GPC family are GPI linked to the cell surface. SDC1 has well-documented interactions with numerous signalling pathways. Genome-wide association studies (GWAS) have identified regions of the genome associated with MS including a region on chromosome 13 containing GPC5 and GPC6. International studies have revealed significant associations between this region and disease development. The exostosin-1 (EXT1) and sulfatase-1 (SULF1) are key enzymes contributing to the generation of HS chains. EXT1, with documented tumour suppressor properties, is involved in the initiation and polymerisation of the growing HS chain. SULF1 removes 6-O-sulfate groups from HS chains, affecting protein-ligand interactions and subsequent downstream signalling with HS modification potentially having significant effects on MS progression. In this study, we identified significant associations between single nucleotide polymorphisms in SDC1, GPC5 and GPC6 and MS in an Australian Caucasian case-control population. Further significant associations in these genes were identified when the population was stratified by sex and disease subtype. No association was found for EXT1 or SULF1.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Julia Bluhm
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Cassandra Miller
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| | - Larisa M Haupt
- Genomics Research Centre, Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| |
Collapse
|
110
|
Vališ M, Šarláková J, Halúsková S, Klímová B, Potužník P, Peterka M, Kuča K, Štourač P, Mareš J, Pavelek Z. An observational study demonstrating the adherence and ease of use of the injector device, RebiSmart®. Expert Opin Drug Deliv 2020; 17:719-724. [PMID: 32315204 DOI: 10.1080/17425247.2020.1742694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Adherence to Multiple Sclerosis (MS) treatment is considered one of the crucial factors for ensuring optimal clinical outcomes. Research has shown that the use of self-injector devices improves patient compliance with treatment. Therefore, the main purpose of this study is to evaluate the ease of use of RebiSmart® 2.0 in clinically isolated syndrome/relapsing-remitting MS patients during 12 months treatment period.Methods: A total number of 290 subjects entered into data collection; 249 (86%) of them completed the whole 12 months study period. The primary endpoints and the secondary endpoints were assessed by the User Study Questionnaire. Adherence data were retrieved from RebiSmart® 2.0 (Menu - Dose History) on the respective patient's visit. Outcome measures also included Expanded Disability Status Score, Kurtzke Functional Systems, and Modified Social Support Survey, Modified Social Support Survey-5.Results: This study demonstrated a very high proportion (>95%) of patients with a positive rating of the overall ease of use and the overall convenience of RebiSmart®. The proportion of patients with a positive rating of the ease of use by individual domains and the functions of RebiSmart® were also high (>80%).Conclusion: The findings demonstrate a very good perception of the usability of the device by patients overall and in its individual functions.
Collapse
Affiliation(s)
- Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Jana Šarláková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Simona Halúsková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Blanka Klímová
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Pavel Potužník
- Department of Neurology, Faculty of Medicine and University Hospital Plzeň, Charles University in Prague, Plzeň, Czech Republic
| | - Marek Peterka
- Department of Neurology, Faculty of Medicine and University Hospital Plzeň, Charles University in Prague, Plzeň, Czech Republic
| | - Kamil Kuča
- Faculty of Science, Department of Chemistry, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Pavel Štourač
- Department of Neurology, University Hospital and Masaryk University, Brno, Czech Republic
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
111
|
Goldsmith K, Hudson JL, Chalder T, Dennison L, Moss-Morris R. How and for whom does supportive adjustment to multiple sclerosis cognitive-behavioural therapy work? A mediated moderation analysis. Behav Res Ther 2020; 128:103594. [PMID: 32272288 DOI: 10.1016/j.brat.2020.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
The supportive adjustment for multiple sclerosis (saMS) randomised controlled trial showed cognitive behavioural therapy (CBT) reduced distress at 12-months compared to supportive listening (SL). Larger changes in distress and functional impairment following CBT occurred in participants with clinical distress at baseline. This secondary analysis investigates whether CBT treatment effects occur through pre-defined CBT mechanisms of change in the total cohort and clinically distressed subgroup. 94 participants were randomised to saMS CBT or SL. Primary outcomes were distress and functional impairment (12 months). Mediators included cognitive-behavioural variables at post-treatment (15 weeks). Structural equation mediation and mediated-moderation models adjusting for baseline confounders assessed mediation overall and by distress level. Significant mediation was found but only for those with clinical distress at baseline. Illness acceptance (-0.20, 95% confidence interval -0.01 to -0.46) and reduced embarrassment avoidance behaviours (-0.22, -0.02 to -0.58) mediated CBT's effect on distress. Changes in beliefs about processing emotions (-0.19, -0.001 to -0.46) mediated CBT's effect on functional impairment. saMS CBT had effects on distress and functional impairment via some of the hypothesised mechanisms drawn from a theoretical model of adjustment for MS but only among participants with clinical distress at baseline. Increasing acceptance and emotional expression and decreasing embarrassment avoidance improves MS adjustment.
Collapse
Affiliation(s)
- Kimberley Goldsmith
- King's College London, Department of Biostatistics & Informatics, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Joanna L Hudson
- King's College London, Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Trudie Chalder
- King's College London, Psychological Medicine Department, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK
| | - Laura Dennison
- Department of Psychology, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Rona Moss-Morris
- King's College London, Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
112
|
de Mol CL, Jansen PR, Muetzel RL, Knol MJ, Adams HH, Jaddoe VW, Vernooij MW, Hintzen RQ, White TJ, Neuteboom RF. Polygenic Multiple Sclerosis Risk and Population-Based Childhood Brain Imaging. Ann Neurol 2020; 87:774-787. [PMID: 32162725 PMCID: PMC7187244 DOI: 10.1002/ana.25717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 11/20/2022]
Abstract
Objective Multiple sclerosis (MS) is a neurological disease with a substantial genetic component and immune‐mediated neurodegeneration. Patients with MS show structural brain differences relative to individuals without MS, including smaller regional volumes and alterations in white matter (WM) microstructure. Whether genetic risk for MS is associated with brain structure during early neurodevelopment remains unclear. In this study, we explore the association between MS polygenic risk scores (PRS) and brain imaging outcomes from a large, population‐based pediatric sample to gain insight into the underlying neurobiology of MS. Methods We included 8‐ to 12‐year‐old genotyped participants from the Generation R Study in whom T1‐weighted volumetric (n = 1,136) and/or diffusion tensor imaging (n = 1,088) had been collected. PRS for MS were calculated based on a large genome‐wide association study of MS (n = 41,505) and were regressed on regional volumes, global and tract‐specific fractional anisotropy (FA), and global mean diffusivity using linear regression. Results No associations were observed for the regional volumes. We observed a positive association between the MS PRS and global FA (β = 0.098, standard error [SE] = 0.030, p = 1.08 × 10−3). Tract‐specific analyses showed higher FA and lower radial diffusivity in several tracts. We replicated our findings in an independent sample of children (n = 186) who were scanned in an earlier phase (global FA; β = 0.189, SE = 0.072, p = 9.40 × 10−3). Interpretation This is the first study to show that greater genetic predisposition for MS is associated with higher global brain WM FA at an early age in the general population. Our results suggest a preadolescent time window within neurodevelopment in which MS risk variants act upon the brain. ANN NEUROL 2020;87:774–787
Collapse
Affiliation(s)
- C Louk de Mol
- Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Philip R Jansen
- Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Clinical Genetics, VU Medical Center, Amsterdam, the Netherlands
| | - Ryan L Muetzel
- Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hieab H Adams
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent W Jaddoe
- Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Generation R Study Group, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rogier Q Hintzen
- Department of Neurology, MS Center ErasMS, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tonya J White
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rinze F Neuteboom
- Department of Neurology, MS Center ErasMS, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
113
|
Jamebozorgi K, Rostami D, Pormasoumi H, Taghizadeh E, Barreto GE, Sahebkar A. Epigenetic aspects of multiple sclerosis and future therapeutic options. Int J Neurosci 2020; 131:56-64. [PMID: 32075477 DOI: 10.1080/00207454.2020.1732974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease accompanied by demyelination of neurons in the central nervous system that mostly affects young adults, especially women. This disease has two phases including relapsing-remitting form (RR-MS) by episodes of relapse and periods of clinical remission and secondary-progressive form (SP-MS), which causes more disability. The inheritance pattern of MS is not exactly identified and there is an agreement that it has a complex pattern with an interplay among environmental, genetic and epigenetic alternations. Epigenetic mechanisms that are identified for MS pathogenesis are DNA methylation, histone modification and some microRNAs' alternations. Several cellular processes including apoptosis, differentiation and evolution can be modified along with epigenetic changes. Some alternations are associated with epigenetic mechanisms in MS patients and these changes can become key points for MS therapy. Therefore, the aim of this review was to discuss epigenetic mechanisms that are associated with MS pathogenesis and future therapeutic approaches.
Collapse
Affiliation(s)
| | - Daryoush Rostami
- School of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Hosein Pormasoumi
- Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
114
|
Karampoor S, Zahednasab H, Amini R, Esghaei M, Sholeh M, Keyvani H. Maraviroc attenuates the pathogenesis of experimental autoimmune encephalitis. Int Immunopharmacol 2020; 80:106138. [PMID: 32007705 DOI: 10.1016/j.intimp.2019.106138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
It has been shown that the blockade of chemokine receptor type 5 can dampen inflammatory reaction within the central nervous system (CNS). In the present study, we utilized maraviroc, a potent antagonist o CCR5, to examine whether this drug can mitigate neuroinflammation in the spinal cord of mice induced by experimental autoimmune encephalitis (EAE), considered a murine model of multiple sclerosis (MS). For this aim, mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), followed by pertussis toxin to induce paralysis in EAE mice. The animals intraperitoneally received various doses of maraviroc (5, 25, and 50 mg/kg body weight) when the early clinical signs of EAE appeared. The results demonstrated that the administration of maraviroc led to a marked decrease in the clinical score and improvement in behavioral motor functions. Moreover, our finding indicated that the administration of maraviroc significantly attenuates the infiltration of inflammatory cells to the spinal cord, microgliosis, astrogliosis, pro-inflammatory cytokines, and cell death in EAE mice. The flow cytometry data indicated that a decreased number of CD4+ and CD8+ T cells in the peripheral blood of mice with EAE without affecting the number of T regulatory cells (CD4 + CD25+ forkhead box protein 3+). Finally, it seems that maraviroc is well-tolerated, and targeting CCR5 could open up a new horizon in the treatment of MS.
Collapse
Affiliation(s)
- Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Razieh Amini
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
115
|
Azimi G, Ranjbaran F, Arsang-Jang S, Ghafouri-Fard S, Mazdeh M, Sayad A, Taheri M. Upregulation of VEGF-A and correlation between VEGF-A and FLT-1 expressions in Iranian multiple sclerosis patients. Neurol Sci 2020; 41:1459-1465. [PMID: 31925615 DOI: 10.1007/s10072-019-04234-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is among the most common diseases affecting brain and spinal cord. MS progression is characterized by breakdown of blood brain barrier which leads to increased vascular permeability and angiogenesis. Consequently, vascular endothelial growth factor A (VEGF) and its receptors are considered to be important components of MS progression. VEGFA and fms-related tyrosine kinase 1 (FLT1) play important roles in various aspects of MS. In this study, we investigated the relationship between these genes and MS. For this purpose, the expression levels of VEGFA and FLT1 were measured in the blood of 50 relapsing-remitting MS (RR-MS) patients and 50 healthy individuals using TaqMan quantitative real-time PCR. A significant upregulation of VEGFA expression was observed among MS patients compared with controls (p = 0.04). However, the difference in FLT1 gene expression between study groups was insignificant (p = 0.947). In addition, there was a significant positive correlation between VEGFA and FLT1 genes expressions (r = 0.769, p < 0.0001). In spite of the highly complex molecular mechanisms behind this, the findings imply participation of VEGFA in the pathogenesis of MS.
Collapse
Affiliation(s)
- Ghazaleh Azimi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | | | - Shahram Arsang-Jang
- Clinical Research Development Center (CRDU), Qom University of Medical Sciences, Qom, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, PO Box 1985717443, Tehran, Iran.
| |
Collapse
|
116
|
Cobbaut M, Karagil S, Bruno L, Diaz de la Loza MDC, Mackenzie FE, Stolinski M, Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells 2020; 9:cells9010151. [PMID: 31936297 PMCID: PMC7016982 DOI: 10.3390/cells9010151] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK;
| | - Simge Karagil
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Lucrezia Bruno
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | | | - Francesca E Mackenzie
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Michael Stolinski
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Correspondence:
| |
Collapse
|
117
|
Karampoor S, Zahednasab H, Bokharaei-Salim F, Mirzaei R, Mojallal-Tabatabaei Z, Esghaei M, Keyvani H. HIV-1 Tat protein attenuates the clinical course of experimental autoimmune encephalomyelitis (EAE). Int Immunopharmacol 2020; 78:105943. [PMID: 31830622 DOI: 10.1016/j.intimp.2019.105943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023]
Abstract
A growing body of evidence has shown that the human immunodeficiency virus (HIV) infection is associated with a significantly decreased risk of developing multiple sclerosis (MS) in patients with acquired immunodeficiency virus (AIDS). It is thought that two mechanisms are in charge of protection against MS, which include immunosuppression induced by chronic HIV infection (depletion of CD4 + T cells) and antiretroviral medications. HIV-1 encodes several regulatory (Tat and Rev) and accessory (Vpr, Vif, Vpu, and Nef) proteins that have immunosuppressive and immunomodulatory properties. HIV-1 Tat protein is a strongly immunosuppressive agent and can cross the blood-brain barrier (BBB). In this study, we examined the effect of HIV-1 Tat, which is classified into clade B and C, on inflammation, gliosis, apoptosis, and behavioral function in a murine model of MS called experimental autoimmune encephalomyelitis (EAE). For this aim, mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), followed by pertussis toxin to induce paralysis in EAE mice. After the induction of EAE in mice, the animals intraperitoneally received serial doses of HIV-1 Tat clade B and C (5, 10, and 20 µg/kg body weight) when the early clinical manifestations of EAE were initiated. The results showed that the administration of both clades of the Tat protein led to a marked decrease in the clinical score of EAE mice, as well as improvement in motor-neuron functions. In line with this, Tat considerably reduced the number of apoptotic cells in the sacral region of the spinal cord through the upregulation expression of the Bcl-2 protein. Besides, proinflammatory cytokines such as, IFN-γ, TNF-α, IL-6, and IL-17 were significantly diminished in the serum and spinal cord of EAE mice receiving HIV-1 Tat clade B and C. Conversely, anti-inflammatory cytokines, including IL-10 and IL-4 were elevated in the serum and spinal cord of EAE mice receiving HIV Tat clade B and C when compared with the control group. The immunohistochemical analysis indicated that HIV-1 Tat clade B and C mitigated microgliosis and astrogliosis. The flow cytometry analysis demonstrated that the number of Th1 and Th17cells was significantly decreased in response to TAT administration while the frequency of Th2 cells was markedly increased in the peripheral blood of mice with EAE without influencing the number of T regulatory cells (CD4 + CD25 + forkhead box protein 3 + ). It seems that HIV-1 Tat could be a bona fide therapeutic protein for the alleviation of MS since it has beneficial roles in the suppression of neuroinflammation in MS pathology.
Collapse
Affiliation(s)
- Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
118
|
Abstract
Emerging data point to important contributions of both autoimmune inflammation and progressive degeneration in the pathophysiology of multiple sclerosis (MS). Unfortunately, after decades of intensive investigation, the fundamental cause remains unknown. A large body of research on the immunobiology of MS has resulted in a variety of anti-inflammatory therapies that are highly effective at reducing brain inflammation and clinical/radiological relapses. However, despite potent suppression of inflammation, benefit in the more important and disabling progressive phase is extremely limited; thus, progressive MS has emerged as the greatest challenge for the MS research and clinical communities. Data obtained over the years point to a complex interplay between environment (e.g., the near-absolute requirement of Epstein-Barr virus exposure), immunogenetics (strong associations with a large number of immune genes), and an ever more convincing role of an underlying degenerative process resulting in demyelination (in both white and grey matter regions), axonal and neuro-synaptic injury, and a persistent innate inflammatory response with a seemingly diminishing role of T cell-mediated autoimmunity as the disease progresses. Together, these observations point toward a primary degenerative process, one whose cause remains unknown but one that entrains a nearly ubiquitous secondary autoimmune response, as a likely sequence of events underpinning this disease. Here, we briefly review what is known about the potential pathophysiological mechanisms, focus on progressive MS, and discuss the two main hypotheses of MS pathogenesis that are the topic of vigorous debate in the field: whether primary autoimmunity or degeneration lies at the foundation. Unravelling this controversy will be critically important for developing effective new therapies for the most disabling later phases of this disease.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Medicine University of Calgary, Calgary, Alberta, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Medicine University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
119
|
Widder K, Harauz G, Hinderberger D. Myelin basic protein (MBP) charge variants show different sphingomyelin-mediated interactions with myelin-like lipid monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183077. [PMID: 31805269 DOI: 10.1016/j.bbamem.2019.183077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is correlated with increased deimination of myelin basic protein (MBP) in the central nervous system. Here, the interaction of MBP C1 (charge: +19) and MBP C8 (charge: +13) with the major lipids of the cytoplasmic side of the oligodendrocyte membrane is analysed using monolayer adsorption experiments and epifluorescence microscopy. Our findings show that the electrostatic attraction between the positively charged proteins and negatively charged lipids in the myelin-like monolayers competes with the incorporation of MBP into regions directly bordering cholesterol-rich domains. The latter is favoured to avoid additional lipid condensation and reduction in fluidity of the phospholipid layer. We find that MBP C1 does not incorporate at the cholesterol-rich domains if sphingomyelin (SM) is absent from the lipid composition. In contrast, MBP C8 is still incorporated near cholesterol-enriched regions without SM. Thus, the highly charged C1 variant needs a specific interaction with SM, whereas for C8 the incorporation at the cholesterol-rich regions is ensured due to its reduced net positive charge. This phenomenon may be relevant for the correlation of higher amounts of MBP C8 in brains of adult MS patients and healthy children, in which the amount of SM is reduced compared to healthy adults.
Collapse
Affiliation(s)
- Katharina Widder
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) 06120, Germany
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) 06120, Germany.
| |
Collapse
|
120
|
Altered hypothalamic metabolism in early multiple sclerosis – MR spectroscopy study. J Neurol Sci 2019; 407:116458. [DOI: 10.1016/j.jns.2019.116458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
|
121
|
Michels RE, de Fransesco M, Mahajan K, Hengstman GJD, Schiffers KMH, Budhia S, Harty G, Krol M. Cost Effectiveness of Cladribine Tablets for the Treatment of Relapsing-Remitting Multiple Sclerosis in The Netherlands. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2019; 17:857-873. [PMID: 31444659 PMCID: PMC6885501 DOI: 10.1007/s40258-019-00500-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cladribine tablets have recently become available in The Netherlands for patients with relapsing-remitting multiple sclerosis (RRMS) as a disease-modifying agent that reduces the frequency and severity of relapses and delays disability progression. OBJECTIVE The aim of this study was to evaluate the cost effectiveness of cladribine tablets, compared with alternative options, in the treatment of RRMS patients with high disease activity (HDA) and patients with rapidly evolving severe (RES) MS in The Netherlands. METHODS A Markov model was developed simulating the costs and effects of RRMS treatment. For HDA, alemtuzumab and fingolimod were used as comparators; natalizumab was used for the RES subpopulation. The analysis included a societal perspective and a value-of-information (VOI) analysis. RESULTS For the HDA subpopulation, treatment with cladribine tablets was the cost-effective (dominant) strategy compared with alemtuzumab and fingolimod, with 50.9% and 98.2%, respectively, probability of being cost effective at a threshold of €50,000/QALY gained and a net monetary benefit (NMB) of €10,866 and €151,115, respectively. For the RES subpopulation, treatment with cladribine tablets dominated treatment with natalizumab, with 94.1% probability of being cost effective at a threshold of €50,000/QALY gained and an NMB of €122,986. Note that these outcomes are driven by the lower costs of cladribine tablets. Efficacy differences were small, very uncertain, and likely not clinically meaningful. The probabilistic sensitivity analyses showed significant overlap in the credible intervals for total lifetime QALY outcomes and costs of cladribine tablets and all relevant comparators. The population-level VOI amounted to €19,295,441. CONCLUSIONS The base-case analysis shows that treatment of RRMS with cladribine tablets is cost effective versus alemtuzumab and fingolimod in HDA patients, and cost effective versus natalizumab in RES patients, at a threshold of €50,000. Driven by the lower costs, cladribine tablets were cost effective (dominant) in all base-case analyses. However, given that outcomes are based on indirect comparisons and post hoc subgroup analysis, as well as the uncertainty surrounding the outcomes, the results presented in this paper should be interpreted with caution.
Collapse
Affiliation(s)
- Renée Else Michels
- IQVIA, Real World Evidence Solutions, Herikerbergweg 314, 1101 CT, Amsterdam, The Netherlands
| | | | | | - Gerald J D Hengstman
- Department of Neurology, Catharina Hospital, Michelangelolaan 2, 5623 EJ, Eindhoven, The Netherlands
| | | | - Sangeeta Budhia
- PAREXEL International, PAREXEL Access Consulting, London, UK
| | - Gerard Harty
- EMD Serono, a business of Merck KGaA, Boston, MA, USA
| | - Marieke Krol
- IQVIA, Real World Evidence Solutions, Herikerbergweg 314, 1101 CT, Amsterdam, The Netherlands.
| |
Collapse
|
122
|
Hippocampal Neurogenesis and Neural Circuit Formation in a Cuprizone-Induced Multiple Sclerosis Mouse Model. J Neurosci 2019; 40:447-458. [PMID: 31719166 DOI: 10.1523/jneurosci.0866-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/16/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Cognitive impairments are key features in multiple sclerosis (MS), a progressive disorder characterized by neuroinflammation-induced demyelination in the central nervous system. To understand the neural substrates that link demyelination to cognitive deficits in MS, we investigated hippocampal neurogenesis and synaptic connectivity of adult-born neurons, which play an essential role in cognitive function. The administration and withdrawal of the combination of cuprizone and rapamycin (Cup/Rap) in C57BL/6J male mice efficiently demyelinated and remyelinated the hippocampus, respectively. In the demyelinated hippocampus, neurogenesis was nearly absent in the dentate gyrus, which was due to inhibited proliferation of neural stem cells (NSCs). Specifically, radial glia-like type 1 NSCs were shifted from a proliferative state to a mitotically-quiescent state in the demyelinated hippocampus. In addition, dendritic spine densities of adult-born neurons were significantly decreased, indicating a reduction in synaptic connections between hippocampal newborn neurons and excitatory input neurons. Concomitant with hippocampal remyelination induced by withdrawal of Cup/Rap, proliferation of type 1 NSCs and dendritic spine densities of adult-born neurons reverted to normal in the hippocampus. Our study shows that proliferation of hippocampal NSCs and synaptic connectivity of adult-born neurons are inversely correlated with the level of demyelination, providing critical insight into hippocampal neurogenesis as a potential therapeutic target to treat cognitive deficits associated with MS.SIGNIFICANCE STATEMENT To identify the neural substrates that mediate cognitive dysfunctions associated with a majority of MS patients, we investigated hippocampal neurogenesis and structural development of adult-born neurons using a Cup/Rap model, which recapitulates the hippocampal demyelination that occurs in MS patients. A shift of NSCs from a proliferatively-active state to mitotically-quiescent state dramatically decreased neurogenesis in the demyelinated hippocampus. Formation of dendritic spines on newborn neurons was also impaired following demyelination. Interestingly, the altered neurogenesis and synaptic connectivity of newborn neurons were reversed to normal levels during remyelination. Thus, our study revealed reversible genesis and synaptic connectivity of adult-born neurons between the demyelinated and remyelinated hippocampus, suggesting hippocampal neurogenesis as a potential target to normalize cognitive impairments in MS patients.
Collapse
|
123
|
Sadr NKS, Galehdari H, Seifi T, Delfan N, Khatami SR, Hafizi A. Matrix Metalloproteinase-9 Gene Polymorphisms in South-West Iranian Multiple Sclerosis (MS) Patients. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
124
|
Hoque M, Borich M, Sabatier M, Backus D, Kesar T. Effects of downslope walking on Soleus H-reflexes and walking function in individuals with multiple sclerosis: A preliminary study. NeuroRehabilitation 2019; 44:587-597. [PMID: 31256089 DOI: 10.3233/nre-192701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Downslope walking (DSW) is an eccentric-based exercise intervention that promotes neuroplasticity of spinal reflex circuitry by inducing depression of Soleus Hoffman (H)-reflexes in young, neurologically unimpaired adults. OBJECTIVE The objective of the study was to evaluate the effects of DSW on spinal excitability (SE) and walking function (WF) in people with multiple sclerosis (PwMS). METHODS Our study comprised two experiments on 12 PwMS (11 women; 45.3±11.8 years). Experiment 1 evaluated acute effects of a single 20-minute session of treadmill walking at three different walking grades on SE, 0% or level walking (LW), - 7.5% DSW, and - 15% DSW. Experiment 2 evaluated the effects of 6 sessions of DSW, at - 7.5% DSW (with second session being - 15% DSW) on SE and WF. RESULTS Experiment 1 showed significantly greater acute % H-reflex depression following - 15% DSW compared to LW (p = 0.02) and - 7.5% DSW (p = 0.05). Experiment 2 demonstrated significant improvements in WF. PwMS who showed greater acute H-reflex depression during the - 15% DSW session also demonstrated greater physical activity, long-distance WF, and the ability to have greater H-reflex depression after DSW training. Significant changes were not observed in regards to SE. CONCLUSIONS Though significant changes were not observed in SE after DSW training, we observed an improvement in WF which merits further investigation of DSW in PwMS.
Collapse
Affiliation(s)
- Maruf Hoque
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Borich
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Manning Sabatier
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah Backus
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA.,Shepherd Center, Atlanta, GA, USA
| | - Trisha Kesar
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
125
|
deAndrés-Galiana EJ, Bea G, Fernández-Martínez JL, Saligan LN. Analysis of defective pathways and drug repositioning in Multiple Sclerosis via machine learning approaches. Comput Biol Med 2019; 115:103492. [PMID: 31627017 DOI: 10.1016/j.compbiomed.2019.103492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although some studies show that there could be a genetic predisposition to develop Multiple Sclerosis (MS), attempts to find genetic signatures related to MS diagnosis and development are extremely rare. METHOD We carried out a retrospective analysis of two different microarray datasets, using machine learning techniques to understand the defective pathways involved in this disease. We have modeled two data sets that are publicly accessible. The first was used to establish the list of most discriminatory genes; whereas, the second one was utilized for validation purposes. RESULTS The analysis provided a list of high discriminatory genes with predictive cross-validation accuracy higher than 95%, both in learning and in blind validation. The results were confirmed via the holdout sampler. The most discriminatory genes were related to the production of Hemoglobin. The biological processes involved were related to T-cell Receptor Signaling and co-stimulation, Interferon-Gamma Signaling and Antigen Processing and Presentation. Drug repositioning via CMAP methodologies highlighted the importance of Trichostatin A and other HDAC inhibitors. CONCLUSIONS The defective pathways suggest viral or bacterial infections as plausible mechanisms involved in MS development. The pathway analysis also confirmed coincidences with Epstein-Barr virus, Influenza A, Toxoplasmosis, Tuberculosis and Staphylococcus Aureus infections. Th17 Cell differentiation, and CD28 co-stimulation seemed to be crucial in the development of this disease. Furthermore, the additional knowledge provided by this analysis helps to identify new therapeutic targets.
Collapse
Affiliation(s)
- Enrique J deAndrés-Galiana
- Department of Informatics and Computer Science, University of Oviedo, Calvo Sotelo s/n 33007, Oviedo, Asturias, Spain; Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/ Federico García Lorca, 18 33007, Oviedo, Asturias, Spain.
| | - Guillermina Bea
- Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of Oviedo, C/ Federico García Lorca, 18 33007, Oviedo, Asturias, Spain.
| | - Juan L Fernández-Martínez
- Symptom Management Branch, Division of Intramural Research, National Institute of Nursing Research, Building 3, Room 5E14 3 Center Drive Bethesda, MD 20892, USA.
| | - Leo N Saligan
- Symptom Management Branch, Division of Intramural Research, National Institute of Nursing Research, Building 3, Room 5E14 3 Center Drive Bethesda, MD 20892, USA.
| |
Collapse
|
126
|
Velasco-Estevez M, Gadalla KKE, Liñan-Barba N, Cobb S, Dev KK, Sheridan GK. Inhibition of Piezo1 attenuates demyelination in the central nervous system. Glia 2019; 68:356-375. [PMID: 31596529 DOI: 10.1002/glia.23722] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/15/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Piezo1 is a mechanosensitive ion channel that facilitates the translation of extracellular mechanical cues to intracellular molecular signaling cascades through a process termed, mechanotransduction. In the central nervous system (CNS), mechanically gated ion channels are important regulators of neurodevelopmental processes such as axon guidance, neural stem cell differentiation, and myelination of axons by oligodendrocytes. Here, we present evidence that pharmacologically mediated overactivation of Piezo1 channels negatively regulates CNS myelination. Moreover, we found that the peptide GsMTx4, an antagonist of mechanosensitive cation channels such as Piezo1, is neuroprotective and prevents chemically induced demyelination. In contrast, the positive modulator of Piezo1 channel opening, Yoda-1, induces demyelination and neuronal damage. Using an ex vivo murine-derived organotypic cerebellar slice culture model, we demonstrate that GsMTx4 attenuates demyelination induced by the cytotoxic lipid, psychosine. Importantly, we confirmed the potential therapeutic effects of GsMTx4 peptide in vivo by co-administering it with lysophosphatidylcholine (LPC), via stereotactic injection, into the cerebral cortex of adult mice. GsMTx4 prevented both demyelination and neuronal damage usually caused by the intracortical injection of LPC in vivo; a well-characterized model of focal demyelination. GsMTx4 also attenuated both LPC-induced astrocyte toxicity and microglial reactivity within the lesion core. Overall, our data suggest that pharmacological activation of Piezo1 channels induces demyelination and that inhibition of mechanosensitive channels, using GsMTx4, may alleviate the secondary progressive neurodegeneration often present in the latter stages of demyelinating diseases.
Collapse
Affiliation(s)
- María Velasco-Estevez
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Kamal K E Gadalla
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Núria Liñan-Barba
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Stuart Cobb
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Graham K Sheridan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
127
|
Andorra M, Nakamura K, Lampert EJ, Pulido-Valdeolivas I, Zubizarreta I, Llufriu S, Martinez-Heras E, Sola-Valls N, Sepulveda M, Tercero-Uribe A, Blanco Y, Saiz A, Villoslada P, Martinez-Lapiscina EH. Assessing Biological and Methodological Aspects of Brain Volume Loss in Multiple Sclerosis. JAMA Neurol 2019; 75:1246-1255. [PMID: 29971335 DOI: 10.1001/jamaneurol.2018.1596] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Importance Before using brain volume loss (BVL) as a marker of therapeutic response in multiple sclerosis (MS), certain biological and methodological issues must be clarified. Objectives To assess the dynamics of BVL as MS progresses and to evaluate the repeatability and exchangeability of BVL estimates with Jacobian Integration (JI) and Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL) (specifically, the Structural Image Evaluation, Using Normalisation, of Atrophy-Cross-Sectional [SIENA-X] tool or FMRIB's Integrated Registration and Segmentation Tool [FIRST]). Design, Setting, and Participants A cohort of patients who had either clinically isolated syndrome or MS was enrolled from February 2011 through October 2015. All underwent a series of annual magnetic resonance imaging (MRI) scans. Images from 2 cohorts of healthy volunteers were used to evaluate short-term repeatability of the MRI measurements (n = 34) and annual BVL (n = 20). Data analysis occurred from January to May 2017. Main Outcomes and Measures The goodness of fit of different models to the dynamics of BVL throughout the MS disease course was assessed. The short-term test-retest error was used as a measure of JI and FSL repeatability. The correlations (R2) of the changes quantified in the brain using JI and FSL, together with the accuracy of the annual BVL cutoffs to discriminate patients with MS from healthy volunteers, were used to measure compatibility of imaging methods. Results A total of 140 patients with clinically isolated syndrome or MS were enrolled, including 95 women (67.9%); the group had a median (interquartile range) age of 40.7 (33.6-48.1) years. Patients underwent 4 MRI scans with a median (interquartile range) interscan period of 364 (351-379) days. The 34 healthy volunteers (of whom 18 [53%] were women; median [IQR] age, 33.5 [26.2-42.5] years) and 20 healthy volunteers (of whom 10 [50%] were women; median [IQR] age, 33.0 [28.7-39.2] years) underwent 2 MRI scans within a median (IQR) of 24.5 (0.0-74.5) days and 384.5 (366.3-407.8) days for the short-term and long-term MRI follow-up, respectively. The BVL rates were higher in the first 5 years after MS onset (R2 = 0.65 for whole-brain volume change and R2 = 0.52 for gray matter volume change) with a direct association with steroids (β = 0.280; P = .02) and an inverse association with age at MS onset, particularly in the first 5 years (β = 0.015; P = .047). The reproducibility of FSL (SIENA) and JI was similar for whole-brain volume loss, while JI gave more precise, less biased estimates for specific brain regions than FSL (SIENA-X and FIRST). The correlation between whole-brain volume loss using JI and FSL was high (R2 = 0.92), but the same correlations were poor for specific brain regions. The area under curve of the whole-brain volume change to discriminate between patients with MS and healthy volunteers was similar, although the thresholds and accuracy index were distinct for JI and FSL. Conclusions and Relevance The proposed BVL threshold of less than 0.4% per year as a marker of therapeutic efficiency should be reconsidered because of the different dynamics of BVL as MS progresses and because of the limited reproducibility and variability of estimates using different imaging methods.
Collapse
Affiliation(s)
- Magí Andorra
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Erika J Lampert
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Cleveland Clinic, Lerner College of Medicine, Cleveland, Ohio
| | - Irene Pulido-Valdeolivas
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Irati Zubizarreta
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sara Llufriu
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Eloy Martinez-Heras
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Nuria Sola-Valls
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - María Sepulveda
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ana Tercero-Uribe
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yolanda Blanco
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Albert Saiz
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Pablo Villoslada
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Now with Genentech, Inc, South San Francisco, California
| | - Elena H Martinez-Lapiscina
- Center of Neuroimmunology Department of Neurology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
128
|
Pars K, Gingele M, Kronenberg J, Prajeeth CK, Skripuletz T, Pul R, Jacobs R, Gudi V, Stangel M. Fumaric Acids Do Not Directly Influence Gene Expression of Neuroprotective Factors in Highly Purified Rodent Astrocytes. Brain Sci 2019; 9:brainsci9090241. [PMID: 31546798 PMCID: PMC6769695 DOI: 10.3390/brainsci9090241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Dimethylfumarate (DMF) has been approved for the treatment of relapsing remitting multiple sclerosis. However, the mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood. Former reports suggest a neuroprotective effect of DMF mediated via astrocytes by reducing pro-inflammatory activation of these glial cells. We investigated potential direct effects of DMF and MMF on neuroprotective factors like neurotrophic factors and growth factors in astrocytes to elucidate further possible mechanisms of the mode of action of fumaric acids; (2) Methods: highly purified cultures of primary rat astrocytes were pre-treated in vitro with DMF or MMF and incubated with lipopolysaccharides (LPS) or a mixture of interferon gamma (IFN-γ) plus interleukin 1 beta (IL-1β) in order to simulate an inflammatory environment. The gene expression of neuroprotective factors such as neurotrophic factors (nuclear factor E2-related factor 2 (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF)) and growth factors (fibroblast growth factor 2 (FGF2), platelet-derived growth factor subunit A (PDGFa), ciliary neurotrophic factor (CNTF)) as well as cytokines (tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)) was examined by determining the transcription level with real-time quantitative polymerase chain reaction (qPCR); (3) Results: The stimulation of highly purified astrocytes with either LPS or cytokines changed the expression profile of growth factors and pro- inflammatory factors. However, the expression was not altered by either DMF nor MMF in unstimulated or stimulated astrocytes; (4) Conclusions: There was no direct influence of fumaric acids on neuroprotective factors in highly purified primary rat astrocytes. This suggests that the proposed potential neuroprotective effect of fumaric acid is not mediated by direct stimulation of neurotrophic factors in astrocytes but is rather mediated by other pathways or indirect mechanisms via other glial cells like microglia as previously demonstrated.
Collapse
Affiliation(s)
- Kaweh Pars
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, European Medical School, University Oldenburg, 26129 Oldenburg, Germany.
| | - Marina Gingele
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Refik Pul
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, University Clinic Essen, 45147 Essen, Germany.
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30559 Hannover, Germany.
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| |
Collapse
|
129
|
Saunders JM, González-Maeso J, Bajaj JS. The Toll of Hyperammonemia on the Brain. Cell Mol Gastroenterol Hepatol 2019; 8:649-650. [PMID: 31536718 PMCID: PMC6889707 DOI: 10.1016/j.jcmgh.2019.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/10/2022]
Affiliation(s)
- Justin M Saunders
- Department of Physiology and Biophysics, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia.
| |
Collapse
|
130
|
Gnanakkumaar P, Murugesan R, Ahmed SSSJ. Gene Regulatory Networks in Peripheral Mononuclear Cells Reveals Critical Regulatory Modules and Regulators of Multiple Sclerosis. Sci Rep 2019; 9:12732. [PMID: 31484947 PMCID: PMC6726613 DOI: 10.1038/s41598-019-49124-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a complex, demyelinating disease with the involvement of autoimmunity and neurodegeneration. Increasing efforts have been made towards identifying the diagnostic markers to differentiate the classes of MS from other similar neurological conditions. Using a systems biology approach, we constructed four types of gene regulatory networks (GRNs) involved in peripheral blood mononuclear cells (PBMCs). The regulatory strength of each GRN across primary progressive MS (PPMS), relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and control were evaluated by an integrity algorithm. Among the constructed GRNs (referred as TF_gene_miRNA), POU3F2_CDK6_hsa-miR-590-3p, MEIS1_CASC3_hsa-miR-1261, STAT3_OGG1_hsa-miR-298, and TCF4_FMR1_hsa-miR-301b were top-ranked and differentially regulated in all classes of MS compared to control. These GRNs showed potential involvement in regulating various molecular pathways such as interleukin, integrin, glypican, sphingosine phosphate, androgen, and Wnt signaling pathways. For validation, the qPCR analysis of the GRN components (TFs, gene, and miRNAs) in PBMCs of healthy controls (n = 30), RRMS (n = 14), PPMS (n = 13) and SPMS (n = 12) were carried out. Real-time expression analysis of GRNs showed a similar regulatory pattern as derived from our systems biology approach. Also, our study provided several novel GRNs that regulate unique and common molecular mechanisms between MS conditions. Hence, these regulatory components of GRNs will help to understand the disease mechanism across MS classes and further insight may though light towards diagnosis.
Collapse
Affiliation(s)
- Perumal Gnanakkumaar
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India
| | - Ram Murugesan
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India
| | - Shiek S S J Ahmed
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, 603103, India.
| |
Collapse
|
131
|
Chorąży M, Wawrusiewicz-Kurylonek N, Posmyk R, Zajkowska A, Kapica-Topczewska K, Krętowski AJ, Kochanowicz J, Kułakowska A. Analysis of chosen SNVs in GPC5, CD58 and IRF8 genes in multiple sclerosis patients. Adv Med Sci 2019; 64:230-234. [PMID: 30818222 DOI: 10.1016/j.advms.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/06/2018] [Accepted: 12/07/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Multiple sclerosis (MS) is an autoimmune disease of the central nervous system with a neurodegenerative compound. Heterogenetic background of autoimmunity pathway components has been suggested in the MS pathogenesis. The main aim of our study was to evaluate the association between selected polymorphisms of theCD58, IRF8 and GPC5 genes and treatment effectiveness in a group of relapsing-remitting MS patients. This is the first study of MS patients from Podlaskie Region in the Polish population. MATERIALS AND METHODS The study group comprised 174 relapsing-remitting MS patients diagnosed under 40 years of age. Genotyping was performed using ready to use TaqMan assays. RESULTS We demonstrate a strong association of the polymorphisms with sex, age of onset and response to the treatment applied. A significant correlation was observed in the presence of allele T of rs10492503 polymorphism inGPC5 gene with sex and age of MS onset. Logistic regression analysis revealed an increased risk of the interaction of rs17445836 in IRF8 gene with male sex and the type of treatment (OR = 3.80, p < 0.05), and a decreased risk in the interaction of female sex with disease progress according to the EDSS scale (OR=-2.33, p < 0.05). CONCLUSIONS The analysis of the correlation between different alleles, genotypes and clinical status confirmed the interaction between the genetic factors of age of onset and response to therapy. The study suggests that genetic variants inGPC5, CD58 and IRF8 genes may be of clinical interest in MS as predictors of age of onset and response to therapy.
Collapse
|
132
|
Long HC, Wu R, Liu CF, Xiong FL, Xu Z, He D, Zhang YF, Shao B, Zhang PA, Xu GY, Chu L. MiR-125a-5p Regulates Vitamin D Receptor Expression in a Mouse Model of Experimental Autoimmune Encephalomyelitis. Neurosci Bull 2019; 36:110-120. [PMID: 31428926 DOI: 10.1007/s12264-019-00418-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic and incurable autoimmune neurodegenerative disease of the central nervous system. Although the symptoms of MS can be managed by vitamin D3 treatment alone, this condition cannot be completely eradicated. Thus, there might be unknown factors capable of regulating the vitamin D receptor (VDR). Genome-wide analysis showed that miRNAs were associated with VDRs. We sought to determine the role and mechanism of action of miRNA-125a-5p and VDRs in a model of MS, mice with experimental autoimmune encephalomyelitis (EAE), which was induced by myelin oligodendrocyte glycoprotein 35-55 peptides. EAE mice showed decreased mean body weight but increased mean clinical scores compared with vehicle or control mice. And inflammatory infiltration was found in the lumbosacral spinal cord of EAE mice. In addition, VDR expression was significantly lower while the expression of miR-125a-5p was markedly higher in the spinal ventral horn of EAE mice than in vehicle or control mice. Importantly, activation of VDRs by paricalcitol or inhibition of miR-125a-5p by its antagomir markedly decreased the mean clinical scores in EAE mice. Interestingly, VDR and miR-125a-5p were co-localized in the same neurons of the ventral horn. More importantly, inhibition of miR-125a-5p remarkably blocked the decrease of VDRs in EAE mice. These results support a critical role for miR-125a-5p in modulating VDR activity in EAE and suggest potential novel therapeutic interventions.
Collapse
Affiliation(s)
- Han-Chun Long
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215008, China.,Department of Neurology, The Affiliated Xingyi City Hospital of Guizhou Medical University, Xingyi, 562400, China
| | - Rui Wu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215008, China.,Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Fei-Long Xiong
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215008, China.,Department of Neurology, The Affiliated Xingyi City Hospital of Guizhou Medical University, Xingyi, 562400, China
| | - Zu Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Dian He
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Yi-Fan Zhang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Bing Shao
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Ping-An Zhang
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Guang-Yin Xu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China. .,Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215008, China.
| |
Collapse
|
133
|
Schepers M, Tiane A, Paes D, Sanchez S, Rombaut B, Piccart E, Rutten BPF, Brône B, Hellings N, Prickaerts J, Vanmierlo T. Targeting Phosphodiesterases-Towards a Tailor-Made Approach in Multiple Sclerosis Treatment. Front Immunol 2019; 10:1727. [PMID: 31396231 PMCID: PMC6667646 DOI: 10.3389/fimmu.2019.01727] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) characterized by heterogeneous clinical symptoms including gradual muscle weakness, fatigue, and cognitive impairment. The disease course of MS can be classified into a relapsing-remitting (RR) phase defined by periods of neurological disabilities, and a progressive phase where neurological decline is persistent. Pathologically, MS is defined by a destructive immunological and neuro-degenerative interplay. Current treatments largely target the inflammatory processes and slow disease progression at best. Therefore, there is an urgent need to develop next-generation therapeutic strategies that target both neuroinflammatory and degenerative processes. It has been shown that elevating second messengers (cAMP and cGMP) is important for controlling inflammatory damage and inducing CNS repair. Phosphodiesterases (PDEs) have been studied extensively in a wide range of disorders as they breakdown these second messengers, rendering them crucial regulators. In this review, we provide an overview of the role of PDE inhibition in limiting pathological inflammation and stimulating regenerative processes in MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dean Paes
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ben Rombaut
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bart P F Rutten
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
134
|
Schoor C, Brocke-Ahmadinejad N, Gieselmann V, Winter D. Investigation of Oligodendrocyte Precursor Cell Differentiation by Quantitative Proteomics. Proteomics 2019; 19:e1900057. [PMID: 31216117 DOI: 10.1002/pmic.201900057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/02/2019] [Indexed: 01/20/2023]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, are essential for correct brain function. They originate from oligodendrocyte precursor cells through a differentiation process which is only incompletely understood and impaired in a variety of demyelinating diseases. Better knowledge of this differentiation holds the promise to develop novel therapies for these disorders. The differentiation of rat oligodendrocyte precursor cells to oligodendrocytes in vitro is investigated. After confirmation of differentiation by immunohistochemical analysis using cell type-specific marker proteins, a quantitative proteomics study using tandem mass tags (TMT) is conducted. Four time points of differentiation covering early, intermediate, and late stages are investigated. Data analysis by Mascot and MaxQuant identified 5259 protein groups of which 471 are not described in the context of cells of the oligodendroglial lineage before. Quantitative analysis of the dataset revealed distinct regulation patterns for proteins of different functional categories including metabolic processes, regulation of the cell cycle, and transcriptional control of protein expression. The present data confirm a significant number of proteins known to play a role in oligodendrocytes and myelination. Furthermore, novel candidate proteins are identified which may play an important role in this differentiation process providing a valuable resource for oligodendrocyte research.
Collapse
Affiliation(s)
- Carmen Schoor
- Institute for Biochemistry and Molecular Biology, University of Bonn, 53115, Bonn, Germany
| | | | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, University of Bonn, 53115, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
135
|
Sex differences in central nervous system plasticity and pain in experimental autoimmune encephalomyelitis. Pain 2019; 160:1037-1049. [PMID: 30649100 DOI: 10.1097/j.pain.0000000000001483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease with many known structural and functional changes in the central nervous system. A well-recognized, but poorly understood, complication of MS is chronic pain. Little is known regarding the influence of sex on the development and maintenance of MS-related pain. This is important to consider, as MS is a predominantly female disease. Using the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, we demonstrate sex differences in measures of spinal cord inflammation and plasticity that accompany tactile hypersensitivity. Although we observed substantial inflammatory activity in both sexes, only male EAE mice exhibit robust staining of axonal injury markers and increased dendritic arborisation in morphology of deep dorsal horn neurons. We propose that tactile hypersensitivity in female EAE mice may be more immune-driven, whereas pain in male mice with EAE may rely more heavily on neurodegenerative and plasticity-related mechanisms. Morphological and inflammatory differences in the spinal cord associated with pain early in EAE progression supports the idea of differentially regulated pain pathways between the sexes. Results from this study may indicate future sex-specific targets that are worth investigating for their functional role in pain circuitry.
Collapse
|
136
|
Capone A, Bianco M, Ruocco G, De Bardi M, Battistini L, Ruggieri S, Gasperini C, Centonze D, Sette C, Volpe E. Distinct Expression of Inflammatory Features in T Helper 17 Cells from Multiple Sclerosis Patients. Cells 2019; 8:E533. [PMID: 31167379 PMCID: PMC6628300 DOI: 10.3390/cells8060533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). T helper (Th) 17 lymphocytes play a role in the pathogenesis of MS. Indeed, Th17 cells are abundant in the cerebrospinal fluid and peripheral blood of MS patients and promote pathogenesis in the mouse model of MS. To gain insight into the function of Th17 cells in MS, we tested whether Th17 cells polarized from naïve CD4 T cells of healthy donors and MS patients display different features. To this end, we analysed several parameters that typify the Th17 profile during the differentiation process of naïve CD4 T cells obtained from relapsing-remitting (RR)-MS patients (n = 31) and healthy donors (HD) (n = 28). Analysis of an array of cytokines produced by Th17 cells revealed that expression of interleukin (IL)-21, tumour necrosis factor (TNF)-β, IL-2 and IL-1R1 is significantly increased in Th17 cells derived from MS patients compared to healthy donor-derived cells. Interestingly, IL-1R1 expression is also increased in Th17 cells circulating in the blood of MS patients compared to healthy donors. Since IL-2, IL-21, TNF-β, and IL-1R1 play a crucial role in the activation of immune cells, our data indicate that high expression of these molecules in Th17 cells from MS patients could be related to their high inflammatory status.
Collapse
Affiliation(s)
- Alessia Capone
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
| | - Manuela Bianco
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Gabriella Ruocco
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Marco De Bardi
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Serena Ruggieri
- Department of Neuroscience "Lancisi", San Camillo Hospital, 00152 Rome, Italy.
| | - Claudio Gasperini
- Department of Neuroscience "Lancisi", San Camillo Hospital, 00152 Rome, Italy.
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy.
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Elisabetta Volpe
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
137
|
Wajda DA, Wood TA, Sosnoff JJ. The attentional cost of movement in multiple sclerosis. J Neural Transm (Vienna) 2019; 126:577-583. [PMID: 30906960 DOI: 10.1007/s00702-019-01990-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
Abstract
Individuals living with multiple sclerosis frequently have impairments in mobility. These impairments are more pronounced when they engage in a cognitively demanding mobility tasks (i.e., walking and talking, obstacle clearance, etc). Based in part on the attentional capacity model of movement, these impairments are suggested to result from greater attentional demands. Yet, this model has not been directly tested in neurological populations. The objective of the study was to determine whether individuals with multiple sclerosis have greater attentional cost of movement across a range of tasks. This study tested probe reaction times of 20 individuals with multiple sclerosis and 26 healthy controls in five different movement tasks. The tasks were specifically chosen to challenge the perceptual-motor system based on variations in static and dynamic balance requirements. Participants were asked to verbally respond as quickly as possible to randomly presented audio probes during motor performance. Task order was randomized, and average probe reaction time was calculated for each task. The results showed tasks requiring dynamic stability had greater probe reaction times in both healthy controls and individuals with multiple sclerosis. Furthermore, individuals with multiple sclerosis had longer probe reaction times across all tasks compared to healthy controls. Yet, there was no relationship between probe reaction times and performance during a complex walking scenario. The results indicate the attentional capacity model may be inadequate to explain cognitive-motor interaction in people with multiple sclerosis. Future studies should address the theoretical framework of cognitive-motor interaction, which may influence the design of interventions aimed at improving performance in individuals with MS.
Collapse
Affiliation(s)
- Douglas A Wajda
- Department of Health and Human Performance, Cleveland State University, Cleveland, OH, USA
| | - Tyler A Wood
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jacob J Sosnoff
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
138
|
Owji M, Ashraf-Ganjouei A, Sahraian MA, Bidadian M, Ghadiri F, Naser Moghadasi A. The relationship between cognitive function and body mass index in multiple sclerosis patients. Mult Scler Relat Disord 2019; 32:37-40. [PMID: 31030017 DOI: 10.1016/j.msard.2019.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/08/2019] [Accepted: 04/20/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Many patients with multiple sclerosis (MS) endure cognitive impairment, which affects their everyday life and lowers their life quality. It has been demonstrated that obesity can result in poor cognitive performance in healthy individuals through various mechanisms. Therefore, we aimed at assessing the association between body mass index (BMI) and cognitive function in MS patients, using minimal assessment of cognitive functions in MS (MACFIMS) battery. METHOD This study included eighty-one patients with relapsing-remitting MS (RRMS). After collecting the demographic data, patients' height and weight were measured in order to calculate BMI. Then, MACFIMS battery was administered in one session, after obtaining information using expanded disability status scale (EDSS). RESULTS Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT) scores were negatively correlated with BMI (P values are equal to 0.005 and 0.037, respectively). PASAT score correlated with BMI after controlling for sex, age, and EDSS, but SDMT score did not correlate. Nevertheless, no significant variation was observed in the BMI level among individuals having MS with or without cognitive deficit. CONCLUSION We have shown that, BMI is associated with poor cognitive performance in some tests which, MACFIMS battery was included. This could suggest that obesity might be an important factor, which have effect on the cognitive performance.
Collapse
Affiliation(s)
- Mahsa Owji
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Bidadian
- Department of Psychology, School of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Fereshteh Ghadiri
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
139
|
Coyle PK, Oh J, Magyari M, Oreja-Guevara C, Houtchens M. Management strategies for female patients of reproductive potential with multiple sclerosis: An evidence-based review. Mult Scler Relat Disord 2019; 32:54-63. [PMID: 31030020 DOI: 10.1016/j.msard.2019.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, neurodegenerative, immune-mediated disease primarily diagnosed in early adulthood. Multiple sclerosis mostly impacts women of reproductive potential, with pregnancy and birth outcomes being major concerns for many patients. While there is ample evidence that the disease itself has no impact on pregnancy, many women living with MS still question their ability to have children, and the impact of childbearing on their disease in the short and long term. Such questions emphasize the importance of proper guidance from healthcare professionals, particularly neurologists. Management considerations are also complicated by the growing list of available treatment options. This review will summarize current evidence and expert opinion around the management of female MS patients of reproductive potential, from family planning to the postpartum period. Current guidelines on the use of disease-modifying therapies throughout pregnancy will be discussed, as well as other general medical recommendations, to minimize MS disease activity in the peripartum period.
Collapse
Affiliation(s)
- Patricia K Coyle
- Department of Neurology, Stony Brook University, Stony Brook, NY, USA.
| | - Jiwon Oh
- St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celia Oreja-Guevara
- Hospital Clínico San Carlos, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Maria Houtchens
- Brigham and Women's Hospital, Harvard Medical School, Brookline, MA, USA
| |
Collapse
|
140
|
Greenig M. HERVs, immunity, and autoimmunity: understanding the connection. PeerJ 2019; 7:e6711. [PMID: 30984482 PMCID: PMC6452852 DOI: 10.7717/peerj.6711] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/28/2019] [Indexed: 12/30/2022] Open
Abstract
Since their discovery in the 1960s, further investigation into endogenous retroviruses (ERVs) has challenged the conventional view of viral sequences as exclusively parasitic elements. Once presumed to be a group of passive genetic relics, it is becoming increasingly clear that this view of ERVs, while generally accurate, is incorrect in many specific cases. Research has identified ERV genes that appear to be co-opted by their mammalian hosts, but the biological function of ERV elements in humans remains a controversial subject. One area that has attracted some attention in this domain is the role of co-opted ERV elements in mammalian immune systems. The relationship between ERVs and human autoimmune diseases has also been investigated, but has historically been treated as a separate topic. This review will summarize the current evidence concerning the phenotypic significance of ERVs, both in the healthy immune system and in manifestations of autoimmunity. Furthermore, it will evaluate the relationship between these fields of study, and propose previously-unexplored molecular mechanisms through which human endogenous retroviruses might contribute to certain autoimmune pathologies. Investigation into these novel mechanisms could further our understanding of the molecular basis of autoimmune disease, and may one day provide new targets for treatment.
Collapse
Affiliation(s)
- Matthew Greenig
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
141
|
Van Der Walt A, Nguyen A, Jokubaitis V. Family planning, antenatal and post partum care in multiple sclerosis: a review and update. Med J Aust 2019; 211:230-236. [DOI: 10.5694/mja2.50113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anneke Van Der Walt
- Monash University Melbourne VIC
- University of Melbourne Melbourne VIC
- Alfred Health Melbourne VIC
- Royal Melbourne Hospital Melbourne VIC
| | - Ai‐Lan Nguyen
- University of Melbourne Melbourne VIC
- Royal Melbourne Hospital Melbourne VIC
| | - Vilija Jokubaitis
- Monash University Melbourne VIC
- University of Melbourne Melbourne VIC
- Alfred Health Melbourne VIC
| |
Collapse
|
142
|
Brain regional volume estimations with NeuroQuant and FIRST: a study in patients with a clinically isolated syndrome. Neuroradiology 2019; 61:667-674. [PMID: 30834955 DOI: 10.1007/s00234-019-02191-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/18/2019] [Indexed: 01/31/2023]
Abstract
PURPOSE Brain volume estimates from magnetic resonance images (MRIs) are of great interest in multiple sclerosis, and several automated tools have been developed for this purpose. The goal of this study was to assess the agreement between two tools, NeuroQuant® (NQ) and FMRIB's Integrated Registration Segmentation Tool (FIRST), for estimating overall and regional brain volume in a cohort of patients with a clinically isolated syndrome (CIS). In addition, white matter lesion volume was estimated with NQ and the Lesion Segmentation Toolbox (LST). METHODS One hundred fifteen CIS patients were analysed. Structural images were acquired on a 3.0-T system. The volume agreement between methods (by estimation of the intraclass correlation coefficient) was calculated for the right and left thalamus, caudate, putamen, pallidum, hippocampus, and amygdala, as well as for the total intracranial volume and white matter lesion volume. RESULTS In general, the estimated volumes were larger by NQ than FIRST, except for the pallidum. Agreement was low (ICC < 0.40) for the smaller structures (amygdala and pallidum) and fair to good (ICC > 0.40) for the remaining ones. Agreement was fair for lesion volume (ICC = 0.61), with NQ estimates lower than LST. CONCLUSIONS Agreement between NQ and FIRST brain volume estimates depends on the size of the structure of interest, with larger volumes achieving better agreement. In addition, concordance between the two tools does seem to be dependent on the presence of brain lesions.
Collapse
|
143
|
Ohno N, Ikenaka K. Axonal and neuronal degeneration in myelin diseases. Neurosci Res 2019; 139:48-57. [DOI: 10.1016/j.neures.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
|
144
|
Napier J, Rose L, Adeoye O, Hooker E, Walsh KB. Modulating acute neuroinflammation in intracerebral hemorrhage: the potential promise of currently approved medications for multiple sclerosis. Immunopharmacol Immunotoxicol 2019; 41:7-15. [PMID: 30702002 DOI: 10.1080/08923973.2019.1566361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secondary inflammatory injury following intracerebral hemorrhage (ICH) results in increased morbidity and mortality. White blood cells have been implicated as critical mediators of this inflammatory injury. Currently, no medications have been clinically proven to ameliorate or beneficially modulate inflammation, or to improve outcomes by any mechanism, following ICH. However, other neuroinflammatory conditions, such as multiple sclerosis, have approved pharmacologic therapies that modulate the inflammatory response and minimize the damage caused by inflammatory cells. Thus, there is substantial interest in existing therapies for neuroinflammation and their potential applicability to other acute neurological diseases such as ICH. In this review, we examined the mechanism of action of twelve currently approved medications for multiple sclerosis: alemtuzumab, daclizumab, dimethyl fumarate, fingolimod, glatiramer acetate, interferon beta-1a, interferon beta-1b, mitoxantrone, natalizumab, ocrelizumab, rituximab, teriflunomide. We analyzed the existing literature pertaining to the effects of these medications on various leukocytes and also with emphasis on mechanisms of action during the acute period following initiation of therapy. As a result, we provide a valuable summary of the current body of knowledge regarding these therapies and evidence that supports or refutes their likely promise for treating neuroinflammation following ICH.
Collapse
Affiliation(s)
- Jarred Napier
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Lucas Rose
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Opeolu Adeoye
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| | - Edmond Hooker
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Kyle B Walsh
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
145
|
Kronenberg J, Pars K, Brieskorn M, Prajeeth CK, Heckers S, Schwenkenbecher P, Skripuletz T, Pul R, Pavlou A, Stangel M. Fumaric Acids Directly Influence Gene Expression of Neuroprotective Factors in Rodent Microglia. Int J Mol Sci 2019; 20:ijms20020325. [PMID: 30650518 PMCID: PMC6358967 DOI: 10.3390/ijms20020325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
Dimethylfumarate (DMF) has been approved the for treatment of relapsing-remitting multiple sclerosis. The mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood, notably for brain resident cells. Therefore we investigated potential direct effects of DMF and MMF on microglia and indirect effects on oligodendrocytes. Primary rat microglia were differentiated into M1-like, M2-like and M0 phenotypes and treated in vitro with DMF or MMF. The gene expression of pro-inflammatory and anti-inflammatory factors such as growth factors (IGF-1), interleukins (IL-10, IL-1β), chemokines (CCl3, CXCL-10) as well as cytokines (TGF-1β, TNFα), iNOS, and the mannose receptor (MRC1) was examined by determining their transcription level with qPCR, and on the protein level by ELISA and FACS analysis. Furthermore, microglia function was determined by phagocytosis assays and indirect effects on oligodendroglial proliferation and differentiation. DMF treatment of M0 and M1-like polarized microglia demonstrated an upregulation of gene expression for IGF-1 and MRC1, but not on the protein level. While the phagocytic activity remained unchanged, DMF and MMF treated microglia supernatants led to an enhanced proliferation of oligodendrocyte precursor cells (OPC). These results suggest that DMF has anti-inflammatory effects on microglia which may result in enhanced proliferation of OPC.
Collapse
Affiliation(s)
- Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Kaweh Pars
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
- Department of Neurology, European Medical School, University Oldenburg, 26129 Oldenburg, Germany.
| | - Marina Brieskorn
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
| | - Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
| | - Sandra Heckers
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Philipp Schwenkenbecher
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
| | - Refik Pul
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
- Department of Neurology, University Clinic Essen, 45147 Essen, Germany.
| | - Andreas Pavlou
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
146
|
Soares JL, Oliveira EM, Pontillo A. Variants in NLRP3 and NLRC4 inflammasome associate with susceptibility and severity of multiple sclerosis. Mult Scler Relat Disord 2019; 29:26-34. [PMID: 30658261 DOI: 10.1016/j.msard.2019.01.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative disease of central nervous system (CNS) with autoimmune and inflammatory characteristics, and a still uncertain pathogenesis. Early events as well as evolution of MS are heterogeneous (three main clinical forms) and multifactorial. Genome-wide association studies indicate that MS pathogenesis shares features with both autoimmune and inflammatory diseases. Innate immunity has been recently proved to be an important factor in MS. Genetic variants in inflammasome components have been associated with both autoimmune and neurodegenerative diseases, letting us hypothesize that inflammasome, and related cytokines IL-1ß and IL-18, could represent important contributors in MS pathogenesis, and eventually explain, at least in part, the heterogeneity observed in MS patients. AIM To evaluate the contribution of inflammasome in MS, in term of (a) genetic effect on development, severity and/or prognosis, and (b) complex activation in peripheral blood as a measure of systemic inflammation. METHODS Functional genetic variants in inflammasome components were analyzed in a cohort of MS patients, by the use of allele-specific assays and qPCR. Multivariate analysis was performed based on clinical form (recurrent remittent/RR, primary progressive/PP or secondary progressive/SP), severity index (EDSS) and progression index (PI), response to IFN-ß treatment. Peripheral blood monocytes (PBM) of patients were examined for inflammasome activation and expression profile. RESULTS AND DISCUSSION Variants associated with low serum levels of IL-18 were significantly less frequent in MS patients than in controls, suggesting a protective role of diminished IL-18-mediate inflammation in MS development. On the other hands, gain-of-function variants in NLRP3 (Q705K) and IL1B (-511 C >T) associated with severity and progression of MS, suggesting that a constitutive activation of NLRP3 inflammasome could represent a risk factor for MS clinical presentation. Accordingly, -511C >T SNP resulted more frequent in progressive forms than in RR MS, reinforcing the idea that increased inflammasome activation characterized bad prognosis of MS. Altogether these findings corroborate previous data about the harmful role of NLRP3 inflammasome in experimental autoimmune encephalitis (EAE). Moreover, we reported for the first time the beneficial effect of NLRC4 rs479333 G >C variant in MS progression and in the response to IFN-ß treatment. This intronic polymorphism have been previously associated to decreased NLRC4 transcription and low IL-18 serum level, indicated once more that less activation of inflammasome and IL-18 production are beneficial for MS patients. PBM analysis showed that MS cells express higher level of inflammasome genes than HD ones, and are more prone to respond to a classical NLRP3 stimulus than HD.
Collapse
Affiliation(s)
- Jaine Ls Soares
- Laboratorio de Imunogenetica, Departamento de Imunologia, Instituto de Ciencias Biomédicas (ICB), Universidade de Sao Paulo (USP). Avenida Professor Lineu Prestes 1730, Sao Paulo, Brazil
| | - Enedina Ml Oliveira
- Ambulatório de Doenças Desmielinizantes, Departamento de Neurologia e Neurocirurgia, Universidade Federal de Sao Paulo (UNIFESP). Rua Pedro de Toledo 650, Sao Paulo, Brazil
| | - Alessandra Pontillo
- Laboratorio de Imunogenetica, Departamento de Imunologia, Instituto de Ciencias Biomédicas (ICB), Universidade de Sao Paulo (USP). Avenida Professor Lineu Prestes 1730, Sao Paulo, Brazil.
| |
Collapse
|
147
|
Zahednasab H, Firouzi M, Kaboudanian-Ardestani S, Mojallal-Tabatabaei Z, Karampour S, Keyvani H. The protective effect of rifampicin on behavioral deficits, biochemical, and neuropathological changes in a cuprizone model of demyelination. Cytokine 2019; 113:417-426. [DOI: 10.1016/j.cyto.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/16/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022]
|
148
|
An introduction to innate immunity in the central nervous system. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
149
|
The contribution of the instrumented Timed-Up-and-Go test to detect falls and fear of falling in people with multiple sclerosis. Mult Scler Relat Disord 2019; 27:226-231. [DOI: 10.1016/j.msard.2018.10.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 11/20/2022]
|
150
|
Cytoskeletal Regulation of Oligodendrocyte Differentiation and Myelination. J Neurosci 2018; 37:7797-7799. [PMID: 28821599 DOI: 10.1523/jneurosci.1398-17.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022] Open
|